1 /*
2  * Fence mechanism for dma-buf and to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-fence.h>
25 #include <linux/sched/signal.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/dma_fence.h>
29 
30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
31 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
32 
33 /*
34  * fence context counter: each execution context should have its own
35  * fence context, this allows checking if fences belong to the same
36  * context or not. One device can have multiple separate contexts,
37  * and they're used if some engine can run independently of another.
38  */
39 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0);
40 
41 /**
42  * DOC: DMA fences overview
43  *
44  * DMA fences, represented by &struct dma_fence, are the kernel internal
45  * synchronization primitive for DMA operations like GPU rendering, video
46  * encoding/decoding, or displaying buffers on a screen.
47  *
48  * A fence is initialized using dma_fence_init() and completed using
49  * dma_fence_signal(). Fences are associated with a context, allocated through
50  * dma_fence_context_alloc(), and all fences on the same context are
51  * fully ordered.
52  *
53  * Since the purposes of fences is to facilitate cross-device and
54  * cross-application synchronization, there's multiple ways to use one:
55  *
56  * - Individual fences can be exposed as a &sync_file, accessed as a file
57  *   descriptor from userspace, created by calling sync_file_create(). This is
58  *   called explicit fencing, since userspace passes around explicit
59  *   synchronization points.
60  *
61  * - Some subsystems also have their own explicit fencing primitives, like
62  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
63  *   fence to be updated.
64  *
65  * - Then there's also implicit fencing, where the synchronization points are
66  *   implicitly passed around as part of shared &dma_buf instances. Such
67  *   implicit fences are stored in &struct reservation_object through the
68  *   &dma_buf.resv pointer.
69  */
70 
71 /**
72  * dma_fence_context_alloc - allocate an array of fence contexts
73  * @num: amount of contexts to allocate
74  *
75  * This function will return the first index of the number of fence contexts
76  * allocated.  The fence context is used for setting &dma_fence.context to a
77  * unique number by passing the context to dma_fence_init().
78  */
dma_fence_context_alloc(unsigned num)79 u64 dma_fence_context_alloc(unsigned num)
80 {
81 	WARN_ON(!num);
82 	return atomic64_add_return(num, &dma_fence_context_counter) - num;
83 }
84 EXPORT_SYMBOL(dma_fence_context_alloc);
85 
86 /**
87  * dma_fence_signal_locked - signal completion of a fence
88  * @fence: the fence to signal
89  *
90  * Signal completion for software callbacks on a fence, this will unblock
91  * dma_fence_wait() calls and run all the callbacks added with
92  * dma_fence_add_callback(). Can be called multiple times, but since a fence
93  * can only go from the unsignaled to the signaled state and not back, it will
94  * only be effective the first time.
95  *
96  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
97  * held.
98  *
99  * Returns 0 on success and a negative error value when @fence has been
100  * signalled already.
101  */
dma_fence_signal_locked(struct dma_fence * fence)102 int dma_fence_signal_locked(struct dma_fence *fence)
103 {
104 	struct dma_fence_cb *cur, *tmp;
105 	int ret = 0;
106 
107 	lockdep_assert_held(fence->lock);
108 
109 	if (WARN_ON(!fence))
110 		return -EINVAL;
111 
112 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
113 		ret = -EINVAL;
114 
115 		/*
116 		 * we might have raced with the unlocked dma_fence_signal,
117 		 * still run through all callbacks
118 		 */
119 	} else {
120 		fence->timestamp = ktime_get();
121 		set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
122 		trace_dma_fence_signaled(fence);
123 	}
124 
125 	list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
126 		list_del_init(&cur->node);
127 		cur->func(fence, cur);
128 	}
129 	return ret;
130 }
131 EXPORT_SYMBOL(dma_fence_signal_locked);
132 
133 /**
134  * dma_fence_signal - signal completion of a fence
135  * @fence: the fence to signal
136  *
137  * Signal completion for software callbacks on a fence, this will unblock
138  * dma_fence_wait() calls and run all the callbacks added with
139  * dma_fence_add_callback(). Can be called multiple times, but since a fence
140  * can only go from the unsignaled to the signaled state and not back, it will
141  * only be effective the first time.
142  *
143  * Returns 0 on success and a negative error value when @fence has been
144  * signalled already.
145  */
dma_fence_signal(struct dma_fence * fence)146 int dma_fence_signal(struct dma_fence *fence)
147 {
148 	unsigned long flags;
149 
150 	if (!fence)
151 		return -EINVAL;
152 
153 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
154 		return -EINVAL;
155 
156 	fence->timestamp = ktime_get();
157 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
158 	trace_dma_fence_signaled(fence);
159 
160 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
161 		struct dma_fence_cb *cur, *tmp;
162 
163 		spin_lock_irqsave(fence->lock, flags);
164 		list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
165 			list_del_init(&cur->node);
166 			cur->func(fence, cur);
167 		}
168 		spin_unlock_irqrestore(fence->lock, flags);
169 	}
170 	return 0;
171 }
172 EXPORT_SYMBOL(dma_fence_signal);
173 
174 /**
175  * dma_fence_wait_timeout - sleep until the fence gets signaled
176  * or until timeout elapses
177  * @fence: the fence to wait on
178  * @intr: if true, do an interruptible wait
179  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
180  *
181  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
182  * remaining timeout in jiffies on success. Other error values may be
183  * returned on custom implementations.
184  *
185  * Performs a synchronous wait on this fence. It is assumed the caller
186  * directly or indirectly (buf-mgr between reservation and committing)
187  * holds a reference to the fence, otherwise the fence might be
188  * freed before return, resulting in undefined behavior.
189  *
190  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
191  */
192 signed long
dma_fence_wait_timeout(struct dma_fence * fence,bool intr,signed long timeout)193 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
194 {
195 	signed long ret;
196 
197 	if (WARN_ON(timeout < 0))
198 		return -EINVAL;
199 
200 	trace_dma_fence_wait_start(fence);
201 	if (fence->ops->wait)
202 		ret = fence->ops->wait(fence, intr, timeout);
203 	else
204 		ret = dma_fence_default_wait(fence, intr, timeout);
205 	trace_dma_fence_wait_end(fence);
206 	return ret;
207 }
208 EXPORT_SYMBOL(dma_fence_wait_timeout);
209 
210 /**
211  * dma_fence_release - default relese function for fences
212  * @kref: &dma_fence.recfount
213  *
214  * This is the default release functions for &dma_fence. Drivers shouldn't call
215  * this directly, but instead call dma_fence_put().
216  */
dma_fence_release(struct kref * kref)217 void dma_fence_release(struct kref *kref)
218 {
219 	struct dma_fence *fence =
220 		container_of(kref, struct dma_fence, refcount);
221 
222 	trace_dma_fence_destroy(fence);
223 
224 	/* Failed to signal before release, could be a refcounting issue */
225 	WARN_ON(!list_empty(&fence->cb_list));
226 
227 	if (fence->ops->release)
228 		fence->ops->release(fence);
229 	else
230 		dma_fence_free(fence);
231 }
232 EXPORT_SYMBOL(dma_fence_release);
233 
234 /**
235  * dma_fence_free - default release function for &dma_fence.
236  * @fence: fence to release
237  *
238  * This is the default implementation for &dma_fence_ops.release. It calls
239  * kfree_rcu() on @fence.
240  */
dma_fence_free(struct dma_fence * fence)241 void dma_fence_free(struct dma_fence *fence)
242 {
243 	kfree_rcu(fence, rcu);
244 }
245 EXPORT_SYMBOL(dma_fence_free);
246 
247 /**
248  * dma_fence_enable_sw_signaling - enable signaling on fence
249  * @fence: the fence to enable
250  *
251  * This will request for sw signaling to be enabled, to make the fence
252  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
253  * internally.
254  */
dma_fence_enable_sw_signaling(struct dma_fence * fence)255 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
256 {
257 	unsigned long flags;
258 
259 	if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
260 			      &fence->flags) &&
261 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
262 	    fence->ops->enable_signaling) {
263 		trace_dma_fence_enable_signal(fence);
264 
265 		spin_lock_irqsave(fence->lock, flags);
266 
267 		if (!fence->ops->enable_signaling(fence))
268 			dma_fence_signal_locked(fence);
269 
270 		spin_unlock_irqrestore(fence->lock, flags);
271 	}
272 }
273 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
274 
275 /**
276  * dma_fence_add_callback - add a callback to be called when the fence
277  * is signaled
278  * @fence: the fence to wait on
279  * @cb: the callback to register
280  * @func: the function to call
281  *
282  * @cb will be initialized by dma_fence_add_callback(), no initialization
283  * by the caller is required. Any number of callbacks can be registered
284  * to a fence, but a callback can only be registered to one fence at a time.
285  *
286  * Note that the callback can be called from an atomic context.  If
287  * fence is already signaled, this function will return -ENOENT (and
288  * *not* call the callback).
289  *
290  * Add a software callback to the fence. Same restrictions apply to
291  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
292  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
293  * when software access is enabled, the creator of the fence is required to keep
294  * the fence alive until after it signals with dma_fence_signal(). The callback
295  * itself can be called from irq context.
296  *
297  * Returns 0 in case of success, -ENOENT if the fence is already signaled
298  * and -EINVAL in case of error.
299  */
dma_fence_add_callback(struct dma_fence * fence,struct dma_fence_cb * cb,dma_fence_func_t func)300 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
301 			   dma_fence_func_t func)
302 {
303 	unsigned long flags;
304 	int ret = 0;
305 	bool was_set;
306 
307 	if (WARN_ON(!fence || !func))
308 		return -EINVAL;
309 
310 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
311 		INIT_LIST_HEAD(&cb->node);
312 		return -ENOENT;
313 	}
314 
315 	spin_lock_irqsave(fence->lock, flags);
316 
317 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
318 				   &fence->flags);
319 
320 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
321 		ret = -ENOENT;
322 	else if (!was_set && fence->ops->enable_signaling) {
323 		trace_dma_fence_enable_signal(fence);
324 
325 		if (!fence->ops->enable_signaling(fence)) {
326 			dma_fence_signal_locked(fence);
327 			ret = -ENOENT;
328 		}
329 	}
330 
331 	if (!ret) {
332 		cb->func = func;
333 		list_add_tail(&cb->node, &fence->cb_list);
334 	} else
335 		INIT_LIST_HEAD(&cb->node);
336 	spin_unlock_irqrestore(fence->lock, flags);
337 
338 	return ret;
339 }
340 EXPORT_SYMBOL(dma_fence_add_callback);
341 
342 /**
343  * dma_fence_get_status - returns the status upon completion
344  * @fence: the dma_fence to query
345  *
346  * This wraps dma_fence_get_status_locked() to return the error status
347  * condition on a signaled fence. See dma_fence_get_status_locked() for more
348  * details.
349  *
350  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
351  * been signaled without an error condition, or a negative error code
352  * if the fence has been completed in err.
353  */
dma_fence_get_status(struct dma_fence * fence)354 int dma_fence_get_status(struct dma_fence *fence)
355 {
356 	unsigned long flags;
357 	int status;
358 
359 	spin_lock_irqsave(fence->lock, flags);
360 	status = dma_fence_get_status_locked(fence);
361 	spin_unlock_irqrestore(fence->lock, flags);
362 
363 	return status;
364 }
365 EXPORT_SYMBOL(dma_fence_get_status);
366 
367 /**
368  * dma_fence_remove_callback - remove a callback from the signaling list
369  * @fence: the fence to wait on
370  * @cb: the callback to remove
371  *
372  * Remove a previously queued callback from the fence. This function returns
373  * true if the callback is successfully removed, or false if the fence has
374  * already been signaled.
375  *
376  * *WARNING*:
377  * Cancelling a callback should only be done if you really know what you're
378  * doing, since deadlocks and race conditions could occur all too easily. For
379  * this reason, it should only ever be done on hardware lockup recovery,
380  * with a reference held to the fence.
381  *
382  * Behaviour is undefined if @cb has not been added to @fence using
383  * dma_fence_add_callback() beforehand.
384  */
385 bool
dma_fence_remove_callback(struct dma_fence * fence,struct dma_fence_cb * cb)386 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
387 {
388 	unsigned long flags;
389 	bool ret;
390 
391 	spin_lock_irqsave(fence->lock, flags);
392 
393 	ret = !list_empty(&cb->node);
394 	if (ret)
395 		list_del_init(&cb->node);
396 
397 	spin_unlock_irqrestore(fence->lock, flags);
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL(dma_fence_remove_callback);
402 
403 struct default_wait_cb {
404 	struct dma_fence_cb base;
405 	struct task_struct *task;
406 };
407 
408 static void
dma_fence_default_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)409 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
410 {
411 	struct default_wait_cb *wait =
412 		container_of(cb, struct default_wait_cb, base);
413 
414 	wake_up_state(wait->task, TASK_NORMAL);
415 }
416 
417 /**
418  * dma_fence_default_wait - default sleep until the fence gets signaled
419  * or until timeout elapses
420  * @fence: the fence to wait on
421  * @intr: if true, do an interruptible wait
422  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
423  *
424  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
425  * remaining timeout in jiffies on success. If timeout is zero the value one is
426  * returned if the fence is already signaled for consistency with other
427  * functions taking a jiffies timeout.
428  */
429 signed long
dma_fence_default_wait(struct dma_fence * fence,bool intr,signed long timeout)430 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
431 {
432 	struct default_wait_cb cb;
433 	unsigned long flags;
434 	signed long ret = timeout ? timeout : 1;
435 	bool was_set;
436 
437 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
438 		return ret;
439 
440 	spin_lock_irqsave(fence->lock, flags);
441 
442 	if (intr && signal_pending(current)) {
443 		ret = -ERESTARTSYS;
444 		goto out;
445 	}
446 
447 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
448 				   &fence->flags);
449 
450 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
451 		goto out;
452 
453 	if (!was_set && fence->ops->enable_signaling) {
454 		trace_dma_fence_enable_signal(fence);
455 
456 		if (!fence->ops->enable_signaling(fence)) {
457 			dma_fence_signal_locked(fence);
458 			goto out;
459 		}
460 	}
461 
462 	if (!timeout) {
463 		ret = 0;
464 		goto out;
465 	}
466 
467 	cb.base.func = dma_fence_default_wait_cb;
468 	cb.task = current;
469 	list_add(&cb.base.node, &fence->cb_list);
470 
471 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
472 		if (intr)
473 			__set_current_state(TASK_INTERRUPTIBLE);
474 		else
475 			__set_current_state(TASK_UNINTERRUPTIBLE);
476 		spin_unlock_irqrestore(fence->lock, flags);
477 
478 		ret = schedule_timeout(ret);
479 
480 		spin_lock_irqsave(fence->lock, flags);
481 		if (ret > 0 && intr && signal_pending(current))
482 			ret = -ERESTARTSYS;
483 	}
484 
485 	if (!list_empty(&cb.base.node))
486 		list_del(&cb.base.node);
487 	__set_current_state(TASK_RUNNING);
488 
489 out:
490 	spin_unlock_irqrestore(fence->lock, flags);
491 	return ret;
492 }
493 EXPORT_SYMBOL(dma_fence_default_wait);
494 
495 static bool
dma_fence_test_signaled_any(struct dma_fence ** fences,uint32_t count,uint32_t * idx)496 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
497 			    uint32_t *idx)
498 {
499 	int i;
500 
501 	for (i = 0; i < count; ++i) {
502 		struct dma_fence *fence = fences[i];
503 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
504 			if (idx)
505 				*idx = i;
506 			return true;
507 		}
508 	}
509 	return false;
510 }
511 
512 /**
513  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
514  * or until timeout elapses
515  * @fences: array of fences to wait on
516  * @count: number of fences to wait on
517  * @intr: if true, do an interruptible wait
518  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
519  * @idx: used to store the first signaled fence index, meaningful only on
520  *	positive return
521  *
522  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
523  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
524  * on success.
525  *
526  * Synchronous waits for the first fence in the array to be signaled. The
527  * caller needs to hold a reference to all fences in the array, otherwise a
528  * fence might be freed before return, resulting in undefined behavior.
529  *
530  * See also dma_fence_wait() and dma_fence_wait_timeout().
531  */
532 signed long
dma_fence_wait_any_timeout(struct dma_fence ** fences,uint32_t count,bool intr,signed long timeout,uint32_t * idx)533 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
534 			   bool intr, signed long timeout, uint32_t *idx)
535 {
536 	struct default_wait_cb *cb;
537 	signed long ret = timeout;
538 	unsigned i;
539 
540 	if (WARN_ON(!fences || !count || timeout < 0))
541 		return -EINVAL;
542 
543 	if (timeout == 0) {
544 		for (i = 0; i < count; ++i)
545 			if (dma_fence_is_signaled(fences[i])) {
546 				if (idx)
547 					*idx = i;
548 				return 1;
549 			}
550 
551 		return 0;
552 	}
553 
554 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
555 	if (cb == NULL) {
556 		ret = -ENOMEM;
557 		goto err_free_cb;
558 	}
559 
560 	for (i = 0; i < count; ++i) {
561 		struct dma_fence *fence = fences[i];
562 
563 		cb[i].task = current;
564 		if (dma_fence_add_callback(fence, &cb[i].base,
565 					   dma_fence_default_wait_cb)) {
566 			/* This fence is already signaled */
567 			if (idx)
568 				*idx = i;
569 			goto fence_rm_cb;
570 		}
571 	}
572 
573 	while (ret > 0) {
574 		if (intr)
575 			set_current_state(TASK_INTERRUPTIBLE);
576 		else
577 			set_current_state(TASK_UNINTERRUPTIBLE);
578 
579 		if (dma_fence_test_signaled_any(fences, count, idx))
580 			break;
581 
582 		ret = schedule_timeout(ret);
583 
584 		if (ret > 0 && intr && signal_pending(current))
585 			ret = -ERESTARTSYS;
586 	}
587 
588 	__set_current_state(TASK_RUNNING);
589 
590 fence_rm_cb:
591 	while (i-- > 0)
592 		dma_fence_remove_callback(fences[i], &cb[i].base);
593 
594 err_free_cb:
595 	kfree(cb);
596 
597 	return ret;
598 }
599 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
600 
601 /**
602  * dma_fence_init - Initialize a custom fence.
603  * @fence: the fence to initialize
604  * @ops: the dma_fence_ops for operations on this fence
605  * @lock: the irqsafe spinlock to use for locking this fence
606  * @context: the execution context this fence is run on
607  * @seqno: a linear increasing sequence number for this context
608  *
609  * Initializes an allocated fence, the caller doesn't have to keep its
610  * refcount after committing with this fence, but it will need to hold a
611  * refcount again if &dma_fence_ops.enable_signaling gets called.
612  *
613  * context and seqno are used for easy comparison between fences, allowing
614  * to check which fence is later by simply using dma_fence_later().
615  */
616 void
dma_fence_init(struct dma_fence * fence,const struct dma_fence_ops * ops,spinlock_t * lock,u64 context,unsigned seqno)617 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
618 	       spinlock_t *lock, u64 context, unsigned seqno)
619 {
620 	BUG_ON(!lock);
621 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
622 
623 	kref_init(&fence->refcount);
624 	fence->ops = ops;
625 	INIT_LIST_HEAD(&fence->cb_list);
626 	fence->lock = lock;
627 	fence->context = context;
628 	fence->seqno = seqno;
629 	fence->flags = 0UL;
630 	fence->error = 0;
631 
632 	trace_dma_fence_init(fence);
633 }
634 EXPORT_SYMBOL(dma_fence_init);
635