1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DMA driver for Xilinx DMA/Bridge Subsystem
4  *
5  * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
6  * Copyright (C) 2022, Advanced Micro Devices, Inc.
7  */
8 
9 /*
10  * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
11  * between Host memory and the DMA subsystem. It does this by operating on
12  * 'descriptors' that contain information about the source, destination and
13  * amount of data to transfer. These direct memory transfers can be both in
14  * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
15  * configured to have a single AXI4 Master interface shared by all channels
16  * or one AXI4-Stream interface for each channel enabled. Memory transfers are
17  * specified on a per-channel basis in descriptor linked lists, which the DMA
18  * fetches from host memory and processes. Events such as descriptor completion
19  * and errors are signaled using interrupts. The core also provides up to 16
20  * user interrupt wires that generate interrupts to the host.
21  */
22 
23 #include <linux/mod_devicetable.h>
24 #include <linux/bitfield.h>
25 #include <linux/dmapool.h>
26 #include <linux/regmap.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/amd_xdma.h>
29 #include <linux/platform_device.h>
30 #include <linux/platform_data/amd_xdma.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/pci.h>
33 #include "../virt-dma.h"
34 #include "xdma-regs.h"
35 
36 /* mmio regmap config for all XDMA registers */
37 static const struct regmap_config xdma_regmap_config = {
38 	.reg_bits = 32,
39 	.val_bits = 32,
40 	.reg_stride = 4,
41 	.max_register = XDMA_REG_SPACE_LEN,
42 };
43 
44 /**
45  * struct xdma_desc_block - Descriptor block
46  * @virt_addr: Virtual address of block start
47  * @dma_addr: DMA address of block start
48  */
49 struct xdma_desc_block {
50 	void		*virt_addr;
51 	dma_addr_t	dma_addr;
52 };
53 
54 /**
55  * struct xdma_chan - Driver specific DMA channel structure
56  * @vchan: Virtual channel
57  * @xdev_hdl: Pointer to DMA device structure
58  * @base: Offset of channel registers
59  * @desc_pool: Descriptor pool
60  * @busy: Busy flag of the channel
61  * @dir: Transferring direction of the channel
62  * @cfg: Transferring config of the channel
63  * @irq: IRQ assigned to the channel
64  */
65 struct xdma_chan {
66 	struct virt_dma_chan		vchan;
67 	void				*xdev_hdl;
68 	u32				base;
69 	struct dma_pool			*desc_pool;
70 	bool				busy;
71 	enum dma_transfer_direction	dir;
72 	struct dma_slave_config		cfg;
73 	u32				irq;
74 };
75 
76 /**
77  * struct xdma_desc - DMA desc structure
78  * @vdesc: Virtual DMA descriptor
79  * @chan: DMA channel pointer
80  * @dir: Transferring direction of the request
81  * @dev_addr: Physical address on DMA device side
82  * @desc_blocks: Hardware descriptor blocks
83  * @dblk_num: Number of hardware descriptor blocks
84  * @desc_num: Number of hardware descriptors
85  * @completed_desc_num: Completed hardware descriptors
86  */
87 struct xdma_desc {
88 	struct virt_dma_desc		vdesc;
89 	struct xdma_chan		*chan;
90 	enum dma_transfer_direction	dir;
91 	u64				dev_addr;
92 	struct xdma_desc_block		*desc_blocks;
93 	u32				dblk_num;
94 	u32				desc_num;
95 	u32				completed_desc_num;
96 };
97 
98 #define XDMA_DEV_STATUS_REG_DMA		BIT(0)
99 #define XDMA_DEV_STATUS_INIT_MSIX	BIT(1)
100 
101 /**
102  * struct xdma_device - DMA device structure
103  * @pdev: Platform device pointer
104  * @dma_dev: DMA device structure
105  * @rmap: MMIO regmap for DMA registers
106  * @h2c_chans: Host to Card channels
107  * @c2h_chans: Card to Host channels
108  * @h2c_chan_num: Number of H2C channels
109  * @c2h_chan_num: Number of C2H channels
110  * @irq_start: Start IRQ assigned to device
111  * @irq_num: Number of IRQ assigned to device
112  * @status: Initialization status
113  */
114 struct xdma_device {
115 	struct platform_device	*pdev;
116 	struct dma_device	dma_dev;
117 	struct regmap		*rmap;
118 	struct xdma_chan	*h2c_chans;
119 	struct xdma_chan	*c2h_chans;
120 	u32			h2c_chan_num;
121 	u32			c2h_chan_num;
122 	u32			irq_start;
123 	u32			irq_num;
124 	u32			status;
125 };
126 
127 #define xdma_err(xdev, fmt, args...)					\
128 	dev_err(&(xdev)->pdev->dev, fmt, ##args)
129 #define XDMA_CHAN_NUM(_xd) ({						\
130 	typeof(_xd) (xd) = (_xd);					\
131 	((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
132 
133 /* Get the last desc in a desc block */
xdma_blk_last_desc(struct xdma_desc_block * block)134 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
135 {
136 	return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
137 }
138 
139 /**
140  * xdma_link_desc_blocks - Link descriptor blocks for DMA transfer
141  * @sw_desc: Tx descriptor pointer
142  */
xdma_link_desc_blocks(struct xdma_desc * sw_desc)143 static void xdma_link_desc_blocks(struct xdma_desc *sw_desc)
144 {
145 	struct xdma_desc_block *block;
146 	u32 last_blk_desc, desc_control;
147 	struct xdma_hw_desc *desc;
148 	int i;
149 
150 	desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
151 	for (i = 1; i < sw_desc->dblk_num; i++) {
152 		block = &sw_desc->desc_blocks[i - 1];
153 		desc = xdma_blk_last_desc(block);
154 
155 		if (!(i & XDMA_DESC_BLOCK_MASK)) {
156 			desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
157 			continue;
158 		}
159 		desc->control = cpu_to_le32(desc_control);
160 		desc->next_desc = cpu_to_le64(block[1].dma_addr);
161 	}
162 
163 	/* update the last block */
164 	last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
165 	if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
166 		block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
167 		desc = xdma_blk_last_desc(block);
168 		desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
169 		desc->control = cpu_to_le32(desc_control);
170 	}
171 
172 	block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
173 	desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
174 	desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
175 }
176 
to_xdma_chan(struct dma_chan * chan)177 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
178 {
179 	return container_of(chan, struct xdma_chan, vchan.chan);
180 }
181 
to_xdma_desc(struct virt_dma_desc * vdesc)182 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
183 {
184 	return container_of(vdesc, struct xdma_desc, vdesc);
185 }
186 
187 /**
188  * xdma_channel_init - Initialize DMA channel registers
189  * @chan: DMA channel pointer
190  */
xdma_channel_init(struct xdma_chan * chan)191 static int xdma_channel_init(struct xdma_chan *chan)
192 {
193 	struct xdma_device *xdev = chan->xdev_hdl;
194 	int ret;
195 
196 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
197 			   CHAN_CTRL_NON_INCR_ADDR);
198 	if (ret)
199 		return ret;
200 
201 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
202 			   CHAN_IM_ALL);
203 	if (ret)
204 		return ret;
205 
206 	return 0;
207 }
208 
209 /**
210  * xdma_free_desc - Free descriptor
211  * @vdesc: Virtual DMA descriptor
212  */
xdma_free_desc(struct virt_dma_desc * vdesc)213 static void xdma_free_desc(struct virt_dma_desc *vdesc)
214 {
215 	struct xdma_desc *sw_desc;
216 	int i;
217 
218 	sw_desc = to_xdma_desc(vdesc);
219 	for (i = 0; i < sw_desc->dblk_num; i++) {
220 		if (!sw_desc->desc_blocks[i].virt_addr)
221 			break;
222 		dma_pool_free(sw_desc->chan->desc_pool,
223 			      sw_desc->desc_blocks[i].virt_addr,
224 			      sw_desc->desc_blocks[i].dma_addr);
225 	}
226 	kfree(sw_desc->desc_blocks);
227 	kfree(sw_desc);
228 }
229 
230 /**
231  * xdma_alloc_desc - Allocate descriptor
232  * @chan: DMA channel pointer
233  * @desc_num: Number of hardware descriptors
234  */
235 static struct xdma_desc *
xdma_alloc_desc(struct xdma_chan * chan,u32 desc_num)236 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num)
237 {
238 	struct xdma_desc *sw_desc;
239 	struct xdma_hw_desc *desc;
240 	dma_addr_t dma_addr;
241 	u32 dblk_num;
242 	void *addr;
243 	int i, j;
244 
245 	sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
246 	if (!sw_desc)
247 		return NULL;
248 
249 	sw_desc->chan = chan;
250 	sw_desc->desc_num = desc_num;
251 	dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
252 	sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
253 				       GFP_NOWAIT);
254 	if (!sw_desc->desc_blocks)
255 		goto failed;
256 
257 	sw_desc->dblk_num = dblk_num;
258 	for (i = 0; i < sw_desc->dblk_num; i++) {
259 		addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
260 		if (!addr)
261 			goto failed;
262 
263 		sw_desc->desc_blocks[i].virt_addr = addr;
264 		sw_desc->desc_blocks[i].dma_addr = dma_addr;
265 		for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
266 			desc[j].control = cpu_to_le32(XDMA_DESC_CONTROL(1, 0));
267 	}
268 
269 	xdma_link_desc_blocks(sw_desc);
270 
271 	return sw_desc;
272 
273 failed:
274 	xdma_free_desc(&sw_desc->vdesc);
275 	return NULL;
276 }
277 
278 /**
279  * xdma_xfer_start - Start DMA transfer
280  * @xchan: DMA channel pointer
281  */
xdma_xfer_start(struct xdma_chan * xchan)282 static int xdma_xfer_start(struct xdma_chan *xchan)
283 {
284 	struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
285 	struct xdma_device *xdev = xchan->xdev_hdl;
286 	struct xdma_desc_block *block;
287 	u32 val, completed_blocks;
288 	struct xdma_desc *desc;
289 	int ret;
290 
291 	/*
292 	 * check if there is not any submitted descriptor or channel is busy.
293 	 * vchan lock should be held where this function is called.
294 	 */
295 	if (!vd || xchan->busy)
296 		return -EINVAL;
297 
298 	/* clear run stop bit to get ready for transfer */
299 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
300 			   CHAN_CTRL_RUN_STOP);
301 	if (ret)
302 		return ret;
303 
304 	desc = to_xdma_desc(vd);
305 	if (desc->dir != xchan->dir) {
306 		xdma_err(xdev, "incorrect request direction");
307 		return -EINVAL;
308 	}
309 
310 	/* set DMA engine to the first descriptor block */
311 	completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
312 	block = &desc->desc_blocks[completed_blocks];
313 	val = lower_32_bits(block->dma_addr);
314 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
315 	if (ret)
316 		return ret;
317 
318 	val = upper_32_bits(block->dma_addr);
319 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
320 	if (ret)
321 		return ret;
322 
323 	if (completed_blocks + 1 == desc->dblk_num)
324 		val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
325 	else
326 		val = XDMA_DESC_ADJACENT - 1;
327 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
328 	if (ret)
329 		return ret;
330 
331 	/* kick off DMA transfer */
332 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
333 			   CHAN_CTRL_START);
334 	if (ret)
335 		return ret;
336 
337 	xchan->busy = true;
338 	return 0;
339 }
340 
341 /**
342  * xdma_alloc_channels - Detect and allocate DMA channels
343  * @xdev: DMA device pointer
344  * @dir: Channel direction
345  */
xdma_alloc_channels(struct xdma_device * xdev,enum dma_transfer_direction dir)346 static int xdma_alloc_channels(struct xdma_device *xdev,
347 			       enum dma_transfer_direction dir)
348 {
349 	struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
350 	struct xdma_chan **chans, *xchan;
351 	u32 base, identifier, target;
352 	u32 *chan_num;
353 	int i, j, ret;
354 
355 	if (dir == DMA_MEM_TO_DEV) {
356 		base = XDMA_CHAN_H2C_OFFSET;
357 		target = XDMA_CHAN_H2C_TARGET;
358 		chans = &xdev->h2c_chans;
359 		chan_num = &xdev->h2c_chan_num;
360 	} else if (dir == DMA_DEV_TO_MEM) {
361 		base = XDMA_CHAN_C2H_OFFSET;
362 		target = XDMA_CHAN_C2H_TARGET;
363 		chans = &xdev->c2h_chans;
364 		chan_num = &xdev->c2h_chan_num;
365 	} else {
366 		xdma_err(xdev, "invalid direction specified");
367 		return -EINVAL;
368 	}
369 
370 	/* detect number of available DMA channels */
371 	for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
372 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
373 				  &identifier);
374 		if (ret)
375 			return ret;
376 
377 		/* check if it is available DMA channel */
378 		if (XDMA_CHAN_CHECK_TARGET(identifier, target))
379 			(*chan_num)++;
380 	}
381 
382 	if (!*chan_num) {
383 		xdma_err(xdev, "does not probe any channel");
384 		return -EINVAL;
385 	}
386 
387 	*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
388 			      GFP_KERNEL);
389 	if (!*chans)
390 		return -ENOMEM;
391 
392 	for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
393 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
394 				  &identifier);
395 		if (ret)
396 			return ret;
397 
398 		if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
399 			continue;
400 
401 		if (j == *chan_num) {
402 			xdma_err(xdev, "invalid channel number");
403 			return -EIO;
404 		}
405 
406 		/* init channel structure and hardware */
407 		xchan = &(*chans)[j];
408 		xchan->xdev_hdl = xdev;
409 		xchan->base = base + i * XDMA_CHAN_STRIDE;
410 		xchan->dir = dir;
411 
412 		ret = xdma_channel_init(xchan);
413 		if (ret)
414 			return ret;
415 		xchan->vchan.desc_free = xdma_free_desc;
416 		vchan_init(&xchan->vchan, &xdev->dma_dev);
417 
418 		j++;
419 	}
420 
421 	dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
422 		 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
423 
424 	return 0;
425 }
426 
427 /**
428  * xdma_issue_pending - Issue pending transactions
429  * @chan: DMA channel pointer
430  */
xdma_issue_pending(struct dma_chan * chan)431 static void xdma_issue_pending(struct dma_chan *chan)
432 {
433 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
434 	unsigned long flags;
435 
436 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
437 	if (vchan_issue_pending(&xdma_chan->vchan))
438 		xdma_xfer_start(xdma_chan);
439 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
440 }
441 
442 /**
443  * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
444  * @chan: DMA channel pointer
445  * @sgl: Transfer scatter gather list
446  * @sg_len: Length of scatter gather list
447  * @dir: Transfer direction
448  * @flags: transfer ack flags
449  * @context: APP words of the descriptor
450  */
451 static struct dma_async_tx_descriptor *
xdma_prep_device_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)452 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
453 		    unsigned int sg_len, enum dma_transfer_direction dir,
454 		    unsigned long flags, void *context)
455 {
456 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
457 	struct dma_async_tx_descriptor *tx_desc;
458 	u32 desc_num = 0, i, len, rest;
459 	struct xdma_desc_block *dblk;
460 	struct xdma_hw_desc *desc;
461 	struct xdma_desc *sw_desc;
462 	u64 dev_addr, *src, *dst;
463 	struct scatterlist *sg;
464 	u64 addr;
465 
466 	for_each_sg(sgl, sg, sg_len, i)
467 		desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
468 
469 	sw_desc = xdma_alloc_desc(xdma_chan, desc_num);
470 	if (!sw_desc)
471 		return NULL;
472 	sw_desc->dir = dir;
473 
474 	if (dir == DMA_MEM_TO_DEV) {
475 		dev_addr = xdma_chan->cfg.dst_addr;
476 		src = &addr;
477 		dst = &dev_addr;
478 	} else {
479 		dev_addr = xdma_chan->cfg.src_addr;
480 		src = &dev_addr;
481 		dst = &addr;
482 	}
483 
484 	dblk = sw_desc->desc_blocks;
485 	desc = dblk->virt_addr;
486 	desc_num = 1;
487 	for_each_sg(sgl, sg, sg_len, i) {
488 		addr = sg_dma_address(sg);
489 		rest = sg_dma_len(sg);
490 
491 		do {
492 			len = min_t(u32, rest, XDMA_DESC_BLEN_MAX);
493 			/* set hardware descriptor */
494 			desc->bytes = cpu_to_le32(len);
495 			desc->src_addr = cpu_to_le64(*src);
496 			desc->dst_addr = cpu_to_le64(*dst);
497 
498 			if (!(desc_num & XDMA_DESC_ADJACENT_MASK)) {
499 				dblk++;
500 				desc = dblk->virt_addr;
501 			} else {
502 				desc++;
503 			}
504 
505 			desc_num++;
506 			dev_addr += len;
507 			addr += len;
508 			rest -= len;
509 		} while (rest);
510 	}
511 
512 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
513 	if (!tx_desc)
514 		goto failed;
515 
516 	return tx_desc;
517 
518 failed:
519 	xdma_free_desc(&sw_desc->vdesc);
520 
521 	return NULL;
522 }
523 
524 /**
525  * xdma_device_config - Configure the DMA channel
526  * @chan: DMA channel
527  * @cfg: channel configuration
528  */
xdma_device_config(struct dma_chan * chan,struct dma_slave_config * cfg)529 static int xdma_device_config(struct dma_chan *chan,
530 			      struct dma_slave_config *cfg)
531 {
532 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
533 
534 	memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
535 
536 	return 0;
537 }
538 
539 /**
540  * xdma_free_chan_resources - Free channel resources
541  * @chan: DMA channel
542  */
xdma_free_chan_resources(struct dma_chan * chan)543 static void xdma_free_chan_resources(struct dma_chan *chan)
544 {
545 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
546 
547 	vchan_free_chan_resources(&xdma_chan->vchan);
548 	dma_pool_destroy(xdma_chan->desc_pool);
549 	xdma_chan->desc_pool = NULL;
550 }
551 
552 /**
553  * xdma_alloc_chan_resources - Allocate channel resources
554  * @chan: DMA channel
555  */
xdma_alloc_chan_resources(struct dma_chan * chan)556 static int xdma_alloc_chan_resources(struct dma_chan *chan)
557 {
558 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
559 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
560 	struct device *dev = xdev->dma_dev.dev;
561 
562 	while (dev && !dev_is_pci(dev))
563 		dev = dev->parent;
564 	if (!dev) {
565 		xdma_err(xdev, "unable to find pci device");
566 		return -EINVAL;
567 	}
568 
569 	xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan),
570 					       dev, XDMA_DESC_BLOCK_SIZE,
571 					       XDMA_DESC_BLOCK_ALIGN, 0);
572 	if (!xdma_chan->desc_pool) {
573 		xdma_err(xdev, "unable to allocate descriptor pool");
574 		return -ENOMEM;
575 	}
576 
577 	return 0;
578 }
579 
580 /**
581  * xdma_channel_isr - XDMA channel interrupt handler
582  * @irq: IRQ number
583  * @dev_id: Pointer to the DMA channel structure
584  */
xdma_channel_isr(int irq,void * dev_id)585 static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
586 {
587 	struct xdma_chan *xchan = dev_id;
588 	u32 complete_desc_num = 0;
589 	struct xdma_device *xdev;
590 	struct virt_dma_desc *vd;
591 	struct xdma_desc *desc;
592 	int ret;
593 
594 	spin_lock(&xchan->vchan.lock);
595 
596 	/* get submitted request */
597 	vd = vchan_next_desc(&xchan->vchan);
598 	if (!vd)
599 		goto out;
600 
601 	xchan->busy = false;
602 	desc = to_xdma_desc(vd);
603 	xdev = xchan->xdev_hdl;
604 
605 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
606 			  &complete_desc_num);
607 	if (ret)
608 		goto out;
609 
610 	desc->completed_desc_num += complete_desc_num;
611 	/*
612 	 * if all data blocks are transferred, remove and complete the request
613 	 */
614 	if (desc->completed_desc_num == desc->desc_num) {
615 		list_del(&vd->node);
616 		vchan_cookie_complete(vd);
617 		goto out;
618 	}
619 
620 	if (desc->completed_desc_num > desc->desc_num ||
621 	    complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
622 		goto out;
623 
624 	/* transfer the rest of data */
625 	xdma_xfer_start(xchan);
626 
627 out:
628 	spin_unlock(&xchan->vchan.lock);
629 	return IRQ_HANDLED;
630 }
631 
632 /**
633  * xdma_irq_fini - Uninitialize IRQ
634  * @xdev: DMA device pointer
635  */
xdma_irq_fini(struct xdma_device * xdev)636 static void xdma_irq_fini(struct xdma_device *xdev)
637 {
638 	int i;
639 
640 	/* disable interrupt */
641 	regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
642 
643 	/* free irq handler */
644 	for (i = 0; i < xdev->h2c_chan_num; i++)
645 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
646 
647 	for (i = 0; i < xdev->c2h_chan_num; i++)
648 		free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
649 }
650 
651 /**
652  * xdma_set_vector_reg - configure hardware IRQ registers
653  * @xdev: DMA device pointer
654  * @vec_tbl_start: Start of IRQ registers
655  * @irq_start: Start of IRQ
656  * @irq_num: Number of IRQ
657  */
xdma_set_vector_reg(struct xdma_device * xdev,u32 vec_tbl_start,u32 irq_start,u32 irq_num)658 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
659 			       u32 irq_start, u32 irq_num)
660 {
661 	u32 shift, i, val = 0;
662 	int ret;
663 
664 	/* Each IRQ register is 32 bit and contains 4 IRQs */
665 	while (irq_num > 0) {
666 		for (i = 0; i < 4; i++) {
667 			shift = XDMA_IRQ_VEC_SHIFT * i;
668 			val |= irq_start << shift;
669 			irq_start++;
670 			irq_num--;
671 			if (!irq_num)
672 				break;
673 		}
674 
675 		/* write IRQ register */
676 		ret = regmap_write(xdev->rmap, vec_tbl_start, val);
677 		if (ret)
678 			return ret;
679 		vec_tbl_start += sizeof(u32);
680 		val = 0;
681 	}
682 
683 	return 0;
684 }
685 
686 /**
687  * xdma_irq_init - initialize IRQs
688  * @xdev: DMA device pointer
689  */
xdma_irq_init(struct xdma_device * xdev)690 static int xdma_irq_init(struct xdma_device *xdev)
691 {
692 	u32 irq = xdev->irq_start;
693 	u32 user_irq_start;
694 	int i, j, ret;
695 
696 	/* return failure if there are not enough IRQs */
697 	if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
698 		xdma_err(xdev, "not enough irq");
699 		return -EINVAL;
700 	}
701 
702 	/* setup H2C interrupt handler */
703 	for (i = 0; i < xdev->h2c_chan_num; i++) {
704 		ret = request_irq(irq, xdma_channel_isr, 0,
705 				  "xdma-h2c-channel", &xdev->h2c_chans[i]);
706 		if (ret) {
707 			xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
708 				 i, irq, ret);
709 			goto failed_init_h2c;
710 		}
711 		xdev->h2c_chans[i].irq = irq;
712 		irq++;
713 	}
714 
715 	/* setup C2H interrupt handler */
716 	for (j = 0; j < xdev->c2h_chan_num; j++) {
717 		ret = request_irq(irq, xdma_channel_isr, 0,
718 				  "xdma-c2h-channel", &xdev->c2h_chans[j]);
719 		if (ret) {
720 			xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
721 				 j, irq, ret);
722 			goto failed_init_c2h;
723 		}
724 		xdev->c2h_chans[j].irq = irq;
725 		irq++;
726 	}
727 
728 	/* config hardware IRQ registers */
729 	ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
730 				  XDMA_CHAN_NUM(xdev));
731 	if (ret) {
732 		xdma_err(xdev, "failed to set channel vectors: %d", ret);
733 		goto failed_init_c2h;
734 	}
735 
736 	/* config user IRQ registers if needed */
737 	user_irq_start = XDMA_CHAN_NUM(xdev);
738 	if (xdev->irq_num > user_irq_start) {
739 		ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
740 					  user_irq_start,
741 					  xdev->irq_num - user_irq_start);
742 		if (ret) {
743 			xdma_err(xdev, "failed to set user vectors: %d", ret);
744 			goto failed_init_c2h;
745 		}
746 	}
747 
748 	/* enable interrupt */
749 	ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
750 	if (ret)
751 		goto failed_init_c2h;
752 
753 	return 0;
754 
755 failed_init_c2h:
756 	while (j--)
757 		free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
758 failed_init_h2c:
759 	while (i--)
760 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
761 
762 	return ret;
763 }
764 
xdma_filter_fn(struct dma_chan * chan,void * param)765 static bool xdma_filter_fn(struct dma_chan *chan, void *param)
766 {
767 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
768 	struct xdma_chan_info *chan_info = param;
769 
770 	return chan_info->dir == xdma_chan->dir;
771 }
772 
773 /**
774  * xdma_disable_user_irq - Disable user interrupt
775  * @pdev: Pointer to the platform_device structure
776  * @irq_num: System IRQ number
777  */
xdma_disable_user_irq(struct platform_device * pdev,u32 irq_num)778 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
779 {
780 	struct xdma_device *xdev = platform_get_drvdata(pdev);
781 	u32 index;
782 
783 	index = irq_num - xdev->irq_start;
784 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
785 		xdma_err(xdev, "invalid user irq number");
786 		return;
787 	}
788 	index -= XDMA_CHAN_NUM(xdev);
789 
790 	regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
791 }
792 EXPORT_SYMBOL(xdma_disable_user_irq);
793 
794 /**
795  * xdma_enable_user_irq - Enable user logic interrupt
796  * @pdev: Pointer to the platform_device structure
797  * @irq_num: System IRQ number
798  */
xdma_enable_user_irq(struct platform_device * pdev,u32 irq_num)799 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
800 {
801 	struct xdma_device *xdev = platform_get_drvdata(pdev);
802 	u32 index;
803 	int ret;
804 
805 	index = irq_num - xdev->irq_start;
806 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
807 		xdma_err(xdev, "invalid user irq number");
808 		return -EINVAL;
809 	}
810 	index -= XDMA_CHAN_NUM(xdev);
811 
812 	ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
813 	if (ret)
814 		return ret;
815 
816 	return 0;
817 }
818 EXPORT_SYMBOL(xdma_enable_user_irq);
819 
820 /**
821  * xdma_get_user_irq - Get system IRQ number
822  * @pdev: Pointer to the platform_device structure
823  * @user_irq_index: User logic IRQ wire index
824  *
825  * Return: The system IRQ number allocated for the given wire index.
826  */
xdma_get_user_irq(struct platform_device * pdev,u32 user_irq_index)827 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
828 {
829 	struct xdma_device *xdev = platform_get_drvdata(pdev);
830 
831 	if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
832 		xdma_err(xdev, "invalid user irq index");
833 		return -EINVAL;
834 	}
835 
836 	return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
837 }
838 EXPORT_SYMBOL(xdma_get_user_irq);
839 
840 /**
841  * xdma_remove - Driver remove function
842  * @pdev: Pointer to the platform_device structure
843  */
xdma_remove(struct platform_device * pdev)844 static int xdma_remove(struct platform_device *pdev)
845 {
846 	struct xdma_device *xdev = platform_get_drvdata(pdev);
847 
848 	if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
849 		xdma_irq_fini(xdev);
850 
851 	if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
852 		dma_async_device_unregister(&xdev->dma_dev);
853 
854 	return 0;
855 }
856 
857 /**
858  * xdma_probe - Driver probe function
859  * @pdev: Pointer to the platform_device structure
860  */
xdma_probe(struct platform_device * pdev)861 static int xdma_probe(struct platform_device *pdev)
862 {
863 	struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
864 	struct xdma_device *xdev;
865 	void __iomem *reg_base;
866 	struct resource *res;
867 	int ret = -ENODEV;
868 
869 	if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
870 		dev_err(&pdev->dev, "invalid max dma channels %d",
871 			pdata->max_dma_channels);
872 		return -EINVAL;
873 	}
874 
875 	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
876 	if (!xdev)
877 		return -ENOMEM;
878 
879 	platform_set_drvdata(pdev, xdev);
880 	xdev->pdev = pdev;
881 
882 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
883 	if (!res) {
884 		xdma_err(xdev, "failed to get irq resource");
885 		goto failed;
886 	}
887 	xdev->irq_start = res->start;
888 	xdev->irq_num = res->end - res->start + 1;
889 
890 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
891 	if (!res) {
892 		xdma_err(xdev, "failed to get io resource");
893 		goto failed;
894 	}
895 
896 	reg_base = devm_ioremap_resource(&pdev->dev, res);
897 	if (IS_ERR(reg_base)) {
898 		xdma_err(xdev, "ioremap failed");
899 		goto failed;
900 	}
901 
902 	xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
903 					   &xdma_regmap_config);
904 	if (!xdev->rmap) {
905 		xdma_err(xdev, "config regmap failed: %d", ret);
906 		goto failed;
907 	}
908 	INIT_LIST_HEAD(&xdev->dma_dev.channels);
909 
910 	ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
911 	if (ret) {
912 		xdma_err(xdev, "config H2C channels failed: %d", ret);
913 		goto failed;
914 	}
915 
916 	ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
917 	if (ret) {
918 		xdma_err(xdev, "config C2H channels failed: %d", ret);
919 		goto failed;
920 	}
921 
922 	dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
923 	dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
924 
925 	xdev->dma_dev.dev = &pdev->dev;
926 	xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
927 	xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
928 	xdev->dma_dev.device_tx_status = dma_cookie_status;
929 	xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
930 	xdev->dma_dev.device_config = xdma_device_config;
931 	xdev->dma_dev.device_issue_pending = xdma_issue_pending;
932 	xdev->dma_dev.filter.map = pdata->device_map;
933 	xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
934 	xdev->dma_dev.filter.fn = xdma_filter_fn;
935 
936 	ret = dma_async_device_register(&xdev->dma_dev);
937 	if (ret) {
938 		xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
939 		goto failed;
940 	}
941 	xdev->status |= XDMA_DEV_STATUS_REG_DMA;
942 
943 	ret = xdma_irq_init(xdev);
944 	if (ret) {
945 		xdma_err(xdev, "failed to init msix: %d", ret);
946 		goto failed;
947 	}
948 	xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
949 
950 	return 0;
951 
952 failed:
953 	xdma_remove(pdev);
954 
955 	return ret;
956 }
957 
958 static const struct platform_device_id xdma_id_table[] = {
959 	{ "xdma", 0},
960 	{ },
961 };
962 
963 static struct platform_driver xdma_driver = {
964 	.driver		= {
965 		.name = "xdma",
966 	},
967 	.id_table	= xdma_id_table,
968 	.probe		= xdma_probe,
969 	.remove		= xdma_remove,
970 };
971 
972 module_platform_driver(xdma_driver);
973 
974 MODULE_DESCRIPTION("AMD XDMA driver");
975 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
976 MODULE_LICENSE("GPL");
977