1 /*
2  * EDAC driver for Intel(R) Xeon(R) Skylake processors
3  * Copyright (c) 2016, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/edac.h>
24 #include <linux/mmzone.h>
25 #include <linux/smp.h>
26 #include <linux/bitmap.h>
27 #include <linux/math64.h>
28 #include <linux/mod_devicetable.h>
29 #include <acpi/nfit.h>
30 #include <asm/cpu_device_id.h>
31 #include <asm/intel-family.h>
32 #include <asm/processor.h>
33 #include <asm/mce.h>
34 
35 #include "edac_module.h"
36 
37 #define EDAC_MOD_STR    "skx_edac"
38 
39 /*
40  * Debug macros
41  */
42 #define skx_printk(level, fmt, arg...)			\
43 	edac_printk(level, "skx", fmt, ##arg)
44 
45 #define skx_mc_printk(mci, level, fmt, arg...)		\
46 	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
47 
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi) \
52 	(((v) & GENMASK_ULL((hi), (lo))) >> (lo))
53 
54 static LIST_HEAD(skx_edac_list);
55 
56 static u64 skx_tolm, skx_tohm;
57 
58 #define NUM_IMC			2	/* memory controllers per socket */
59 #define NUM_CHANNELS		3	/* channels per memory controller */
60 #define NUM_DIMMS		2	/* Max DIMMS per channel */
61 
62 #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
63 #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
64 
65 /*
66  * Each cpu socket contains some pci devices that provide global
67  * information, and also some that are local to each of the two
68  * memory controllers on the die.
69  */
70 struct skx_dev {
71 	struct list_head	list;
72 	u8			bus[4];
73 	int			seg;
74 	struct pci_dev	*sad_all;
75 	struct pci_dev	*util_all;
76 	u32	mcroute;
77 	struct skx_imc {
78 		struct mem_ctl_info *mci;
79 		u8	mc;	/* system wide mc# */
80 		u8	lmc;	/* socket relative mc# */
81 		u8	src_id, node_id;
82 		struct skx_channel {
83 			struct pci_dev *cdev;
84 			struct skx_dimm {
85 				u8	close_pg;
86 				u8	bank_xor_enable;
87 				u8	fine_grain_bank;
88 				u8	rowbits;
89 				u8	colbits;
90 			} dimms[NUM_DIMMS];
91 		} chan[NUM_CHANNELS];
92 	} imc[NUM_IMC];
93 };
94 static int skx_num_sockets;
95 
96 struct skx_pvt {
97 	struct skx_imc	*imc;
98 };
99 
100 struct decoded_addr {
101 	struct skx_dev *dev;
102 	u64	addr;
103 	int	socket;
104 	int	imc;
105 	int	channel;
106 	u64	chan_addr;
107 	int	sktways;
108 	int	chanways;
109 	int	dimm;
110 	int	rank;
111 	int	channel_rank;
112 	u64	rank_address;
113 	int	row;
114 	int	column;
115 	int	bank_address;
116 	int	bank_group;
117 };
118 
get_skx_dev(struct pci_bus * bus,u8 idx)119 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
120 {
121 	struct skx_dev *d;
122 
123 	list_for_each_entry(d, &skx_edac_list, list) {
124 		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
125 			return d;
126 	}
127 
128 	return NULL;
129 }
130 
131 enum munittype {
132 	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
133 };
134 
135 struct munit {
136 	u16	did;
137 	u16	devfn[NUM_IMC];
138 	u8	busidx;
139 	u8	per_socket;
140 	enum munittype mtype;
141 };
142 
143 /*
144  * List of PCI device ids that we need together with some device
145  * number and function numbers to tell which memory controller the
146  * device belongs to.
147  */
148 static const struct munit skx_all_munits[] = {
149 	{ 0x2054, { }, 1, 1, SAD_ALL },
150 	{ 0x2055, { }, 1, 1, UTIL_ALL },
151 	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
152 	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
153 	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
154 	{ 0x208e, { }, 1, 0, SAD },
155 	{ }
156 };
157 
158 /*
159  * We use the per-socket device 0x2016 to count how many sockets are present,
160  * and to detemine which PCI buses are associated with each socket. Allocate
161  * and build the full list of all the skx_dev structures that we need here.
162  */
get_all_bus_mappings(void)163 static int get_all_bus_mappings(void)
164 {
165 	struct pci_dev *pdev, *prev;
166 	struct skx_dev *d;
167 	u32 reg;
168 	int ndev = 0;
169 
170 	prev = NULL;
171 	for (;;) {
172 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
173 		if (!pdev)
174 			break;
175 		ndev++;
176 		d = kzalloc(sizeof(*d), GFP_KERNEL);
177 		if (!d) {
178 			pci_dev_put(pdev);
179 			return -ENOMEM;
180 		}
181 		d->seg = pci_domain_nr(pdev->bus);
182 		pci_read_config_dword(pdev, 0xCC, &reg);
183 		d->bus[0] =  GET_BITFIELD(reg, 0, 7);
184 		d->bus[1] =  GET_BITFIELD(reg, 8, 15);
185 		d->bus[2] =  GET_BITFIELD(reg, 16, 23);
186 		d->bus[3] =  GET_BITFIELD(reg, 24, 31);
187 		edac_dbg(2, "busses: %x, %x, %x, %x\n",
188 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
189 		list_add_tail(&d->list, &skx_edac_list);
190 		skx_num_sockets++;
191 		prev = pdev;
192 	}
193 
194 	return ndev;
195 }
196 
get_all_munits(const struct munit * m)197 static int get_all_munits(const struct munit *m)
198 {
199 	struct pci_dev *pdev, *prev;
200 	struct skx_dev *d;
201 	u32 reg;
202 	int i = 0, ndev = 0;
203 
204 	prev = NULL;
205 	for (;;) {
206 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
207 		if (!pdev)
208 			break;
209 		ndev++;
210 		if (m->per_socket == NUM_IMC) {
211 			for (i = 0; i < NUM_IMC; i++)
212 				if (m->devfn[i] == pdev->devfn)
213 					break;
214 			if (i == NUM_IMC)
215 				goto fail;
216 		}
217 		d = get_skx_dev(pdev->bus, m->busidx);
218 		if (!d)
219 			goto fail;
220 
221 		/* Be sure that the device is enabled */
222 		if (unlikely(pci_enable_device(pdev) < 0)) {
223 			skx_printk(KERN_ERR,
224 				"Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
225 			goto fail;
226 		}
227 
228 		switch (m->mtype) {
229 		case CHAN0: case CHAN1: case CHAN2:
230 			pci_dev_get(pdev);
231 			d->imc[i].chan[m->mtype].cdev = pdev;
232 			break;
233 		case SAD_ALL:
234 			pci_dev_get(pdev);
235 			d->sad_all = pdev;
236 			break;
237 		case UTIL_ALL:
238 			pci_dev_get(pdev);
239 			d->util_all = pdev;
240 			break;
241 		case SAD:
242 			/*
243 			 * one of these devices per core, including cores
244 			 * that don't exist on this SKU. Ignore any that
245 			 * read a route table of zero, make sure all the
246 			 * non-zero values match.
247 			 */
248 			pci_read_config_dword(pdev, 0xB4, &reg);
249 			if (reg != 0) {
250 				if (d->mcroute == 0)
251 					d->mcroute = reg;
252 				else if (d->mcroute != reg) {
253 					skx_printk(KERN_ERR,
254 						"mcroute mismatch\n");
255 					goto fail;
256 				}
257 			}
258 			ndev--;
259 			break;
260 		}
261 
262 		prev = pdev;
263 	}
264 
265 	return ndev;
266 fail:
267 	pci_dev_put(pdev);
268 	return -ENODEV;
269 }
270 
271 static const struct x86_cpu_id skx_cpuids[] = {
272 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
273 	{ }
274 };
275 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
276 
get_src_id(struct skx_dev * d)277 static u8 get_src_id(struct skx_dev *d)
278 {
279 	u32 reg;
280 
281 	pci_read_config_dword(d->util_all, 0xF0, &reg);
282 
283 	return GET_BITFIELD(reg, 12, 14);
284 }
285 
skx_get_node_id(struct skx_dev * d)286 static u8 skx_get_node_id(struct skx_dev *d)
287 {
288 	u32 reg;
289 
290 	pci_read_config_dword(d->util_all, 0xF4, &reg);
291 
292 	return GET_BITFIELD(reg, 0, 2);
293 }
294 
get_dimm_attr(u32 reg,int lobit,int hibit,int add,int minval,int maxval,char * name)295 static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
296 			 int maxval, char *name)
297 {
298 	u32 val = GET_BITFIELD(reg, lobit, hibit);
299 
300 	if (val < minval || val > maxval) {
301 		edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
302 		return -EINVAL;
303 	}
304 	return val + add;
305 }
306 
307 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD((mtr), 15, 15)
308 #define IS_NVDIMM_PRESENT(mcddrtcfg, i)	GET_BITFIELD((mcddrtcfg), (i), (i))
309 
310 #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
311 #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
312 #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
313 
get_width(u32 mtr)314 static int get_width(u32 mtr)
315 {
316 	switch (GET_BITFIELD(mtr, 8, 9)) {
317 	case 0:
318 		return DEV_X4;
319 	case 1:
320 		return DEV_X8;
321 	case 2:
322 		return DEV_X16;
323 	}
324 	return DEV_UNKNOWN;
325 }
326 
skx_get_hi_lo(void)327 static int skx_get_hi_lo(void)
328 {
329 	struct pci_dev *pdev;
330 	u32 reg;
331 
332 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
333 	if (!pdev) {
334 		edac_dbg(0, "Can't get tolm/tohm\n");
335 		return -ENODEV;
336 	}
337 
338 	pci_read_config_dword(pdev, 0xD0, &reg);
339 	skx_tolm = reg;
340 	pci_read_config_dword(pdev, 0xD4, &reg);
341 	skx_tohm = reg;
342 	pci_read_config_dword(pdev, 0xD8, &reg);
343 	skx_tohm |= (u64)reg << 32;
344 
345 	pci_dev_put(pdev);
346 	edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
347 
348 	return 0;
349 }
350 
get_dimm_info(u32 mtr,u32 amap,struct dimm_info * dimm,struct skx_imc * imc,int chan,int dimmno)351 static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
352 			 struct skx_imc *imc, int chan, int dimmno)
353 {
354 	int  banks = 16, ranks, rows, cols, npages;
355 	u64 size;
356 
357 	ranks = numrank(mtr);
358 	rows = numrow(mtr);
359 	cols = numcol(mtr);
360 
361 	/*
362 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
363 	 */
364 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
365 	npages = MiB_TO_PAGES(size);
366 
367 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
368 		 imc->mc, chan, dimmno, size, npages,
369 		 banks, 1 << ranks, rows, cols);
370 
371 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
372 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
373 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
374 	imc->chan[chan].dimms[dimmno].rowbits = rows;
375 	imc->chan[chan].dimms[dimmno].colbits = cols;
376 
377 	dimm->nr_pages = npages;
378 	dimm->grain = 32;
379 	dimm->dtype = get_width(mtr);
380 	dimm->mtype = MEM_DDR4;
381 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
382 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
383 		 imc->src_id, imc->lmc, chan, dimmno);
384 
385 	return 1;
386 }
387 
get_nvdimm_info(struct dimm_info * dimm,struct skx_imc * imc,int chan,int dimmno)388 static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
389 			   int chan, int dimmno)
390 {
391 	int smbios_handle;
392 	u32 dev_handle;
393 	u16 flags;
394 	u64 size = 0;
395 
396 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
397 						   imc->src_id, 0);
398 
399 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
400 	if (smbios_handle == -EOPNOTSUPP) {
401 		pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n");
402 		goto unknown_size;
403 	}
404 
405 	if (smbios_handle < 0) {
406 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle);
407 		goto unknown_size;
408 	}
409 
410 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
411 		skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle);
412 		goto unknown_size;
413 	}
414 
415 	size = dmi_memdev_size(smbios_handle);
416 	if (size == ~0ull)
417 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n",
418 			   dev_handle, smbios_handle);
419 
420 unknown_size:
421 	dimm->nr_pages = size >> PAGE_SHIFT;
422 	dimm->grain = 32;
423 	dimm->dtype = DEV_UNKNOWN;
424 	dimm->mtype = MEM_NVDIMM;
425 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
426 
427 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu Mb (%u pages)\n",
428 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
429 
430 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
431 		 imc->src_id, imc->lmc, chan, dimmno);
432 
433 	return (size == 0 || size == ~0ull) ? 0 : 1;
434 }
435 
436 #define SKX_GET_MTMTR(dev, reg) \
437 	pci_read_config_dword((dev), 0x87c, &reg)
438 
skx_check_ecc(struct pci_dev * pdev)439 static bool skx_check_ecc(struct pci_dev *pdev)
440 {
441 	u32 mtmtr;
442 
443 	SKX_GET_MTMTR(pdev, mtmtr);
444 
445 	return !!GET_BITFIELD(mtmtr, 2, 2);
446 }
447 
skx_get_dimm_config(struct mem_ctl_info * mci)448 static int skx_get_dimm_config(struct mem_ctl_info *mci)
449 {
450 	struct skx_pvt *pvt = mci->pvt_info;
451 	struct skx_imc *imc = pvt->imc;
452 	u32 mtr, amap, mcddrtcfg;
453 	struct dimm_info *dimm;
454 	int i, j;
455 	int ndimms;
456 
457 	for (i = 0; i < NUM_CHANNELS; i++) {
458 		ndimms = 0;
459 		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
460 		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
461 		for (j = 0; j < NUM_DIMMS; j++) {
462 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
463 					     mci->n_layers, i, j, 0);
464 			pci_read_config_dword(imc->chan[i].cdev,
465 					0x80 + 4*j, &mtr);
466 			if (IS_DIMM_PRESENT(mtr))
467 				ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
468 			else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
469 				ndimms += get_nvdimm_info(dimm, imc, i, j);
470 		}
471 		if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
472 			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
473 			return -ENODEV;
474 		}
475 	}
476 
477 	return 0;
478 }
479 
skx_unregister_mci(struct skx_imc * imc)480 static void skx_unregister_mci(struct skx_imc *imc)
481 {
482 	struct mem_ctl_info *mci = imc->mci;
483 
484 	if (!mci)
485 		return;
486 
487 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
488 
489 	/* Remove MC sysfs nodes */
490 	edac_mc_del_mc(mci->pdev);
491 
492 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
493 	kfree(mci->ctl_name);
494 	edac_mc_free(mci);
495 }
496 
skx_register_mci(struct skx_imc * imc)497 static int skx_register_mci(struct skx_imc *imc)
498 {
499 	struct mem_ctl_info *mci;
500 	struct edac_mc_layer layers[2];
501 	struct pci_dev *pdev = imc->chan[0].cdev;
502 	struct skx_pvt *pvt;
503 	int rc;
504 
505 	/* allocate a new MC control structure */
506 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
507 	layers[0].size = NUM_CHANNELS;
508 	layers[0].is_virt_csrow = false;
509 	layers[1].type = EDAC_MC_LAYER_SLOT;
510 	layers[1].size = NUM_DIMMS;
511 	layers[1].is_virt_csrow = true;
512 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
513 			    sizeof(struct skx_pvt));
514 
515 	if (unlikely(!mci))
516 		return -ENOMEM;
517 
518 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
519 
520 	/* Associate skx_dev and mci for future usage */
521 	imc->mci = mci;
522 	pvt = mci->pvt_info;
523 	pvt->imc = imc;
524 
525 	mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
526 				  imc->node_id, imc->lmc);
527 	if (!mci->ctl_name) {
528 		rc = -ENOMEM;
529 		goto fail0;
530 	}
531 
532 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
533 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
534 	mci->edac_cap = EDAC_FLAG_NONE;
535 	mci->mod_name = EDAC_MOD_STR;
536 	mci->dev_name = pci_name(imc->chan[0].cdev);
537 	mci->ctl_page_to_phys = NULL;
538 
539 	rc = skx_get_dimm_config(mci);
540 	if (rc < 0)
541 		goto fail;
542 
543 	/* record ptr to the generic device */
544 	mci->pdev = &pdev->dev;
545 
546 	/* add this new MC control structure to EDAC's list of MCs */
547 	if (unlikely(edac_mc_add_mc(mci))) {
548 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
549 		rc = -EINVAL;
550 		goto fail;
551 	}
552 
553 	return 0;
554 
555 fail:
556 	kfree(mci->ctl_name);
557 fail0:
558 	edac_mc_free(mci);
559 	imc->mci = NULL;
560 	return rc;
561 }
562 
563 #define	SKX_MAX_SAD 24
564 
565 #define SKX_GET_SAD(d, i, reg)	\
566 	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
567 #define SKX_GET_ILV(d, i, reg)	\
568 	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
569 
570 #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
571 #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
572 #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
573 #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
574 #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
575 #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
576 #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
577 
578 #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
579 #define SKX_ILV_TARGET(tgt)	((tgt) & 7)
580 
skx_sad_decode(struct decoded_addr * res)581 static bool skx_sad_decode(struct decoded_addr *res)
582 {
583 	struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
584 	u64 addr = res->addr;
585 	int i, idx, tgt, lchan, shift;
586 	u32 sad, ilv;
587 	u64 limit, prev_limit;
588 	int remote = 0;
589 
590 	/* Simple sanity check for I/O space or out of range */
591 	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
592 		edac_dbg(0, "Address %llx out of range\n", addr);
593 		return false;
594 	}
595 
596 restart:
597 	prev_limit = 0;
598 	for (i = 0; i < SKX_MAX_SAD; i++) {
599 		SKX_GET_SAD(d, i, sad);
600 		limit = SKX_SAD_LIMIT(sad);
601 		if (SKX_SAD_ENABLE(sad)) {
602 			if (addr >= prev_limit && addr <= limit)
603 				goto sad_found;
604 		}
605 		prev_limit = limit + 1;
606 	}
607 	edac_dbg(0, "No SAD entry for %llx\n", addr);
608 	return false;
609 
610 sad_found:
611 	SKX_GET_ILV(d, i, ilv);
612 
613 	switch (SKX_SAD_INTERLEAVE(sad)) {
614 	case 0:
615 		idx = GET_BITFIELD(addr, 6, 8);
616 		break;
617 	case 1:
618 		idx = GET_BITFIELD(addr, 8, 10);
619 		break;
620 	case 2:
621 		idx = GET_BITFIELD(addr, 12, 14);
622 		break;
623 	case 3:
624 		idx = GET_BITFIELD(addr, 30, 32);
625 		break;
626 	}
627 
628 	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
629 
630 	/* If point to another node, find it and start over */
631 	if (SKX_ILV_REMOTE(tgt)) {
632 		if (remote) {
633 			edac_dbg(0, "Double remote!\n");
634 			return false;
635 		}
636 		remote = 1;
637 		list_for_each_entry(d, &skx_edac_list, list) {
638 			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
639 				goto restart;
640 		}
641 		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
642 		return false;
643 	}
644 
645 	if (SKX_SAD_MOD3(sad) == 0)
646 		lchan = SKX_ILV_TARGET(tgt);
647 	else {
648 		switch (SKX_SAD_MOD3MODE(sad)) {
649 		case 0:
650 			shift = 6;
651 			break;
652 		case 1:
653 			shift = 8;
654 			break;
655 		case 2:
656 			shift = 12;
657 			break;
658 		default:
659 			edac_dbg(0, "illegal mod3mode\n");
660 			return false;
661 		}
662 		switch (SKX_SAD_MOD3ASMOD2(sad)) {
663 		case 0:
664 			lchan = (addr >> shift) % 3;
665 			break;
666 		case 1:
667 			lchan = (addr >> shift) % 2;
668 			break;
669 		case 2:
670 			lchan = (addr >> shift) % 2;
671 			lchan = (lchan << 1) | ~lchan;
672 			break;
673 		case 3:
674 			lchan = ((addr >> shift) % 2) << 1;
675 			break;
676 		}
677 		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
678 	}
679 
680 	res->dev = d;
681 	res->socket = d->imc[0].src_id;
682 	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
683 	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
684 
685 	edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
686 		 res->addr, res->socket, res->imc, res->channel);
687 	return true;
688 }
689 
690 #define	SKX_MAX_TAD 8
691 
692 #define SKX_GET_TADBASE(d, mc, i, reg)			\
693 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
694 #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
695 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
696 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
697 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
698 
699 #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
700 #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
701 #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
702 #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
703 #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
704 #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
705 #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
706 
707 /* which bit used for both socket and channel interleave */
708 static int skx_granularity[] = { 6, 8, 12, 30 };
709 
skx_do_interleave(u64 addr,int shift,int ways,u64 lowbits)710 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
711 {
712 	addr >>= shift;
713 	addr /= ways;
714 	addr <<= shift;
715 
716 	return addr | (lowbits & ((1ull << shift) - 1));
717 }
718 
skx_tad_decode(struct decoded_addr * res)719 static bool skx_tad_decode(struct decoded_addr *res)
720 {
721 	int i;
722 	u32 base, wayness, chnilvoffset;
723 	int skt_interleave_bit, chn_interleave_bit;
724 	u64 channel_addr;
725 
726 	for (i = 0; i < SKX_MAX_TAD; i++) {
727 		SKX_GET_TADBASE(res->dev, res->imc, i, base);
728 		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
729 		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
730 			goto tad_found;
731 	}
732 	edac_dbg(0, "No TAD entry for %llx\n", res->addr);
733 	return false;
734 
735 tad_found:
736 	res->sktways = SKX_TAD_SKTWAYS(wayness);
737 	res->chanways = SKX_TAD_CHNWAYS(wayness);
738 	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
739 	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
740 
741 	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
742 	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
743 
744 	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
745 		/* Must handle channel first, then socket */
746 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
747 						 res->chanways, channel_addr);
748 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
749 						 res->sktways, channel_addr);
750 	} else {
751 		/* Handle socket then channel. Preserve low bits from original address */
752 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
753 						 res->sktways, res->addr);
754 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
755 						 res->chanways, res->addr);
756 	}
757 
758 	res->chan_addr = channel_addr;
759 
760 	edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
761 		 res->addr, res->chan_addr, res->sktways, res->chanways);
762 	return true;
763 }
764 
765 #define SKX_MAX_RIR 4
766 
767 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
768 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
769 			      0x108 + 4 * (i), &reg)
770 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
771 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
772 			      0x120 + 16 * idx + 4 * (i), &reg)
773 
774 #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
775 #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
776 #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
777 #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
778 #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
779 
skx_rir_decode(struct decoded_addr * res)780 static bool skx_rir_decode(struct decoded_addr *res)
781 {
782 	int i, idx, chan_rank;
783 	int shift;
784 	u32 rirway, rirlv;
785 	u64 rank_addr, prev_limit = 0, limit;
786 
787 	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
788 		shift = 6;
789 	else
790 		shift = 13;
791 
792 	for (i = 0; i < SKX_MAX_RIR; i++) {
793 		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
794 		limit = SKX_RIR_LIMIT(rirway);
795 		if (SKX_RIR_VALID(rirway)) {
796 			if (prev_limit <= res->chan_addr &&
797 			    res->chan_addr <= limit)
798 				goto rir_found;
799 		}
800 		prev_limit = limit;
801 	}
802 	edac_dbg(0, "No RIR entry for %llx\n", res->addr);
803 	return false;
804 
805 rir_found:
806 	rank_addr = res->chan_addr >> shift;
807 	rank_addr /= SKX_RIR_WAYS(rirway);
808 	rank_addr <<= shift;
809 	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
810 
811 	res->rank_address = rank_addr;
812 	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
813 
814 	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
815 	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
816 	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
817 	res->channel_rank = chan_rank;
818 	res->dimm = chan_rank / 4;
819 	res->rank = chan_rank % 4;
820 
821 	edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
822 		 res->addr, res->dimm, res->rank,
823 		 res->channel_rank, res->rank_address);
824 	return true;
825 }
826 
827 static u8 skx_close_row[] = {
828 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
829 };
830 static u8 skx_close_column[] = {
831 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
832 };
833 static u8 skx_open_row[] = {
834 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
835 };
836 static u8 skx_open_column[] = {
837 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
838 };
839 static u8 skx_open_fine_column[] = {
840 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
841 };
842 
skx_bits(u64 addr,int nbits,u8 * bits)843 static int skx_bits(u64 addr, int nbits, u8 *bits)
844 {
845 	int i, res = 0;
846 
847 	for (i = 0; i < nbits; i++)
848 		res |= ((addr >> bits[i]) & 1) << i;
849 	return res;
850 }
851 
skx_bank_bits(u64 addr,int b0,int b1,int do_xor,int x0,int x1)852 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
853 {
854 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
855 
856 	if (do_xor)
857 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
858 
859 	return ret;
860 }
861 
skx_mad_decode(struct decoded_addr * r)862 static bool skx_mad_decode(struct decoded_addr *r)
863 {
864 	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
865 	int bg0 = dimm->fine_grain_bank ? 6 : 13;
866 
867 	if (dimm->close_pg) {
868 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
869 		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
870 		r->column |= 0x400; /* C10 is autoprecharge, always set */
871 		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
872 		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
873 	} else {
874 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
875 		if (dimm->fine_grain_bank)
876 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
877 		else
878 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
879 		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
880 		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
881 	}
882 	r->row &= (1u << dimm->rowbits) - 1;
883 
884 	edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
885 		 r->addr, r->row, r->column, r->bank_address,
886 		 r->bank_group);
887 	return true;
888 }
889 
skx_decode(struct decoded_addr * res)890 static bool skx_decode(struct decoded_addr *res)
891 {
892 
893 	return skx_sad_decode(res) && skx_tad_decode(res) &&
894 		skx_rir_decode(res) && skx_mad_decode(res);
895 }
896 
897 #ifdef CONFIG_EDAC_DEBUG
898 /*
899  * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
900  * Write an address to this file to exercise the address decode
901  * logic in this driver.
902  */
903 static struct dentry *skx_test;
904 static u64 skx_fake_addr;
905 
debugfs_u64_set(void * data,u64 val)906 static int debugfs_u64_set(void *data, u64 val)
907 {
908 	struct decoded_addr res;
909 
910 	res.addr = val;
911 	skx_decode(&res);
912 
913 	return 0;
914 }
915 
916 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
917 
mydebugfs_create(const char * name,umode_t mode,struct dentry * parent,u64 * value)918 static struct dentry *mydebugfs_create(const char *name, umode_t mode,
919 				       struct dentry *parent, u64 *value)
920 {
921 	return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
922 }
923 
setup_skx_debug(void)924 static void setup_skx_debug(void)
925 {
926 	skx_test = debugfs_create_dir("skx_edac_test", NULL);
927 	mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
928 }
929 
teardown_skx_debug(void)930 static void teardown_skx_debug(void)
931 {
932 	debugfs_remove_recursive(skx_test);
933 }
934 #else
setup_skx_debug(void)935 static void setup_skx_debug(void)
936 {
937 }
938 
teardown_skx_debug(void)939 static void teardown_skx_debug(void)
940 {
941 }
942 #endif /*CONFIG_EDAC_DEBUG*/
943 
skx_mce_output_error(struct mem_ctl_info * mci,const struct mce * m,struct decoded_addr * res)944 static void skx_mce_output_error(struct mem_ctl_info *mci,
945 				 const struct mce *m,
946 				 struct decoded_addr *res)
947 {
948 	enum hw_event_mc_err_type tp_event;
949 	char *type, *optype, msg[256];
950 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
951 	bool overflow = GET_BITFIELD(m->status, 62, 62);
952 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
953 	bool recoverable;
954 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
955 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
956 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
957 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
958 
959 	recoverable = GET_BITFIELD(m->status, 56, 56);
960 
961 	if (uncorrected_error) {
962 		if (ripv) {
963 			type = "FATAL";
964 			tp_event = HW_EVENT_ERR_FATAL;
965 		} else {
966 			type = "NON_FATAL";
967 			tp_event = HW_EVENT_ERR_UNCORRECTED;
968 		}
969 	} else {
970 		type = "CORRECTED";
971 		tp_event = HW_EVENT_ERR_CORRECTED;
972 	}
973 
974 	/*
975 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
976 	 * memory errors should fit in this mask:
977 	 *	000f 0000 1mmm cccc (binary)
978 	 * where:
979 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
980 	 *	    won't be shown
981 	 *	mmm = error type
982 	 *	cccc = channel
983 	 * If the mask doesn't match, report an error to the parsing logic
984 	 */
985 	if (!((errcode & 0xef80) == 0x80)) {
986 		optype = "Can't parse: it is not a mem";
987 	} else {
988 		switch (optypenum) {
989 		case 0:
990 			optype = "generic undef request error";
991 			break;
992 		case 1:
993 			optype = "memory read error";
994 			break;
995 		case 2:
996 			optype = "memory write error";
997 			break;
998 		case 3:
999 			optype = "addr/cmd error";
1000 			break;
1001 		case 4:
1002 			optype = "memory scrubbing error";
1003 			break;
1004 		default:
1005 			optype = "reserved";
1006 			break;
1007 		}
1008 	}
1009 
1010 	snprintf(msg, sizeof(msg),
1011 		 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
1012 		 overflow ? " OVERFLOW" : "",
1013 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1014 		 mscod, errcode,
1015 		 res->socket, res->imc, res->rank,
1016 		 res->bank_group, res->bank_address, res->row, res->column);
1017 
1018 	edac_dbg(0, "%s\n", msg);
1019 
1020 	/* Call the helper to output message */
1021 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1022 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1023 			     res->channel, res->dimm, -1,
1024 			     optype, msg);
1025 }
1026 
skx_mce_check_error(struct notifier_block * nb,unsigned long val,void * data)1027 static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
1028 			       void *data)
1029 {
1030 	struct mce *mce = (struct mce *)data;
1031 	struct decoded_addr res;
1032 	struct mem_ctl_info *mci;
1033 	char *type;
1034 
1035 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
1036 		return NOTIFY_DONE;
1037 
1038 	/* ignore unless this is memory related with an address */
1039 	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
1040 		return NOTIFY_DONE;
1041 
1042 	res.addr = mce->addr;
1043 	if (!skx_decode(&res))
1044 		return NOTIFY_DONE;
1045 	mci = res.dev->imc[res.imc].mci;
1046 
1047 	if (mce->mcgstatus & MCG_STATUS_MCIP)
1048 		type = "Exception";
1049 	else
1050 		type = "Event";
1051 
1052 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
1053 
1054 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
1055 			  "Bank %d: %016Lx\n", mce->extcpu, type,
1056 			  mce->mcgstatus, mce->bank, mce->status);
1057 	skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
1058 	skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
1059 	skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
1060 
1061 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1062 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1063 			  mce->time, mce->socketid, mce->apicid);
1064 
1065 	skx_mce_output_error(mci, mce, &res);
1066 
1067 	return NOTIFY_DONE;
1068 }
1069 
1070 static struct notifier_block skx_mce_dec = {
1071 	.notifier_call	= skx_mce_check_error,
1072 	.priority	= MCE_PRIO_EDAC,
1073 };
1074 
skx_remove(void)1075 static void skx_remove(void)
1076 {
1077 	int i, j;
1078 	struct skx_dev *d, *tmp;
1079 
1080 	edac_dbg(0, "\n");
1081 
1082 	list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
1083 		list_del(&d->list);
1084 		for (i = 0; i < NUM_IMC; i++) {
1085 			skx_unregister_mci(&d->imc[i]);
1086 			for (j = 0; j < NUM_CHANNELS; j++)
1087 				pci_dev_put(d->imc[i].chan[j].cdev);
1088 		}
1089 		pci_dev_put(d->util_all);
1090 		pci_dev_put(d->sad_all);
1091 
1092 		kfree(d);
1093 	}
1094 }
1095 
1096 /*
1097  * skx_init:
1098  *	make sure we are running on the correct cpu model
1099  *	search for all the devices we need
1100  *	check which DIMMs are present.
1101  */
skx_init(void)1102 static int __init skx_init(void)
1103 {
1104 	const struct x86_cpu_id *id;
1105 	const struct munit *m;
1106 	const char *owner;
1107 	int rc = 0, i;
1108 	u8 mc = 0, src_id, node_id;
1109 	struct skx_dev *d;
1110 
1111 	edac_dbg(2, "\n");
1112 
1113 	owner = edac_get_owner();
1114 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1115 		return -EBUSY;
1116 
1117 	id = x86_match_cpu(skx_cpuids);
1118 	if (!id)
1119 		return -ENODEV;
1120 
1121 	rc = skx_get_hi_lo();
1122 	if (rc)
1123 		return rc;
1124 
1125 	rc = get_all_bus_mappings();
1126 	if (rc < 0)
1127 		goto fail;
1128 	if (rc == 0) {
1129 		edac_dbg(2, "No memory controllers found\n");
1130 		return -ENODEV;
1131 	}
1132 
1133 	for (m = skx_all_munits; m->did; m++) {
1134 		rc = get_all_munits(m);
1135 		if (rc < 0)
1136 			goto fail;
1137 		if (rc != m->per_socket * skx_num_sockets) {
1138 			edac_dbg(2, "Expected %d, got %d of %x\n",
1139 				 m->per_socket * skx_num_sockets, rc, m->did);
1140 			rc = -ENODEV;
1141 			goto fail;
1142 		}
1143 	}
1144 
1145 	list_for_each_entry(d, &skx_edac_list, list) {
1146 		src_id = get_src_id(d);
1147 		node_id = skx_get_node_id(d);
1148 		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
1149 		for (i = 0; i < NUM_IMC; i++) {
1150 			d->imc[i].mc = mc++;
1151 			d->imc[i].lmc = i;
1152 			d->imc[i].src_id = src_id;
1153 			d->imc[i].node_id = node_id;
1154 			rc = skx_register_mci(&d->imc[i]);
1155 			if (rc < 0)
1156 				goto fail;
1157 		}
1158 	}
1159 
1160 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1161 	opstate_init();
1162 
1163 	setup_skx_debug();
1164 
1165 	mce_register_decode_chain(&skx_mce_dec);
1166 
1167 	return 0;
1168 fail:
1169 	skx_remove();
1170 	return rc;
1171 }
1172 
skx_exit(void)1173 static void __exit skx_exit(void)
1174 {
1175 	edac_dbg(2, "\n");
1176 	mce_unregister_decode_chain(&skx_mce_dec);
1177 	skx_remove();
1178 	teardown_skx_debug();
1179 }
1180 
1181 module_init(skx_init);
1182 module_exit(skx_exit);
1183 
1184 module_param(edac_op_state, int, 0444);
1185 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1186 
1187 MODULE_LICENSE("GPL v2");
1188 MODULE_AUTHOR("Tony Luck");
1189 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
1190