1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26 
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29 
30 #define D40_NAME "dma40"
31 
32 #define D40_PHY_CHAN -1
33 
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37 
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40 
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY	100
43 
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46 
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50 
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53 
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56 
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE		BIT(31)
59 #define D40_ALLOC_PHY		BIT(30)
60 #define D40_ALLOC_LOG_FREE	0
61 
62 #define D40_MEMCPY_MAX_CHANS	8
63 
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0	51
66 #define DB8500_DMA_MEMCPY_EV_1	56
67 #define DB8500_DMA_MEMCPY_EV_2	57
68 #define DB8500_DMA_MEMCPY_EV_3	58
69 #define DB8500_DMA_MEMCPY_EV_4	59
70 #define DB8500_DMA_MEMCPY_EV_5	60
71 
72 static int dma40_memcpy_channels[] = {
73 	DB8500_DMA_MEMCPY_EV_0,
74 	DB8500_DMA_MEMCPY_EV_1,
75 	DB8500_DMA_MEMCPY_EV_2,
76 	DB8500_DMA_MEMCPY_EV_3,
77 	DB8500_DMA_MEMCPY_EV_4,
78 	DB8500_DMA_MEMCPY_EV_5,
79 };
80 
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 	.mode = STEDMA40_MODE_PHYSICAL,
84 	.dir = DMA_MEM_TO_MEM,
85 
86 	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 	.src_info.psize = STEDMA40_PSIZE_PHY_1,
88 	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89 
90 	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94 
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 	.mode = STEDMA40_MODE_LOGICAL,
98 	.dir = DMA_MEM_TO_MEM,
99 
100 	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 	.src_info.psize = STEDMA40_PSIZE_LOG_1,
102 	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103 
104 	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108 
109 /**
110  * enum 40_command - The different commands and/or statuses.
111  *
112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116  */
117 enum d40_command {
118 	D40_DMA_STOP		= 0,
119 	D40_DMA_RUN		= 1,
120 	D40_DMA_SUSPEND_REQ	= 2,
121 	D40_DMA_SUSPENDED	= 3
122 };
123 
124 /*
125  * enum d40_events - The different Event Enables for the event lines.
126  *
127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130  * @D40_ROUND_EVENTLINE: Status check for event line.
131  */
132 
133 enum d40_events {
134 	D40_DEACTIVATE_EVENTLINE	= 0,
135 	D40_ACTIVATE_EVENTLINE		= 1,
136 	D40_SUSPEND_REQ_EVENTLINE	= 2,
137 	D40_ROUND_EVENTLINE		= 3
138 };
139 
140 /*
141  * These are the registers that has to be saved and later restored
142  * when the DMA hw is powered off.
143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144  */
145 static u32 d40_backup_regs[] = {
146 	D40_DREG_LCPA,
147 	D40_DREG_LCLA,
148 	D40_DREG_PRMSE,
149 	D40_DREG_PRMSO,
150 	D40_DREG_PRMOE,
151 	D40_DREG_PRMOO,
152 };
153 
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155 
156 /*
157  * since 9540 and 8540 has the same HW revision
158  * use v4a for 9540 or ealier
159  * use v4b for 8540 or later
160  * HW revision:
161  * DB8500ed has revision 0
162  * DB8500v1 has revision 2
163  * DB8500v2 has revision 3
164  * AP9540v1 has revision 4
165  * DB8540v1 has revision 4
166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167  */
168 static u32 d40_backup_regs_v4a[] = {
169 	D40_DREG_PSEG1,
170 	D40_DREG_PSEG2,
171 	D40_DREG_PSEG3,
172 	D40_DREG_PSEG4,
173 	D40_DREG_PCEG1,
174 	D40_DREG_PCEG2,
175 	D40_DREG_PCEG3,
176 	D40_DREG_PCEG4,
177 	D40_DREG_RSEG1,
178 	D40_DREG_RSEG2,
179 	D40_DREG_RSEG3,
180 	D40_DREG_RSEG4,
181 	D40_DREG_RCEG1,
182 	D40_DREG_RCEG2,
183 	D40_DREG_RCEG3,
184 	D40_DREG_RCEG4,
185 };
186 
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188 
189 static u32 d40_backup_regs_v4b[] = {
190 	D40_DREG_CPSEG1,
191 	D40_DREG_CPSEG2,
192 	D40_DREG_CPSEG3,
193 	D40_DREG_CPSEG4,
194 	D40_DREG_CPSEG5,
195 	D40_DREG_CPCEG1,
196 	D40_DREG_CPCEG2,
197 	D40_DREG_CPCEG3,
198 	D40_DREG_CPCEG4,
199 	D40_DREG_CPCEG5,
200 	D40_DREG_CRSEG1,
201 	D40_DREG_CRSEG2,
202 	D40_DREG_CRSEG3,
203 	D40_DREG_CRSEG4,
204 	D40_DREG_CRSEG5,
205 	D40_DREG_CRCEG1,
206 	D40_DREG_CRCEG2,
207 	D40_DREG_CRCEG3,
208 	D40_DREG_CRCEG4,
209 	D40_DREG_CRCEG5,
210 };
211 
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 
214 static u32 d40_backup_regs_chan[] = {
215 	D40_CHAN_REG_SSCFG,
216 	D40_CHAN_REG_SSELT,
217 	D40_CHAN_REG_SSPTR,
218 	D40_CHAN_REG_SSLNK,
219 	D40_CHAN_REG_SDCFG,
220 	D40_CHAN_REG_SDELT,
221 	D40_CHAN_REG_SDPTR,
222 	D40_CHAN_REG_SDLNK,
223 };
224 
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227 
228 /**
229  * struct d40_interrupt_lookup - lookup table for interrupt handler
230  *
231  * @src: Interrupt mask register.
232  * @clr: Interrupt clear register.
233  * @is_error: true if this is an error interrupt.
234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236  */
237 struct d40_interrupt_lookup {
238 	u32 src;
239 	u32 clr;
240 	bool is_error;
241 	int offset;
242 };
243 
244 
245 static struct d40_interrupt_lookup il_v4a[] = {
246 	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247 	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251 	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252 	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253 	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254 	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255 	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256 };
257 
258 static struct d40_interrupt_lookup il_v4b[] = {
259 	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260 	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265 	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266 	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267 	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268 	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269 	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270 	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271 };
272 
273 /**
274  * struct d40_reg_val - simple lookup struct
275  *
276  * @reg: The register.
277  * @val: The value that belongs to the register in reg.
278  */
279 struct d40_reg_val {
280 	unsigned int reg;
281 	unsigned int val;
282 };
283 
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 	/* Clock every part of the DMA block from start */
286 	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287 
288 	/* Interrupts on all logical channels */
289 	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 	/* Clock every part of the DMA block from start */
304 	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305 
306 	/* Interrupts on all logical channels */
307 	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323 
324 /**
325  * struct d40_lli_pool - Structure for keeping LLIs in memory
326  *
327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329  * pre_alloc_lli is used.
330  * @dma_addr: DMA address, if mapped
331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333  * one buffer to one buffer.
334  */
335 struct d40_lli_pool {
336 	void	*base;
337 	int	 size;
338 	dma_addr_t	dma_addr;
339 	/* Space for dst and src, plus an extra for padding */
340 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342 
343 /**
344  * struct d40_desc - A descriptor is one DMA job.
345  *
346  * @lli_phy: LLI settings for physical channel. Both src and dst=
347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348  * lli_len equals one.
349  * @lli_log: Same as above but for logical channels.
350  * @lli_pool: The pool with two entries pre-allocated.
351  * @lli_len: Number of llis of current descriptor.
352  * @lli_current: Number of transferred llis.
353  * @lcla_alloc: Number of LCLA entries allocated.
354  * @txd: DMA engine struct. Used for among other things for communication
355  * during a transfer.
356  * @node: List entry.
357  * @is_in_client_list: true if the client owns this descriptor.
358  * @cyclic: true if this is a cyclic job
359  *
360  * This descriptor is used for both logical and physical transfers.
361  */
362 struct d40_desc {
363 	/* LLI physical */
364 	struct d40_phy_lli_bidir	 lli_phy;
365 	/* LLI logical */
366 	struct d40_log_lli_bidir	 lli_log;
367 
368 	struct d40_lli_pool		 lli_pool;
369 	int				 lli_len;
370 	int				 lli_current;
371 	int				 lcla_alloc;
372 
373 	struct dma_async_tx_descriptor	 txd;
374 	struct list_head		 node;
375 
376 	bool				 is_in_client_list;
377 	bool				 cyclic;
378 };
379 
380 /**
381  * struct d40_lcla_pool - LCLA pool settings and data.
382  *
383  * @base: The virtual address of LCLA. 18 bit aligned.
384  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385  * This pointer is only there for clean-up on error.
386  * @pages: The number of pages needed for all physical channels.
387  * Only used later for clean-up on error
388  * @lock: Lock to protect the content in this struct.
389  * @alloc_map: big map over which LCLA entry is own by which job.
390  */
391 struct d40_lcla_pool {
392 	void		*base;
393 	dma_addr_t	dma_addr;
394 	void		*base_unaligned;
395 	int		 pages;
396 	spinlock_t	 lock;
397 	struct d40_desc	**alloc_map;
398 };
399 
400 /**
401  * struct d40_phy_res - struct for handling eventlines mapped to physical
402  * channels.
403  *
404  * @lock: A lock protection this entity.
405  * @reserved: True if used by secure world or otherwise.
406  * @num: The physical channel number of this entity.
407  * @allocated_src: Bit mapped to show which src event line's are mapped to
408  * this physical channel. Can also be free or physically allocated.
409  * @allocated_dst: Same as for src but is dst.
410  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411  * event line number.
412  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413  */
414 struct d40_phy_res {
415 	spinlock_t lock;
416 	bool	   reserved;
417 	int	   num;
418 	u32	   allocated_src;
419 	u32	   allocated_dst;
420 	bool	   use_soft_lli;
421 };
422 
423 struct d40_base;
424 
425 /**
426  * struct d40_chan - Struct that describes a channel.
427  *
428  * @lock: A spinlock to protect this struct.
429  * @log_num: The logical number, if any of this channel.
430  * @pending_tx: The number of pending transfers. Used between interrupt handler
431  * and tasklet.
432  * @busy: Set to true when transfer is ongoing on this channel.
433  * @phy_chan: Pointer to physical channel which this instance runs on. If this
434  * point is NULL, then the channel is not allocated.
435  * @chan: DMA engine handle.
436  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437  * transfer and call client callback.
438  * @client: Cliented owned descriptor list.
439  * @pending_queue: Submitted jobs, to be issued by issue_pending()
440  * @active: Active descriptor.
441  * @done: Completed jobs
442  * @queue: Queued jobs.
443  * @prepare_queue: Prepared jobs.
444  * @dma_cfg: The client configuration of this dma channel.
445  * @configured: whether the dma_cfg configuration is valid
446  * @base: Pointer to the device instance struct.
447  * @src_def_cfg: Default cfg register setting for src.
448  * @dst_def_cfg: Default cfg register setting for dst.
449  * @log_def: Default logical channel settings.
450  * @lcpa: Pointer to dst and src lcpa settings.
451  * @runtime_addr: runtime configured address.
452  * @runtime_direction: runtime configured direction.
453  *
454  * This struct can either "be" a logical or a physical channel.
455  */
456 struct d40_chan {
457 	spinlock_t			 lock;
458 	int				 log_num;
459 	int				 pending_tx;
460 	bool				 busy;
461 	struct d40_phy_res		*phy_chan;
462 	struct dma_chan			 chan;
463 	struct tasklet_struct		 tasklet;
464 	struct list_head		 client;
465 	struct list_head		 pending_queue;
466 	struct list_head		 active;
467 	struct list_head		 done;
468 	struct list_head		 queue;
469 	struct list_head		 prepare_queue;
470 	struct stedma40_chan_cfg	 dma_cfg;
471 	bool				 configured;
472 	struct d40_base			*base;
473 	/* Default register configurations */
474 	u32				 src_def_cfg;
475 	u32				 dst_def_cfg;
476 	struct d40_def_lcsp		 log_def;
477 	struct d40_log_lli_full		*lcpa;
478 	/* Runtime reconfiguration */
479 	dma_addr_t			runtime_addr;
480 	enum dma_transfer_direction	runtime_direction;
481 };
482 
483 /**
484  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485  * controller
486  *
487  * @backup: the pointer to the registers address array for backup
488  * @backup_size: the size of the registers address array for backup
489  * @realtime_en: the realtime enable register
490  * @realtime_clear: the realtime clear register
491  * @high_prio_en: the high priority enable register
492  * @high_prio_clear: the high priority clear register
493  * @interrupt_en: the interrupt enable register
494  * @interrupt_clear: the interrupt clear register
495  * @il: the pointer to struct d40_interrupt_lookup
496  * @il_size: the size of d40_interrupt_lookup array
497  * @init_reg: the pointer to the struct d40_reg_val
498  * @init_reg_size: the size of d40_reg_val array
499  */
500 struct d40_gen_dmac {
501 	u32				*backup;
502 	u32				 backup_size;
503 	u32				 realtime_en;
504 	u32				 realtime_clear;
505 	u32				 high_prio_en;
506 	u32				 high_prio_clear;
507 	u32				 interrupt_en;
508 	u32				 interrupt_clear;
509 	struct d40_interrupt_lookup	*il;
510 	u32				 il_size;
511 	struct d40_reg_val		*init_reg;
512 	u32				 init_reg_size;
513 };
514 
515 /**
516  * struct d40_base - The big global struct, one for each probe'd instance.
517  *
518  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519  * @execmd_lock: Lock for execute command usage since several channels share
520  * the same physical register.
521  * @dev: The device structure.
522  * @virtbase: The virtual base address of the DMA's register.
523  * @rev: silicon revision detected.
524  * @clk: Pointer to the DMA clock structure.
525  * @phy_start: Physical memory start of the DMA registers.
526  * @phy_size: Size of the DMA register map.
527  * @irq: The IRQ number.
528  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529  * transfers).
530  * @num_phy_chans: The number of physical channels. Read from HW. This
531  * is the number of available channels for this driver, not counting "Secure
532  * mode" allocated physical channels.
533  * @num_log_chans: The number of logical channels. Calculated from
534  * num_phy_chans.
535  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536  * @dma_slave: dma_device channels that can do only do slave transfers.
537  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538  * @phy_chans: Room for all possible physical channels in system.
539  * @log_chans: Room for all possible logical channels in system.
540  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541  * to log_chans entries.
542  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543  * to phy_chans entries.
544  * @plat_data: Pointer to provided platform_data which is the driver
545  * configuration.
546  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547  * @phy_res: Vector containing all physical channels.
548  * @lcla_pool: lcla pool settings and data.
549  * @lcpa_base: The virtual mapped address of LCPA.
550  * @phy_lcpa: The physical address of the LCPA.
551  * @lcpa_size: The size of the LCPA area.
552  * @desc_slab: cache for descriptors.
553  * @reg_val_backup: Here the values of some hardware registers are stored
554  * before the DMA is powered off. They are restored when the power is back on.
555  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556  * later
557  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558  * @regs_interrupt: Scratch space for registers during interrupt.
559  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
560  * @gen_dmac: the struct for generic registers values to represent u8500/8540
561  * DMA controller
562  */
563 struct d40_base {
564 	spinlock_t			 interrupt_lock;
565 	spinlock_t			 execmd_lock;
566 	struct device			 *dev;
567 	void __iomem			 *virtbase;
568 	u8				  rev:4;
569 	struct clk			 *clk;
570 	phys_addr_t			  phy_start;
571 	resource_size_t			  phy_size;
572 	int				  irq;
573 	int				  num_memcpy_chans;
574 	int				  num_phy_chans;
575 	int				  num_log_chans;
576 	struct device_dma_parameters	  dma_parms;
577 	struct dma_device		  dma_both;
578 	struct dma_device		  dma_slave;
579 	struct dma_device		  dma_memcpy;
580 	struct d40_chan			 *phy_chans;
581 	struct d40_chan			 *log_chans;
582 	struct d40_chan			**lookup_log_chans;
583 	struct d40_chan			**lookup_phy_chans;
584 	struct stedma40_platform_data	 *plat_data;
585 	struct regulator		 *lcpa_regulator;
586 	/* Physical half channels */
587 	struct d40_phy_res		 *phy_res;
588 	struct d40_lcla_pool		  lcla_pool;
589 	void				 *lcpa_base;
590 	dma_addr_t			  phy_lcpa;
591 	resource_size_t			  lcpa_size;
592 	struct kmem_cache		 *desc_slab;
593 	u32				  reg_val_backup[BACKUP_REGS_SZ];
594 	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
595 	u32				 *reg_val_backup_chan;
596 	u32				 *regs_interrupt;
597 	u16				  gcc_pwr_off_mask;
598 	struct d40_gen_dmac		  gen_dmac;
599 };
600 
chan2dev(struct d40_chan * d40c)601 static struct device *chan2dev(struct d40_chan *d40c)
602 {
603 	return &d40c->chan.dev->device;
604 }
605 
chan_is_physical(struct d40_chan * chan)606 static bool chan_is_physical(struct d40_chan *chan)
607 {
608 	return chan->log_num == D40_PHY_CHAN;
609 }
610 
chan_is_logical(struct d40_chan * chan)611 static bool chan_is_logical(struct d40_chan *chan)
612 {
613 	return !chan_is_physical(chan);
614 }
615 
chan_base(struct d40_chan * chan)616 static void __iomem *chan_base(struct d40_chan *chan)
617 {
618 	return chan->base->virtbase + D40_DREG_PCBASE +
619 	       chan->phy_chan->num * D40_DREG_PCDELTA;
620 }
621 
622 #define d40_err(dev, format, arg...)		\
623 	dev_err(dev, "[%s] " format, __func__, ## arg)
624 
625 #define chan_err(d40c, format, arg...)		\
626 	d40_err(chan2dev(d40c), format, ## arg)
627 
d40_pool_lli_alloc(struct d40_chan * d40c,struct d40_desc * d40d,int lli_len)628 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
629 			      int lli_len)
630 {
631 	bool is_log = chan_is_logical(d40c);
632 	u32 align;
633 	void *base;
634 
635 	if (is_log)
636 		align = sizeof(struct d40_log_lli);
637 	else
638 		align = sizeof(struct d40_phy_lli);
639 
640 	if (lli_len == 1) {
641 		base = d40d->lli_pool.pre_alloc_lli;
642 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
643 		d40d->lli_pool.base = NULL;
644 	} else {
645 		d40d->lli_pool.size = lli_len * 2 * align;
646 
647 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
648 		d40d->lli_pool.base = base;
649 
650 		if (d40d->lli_pool.base == NULL)
651 			return -ENOMEM;
652 	}
653 
654 	if (is_log) {
655 		d40d->lli_log.src = PTR_ALIGN(base, align);
656 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
657 
658 		d40d->lli_pool.dma_addr = 0;
659 	} else {
660 		d40d->lli_phy.src = PTR_ALIGN(base, align);
661 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
662 
663 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
664 							 d40d->lli_phy.src,
665 							 d40d->lli_pool.size,
666 							 DMA_TO_DEVICE);
667 
668 		if (dma_mapping_error(d40c->base->dev,
669 				      d40d->lli_pool.dma_addr)) {
670 			kfree(d40d->lli_pool.base);
671 			d40d->lli_pool.base = NULL;
672 			d40d->lli_pool.dma_addr = 0;
673 			return -ENOMEM;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
d40_pool_lli_free(struct d40_chan * d40c,struct d40_desc * d40d)680 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
681 {
682 	if (d40d->lli_pool.dma_addr)
683 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
684 				 d40d->lli_pool.size, DMA_TO_DEVICE);
685 
686 	kfree(d40d->lli_pool.base);
687 	d40d->lli_pool.base = NULL;
688 	d40d->lli_pool.size = 0;
689 	d40d->lli_log.src = NULL;
690 	d40d->lli_log.dst = NULL;
691 	d40d->lli_phy.src = NULL;
692 	d40d->lli_phy.dst = NULL;
693 }
694 
d40_lcla_alloc_one(struct d40_chan * d40c,struct d40_desc * d40d)695 static int d40_lcla_alloc_one(struct d40_chan *d40c,
696 			      struct d40_desc *d40d)
697 {
698 	unsigned long flags;
699 	int i;
700 	int ret = -EINVAL;
701 
702 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
703 
704 	/*
705 	 * Allocate both src and dst at the same time, therefore the half
706 	 * start on 1 since 0 can't be used since zero is used as end marker.
707 	 */
708 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
709 		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
710 
711 		if (!d40c->base->lcla_pool.alloc_map[idx]) {
712 			d40c->base->lcla_pool.alloc_map[idx] = d40d;
713 			d40d->lcla_alloc++;
714 			ret = i;
715 			break;
716 		}
717 	}
718 
719 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
720 
721 	return ret;
722 }
723 
d40_lcla_free_all(struct d40_chan * d40c,struct d40_desc * d40d)724 static int d40_lcla_free_all(struct d40_chan *d40c,
725 			     struct d40_desc *d40d)
726 {
727 	unsigned long flags;
728 	int i;
729 	int ret = -EINVAL;
730 
731 	if (chan_is_physical(d40c))
732 		return 0;
733 
734 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
735 
736 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
737 		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
738 
739 		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
740 			d40c->base->lcla_pool.alloc_map[idx] = NULL;
741 			d40d->lcla_alloc--;
742 			if (d40d->lcla_alloc == 0) {
743 				ret = 0;
744 				break;
745 			}
746 		}
747 	}
748 
749 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
750 
751 	return ret;
752 
753 }
754 
d40_desc_remove(struct d40_desc * d40d)755 static void d40_desc_remove(struct d40_desc *d40d)
756 {
757 	list_del(&d40d->node);
758 }
759 
d40_desc_get(struct d40_chan * d40c)760 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
761 {
762 	struct d40_desc *desc = NULL;
763 
764 	if (!list_empty(&d40c->client)) {
765 		struct d40_desc *d;
766 		struct d40_desc *_d;
767 
768 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
769 			if (async_tx_test_ack(&d->txd)) {
770 				d40_desc_remove(d);
771 				desc = d;
772 				memset(desc, 0, sizeof(*desc));
773 				break;
774 			}
775 		}
776 	}
777 
778 	if (!desc)
779 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
780 
781 	if (desc)
782 		INIT_LIST_HEAD(&desc->node);
783 
784 	return desc;
785 }
786 
d40_desc_free(struct d40_chan * d40c,struct d40_desc * d40d)787 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
788 {
789 
790 	d40_pool_lli_free(d40c, d40d);
791 	d40_lcla_free_all(d40c, d40d);
792 	kmem_cache_free(d40c->base->desc_slab, d40d);
793 }
794 
d40_desc_submit(struct d40_chan * d40c,struct d40_desc * desc)795 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
796 {
797 	list_add_tail(&desc->node, &d40c->active);
798 }
799 
d40_phy_lli_load(struct d40_chan * chan,struct d40_desc * desc)800 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
801 {
802 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
803 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
804 	void __iomem *base = chan_base(chan);
805 
806 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
807 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
808 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
809 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
810 
811 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
812 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
813 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
814 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
815 }
816 
d40_desc_done(struct d40_chan * d40c,struct d40_desc * desc)817 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
818 {
819 	list_add_tail(&desc->node, &d40c->done);
820 }
821 
d40_log_lli_to_lcxa(struct d40_chan * chan,struct d40_desc * desc)822 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
823 {
824 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
825 	struct d40_log_lli_bidir *lli = &desc->lli_log;
826 	int lli_current = desc->lli_current;
827 	int lli_len = desc->lli_len;
828 	bool cyclic = desc->cyclic;
829 	int curr_lcla = -EINVAL;
830 	int first_lcla = 0;
831 	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
832 	bool linkback;
833 
834 	/*
835 	 * We may have partially running cyclic transfers, in case we did't get
836 	 * enough LCLA entries.
837 	 */
838 	linkback = cyclic && lli_current == 0;
839 
840 	/*
841 	 * For linkback, we need one LCLA even with only one link, because we
842 	 * can't link back to the one in LCPA space
843 	 */
844 	if (linkback || (lli_len - lli_current > 1)) {
845 		/*
846 		 * If the channel is expected to use only soft_lli don't
847 		 * allocate a lcla. This is to avoid a HW issue that exists
848 		 * in some controller during a peripheral to memory transfer
849 		 * that uses linked lists.
850 		 */
851 		if (!(chan->phy_chan->use_soft_lli &&
852 			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
853 			curr_lcla = d40_lcla_alloc_one(chan, desc);
854 
855 		first_lcla = curr_lcla;
856 	}
857 
858 	/*
859 	 * For linkback, we normally load the LCPA in the loop since we need to
860 	 * link it to the second LCLA and not the first.  However, if we
861 	 * couldn't even get a first LCLA, then we have to run in LCPA and
862 	 * reload manually.
863 	 */
864 	if (!linkback || curr_lcla == -EINVAL) {
865 		unsigned int flags = 0;
866 
867 		if (curr_lcla == -EINVAL)
868 			flags |= LLI_TERM_INT;
869 
870 		d40_log_lli_lcpa_write(chan->lcpa,
871 				       &lli->dst[lli_current],
872 				       &lli->src[lli_current],
873 				       curr_lcla,
874 				       flags);
875 		lli_current++;
876 	}
877 
878 	if (curr_lcla < 0)
879 		goto set_current;
880 
881 	for (; lli_current < lli_len; lli_current++) {
882 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
883 					   8 * curr_lcla * 2;
884 		struct d40_log_lli *lcla = pool->base + lcla_offset;
885 		unsigned int flags = 0;
886 		int next_lcla;
887 
888 		if (lli_current + 1 < lli_len)
889 			next_lcla = d40_lcla_alloc_one(chan, desc);
890 		else
891 			next_lcla = linkback ? first_lcla : -EINVAL;
892 
893 		if (cyclic || next_lcla == -EINVAL)
894 			flags |= LLI_TERM_INT;
895 
896 		if (linkback && curr_lcla == first_lcla) {
897 			/* First link goes in both LCPA and LCLA */
898 			d40_log_lli_lcpa_write(chan->lcpa,
899 					       &lli->dst[lli_current],
900 					       &lli->src[lli_current],
901 					       next_lcla, flags);
902 		}
903 
904 		/*
905 		 * One unused LCLA in the cyclic case if the very first
906 		 * next_lcla fails...
907 		 */
908 		d40_log_lli_lcla_write(lcla,
909 				       &lli->dst[lli_current],
910 				       &lli->src[lli_current],
911 				       next_lcla, flags);
912 
913 		/*
914 		 * Cache maintenance is not needed if lcla is
915 		 * mapped in esram
916 		 */
917 		if (!use_esram_lcla) {
918 			dma_sync_single_range_for_device(chan->base->dev,
919 						pool->dma_addr, lcla_offset,
920 						2 * sizeof(struct d40_log_lli),
921 						DMA_TO_DEVICE);
922 		}
923 		curr_lcla = next_lcla;
924 
925 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
926 			lli_current++;
927 			break;
928 		}
929 	}
930  set_current:
931 	desc->lli_current = lli_current;
932 }
933 
d40_desc_load(struct d40_chan * d40c,struct d40_desc * d40d)934 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
935 {
936 	if (chan_is_physical(d40c)) {
937 		d40_phy_lli_load(d40c, d40d);
938 		d40d->lli_current = d40d->lli_len;
939 	} else
940 		d40_log_lli_to_lcxa(d40c, d40d);
941 }
942 
d40_first_active_get(struct d40_chan * d40c)943 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
944 {
945 	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
946 }
947 
948 /* remove desc from current queue and add it to the pending_queue */
d40_desc_queue(struct d40_chan * d40c,struct d40_desc * desc)949 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
950 {
951 	d40_desc_remove(desc);
952 	desc->is_in_client_list = false;
953 	list_add_tail(&desc->node, &d40c->pending_queue);
954 }
955 
d40_first_pending(struct d40_chan * d40c)956 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
957 {
958 	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
959 					node);
960 }
961 
d40_first_queued(struct d40_chan * d40c)962 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
963 {
964 	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
965 }
966 
d40_first_done(struct d40_chan * d40c)967 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
968 {
969 	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
970 }
971 
d40_psize_2_burst_size(bool is_log,int psize)972 static int d40_psize_2_burst_size(bool is_log, int psize)
973 {
974 	if (is_log) {
975 		if (psize == STEDMA40_PSIZE_LOG_1)
976 			return 1;
977 	} else {
978 		if (psize == STEDMA40_PSIZE_PHY_1)
979 			return 1;
980 	}
981 
982 	return 2 << psize;
983 }
984 
985 /*
986  * The dma only supports transmitting packages up to
987  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
988  *
989  * Calculate the total number of dma elements required to send the entire sg list.
990  */
d40_size_2_dmalen(int size,u32 data_width1,u32 data_width2)991 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
992 {
993 	int dmalen;
994 	u32 max_w = max(data_width1, data_width2);
995 	u32 min_w = min(data_width1, data_width2);
996 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
997 
998 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
999 		seg_max -= max_w;
1000 
1001 	if (!IS_ALIGNED(size, max_w))
1002 		return -EINVAL;
1003 
1004 	if (size <= seg_max)
1005 		dmalen = 1;
1006 	else {
1007 		dmalen = size / seg_max;
1008 		if (dmalen * seg_max < size)
1009 			dmalen++;
1010 	}
1011 	return dmalen;
1012 }
1013 
d40_sg_2_dmalen(struct scatterlist * sgl,int sg_len,u32 data_width1,u32 data_width2)1014 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1015 			   u32 data_width1, u32 data_width2)
1016 {
1017 	struct scatterlist *sg;
1018 	int i;
1019 	int len = 0;
1020 	int ret;
1021 
1022 	for_each_sg(sgl, sg, sg_len, i) {
1023 		ret = d40_size_2_dmalen(sg_dma_len(sg),
1024 					data_width1, data_width2);
1025 		if (ret < 0)
1026 			return ret;
1027 		len += ret;
1028 	}
1029 	return len;
1030 }
1031 
__d40_execute_command_phy(struct d40_chan * d40c,enum d40_command command)1032 static int __d40_execute_command_phy(struct d40_chan *d40c,
1033 				     enum d40_command command)
1034 {
1035 	u32 status;
1036 	int i;
1037 	void __iomem *active_reg;
1038 	int ret = 0;
1039 	unsigned long flags;
1040 	u32 wmask;
1041 
1042 	if (command == D40_DMA_STOP) {
1043 		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1049 
1050 	if (d40c->phy_chan->num % 2 == 0)
1051 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1052 	else
1053 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1054 
1055 	if (command == D40_DMA_SUSPEND_REQ) {
1056 		status = (readl(active_reg) &
1057 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1058 			D40_CHAN_POS(d40c->phy_chan->num);
1059 
1060 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1061 			goto unlock;
1062 	}
1063 
1064 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1065 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1066 	       active_reg);
1067 
1068 	if (command == D40_DMA_SUSPEND_REQ) {
1069 
1070 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1071 			status = (readl(active_reg) &
1072 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1073 				D40_CHAN_POS(d40c->phy_chan->num);
1074 
1075 			cpu_relax();
1076 			/*
1077 			 * Reduce the number of bus accesses while
1078 			 * waiting for the DMA to suspend.
1079 			 */
1080 			udelay(3);
1081 
1082 			if (status == D40_DMA_STOP ||
1083 			    status == D40_DMA_SUSPENDED)
1084 				break;
1085 		}
1086 
1087 		if (i == D40_SUSPEND_MAX_IT) {
1088 			chan_err(d40c,
1089 				"unable to suspend the chl %d (log: %d) status %x\n",
1090 				d40c->phy_chan->num, d40c->log_num,
1091 				status);
1092 			dump_stack();
1093 			ret = -EBUSY;
1094 		}
1095 
1096 	}
1097  unlock:
1098 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1099 	return ret;
1100 }
1101 
d40_term_all(struct d40_chan * d40c)1102 static void d40_term_all(struct d40_chan *d40c)
1103 {
1104 	struct d40_desc *d40d;
1105 	struct d40_desc *_d;
1106 
1107 	/* Release completed descriptors */
1108 	while ((d40d = d40_first_done(d40c))) {
1109 		d40_desc_remove(d40d);
1110 		d40_desc_free(d40c, d40d);
1111 	}
1112 
1113 	/* Release active descriptors */
1114 	while ((d40d = d40_first_active_get(d40c))) {
1115 		d40_desc_remove(d40d);
1116 		d40_desc_free(d40c, d40d);
1117 	}
1118 
1119 	/* Release queued descriptors waiting for transfer */
1120 	while ((d40d = d40_first_queued(d40c))) {
1121 		d40_desc_remove(d40d);
1122 		d40_desc_free(d40c, d40d);
1123 	}
1124 
1125 	/* Release pending descriptors */
1126 	while ((d40d = d40_first_pending(d40c))) {
1127 		d40_desc_remove(d40d);
1128 		d40_desc_free(d40c, d40d);
1129 	}
1130 
1131 	/* Release client owned descriptors */
1132 	if (!list_empty(&d40c->client))
1133 		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1134 			d40_desc_remove(d40d);
1135 			d40_desc_free(d40c, d40d);
1136 		}
1137 
1138 	/* Release descriptors in prepare queue */
1139 	if (!list_empty(&d40c->prepare_queue))
1140 		list_for_each_entry_safe(d40d, _d,
1141 					 &d40c->prepare_queue, node) {
1142 			d40_desc_remove(d40d);
1143 			d40_desc_free(d40c, d40d);
1144 		}
1145 
1146 	d40c->pending_tx = 0;
1147 }
1148 
__d40_config_set_event(struct d40_chan * d40c,enum d40_events event_type,u32 event,int reg)1149 static void __d40_config_set_event(struct d40_chan *d40c,
1150 				   enum d40_events event_type, u32 event,
1151 				   int reg)
1152 {
1153 	void __iomem *addr = chan_base(d40c) + reg;
1154 	int tries;
1155 	u32 status;
1156 
1157 	switch (event_type) {
1158 
1159 	case D40_DEACTIVATE_EVENTLINE:
1160 
1161 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1162 		       | ~D40_EVENTLINE_MASK(event), addr);
1163 		break;
1164 
1165 	case D40_SUSPEND_REQ_EVENTLINE:
1166 		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1167 			  D40_EVENTLINE_POS(event);
1168 
1169 		if (status == D40_DEACTIVATE_EVENTLINE ||
1170 		    status == D40_SUSPEND_REQ_EVENTLINE)
1171 			break;
1172 
1173 		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1174 		       | ~D40_EVENTLINE_MASK(event), addr);
1175 
1176 		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1177 
1178 			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1179 				  D40_EVENTLINE_POS(event);
1180 
1181 			cpu_relax();
1182 			/*
1183 			 * Reduce the number of bus accesses while
1184 			 * waiting for the DMA to suspend.
1185 			 */
1186 			udelay(3);
1187 
1188 			if (status == D40_DEACTIVATE_EVENTLINE)
1189 				break;
1190 		}
1191 
1192 		if (tries == D40_SUSPEND_MAX_IT) {
1193 			chan_err(d40c,
1194 				"unable to stop the event_line chl %d (log: %d)"
1195 				"status %x\n", d40c->phy_chan->num,
1196 				 d40c->log_num, status);
1197 		}
1198 		break;
1199 
1200 	case D40_ACTIVATE_EVENTLINE:
1201 	/*
1202 	 * The hardware sometimes doesn't register the enable when src and dst
1203 	 * event lines are active on the same logical channel.  Retry to ensure
1204 	 * it does.  Usually only one retry is sufficient.
1205 	 */
1206 		tries = 100;
1207 		while (--tries) {
1208 			writel((D40_ACTIVATE_EVENTLINE <<
1209 				D40_EVENTLINE_POS(event)) |
1210 				~D40_EVENTLINE_MASK(event), addr);
1211 
1212 			if (readl(addr) & D40_EVENTLINE_MASK(event))
1213 				break;
1214 		}
1215 
1216 		if (tries != 99)
1217 			dev_dbg(chan2dev(d40c),
1218 				"[%s] workaround enable S%cLNK (%d tries)\n",
1219 				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1220 				100 - tries);
1221 
1222 		WARN_ON(!tries);
1223 		break;
1224 
1225 	case D40_ROUND_EVENTLINE:
1226 		BUG();
1227 		break;
1228 
1229 	}
1230 }
1231 
d40_config_set_event(struct d40_chan * d40c,enum d40_events event_type)1232 static void d40_config_set_event(struct d40_chan *d40c,
1233 				 enum d40_events event_type)
1234 {
1235 	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1236 
1237 	/* Enable event line connected to device (or memcpy) */
1238 	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1239 	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1240 		__d40_config_set_event(d40c, event_type, event,
1241 				       D40_CHAN_REG_SSLNK);
1242 
1243 	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1244 		__d40_config_set_event(d40c, event_type, event,
1245 				       D40_CHAN_REG_SDLNK);
1246 }
1247 
d40_chan_has_events(struct d40_chan * d40c)1248 static u32 d40_chan_has_events(struct d40_chan *d40c)
1249 {
1250 	void __iomem *chanbase = chan_base(d40c);
1251 	u32 val;
1252 
1253 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1254 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1255 
1256 	return val;
1257 }
1258 
1259 static int
__d40_execute_command_log(struct d40_chan * d40c,enum d40_command command)1260 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1261 {
1262 	unsigned long flags;
1263 	int ret = 0;
1264 	u32 active_status;
1265 	void __iomem *active_reg;
1266 
1267 	if (d40c->phy_chan->num % 2 == 0)
1268 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1269 	else
1270 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1271 
1272 
1273 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1274 
1275 	switch (command) {
1276 	case D40_DMA_STOP:
1277 	case D40_DMA_SUSPEND_REQ:
1278 
1279 		active_status = (readl(active_reg) &
1280 				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1281 				 D40_CHAN_POS(d40c->phy_chan->num);
1282 
1283 		if (active_status == D40_DMA_RUN)
1284 			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1285 		else
1286 			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1287 
1288 		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1289 			ret = __d40_execute_command_phy(d40c, command);
1290 
1291 		break;
1292 
1293 	case D40_DMA_RUN:
1294 
1295 		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1296 		ret = __d40_execute_command_phy(d40c, command);
1297 		break;
1298 
1299 	case D40_DMA_SUSPENDED:
1300 		BUG();
1301 		break;
1302 	}
1303 
1304 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1305 	return ret;
1306 }
1307 
d40_channel_execute_command(struct d40_chan * d40c,enum d40_command command)1308 static int d40_channel_execute_command(struct d40_chan *d40c,
1309 				       enum d40_command command)
1310 {
1311 	if (chan_is_logical(d40c))
1312 		return __d40_execute_command_log(d40c, command);
1313 	else
1314 		return __d40_execute_command_phy(d40c, command);
1315 }
1316 
d40_get_prmo(struct d40_chan * d40c)1317 static u32 d40_get_prmo(struct d40_chan *d40c)
1318 {
1319 	static const unsigned int phy_map[] = {
1320 		[STEDMA40_PCHAN_BASIC_MODE]
1321 			= D40_DREG_PRMO_PCHAN_BASIC,
1322 		[STEDMA40_PCHAN_MODULO_MODE]
1323 			= D40_DREG_PRMO_PCHAN_MODULO,
1324 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1325 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1326 	};
1327 	static const unsigned int log_map[] = {
1328 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1329 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1330 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1331 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1332 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1333 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1334 	};
1335 
1336 	if (chan_is_physical(d40c))
1337 		return phy_map[d40c->dma_cfg.mode_opt];
1338 	else
1339 		return log_map[d40c->dma_cfg.mode_opt];
1340 }
1341 
d40_config_write(struct d40_chan * d40c)1342 static void d40_config_write(struct d40_chan *d40c)
1343 {
1344 	u32 addr_base;
1345 	u32 var;
1346 
1347 	/* Odd addresses are even addresses + 4 */
1348 	addr_base = (d40c->phy_chan->num % 2) * 4;
1349 	/* Setup channel mode to logical or physical */
1350 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1351 		D40_CHAN_POS(d40c->phy_chan->num);
1352 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1353 
1354 	/* Setup operational mode option register */
1355 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1356 
1357 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1358 
1359 	if (chan_is_logical(d40c)) {
1360 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1361 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1362 		void __iomem *chanbase = chan_base(d40c);
1363 
1364 		/* Set default config for CFG reg */
1365 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1366 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1367 
1368 		/* Set LIDX for lcla */
1369 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1370 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1371 
1372 		/* Clear LNK which will be used by d40_chan_has_events() */
1373 		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1374 		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1375 	}
1376 }
1377 
d40_residue(struct d40_chan * d40c)1378 static u32 d40_residue(struct d40_chan *d40c)
1379 {
1380 	u32 num_elt;
1381 
1382 	if (chan_is_logical(d40c))
1383 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1384 			>> D40_MEM_LCSP2_ECNT_POS;
1385 	else {
1386 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1387 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1388 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1389 	}
1390 
1391 	return num_elt * d40c->dma_cfg.dst_info.data_width;
1392 }
1393 
d40_tx_is_linked(struct d40_chan * d40c)1394 static bool d40_tx_is_linked(struct d40_chan *d40c)
1395 {
1396 	bool is_link;
1397 
1398 	if (chan_is_logical(d40c))
1399 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1400 	else
1401 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1402 			  & D40_SREG_LNK_PHYS_LNK_MASK;
1403 
1404 	return is_link;
1405 }
1406 
d40_pause(struct dma_chan * chan)1407 static int d40_pause(struct dma_chan *chan)
1408 {
1409 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1410 	int res = 0;
1411 	unsigned long flags;
1412 
1413 	if (d40c->phy_chan == NULL) {
1414 		chan_err(d40c, "Channel is not allocated!\n");
1415 		return -EINVAL;
1416 	}
1417 
1418 	if (!d40c->busy)
1419 		return 0;
1420 
1421 	spin_lock_irqsave(&d40c->lock, flags);
1422 	pm_runtime_get_sync(d40c->base->dev);
1423 
1424 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1425 
1426 	pm_runtime_mark_last_busy(d40c->base->dev);
1427 	pm_runtime_put_autosuspend(d40c->base->dev);
1428 	spin_unlock_irqrestore(&d40c->lock, flags);
1429 	return res;
1430 }
1431 
d40_resume(struct dma_chan * chan)1432 static int d40_resume(struct dma_chan *chan)
1433 {
1434 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1435 	int res = 0;
1436 	unsigned long flags;
1437 
1438 	if (d40c->phy_chan == NULL) {
1439 		chan_err(d40c, "Channel is not allocated!\n");
1440 		return -EINVAL;
1441 	}
1442 
1443 	if (!d40c->busy)
1444 		return 0;
1445 
1446 	spin_lock_irqsave(&d40c->lock, flags);
1447 	pm_runtime_get_sync(d40c->base->dev);
1448 
1449 	/* If bytes left to transfer or linked tx resume job */
1450 	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1451 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1452 
1453 	pm_runtime_mark_last_busy(d40c->base->dev);
1454 	pm_runtime_put_autosuspend(d40c->base->dev);
1455 	spin_unlock_irqrestore(&d40c->lock, flags);
1456 	return res;
1457 }
1458 
d40_tx_submit(struct dma_async_tx_descriptor * tx)1459 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1460 {
1461 	struct d40_chan *d40c = container_of(tx->chan,
1462 					     struct d40_chan,
1463 					     chan);
1464 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1465 	unsigned long flags;
1466 	dma_cookie_t cookie;
1467 
1468 	spin_lock_irqsave(&d40c->lock, flags);
1469 	cookie = dma_cookie_assign(tx);
1470 	d40_desc_queue(d40c, d40d);
1471 	spin_unlock_irqrestore(&d40c->lock, flags);
1472 
1473 	return cookie;
1474 }
1475 
d40_start(struct d40_chan * d40c)1476 static int d40_start(struct d40_chan *d40c)
1477 {
1478 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1479 }
1480 
d40_queue_start(struct d40_chan * d40c)1481 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1482 {
1483 	struct d40_desc *d40d;
1484 	int err;
1485 
1486 	/* Start queued jobs, if any */
1487 	d40d = d40_first_queued(d40c);
1488 
1489 	if (d40d != NULL) {
1490 		if (!d40c->busy) {
1491 			d40c->busy = true;
1492 			pm_runtime_get_sync(d40c->base->dev);
1493 		}
1494 
1495 		/* Remove from queue */
1496 		d40_desc_remove(d40d);
1497 
1498 		/* Add to active queue */
1499 		d40_desc_submit(d40c, d40d);
1500 
1501 		/* Initiate DMA job */
1502 		d40_desc_load(d40c, d40d);
1503 
1504 		/* Start dma job */
1505 		err = d40_start(d40c);
1506 
1507 		if (err)
1508 			return NULL;
1509 	}
1510 
1511 	return d40d;
1512 }
1513 
1514 /* called from interrupt context */
dma_tc_handle(struct d40_chan * d40c)1515 static void dma_tc_handle(struct d40_chan *d40c)
1516 {
1517 	struct d40_desc *d40d;
1518 
1519 	/* Get first active entry from list */
1520 	d40d = d40_first_active_get(d40c);
1521 
1522 	if (d40d == NULL)
1523 		return;
1524 
1525 	if (d40d->cyclic) {
1526 		/*
1527 		 * If this was a paritially loaded list, we need to reloaded
1528 		 * it, and only when the list is completed.  We need to check
1529 		 * for done because the interrupt will hit for every link, and
1530 		 * not just the last one.
1531 		 */
1532 		if (d40d->lli_current < d40d->lli_len
1533 		    && !d40_tx_is_linked(d40c)
1534 		    && !d40_residue(d40c)) {
1535 			d40_lcla_free_all(d40c, d40d);
1536 			d40_desc_load(d40c, d40d);
1537 			(void) d40_start(d40c);
1538 
1539 			if (d40d->lli_current == d40d->lli_len)
1540 				d40d->lli_current = 0;
1541 		}
1542 	} else {
1543 		d40_lcla_free_all(d40c, d40d);
1544 
1545 		if (d40d->lli_current < d40d->lli_len) {
1546 			d40_desc_load(d40c, d40d);
1547 			/* Start dma job */
1548 			(void) d40_start(d40c);
1549 			return;
1550 		}
1551 
1552 		if (d40_queue_start(d40c) == NULL) {
1553 			d40c->busy = false;
1554 
1555 			pm_runtime_mark_last_busy(d40c->base->dev);
1556 			pm_runtime_put_autosuspend(d40c->base->dev);
1557 		}
1558 
1559 		d40_desc_remove(d40d);
1560 		d40_desc_done(d40c, d40d);
1561 	}
1562 
1563 	d40c->pending_tx++;
1564 	tasklet_schedule(&d40c->tasklet);
1565 
1566 }
1567 
dma_tasklet(unsigned long data)1568 static void dma_tasklet(unsigned long data)
1569 {
1570 	struct d40_chan *d40c = (struct d40_chan *) data;
1571 	struct d40_desc *d40d;
1572 	unsigned long flags;
1573 	bool callback_active;
1574 	struct dmaengine_desc_callback cb;
1575 
1576 	spin_lock_irqsave(&d40c->lock, flags);
1577 
1578 	/* Get first entry from the done list */
1579 	d40d = d40_first_done(d40c);
1580 	if (d40d == NULL) {
1581 		/* Check if we have reached here for cyclic job */
1582 		d40d = d40_first_active_get(d40c);
1583 		if (d40d == NULL || !d40d->cyclic)
1584 			goto check_pending_tx;
1585 	}
1586 
1587 	if (!d40d->cyclic)
1588 		dma_cookie_complete(&d40d->txd);
1589 
1590 	/*
1591 	 * If terminating a channel pending_tx is set to zero.
1592 	 * This prevents any finished active jobs to return to the client.
1593 	 */
1594 	if (d40c->pending_tx == 0) {
1595 		spin_unlock_irqrestore(&d40c->lock, flags);
1596 		return;
1597 	}
1598 
1599 	/* Callback to client */
1600 	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1601 	dmaengine_desc_get_callback(&d40d->txd, &cb);
1602 
1603 	if (!d40d->cyclic) {
1604 		if (async_tx_test_ack(&d40d->txd)) {
1605 			d40_desc_remove(d40d);
1606 			d40_desc_free(d40c, d40d);
1607 		} else if (!d40d->is_in_client_list) {
1608 			d40_desc_remove(d40d);
1609 			d40_lcla_free_all(d40c, d40d);
1610 			list_add_tail(&d40d->node, &d40c->client);
1611 			d40d->is_in_client_list = true;
1612 		}
1613 	}
1614 
1615 	d40c->pending_tx--;
1616 
1617 	if (d40c->pending_tx)
1618 		tasklet_schedule(&d40c->tasklet);
1619 
1620 	spin_unlock_irqrestore(&d40c->lock, flags);
1621 
1622 	if (callback_active)
1623 		dmaengine_desc_callback_invoke(&cb, NULL);
1624 
1625 	return;
1626  check_pending_tx:
1627 	/* Rescue manouver if receiving double interrupts */
1628 	if (d40c->pending_tx > 0)
1629 		d40c->pending_tx--;
1630 	spin_unlock_irqrestore(&d40c->lock, flags);
1631 }
1632 
d40_handle_interrupt(int irq,void * data)1633 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1634 {
1635 	int i;
1636 	u32 idx;
1637 	u32 row;
1638 	long chan = -1;
1639 	struct d40_chan *d40c;
1640 	unsigned long flags;
1641 	struct d40_base *base = data;
1642 	u32 *regs = base->regs_interrupt;
1643 	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1644 	u32 il_size = base->gen_dmac.il_size;
1645 
1646 	spin_lock_irqsave(&base->interrupt_lock, flags);
1647 
1648 	/* Read interrupt status of both logical and physical channels */
1649 	for (i = 0; i < il_size; i++)
1650 		regs[i] = readl(base->virtbase + il[i].src);
1651 
1652 	for (;;) {
1653 
1654 		chan = find_next_bit((unsigned long *)regs,
1655 				     BITS_PER_LONG * il_size, chan + 1);
1656 
1657 		/* No more set bits found? */
1658 		if (chan == BITS_PER_LONG * il_size)
1659 			break;
1660 
1661 		row = chan / BITS_PER_LONG;
1662 		idx = chan & (BITS_PER_LONG - 1);
1663 
1664 		if (il[row].offset == D40_PHY_CHAN)
1665 			d40c = base->lookup_phy_chans[idx];
1666 		else
1667 			d40c = base->lookup_log_chans[il[row].offset + idx];
1668 
1669 		if (!d40c) {
1670 			/*
1671 			 * No error because this can happen if something else
1672 			 * in the system is using the channel.
1673 			 */
1674 			continue;
1675 		}
1676 
1677 		/* ACK interrupt */
1678 		writel(BIT(idx), base->virtbase + il[row].clr);
1679 
1680 		spin_lock(&d40c->lock);
1681 
1682 		if (!il[row].is_error)
1683 			dma_tc_handle(d40c);
1684 		else
1685 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1686 				chan, il[row].offset, idx);
1687 
1688 		spin_unlock(&d40c->lock);
1689 	}
1690 
1691 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1692 
1693 	return IRQ_HANDLED;
1694 }
1695 
d40_validate_conf(struct d40_chan * d40c,struct stedma40_chan_cfg * conf)1696 static int d40_validate_conf(struct d40_chan *d40c,
1697 			     struct stedma40_chan_cfg *conf)
1698 {
1699 	int res = 0;
1700 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1701 
1702 	if (!conf->dir) {
1703 		chan_err(d40c, "Invalid direction.\n");
1704 		res = -EINVAL;
1705 	}
1706 
1707 	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1708 	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1709 	    (conf->dev_type < 0)) {
1710 		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1711 		res = -EINVAL;
1712 	}
1713 
1714 	if (conf->dir == DMA_DEV_TO_DEV) {
1715 		/*
1716 		 * DMAC HW supports it. Will be added to this driver,
1717 		 * in case any dma client requires it.
1718 		 */
1719 		chan_err(d40c, "periph to periph not supported\n");
1720 		res = -EINVAL;
1721 	}
1722 
1723 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1724 	    conf->src_info.data_width !=
1725 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1726 	    conf->dst_info.data_width) {
1727 		/*
1728 		 * The DMAC hardware only supports
1729 		 * src (burst x width) == dst (burst x width)
1730 		 */
1731 
1732 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1733 		res = -EINVAL;
1734 	}
1735 
1736 	return res;
1737 }
1738 
d40_alloc_mask_set(struct d40_phy_res * phy,bool is_src,int log_event_line,bool is_log,bool * first_user)1739 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1740 			       bool is_src, int log_event_line, bool is_log,
1741 			       bool *first_user)
1742 {
1743 	unsigned long flags;
1744 	spin_lock_irqsave(&phy->lock, flags);
1745 
1746 	*first_user = ((phy->allocated_src | phy->allocated_dst)
1747 			== D40_ALLOC_FREE);
1748 
1749 	if (!is_log) {
1750 		/* Physical interrupts are masked per physical full channel */
1751 		if (phy->allocated_src == D40_ALLOC_FREE &&
1752 		    phy->allocated_dst == D40_ALLOC_FREE) {
1753 			phy->allocated_dst = D40_ALLOC_PHY;
1754 			phy->allocated_src = D40_ALLOC_PHY;
1755 			goto found_unlock;
1756 		} else
1757 			goto not_found_unlock;
1758 	}
1759 
1760 	/* Logical channel */
1761 	if (is_src) {
1762 		if (phy->allocated_src == D40_ALLOC_PHY)
1763 			goto not_found_unlock;
1764 
1765 		if (phy->allocated_src == D40_ALLOC_FREE)
1766 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1767 
1768 		if (!(phy->allocated_src & BIT(log_event_line))) {
1769 			phy->allocated_src |= BIT(log_event_line);
1770 			goto found_unlock;
1771 		} else
1772 			goto not_found_unlock;
1773 	} else {
1774 		if (phy->allocated_dst == D40_ALLOC_PHY)
1775 			goto not_found_unlock;
1776 
1777 		if (phy->allocated_dst == D40_ALLOC_FREE)
1778 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1779 
1780 		if (!(phy->allocated_dst & BIT(log_event_line))) {
1781 			phy->allocated_dst |= BIT(log_event_line);
1782 			goto found_unlock;
1783 		}
1784 	}
1785  not_found_unlock:
1786 	spin_unlock_irqrestore(&phy->lock, flags);
1787 	return false;
1788  found_unlock:
1789 	spin_unlock_irqrestore(&phy->lock, flags);
1790 	return true;
1791 }
1792 
d40_alloc_mask_free(struct d40_phy_res * phy,bool is_src,int log_event_line)1793 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1794 			       int log_event_line)
1795 {
1796 	unsigned long flags;
1797 	bool is_free = false;
1798 
1799 	spin_lock_irqsave(&phy->lock, flags);
1800 	if (!log_event_line) {
1801 		phy->allocated_dst = D40_ALLOC_FREE;
1802 		phy->allocated_src = D40_ALLOC_FREE;
1803 		is_free = true;
1804 		goto unlock;
1805 	}
1806 
1807 	/* Logical channel */
1808 	if (is_src) {
1809 		phy->allocated_src &= ~BIT(log_event_line);
1810 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1811 			phy->allocated_src = D40_ALLOC_FREE;
1812 	} else {
1813 		phy->allocated_dst &= ~BIT(log_event_line);
1814 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1815 			phy->allocated_dst = D40_ALLOC_FREE;
1816 	}
1817 
1818 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1819 		   D40_ALLOC_FREE);
1820  unlock:
1821 	spin_unlock_irqrestore(&phy->lock, flags);
1822 
1823 	return is_free;
1824 }
1825 
d40_allocate_channel(struct d40_chan * d40c,bool * first_phy_user)1826 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1827 {
1828 	int dev_type = d40c->dma_cfg.dev_type;
1829 	int event_group;
1830 	int event_line;
1831 	struct d40_phy_res *phys;
1832 	int i;
1833 	int j;
1834 	int log_num;
1835 	int num_phy_chans;
1836 	bool is_src;
1837 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1838 
1839 	phys = d40c->base->phy_res;
1840 	num_phy_chans = d40c->base->num_phy_chans;
1841 
1842 	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1843 		log_num = 2 * dev_type;
1844 		is_src = true;
1845 	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1846 		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1847 		/* dst event lines are used for logical memcpy */
1848 		log_num = 2 * dev_type + 1;
1849 		is_src = false;
1850 	} else
1851 		return -EINVAL;
1852 
1853 	event_group = D40_TYPE_TO_GROUP(dev_type);
1854 	event_line = D40_TYPE_TO_EVENT(dev_type);
1855 
1856 	if (!is_log) {
1857 		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1858 			/* Find physical half channel */
1859 			if (d40c->dma_cfg.use_fixed_channel) {
1860 				i = d40c->dma_cfg.phy_channel;
1861 				if (d40_alloc_mask_set(&phys[i], is_src,
1862 						       0, is_log,
1863 						       first_phy_user))
1864 					goto found_phy;
1865 			} else {
1866 				for (i = 0; i < num_phy_chans; i++) {
1867 					if (d40_alloc_mask_set(&phys[i], is_src,
1868 						       0, is_log,
1869 						       first_phy_user))
1870 						goto found_phy;
1871 				}
1872 			}
1873 		} else
1874 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1875 				int phy_num = j  + event_group * 2;
1876 				for (i = phy_num; i < phy_num + 2; i++) {
1877 					if (d40_alloc_mask_set(&phys[i],
1878 							       is_src,
1879 							       0,
1880 							       is_log,
1881 							       first_phy_user))
1882 						goto found_phy;
1883 				}
1884 			}
1885 		return -EINVAL;
1886 found_phy:
1887 		d40c->phy_chan = &phys[i];
1888 		d40c->log_num = D40_PHY_CHAN;
1889 		goto out;
1890 	}
1891 	if (dev_type == -1)
1892 		return -EINVAL;
1893 
1894 	/* Find logical channel */
1895 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1896 		int phy_num = j + event_group * 2;
1897 
1898 		if (d40c->dma_cfg.use_fixed_channel) {
1899 			i = d40c->dma_cfg.phy_channel;
1900 
1901 			if ((i != phy_num) && (i != phy_num + 1)) {
1902 				dev_err(chan2dev(d40c),
1903 					"invalid fixed phy channel %d\n", i);
1904 				return -EINVAL;
1905 			}
1906 
1907 			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1908 					       is_log, first_phy_user))
1909 				goto found_log;
1910 
1911 			dev_err(chan2dev(d40c),
1912 				"could not allocate fixed phy channel %d\n", i);
1913 			return -EINVAL;
1914 		}
1915 
1916 		/*
1917 		 * Spread logical channels across all available physical rather
1918 		 * than pack every logical channel at the first available phy
1919 		 * channels.
1920 		 */
1921 		if (is_src) {
1922 			for (i = phy_num; i < phy_num + 2; i++) {
1923 				if (d40_alloc_mask_set(&phys[i], is_src,
1924 						       event_line, is_log,
1925 						       first_phy_user))
1926 					goto found_log;
1927 			}
1928 		} else {
1929 			for (i = phy_num + 1; i >= phy_num; i--) {
1930 				if (d40_alloc_mask_set(&phys[i], is_src,
1931 						       event_line, is_log,
1932 						       first_phy_user))
1933 					goto found_log;
1934 			}
1935 		}
1936 	}
1937 	return -EINVAL;
1938 
1939 found_log:
1940 	d40c->phy_chan = &phys[i];
1941 	d40c->log_num = log_num;
1942 out:
1943 
1944 	if (is_log)
1945 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1946 	else
1947 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1948 
1949 	return 0;
1950 
1951 }
1952 
d40_config_memcpy(struct d40_chan * d40c)1953 static int d40_config_memcpy(struct d40_chan *d40c)
1954 {
1955 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1956 
1957 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1958 		d40c->dma_cfg = dma40_memcpy_conf_log;
1959 		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1960 
1961 		d40_log_cfg(&d40c->dma_cfg,
1962 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1963 
1964 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1965 		   dma_has_cap(DMA_SLAVE, cap)) {
1966 		d40c->dma_cfg = dma40_memcpy_conf_phy;
1967 
1968 		/* Generate interrrupt at end of transfer or relink. */
1969 		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1970 
1971 		/* Generate interrupt on error. */
1972 		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1973 		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1974 
1975 	} else {
1976 		chan_err(d40c, "No memcpy\n");
1977 		return -EINVAL;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
d40_free_dma(struct d40_chan * d40c)1983 static int d40_free_dma(struct d40_chan *d40c)
1984 {
1985 
1986 	int res = 0;
1987 	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1988 	struct d40_phy_res *phy = d40c->phy_chan;
1989 	bool is_src;
1990 
1991 	/* Terminate all queued and active transfers */
1992 	d40_term_all(d40c);
1993 
1994 	if (phy == NULL) {
1995 		chan_err(d40c, "phy == null\n");
1996 		return -EINVAL;
1997 	}
1998 
1999 	if (phy->allocated_src == D40_ALLOC_FREE &&
2000 	    phy->allocated_dst == D40_ALLOC_FREE) {
2001 		chan_err(d40c, "channel already free\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2006 	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2007 		is_src = false;
2008 	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2009 		is_src = true;
2010 	else {
2011 		chan_err(d40c, "Unknown direction\n");
2012 		return -EINVAL;
2013 	}
2014 
2015 	pm_runtime_get_sync(d40c->base->dev);
2016 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2017 	if (res) {
2018 		chan_err(d40c, "stop failed\n");
2019 		goto mark_last_busy;
2020 	}
2021 
2022 	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2023 
2024 	if (chan_is_logical(d40c))
2025 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2026 	else
2027 		d40c->base->lookup_phy_chans[phy->num] = NULL;
2028 
2029 	if (d40c->busy) {
2030 		pm_runtime_mark_last_busy(d40c->base->dev);
2031 		pm_runtime_put_autosuspend(d40c->base->dev);
2032 	}
2033 
2034 	d40c->busy = false;
2035 	d40c->phy_chan = NULL;
2036 	d40c->configured = false;
2037  mark_last_busy:
2038 	pm_runtime_mark_last_busy(d40c->base->dev);
2039 	pm_runtime_put_autosuspend(d40c->base->dev);
2040 	return res;
2041 }
2042 
d40_is_paused(struct d40_chan * d40c)2043 static bool d40_is_paused(struct d40_chan *d40c)
2044 {
2045 	void __iomem *chanbase = chan_base(d40c);
2046 	bool is_paused = false;
2047 	unsigned long flags;
2048 	void __iomem *active_reg;
2049 	u32 status;
2050 	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2051 
2052 	spin_lock_irqsave(&d40c->lock, flags);
2053 
2054 	if (chan_is_physical(d40c)) {
2055 		if (d40c->phy_chan->num % 2 == 0)
2056 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2057 		else
2058 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2059 
2060 		status = (readl(active_reg) &
2061 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2062 			D40_CHAN_POS(d40c->phy_chan->num);
2063 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2064 			is_paused = true;
2065 		goto unlock;
2066 	}
2067 
2068 	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2069 	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2070 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2071 	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2072 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2073 	} else {
2074 		chan_err(d40c, "Unknown direction\n");
2075 		goto unlock;
2076 	}
2077 
2078 	status = (status & D40_EVENTLINE_MASK(event)) >>
2079 		D40_EVENTLINE_POS(event);
2080 
2081 	if (status != D40_DMA_RUN)
2082 		is_paused = true;
2083  unlock:
2084 	spin_unlock_irqrestore(&d40c->lock, flags);
2085 	return is_paused;
2086 
2087 }
2088 
stedma40_residue(struct dma_chan * chan)2089 static u32 stedma40_residue(struct dma_chan *chan)
2090 {
2091 	struct d40_chan *d40c =
2092 		container_of(chan, struct d40_chan, chan);
2093 	u32 bytes_left;
2094 	unsigned long flags;
2095 
2096 	spin_lock_irqsave(&d40c->lock, flags);
2097 	bytes_left = d40_residue(d40c);
2098 	spin_unlock_irqrestore(&d40c->lock, flags);
2099 
2100 	return bytes_left;
2101 }
2102 
2103 static int
d40_prep_sg_log(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)2104 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2105 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2106 		unsigned int sg_len, dma_addr_t src_dev_addr,
2107 		dma_addr_t dst_dev_addr)
2108 {
2109 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2110 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2111 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2112 	int ret;
2113 
2114 	ret = d40_log_sg_to_lli(sg_src, sg_len,
2115 				src_dev_addr,
2116 				desc->lli_log.src,
2117 				chan->log_def.lcsp1,
2118 				src_info->data_width,
2119 				dst_info->data_width);
2120 
2121 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2122 				dst_dev_addr,
2123 				desc->lli_log.dst,
2124 				chan->log_def.lcsp3,
2125 				dst_info->data_width,
2126 				src_info->data_width);
2127 
2128 	return ret < 0 ? ret : 0;
2129 }
2130 
2131 static int
d40_prep_sg_phy(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)2132 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2133 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2134 		unsigned int sg_len, dma_addr_t src_dev_addr,
2135 		dma_addr_t dst_dev_addr)
2136 {
2137 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2138 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2139 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2140 	unsigned long flags = 0;
2141 	int ret;
2142 
2143 	if (desc->cyclic)
2144 		flags |= LLI_CYCLIC | LLI_TERM_INT;
2145 
2146 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2147 				desc->lli_phy.src,
2148 				virt_to_phys(desc->lli_phy.src),
2149 				chan->src_def_cfg,
2150 				src_info, dst_info, flags);
2151 
2152 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2153 				desc->lli_phy.dst,
2154 				virt_to_phys(desc->lli_phy.dst),
2155 				chan->dst_def_cfg,
2156 				dst_info, src_info, flags);
2157 
2158 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2159 				   desc->lli_pool.size, DMA_TO_DEVICE);
2160 
2161 	return ret < 0 ? ret : 0;
2162 }
2163 
2164 static struct d40_desc *
d40_prep_desc(struct d40_chan * chan,struct scatterlist * sg,unsigned int sg_len,unsigned long dma_flags)2165 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2166 	      unsigned int sg_len, unsigned long dma_flags)
2167 {
2168 	struct stedma40_chan_cfg *cfg;
2169 	struct d40_desc *desc;
2170 	int ret;
2171 
2172 	desc = d40_desc_get(chan);
2173 	if (!desc)
2174 		return NULL;
2175 
2176 	cfg = &chan->dma_cfg;
2177 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2178 					cfg->dst_info.data_width);
2179 	if (desc->lli_len < 0) {
2180 		chan_err(chan, "Unaligned size\n");
2181 		goto free_desc;
2182 	}
2183 
2184 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2185 	if (ret < 0) {
2186 		chan_err(chan, "Could not allocate lli\n");
2187 		goto free_desc;
2188 	}
2189 
2190 	desc->lli_current = 0;
2191 	desc->txd.flags = dma_flags;
2192 	desc->txd.tx_submit = d40_tx_submit;
2193 
2194 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2195 
2196 	return desc;
2197  free_desc:
2198 	d40_desc_free(chan, desc);
2199 	return NULL;
2200 }
2201 
2202 static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan * dchan,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags)2203 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2204 	    struct scatterlist *sg_dst, unsigned int sg_len,
2205 	    enum dma_transfer_direction direction, unsigned long dma_flags)
2206 {
2207 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2208 	dma_addr_t src_dev_addr;
2209 	dma_addr_t dst_dev_addr;
2210 	struct d40_desc *desc;
2211 	unsigned long flags;
2212 	int ret;
2213 
2214 	if (!chan->phy_chan) {
2215 		chan_err(chan, "Cannot prepare unallocated channel\n");
2216 		return NULL;
2217 	}
2218 
2219 	spin_lock_irqsave(&chan->lock, flags);
2220 
2221 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2222 	if (desc == NULL)
2223 		goto unlock;
2224 
2225 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2226 		desc->cyclic = true;
2227 
2228 	src_dev_addr = 0;
2229 	dst_dev_addr = 0;
2230 	if (direction == DMA_DEV_TO_MEM)
2231 		src_dev_addr = chan->runtime_addr;
2232 	else if (direction == DMA_MEM_TO_DEV)
2233 		dst_dev_addr = chan->runtime_addr;
2234 
2235 	if (chan_is_logical(chan))
2236 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2237 				      sg_len, src_dev_addr, dst_dev_addr);
2238 	else
2239 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2240 				      sg_len, src_dev_addr, dst_dev_addr);
2241 
2242 	if (ret) {
2243 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2244 			 chan_is_logical(chan) ? "log" : "phy", ret);
2245 		goto free_desc;
2246 	}
2247 
2248 	/*
2249 	 * add descriptor to the prepare queue in order to be able
2250 	 * to free them later in terminate_all
2251 	 */
2252 	list_add_tail(&desc->node, &chan->prepare_queue);
2253 
2254 	spin_unlock_irqrestore(&chan->lock, flags);
2255 
2256 	return &desc->txd;
2257  free_desc:
2258 	d40_desc_free(chan, desc);
2259  unlock:
2260 	spin_unlock_irqrestore(&chan->lock, flags);
2261 	return NULL;
2262 }
2263 
stedma40_filter(struct dma_chan * chan,void * data)2264 bool stedma40_filter(struct dma_chan *chan, void *data)
2265 {
2266 	struct stedma40_chan_cfg *info = data;
2267 	struct d40_chan *d40c =
2268 		container_of(chan, struct d40_chan, chan);
2269 	int err;
2270 
2271 	if (data) {
2272 		err = d40_validate_conf(d40c, info);
2273 		if (!err)
2274 			d40c->dma_cfg = *info;
2275 	} else
2276 		err = d40_config_memcpy(d40c);
2277 
2278 	if (!err)
2279 		d40c->configured = true;
2280 
2281 	return err == 0;
2282 }
2283 EXPORT_SYMBOL(stedma40_filter);
2284 
__d40_set_prio_rt(struct d40_chan * d40c,int dev_type,bool src)2285 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2286 {
2287 	bool realtime = d40c->dma_cfg.realtime;
2288 	bool highprio = d40c->dma_cfg.high_priority;
2289 	u32 rtreg;
2290 	u32 event = D40_TYPE_TO_EVENT(dev_type);
2291 	u32 group = D40_TYPE_TO_GROUP(dev_type);
2292 	u32 bit = BIT(event);
2293 	u32 prioreg;
2294 	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2295 
2296 	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2297 	/*
2298 	 * Due to a hardware bug, in some cases a logical channel triggered by
2299 	 * a high priority destination event line can generate extra packet
2300 	 * transactions.
2301 	 *
2302 	 * The workaround is to not set the high priority level for the
2303 	 * destination event lines that trigger logical channels.
2304 	 */
2305 	if (!src && chan_is_logical(d40c))
2306 		highprio = false;
2307 
2308 	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2309 
2310 	/* Destination event lines are stored in the upper halfword */
2311 	if (!src)
2312 		bit <<= 16;
2313 
2314 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2315 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2316 }
2317 
d40_set_prio_realtime(struct d40_chan * d40c)2318 static void d40_set_prio_realtime(struct d40_chan *d40c)
2319 {
2320 	if (d40c->base->rev < 3)
2321 		return;
2322 
2323 	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2324 	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2325 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2326 
2327 	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2328 	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2329 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2330 }
2331 
2332 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2333 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2334 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2335 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2336 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2337 
d40_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2338 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2339 				  struct of_dma *ofdma)
2340 {
2341 	struct stedma40_chan_cfg cfg;
2342 	dma_cap_mask_t cap;
2343 	u32 flags;
2344 
2345 	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2346 
2347 	dma_cap_zero(cap);
2348 	dma_cap_set(DMA_SLAVE, cap);
2349 
2350 	cfg.dev_type = dma_spec->args[0];
2351 	flags = dma_spec->args[2];
2352 
2353 	switch (D40_DT_FLAGS_MODE(flags)) {
2354 	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2355 	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2356 	}
2357 
2358 	switch (D40_DT_FLAGS_DIR(flags)) {
2359 	case 0:
2360 		cfg.dir = DMA_MEM_TO_DEV;
2361 		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2362 		break;
2363 	case 1:
2364 		cfg.dir = DMA_DEV_TO_MEM;
2365 		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2366 		break;
2367 	}
2368 
2369 	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2370 		cfg.phy_channel = dma_spec->args[1];
2371 		cfg.use_fixed_channel = true;
2372 	}
2373 
2374 	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2375 		cfg.high_priority = true;
2376 
2377 	return dma_request_channel(cap, stedma40_filter, &cfg);
2378 }
2379 
2380 /* DMA ENGINE functions */
d40_alloc_chan_resources(struct dma_chan * chan)2381 static int d40_alloc_chan_resources(struct dma_chan *chan)
2382 {
2383 	int err;
2384 	unsigned long flags;
2385 	struct d40_chan *d40c =
2386 		container_of(chan, struct d40_chan, chan);
2387 	bool is_free_phy;
2388 	spin_lock_irqsave(&d40c->lock, flags);
2389 
2390 	dma_cookie_init(chan);
2391 
2392 	/* If no dma configuration is set use default configuration (memcpy) */
2393 	if (!d40c->configured) {
2394 		err = d40_config_memcpy(d40c);
2395 		if (err) {
2396 			chan_err(d40c, "Failed to configure memcpy channel\n");
2397 			goto mark_last_busy;
2398 		}
2399 	}
2400 
2401 	err = d40_allocate_channel(d40c, &is_free_phy);
2402 	if (err) {
2403 		chan_err(d40c, "Failed to allocate channel\n");
2404 		d40c->configured = false;
2405 		goto mark_last_busy;
2406 	}
2407 
2408 	pm_runtime_get_sync(d40c->base->dev);
2409 
2410 	d40_set_prio_realtime(d40c);
2411 
2412 	if (chan_is_logical(d40c)) {
2413 		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2414 			d40c->lcpa = d40c->base->lcpa_base +
2415 				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2416 		else
2417 			d40c->lcpa = d40c->base->lcpa_base +
2418 				d40c->dma_cfg.dev_type *
2419 				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2420 
2421 		/* Unmask the Global Interrupt Mask. */
2422 		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2423 		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2424 	}
2425 
2426 	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2427 		 chan_is_logical(d40c) ? "logical" : "physical",
2428 		 d40c->phy_chan->num,
2429 		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2430 
2431 
2432 	/*
2433 	 * Only write channel configuration to the DMA if the physical
2434 	 * resource is free. In case of multiple logical channels
2435 	 * on the same physical resource, only the first write is necessary.
2436 	 */
2437 	if (is_free_phy)
2438 		d40_config_write(d40c);
2439  mark_last_busy:
2440 	pm_runtime_mark_last_busy(d40c->base->dev);
2441 	pm_runtime_put_autosuspend(d40c->base->dev);
2442 	spin_unlock_irqrestore(&d40c->lock, flags);
2443 	return err;
2444 }
2445 
d40_free_chan_resources(struct dma_chan * chan)2446 static void d40_free_chan_resources(struct dma_chan *chan)
2447 {
2448 	struct d40_chan *d40c =
2449 		container_of(chan, struct d40_chan, chan);
2450 	int err;
2451 	unsigned long flags;
2452 
2453 	if (d40c->phy_chan == NULL) {
2454 		chan_err(d40c, "Cannot free unallocated channel\n");
2455 		return;
2456 	}
2457 
2458 	spin_lock_irqsave(&d40c->lock, flags);
2459 
2460 	err = d40_free_dma(d40c);
2461 
2462 	if (err)
2463 		chan_err(d40c, "Failed to free channel\n");
2464 	spin_unlock_irqrestore(&d40c->lock, flags);
2465 }
2466 
d40_prep_memcpy(struct dma_chan * chan,dma_addr_t dst,dma_addr_t src,size_t size,unsigned long dma_flags)2467 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2468 						       dma_addr_t dst,
2469 						       dma_addr_t src,
2470 						       size_t size,
2471 						       unsigned long dma_flags)
2472 {
2473 	struct scatterlist dst_sg;
2474 	struct scatterlist src_sg;
2475 
2476 	sg_init_table(&dst_sg, 1);
2477 	sg_init_table(&src_sg, 1);
2478 
2479 	sg_dma_address(&dst_sg) = dst;
2480 	sg_dma_address(&src_sg) = src;
2481 
2482 	sg_dma_len(&dst_sg) = size;
2483 	sg_dma_len(&src_sg) = size;
2484 
2485 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2486 			   DMA_MEM_TO_MEM, dma_flags);
2487 }
2488 
2489 static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags,void * context)2490 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2491 		  unsigned int sg_len, enum dma_transfer_direction direction,
2492 		  unsigned long dma_flags, void *context)
2493 {
2494 	if (!is_slave_direction(direction))
2495 		return NULL;
2496 
2497 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2498 }
2499 
2500 static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)2501 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2502 		     size_t buf_len, size_t period_len,
2503 		     enum dma_transfer_direction direction, unsigned long flags)
2504 {
2505 	unsigned int periods = buf_len / period_len;
2506 	struct dma_async_tx_descriptor *txd;
2507 	struct scatterlist *sg;
2508 	int i;
2509 
2510 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2511 	if (!sg)
2512 		return NULL;
2513 
2514 	for (i = 0; i < periods; i++) {
2515 		sg_dma_address(&sg[i]) = dma_addr;
2516 		sg_dma_len(&sg[i]) = period_len;
2517 		dma_addr += period_len;
2518 	}
2519 
2520 	sg_chain(sg, periods + 1, sg);
2521 
2522 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2523 			  DMA_PREP_INTERRUPT);
2524 
2525 	kfree(sg);
2526 
2527 	return txd;
2528 }
2529 
d40_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)2530 static enum dma_status d40_tx_status(struct dma_chan *chan,
2531 				     dma_cookie_t cookie,
2532 				     struct dma_tx_state *txstate)
2533 {
2534 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2535 	enum dma_status ret;
2536 
2537 	if (d40c->phy_chan == NULL) {
2538 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2539 		return -EINVAL;
2540 	}
2541 
2542 	ret = dma_cookie_status(chan, cookie, txstate);
2543 	if (ret != DMA_COMPLETE && txstate)
2544 		dma_set_residue(txstate, stedma40_residue(chan));
2545 
2546 	if (d40_is_paused(d40c))
2547 		ret = DMA_PAUSED;
2548 
2549 	return ret;
2550 }
2551 
d40_issue_pending(struct dma_chan * chan)2552 static void d40_issue_pending(struct dma_chan *chan)
2553 {
2554 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2555 	unsigned long flags;
2556 
2557 	if (d40c->phy_chan == NULL) {
2558 		chan_err(d40c, "Channel is not allocated!\n");
2559 		return;
2560 	}
2561 
2562 	spin_lock_irqsave(&d40c->lock, flags);
2563 
2564 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2565 
2566 	/* Busy means that queued jobs are already being processed */
2567 	if (!d40c->busy)
2568 		(void) d40_queue_start(d40c);
2569 
2570 	spin_unlock_irqrestore(&d40c->lock, flags);
2571 }
2572 
d40_terminate_all(struct dma_chan * chan)2573 static int d40_terminate_all(struct dma_chan *chan)
2574 {
2575 	unsigned long flags;
2576 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2577 	int ret;
2578 
2579 	if (d40c->phy_chan == NULL) {
2580 		chan_err(d40c, "Channel is not allocated!\n");
2581 		return -EINVAL;
2582 	}
2583 
2584 	spin_lock_irqsave(&d40c->lock, flags);
2585 
2586 	pm_runtime_get_sync(d40c->base->dev);
2587 	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2588 	if (ret)
2589 		chan_err(d40c, "Failed to stop channel\n");
2590 
2591 	d40_term_all(d40c);
2592 	pm_runtime_mark_last_busy(d40c->base->dev);
2593 	pm_runtime_put_autosuspend(d40c->base->dev);
2594 	if (d40c->busy) {
2595 		pm_runtime_mark_last_busy(d40c->base->dev);
2596 		pm_runtime_put_autosuspend(d40c->base->dev);
2597 	}
2598 	d40c->busy = false;
2599 
2600 	spin_unlock_irqrestore(&d40c->lock, flags);
2601 	return 0;
2602 }
2603 
2604 static int
dma40_config_to_halfchannel(struct d40_chan * d40c,struct stedma40_half_channel_info * info,u32 maxburst)2605 dma40_config_to_halfchannel(struct d40_chan *d40c,
2606 			    struct stedma40_half_channel_info *info,
2607 			    u32 maxburst)
2608 {
2609 	int psize;
2610 
2611 	if (chan_is_logical(d40c)) {
2612 		if (maxburst >= 16)
2613 			psize = STEDMA40_PSIZE_LOG_16;
2614 		else if (maxburst >= 8)
2615 			psize = STEDMA40_PSIZE_LOG_8;
2616 		else if (maxburst >= 4)
2617 			psize = STEDMA40_PSIZE_LOG_4;
2618 		else
2619 			psize = STEDMA40_PSIZE_LOG_1;
2620 	} else {
2621 		if (maxburst >= 16)
2622 			psize = STEDMA40_PSIZE_PHY_16;
2623 		else if (maxburst >= 8)
2624 			psize = STEDMA40_PSIZE_PHY_8;
2625 		else if (maxburst >= 4)
2626 			psize = STEDMA40_PSIZE_PHY_4;
2627 		else
2628 			psize = STEDMA40_PSIZE_PHY_1;
2629 	}
2630 
2631 	info->psize = psize;
2632 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2633 
2634 	return 0;
2635 }
2636 
2637 /* Runtime reconfiguration extension */
d40_set_runtime_config(struct dma_chan * chan,struct dma_slave_config * config)2638 static int d40_set_runtime_config(struct dma_chan *chan,
2639 				  struct dma_slave_config *config)
2640 {
2641 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2642 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2643 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2644 	dma_addr_t config_addr;
2645 	u32 src_maxburst, dst_maxburst;
2646 	int ret;
2647 
2648 	if (d40c->phy_chan == NULL) {
2649 		chan_err(d40c, "Channel is not allocated!\n");
2650 		return -EINVAL;
2651 	}
2652 
2653 	src_addr_width = config->src_addr_width;
2654 	src_maxburst = config->src_maxburst;
2655 	dst_addr_width = config->dst_addr_width;
2656 	dst_maxburst = config->dst_maxburst;
2657 
2658 	if (config->direction == DMA_DEV_TO_MEM) {
2659 		config_addr = config->src_addr;
2660 
2661 		if (cfg->dir != DMA_DEV_TO_MEM)
2662 			dev_dbg(d40c->base->dev,
2663 				"channel was not configured for peripheral "
2664 				"to memory transfer (%d) overriding\n",
2665 				cfg->dir);
2666 		cfg->dir = DMA_DEV_TO_MEM;
2667 
2668 		/* Configure the memory side */
2669 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2670 			dst_addr_width = src_addr_width;
2671 		if (dst_maxburst == 0)
2672 			dst_maxburst = src_maxburst;
2673 
2674 	} else if (config->direction == DMA_MEM_TO_DEV) {
2675 		config_addr = config->dst_addr;
2676 
2677 		if (cfg->dir != DMA_MEM_TO_DEV)
2678 			dev_dbg(d40c->base->dev,
2679 				"channel was not configured for memory "
2680 				"to peripheral transfer (%d) overriding\n",
2681 				cfg->dir);
2682 		cfg->dir = DMA_MEM_TO_DEV;
2683 
2684 		/* Configure the memory side */
2685 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2686 			src_addr_width = dst_addr_width;
2687 		if (src_maxburst == 0)
2688 			src_maxburst = dst_maxburst;
2689 	} else {
2690 		dev_err(d40c->base->dev,
2691 			"unrecognized channel direction %d\n",
2692 			config->direction);
2693 		return -EINVAL;
2694 	}
2695 
2696 	if (config_addr <= 0) {
2697 		dev_err(d40c->base->dev, "no address supplied\n");
2698 		return -EINVAL;
2699 	}
2700 
2701 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2702 		dev_err(d40c->base->dev,
2703 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2704 			src_maxburst,
2705 			src_addr_width,
2706 			dst_maxburst,
2707 			dst_addr_width);
2708 		return -EINVAL;
2709 	}
2710 
2711 	if (src_maxburst > 16) {
2712 		src_maxburst = 16;
2713 		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2714 	} else if (dst_maxburst > 16) {
2715 		dst_maxburst = 16;
2716 		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2717 	}
2718 
2719 	/* Only valid widths are; 1, 2, 4 and 8. */
2720 	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2721 	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2722 	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2723 	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2724 	    !is_power_of_2(src_addr_width) ||
2725 	    !is_power_of_2(dst_addr_width))
2726 		return -EINVAL;
2727 
2728 	cfg->src_info.data_width = src_addr_width;
2729 	cfg->dst_info.data_width = dst_addr_width;
2730 
2731 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2732 					  src_maxburst);
2733 	if (ret)
2734 		return ret;
2735 
2736 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2737 					  dst_maxburst);
2738 	if (ret)
2739 		return ret;
2740 
2741 	/* Fill in register values */
2742 	if (chan_is_logical(d40c))
2743 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2744 	else
2745 		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2746 
2747 	/* These settings will take precedence later */
2748 	d40c->runtime_addr = config_addr;
2749 	d40c->runtime_direction = config->direction;
2750 	dev_dbg(d40c->base->dev,
2751 		"configured channel %s for %s, data width %d/%d, "
2752 		"maxburst %d/%d elements, LE, no flow control\n",
2753 		dma_chan_name(chan),
2754 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2755 		src_addr_width, dst_addr_width,
2756 		src_maxburst, dst_maxburst);
2757 
2758 	return 0;
2759 }
2760 
2761 /* Initialization functions */
2762 
d40_chan_init(struct d40_base * base,struct dma_device * dma,struct d40_chan * chans,int offset,int num_chans)2763 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2764 				 struct d40_chan *chans, int offset,
2765 				 int num_chans)
2766 {
2767 	int i = 0;
2768 	struct d40_chan *d40c;
2769 
2770 	INIT_LIST_HEAD(&dma->channels);
2771 
2772 	for (i = offset; i < offset + num_chans; i++) {
2773 		d40c = &chans[i];
2774 		d40c->base = base;
2775 		d40c->chan.device = dma;
2776 
2777 		spin_lock_init(&d40c->lock);
2778 
2779 		d40c->log_num = D40_PHY_CHAN;
2780 
2781 		INIT_LIST_HEAD(&d40c->done);
2782 		INIT_LIST_HEAD(&d40c->active);
2783 		INIT_LIST_HEAD(&d40c->queue);
2784 		INIT_LIST_HEAD(&d40c->pending_queue);
2785 		INIT_LIST_HEAD(&d40c->client);
2786 		INIT_LIST_HEAD(&d40c->prepare_queue);
2787 
2788 		tasklet_init(&d40c->tasklet, dma_tasklet,
2789 			     (unsigned long) d40c);
2790 
2791 		list_add_tail(&d40c->chan.device_node,
2792 			      &dma->channels);
2793 	}
2794 }
2795 
d40_ops_init(struct d40_base * base,struct dma_device * dev)2796 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2797 {
2798 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2799 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2800 		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2801 	}
2802 
2803 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2804 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2805 		dev->directions = BIT(DMA_MEM_TO_MEM);
2806 		/*
2807 		 * This controller can only access address at even
2808 		 * 32bit boundaries, i.e. 2^2
2809 		 */
2810 		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2811 	}
2812 
2813 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2814 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2815 
2816 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2817 	dev->device_free_chan_resources = d40_free_chan_resources;
2818 	dev->device_issue_pending = d40_issue_pending;
2819 	dev->device_tx_status = d40_tx_status;
2820 	dev->device_config = d40_set_runtime_config;
2821 	dev->device_pause = d40_pause;
2822 	dev->device_resume = d40_resume;
2823 	dev->device_terminate_all = d40_terminate_all;
2824 	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2825 	dev->dev = base->dev;
2826 }
2827 
d40_dmaengine_init(struct d40_base * base,int num_reserved_chans)2828 static int __init d40_dmaengine_init(struct d40_base *base,
2829 				     int num_reserved_chans)
2830 {
2831 	int err ;
2832 
2833 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2834 		      0, base->num_log_chans);
2835 
2836 	dma_cap_zero(base->dma_slave.cap_mask);
2837 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2838 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2839 
2840 	d40_ops_init(base, &base->dma_slave);
2841 
2842 	err = dma_async_device_register(&base->dma_slave);
2843 
2844 	if (err) {
2845 		d40_err(base->dev, "Failed to register slave channels\n");
2846 		goto exit;
2847 	}
2848 
2849 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2850 		      base->num_log_chans, base->num_memcpy_chans);
2851 
2852 	dma_cap_zero(base->dma_memcpy.cap_mask);
2853 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2854 
2855 	d40_ops_init(base, &base->dma_memcpy);
2856 
2857 	err = dma_async_device_register(&base->dma_memcpy);
2858 
2859 	if (err) {
2860 		d40_err(base->dev,
2861 			"Failed to register memcpy only channels\n");
2862 		goto unregister_slave;
2863 	}
2864 
2865 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2866 		      0, num_reserved_chans);
2867 
2868 	dma_cap_zero(base->dma_both.cap_mask);
2869 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2870 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2871 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2872 
2873 	d40_ops_init(base, &base->dma_both);
2874 	err = dma_async_device_register(&base->dma_both);
2875 
2876 	if (err) {
2877 		d40_err(base->dev,
2878 			"Failed to register logical and physical capable channels\n");
2879 		goto unregister_memcpy;
2880 	}
2881 	return 0;
2882  unregister_memcpy:
2883 	dma_async_device_unregister(&base->dma_memcpy);
2884  unregister_slave:
2885 	dma_async_device_unregister(&base->dma_slave);
2886  exit:
2887 	return err;
2888 }
2889 
2890 /* Suspend resume functionality */
2891 #ifdef CONFIG_PM_SLEEP
dma40_suspend(struct device * dev)2892 static int dma40_suspend(struct device *dev)
2893 {
2894 	struct d40_base *base = dev_get_drvdata(dev);
2895 	int ret;
2896 
2897 	ret = pm_runtime_force_suspend(dev);
2898 	if (ret)
2899 		return ret;
2900 
2901 	if (base->lcpa_regulator)
2902 		ret = regulator_disable(base->lcpa_regulator);
2903 	return ret;
2904 }
2905 
dma40_resume(struct device * dev)2906 static int dma40_resume(struct device *dev)
2907 {
2908 	struct d40_base *base = dev_get_drvdata(dev);
2909 	int ret = 0;
2910 
2911 	if (base->lcpa_regulator) {
2912 		ret = regulator_enable(base->lcpa_regulator);
2913 		if (ret)
2914 			return ret;
2915 	}
2916 
2917 	return pm_runtime_force_resume(dev);
2918 }
2919 #endif
2920 
2921 #ifdef CONFIG_PM
dma40_backup(void __iomem * baseaddr,u32 * backup,u32 * regaddr,int num,bool save)2922 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2923 			 u32 *regaddr, int num, bool save)
2924 {
2925 	int i;
2926 
2927 	for (i = 0; i < num; i++) {
2928 		void __iomem *addr = baseaddr + regaddr[i];
2929 
2930 		if (save)
2931 			backup[i] = readl_relaxed(addr);
2932 		else
2933 			writel_relaxed(backup[i], addr);
2934 	}
2935 }
2936 
d40_save_restore_registers(struct d40_base * base,bool save)2937 static void d40_save_restore_registers(struct d40_base *base, bool save)
2938 {
2939 	int i;
2940 
2941 	/* Save/Restore channel specific registers */
2942 	for (i = 0; i < base->num_phy_chans; i++) {
2943 		void __iomem *addr;
2944 		int idx;
2945 
2946 		if (base->phy_res[i].reserved)
2947 			continue;
2948 
2949 		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2950 		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2951 
2952 		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2953 			     d40_backup_regs_chan,
2954 			     ARRAY_SIZE(d40_backup_regs_chan),
2955 			     save);
2956 	}
2957 
2958 	/* Save/Restore global registers */
2959 	dma40_backup(base->virtbase, base->reg_val_backup,
2960 		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2961 		     save);
2962 
2963 	/* Save/Restore registers only existing on dma40 v3 and later */
2964 	if (base->gen_dmac.backup)
2965 		dma40_backup(base->virtbase, base->reg_val_backup_v4,
2966 			     base->gen_dmac.backup,
2967 			base->gen_dmac.backup_size,
2968 			save);
2969 }
2970 
dma40_runtime_suspend(struct device * dev)2971 static int dma40_runtime_suspend(struct device *dev)
2972 {
2973 	struct d40_base *base = dev_get_drvdata(dev);
2974 
2975 	d40_save_restore_registers(base, true);
2976 
2977 	/* Don't disable/enable clocks for v1 due to HW bugs */
2978 	if (base->rev != 1)
2979 		writel_relaxed(base->gcc_pwr_off_mask,
2980 			       base->virtbase + D40_DREG_GCC);
2981 
2982 	return 0;
2983 }
2984 
dma40_runtime_resume(struct device * dev)2985 static int dma40_runtime_resume(struct device *dev)
2986 {
2987 	struct d40_base *base = dev_get_drvdata(dev);
2988 
2989 	d40_save_restore_registers(base, false);
2990 
2991 	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2992 		       base->virtbase + D40_DREG_GCC);
2993 	return 0;
2994 }
2995 #endif
2996 
2997 static const struct dev_pm_ops dma40_pm_ops = {
2998 	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
2999 	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3000 				dma40_runtime_resume,
3001 				NULL)
3002 };
3003 
3004 /* Initialization functions. */
3005 
d40_phy_res_init(struct d40_base * base)3006 static int __init d40_phy_res_init(struct d40_base *base)
3007 {
3008 	int i;
3009 	int num_phy_chans_avail = 0;
3010 	u32 val[2];
3011 	int odd_even_bit = -2;
3012 	int gcc = D40_DREG_GCC_ENA;
3013 
3014 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3015 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3016 
3017 	for (i = 0; i < base->num_phy_chans; i++) {
3018 		base->phy_res[i].num = i;
3019 		odd_even_bit += 2 * ((i % 2) == 0);
3020 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3021 			/* Mark security only channels as occupied */
3022 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3023 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3024 			base->phy_res[i].reserved = true;
3025 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3026 						       D40_DREG_GCC_SRC);
3027 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3028 						       D40_DREG_GCC_DST);
3029 
3030 
3031 		} else {
3032 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3033 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3034 			base->phy_res[i].reserved = false;
3035 			num_phy_chans_avail++;
3036 		}
3037 		spin_lock_init(&base->phy_res[i].lock);
3038 	}
3039 
3040 	/* Mark disabled channels as occupied */
3041 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3042 		int chan = base->plat_data->disabled_channels[i];
3043 
3044 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3045 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3046 		base->phy_res[chan].reserved = true;
3047 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3048 					       D40_DREG_GCC_SRC);
3049 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3050 					       D40_DREG_GCC_DST);
3051 		num_phy_chans_avail--;
3052 	}
3053 
3054 	/* Mark soft_lli channels */
3055 	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3056 		int chan = base->plat_data->soft_lli_chans[i];
3057 
3058 		base->phy_res[chan].use_soft_lli = true;
3059 	}
3060 
3061 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3062 		 num_phy_chans_avail, base->num_phy_chans);
3063 
3064 	/* Verify settings extended vs standard */
3065 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3066 
3067 	for (i = 0; i < base->num_phy_chans; i++) {
3068 
3069 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3070 		    (val[0] & 0x3) != 1)
3071 			dev_info(base->dev,
3072 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3073 				 __func__, i, val[0] & 0x3);
3074 
3075 		val[0] = val[0] >> 2;
3076 	}
3077 
3078 	/*
3079 	 * To keep things simple, Enable all clocks initially.
3080 	 * The clocks will get managed later post channel allocation.
3081 	 * The clocks for the event lines on which reserved channels exists
3082 	 * are not managed here.
3083 	 */
3084 	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3085 	base->gcc_pwr_off_mask = gcc;
3086 
3087 	return num_phy_chans_avail;
3088 }
3089 
d40_hw_detect_init(struct platform_device * pdev)3090 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3091 {
3092 	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3093 	struct clk *clk;
3094 	void __iomem *virtbase;
3095 	struct resource *res;
3096 	struct d40_base *base;
3097 	int num_log_chans;
3098 	int num_phy_chans;
3099 	int num_memcpy_chans;
3100 	int clk_ret = -EINVAL;
3101 	int i;
3102 	u32 pid;
3103 	u32 cid;
3104 	u8 rev;
3105 
3106 	clk = clk_get(&pdev->dev, NULL);
3107 	if (IS_ERR(clk)) {
3108 		d40_err(&pdev->dev, "No matching clock found\n");
3109 		goto check_prepare_enabled;
3110 	}
3111 
3112 	clk_ret = clk_prepare_enable(clk);
3113 	if (clk_ret) {
3114 		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3115 		goto disable_unprepare;
3116 	}
3117 
3118 	/* Get IO for DMAC base address */
3119 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3120 	if (!res)
3121 		goto disable_unprepare;
3122 
3123 	if (request_mem_region(res->start, resource_size(res),
3124 			       D40_NAME " I/O base") == NULL)
3125 		goto release_region;
3126 
3127 	virtbase = ioremap(res->start, resource_size(res));
3128 	if (!virtbase)
3129 		goto release_region;
3130 
3131 	/* This is just a regular AMBA PrimeCell ID actually */
3132 	for (pid = 0, i = 0; i < 4; i++)
3133 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3134 			& 255) << (i * 8);
3135 	for (cid = 0, i = 0; i < 4; i++)
3136 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3137 			& 255) << (i * 8);
3138 
3139 	if (cid != AMBA_CID) {
3140 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3141 		goto unmap_io;
3142 	}
3143 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3144 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3145 			AMBA_MANF_BITS(pid),
3146 			AMBA_VENDOR_ST);
3147 		goto unmap_io;
3148 	}
3149 	/*
3150 	 * HW revision:
3151 	 * DB8500ed has revision 0
3152 	 * ? has revision 1
3153 	 * DB8500v1 has revision 2
3154 	 * DB8500v2 has revision 3
3155 	 * AP9540v1 has revision 4
3156 	 * DB8540v1 has revision 4
3157 	 */
3158 	rev = AMBA_REV_BITS(pid);
3159 	if (rev < 2) {
3160 		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3161 		goto unmap_io;
3162 	}
3163 
3164 	/* The number of physical channels on this HW */
3165 	if (plat_data->num_of_phy_chans)
3166 		num_phy_chans = plat_data->num_of_phy_chans;
3167 	else
3168 		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3169 
3170 	/* The number of channels used for memcpy */
3171 	if (plat_data->num_of_memcpy_chans)
3172 		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3173 	else
3174 		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3175 
3176 	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3177 
3178 	dev_info(&pdev->dev,
3179 		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3180 		 rev, &res->start, num_phy_chans, num_log_chans);
3181 
3182 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3183 		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3184 		       sizeof(struct d40_chan), GFP_KERNEL);
3185 
3186 	if (base == NULL)
3187 		goto unmap_io;
3188 
3189 	base->rev = rev;
3190 	base->clk = clk;
3191 	base->num_memcpy_chans = num_memcpy_chans;
3192 	base->num_phy_chans = num_phy_chans;
3193 	base->num_log_chans = num_log_chans;
3194 	base->phy_start = res->start;
3195 	base->phy_size = resource_size(res);
3196 	base->virtbase = virtbase;
3197 	base->plat_data = plat_data;
3198 	base->dev = &pdev->dev;
3199 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3200 	base->log_chans = &base->phy_chans[num_phy_chans];
3201 
3202 	if (base->plat_data->num_of_phy_chans == 14) {
3203 		base->gen_dmac.backup = d40_backup_regs_v4b;
3204 		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3205 		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3206 		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3207 		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3208 		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3209 		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3210 		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3211 		base->gen_dmac.il = il_v4b;
3212 		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3213 		base->gen_dmac.init_reg = dma_init_reg_v4b;
3214 		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3215 	} else {
3216 		if (base->rev >= 3) {
3217 			base->gen_dmac.backup = d40_backup_regs_v4a;
3218 			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3219 		}
3220 		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3221 		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3222 		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3223 		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3224 		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3225 		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3226 		base->gen_dmac.il = il_v4a;
3227 		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3228 		base->gen_dmac.init_reg = dma_init_reg_v4a;
3229 		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3230 	}
3231 
3232 	base->phy_res = kcalloc(num_phy_chans,
3233 				sizeof(*base->phy_res),
3234 				GFP_KERNEL);
3235 	if (!base->phy_res)
3236 		goto free_base;
3237 
3238 	base->lookup_phy_chans = kcalloc(num_phy_chans,
3239 					 sizeof(*base->lookup_phy_chans),
3240 					 GFP_KERNEL);
3241 	if (!base->lookup_phy_chans)
3242 		goto free_phy_res;
3243 
3244 	base->lookup_log_chans = kcalloc(num_log_chans,
3245 					 sizeof(*base->lookup_log_chans),
3246 					 GFP_KERNEL);
3247 	if (!base->lookup_log_chans)
3248 		goto free_phy_chans;
3249 
3250 	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3251 						  sizeof(d40_backup_regs_chan),
3252 						  GFP_KERNEL);
3253 	if (!base->reg_val_backup_chan)
3254 		goto free_log_chans;
3255 
3256 	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3257 					    * D40_LCLA_LINK_PER_EVENT_GRP,
3258 					    sizeof(*base->lcla_pool.alloc_map),
3259 					    GFP_KERNEL);
3260 	if (!base->lcla_pool.alloc_map)
3261 		goto free_backup_chan;
3262 
3263 	base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3264 					     sizeof(*base->regs_interrupt),
3265 					     GFP_KERNEL);
3266 	if (!base->regs_interrupt)
3267 		goto free_map;
3268 
3269 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3270 					    0, SLAB_HWCACHE_ALIGN,
3271 					    NULL);
3272 	if (base->desc_slab == NULL)
3273 		goto free_regs;
3274 
3275 
3276 	return base;
3277  free_regs:
3278 	kfree(base->regs_interrupt);
3279  free_map:
3280 	kfree(base->lcla_pool.alloc_map);
3281  free_backup_chan:
3282 	kfree(base->reg_val_backup_chan);
3283  free_log_chans:
3284 	kfree(base->lookup_log_chans);
3285  free_phy_chans:
3286 	kfree(base->lookup_phy_chans);
3287  free_phy_res:
3288 	kfree(base->phy_res);
3289  free_base:
3290 	kfree(base);
3291  unmap_io:
3292 	iounmap(virtbase);
3293  release_region:
3294 	release_mem_region(res->start, resource_size(res));
3295  check_prepare_enabled:
3296 	if (!clk_ret)
3297  disable_unprepare:
3298 		clk_disable_unprepare(clk);
3299 	if (!IS_ERR(clk))
3300 		clk_put(clk);
3301 	return NULL;
3302 }
3303 
d40_hw_init(struct d40_base * base)3304 static void __init d40_hw_init(struct d40_base *base)
3305 {
3306 
3307 	int i;
3308 	u32 prmseo[2] = {0, 0};
3309 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3310 	u32 pcmis = 0;
3311 	u32 pcicr = 0;
3312 	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3313 	u32 reg_size = base->gen_dmac.init_reg_size;
3314 
3315 	for (i = 0; i < reg_size; i++)
3316 		writel(dma_init_reg[i].val,
3317 		       base->virtbase + dma_init_reg[i].reg);
3318 
3319 	/* Configure all our dma channels to default settings */
3320 	for (i = 0; i < base->num_phy_chans; i++) {
3321 
3322 		activeo[i % 2] = activeo[i % 2] << 2;
3323 
3324 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3325 		    == D40_ALLOC_PHY) {
3326 			activeo[i % 2] |= 3;
3327 			continue;
3328 		}
3329 
3330 		/* Enable interrupt # */
3331 		pcmis = (pcmis << 1) | 1;
3332 
3333 		/* Clear interrupt # */
3334 		pcicr = (pcicr << 1) | 1;
3335 
3336 		/* Set channel to physical mode */
3337 		prmseo[i % 2] = prmseo[i % 2] << 2;
3338 		prmseo[i % 2] |= 1;
3339 
3340 	}
3341 
3342 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3343 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3344 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3345 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3346 
3347 	/* Write which interrupt to enable */
3348 	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3349 
3350 	/* Write which interrupt to clear */
3351 	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3352 
3353 	/* These are __initdata and cannot be accessed after init */
3354 	base->gen_dmac.init_reg = NULL;
3355 	base->gen_dmac.init_reg_size = 0;
3356 }
3357 
d40_lcla_allocate(struct d40_base * base)3358 static int __init d40_lcla_allocate(struct d40_base *base)
3359 {
3360 	struct d40_lcla_pool *pool = &base->lcla_pool;
3361 	unsigned long *page_list;
3362 	int i, j;
3363 	int ret;
3364 
3365 	/*
3366 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3367 	 * To full fill this hardware requirement without wasting 256 kb
3368 	 * we allocate pages until we get an aligned one.
3369 	 */
3370 	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3371 				  sizeof(*page_list),
3372 				  GFP_KERNEL);
3373 	if (!page_list)
3374 		return -ENOMEM;
3375 
3376 	/* Calculating how many pages that are required */
3377 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3378 
3379 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3380 		page_list[i] = __get_free_pages(GFP_KERNEL,
3381 						base->lcla_pool.pages);
3382 		if (!page_list[i]) {
3383 
3384 			d40_err(base->dev, "Failed to allocate %d pages.\n",
3385 				base->lcla_pool.pages);
3386 			ret = -ENOMEM;
3387 
3388 			for (j = 0; j < i; j++)
3389 				free_pages(page_list[j], base->lcla_pool.pages);
3390 			goto free_page_list;
3391 		}
3392 
3393 		if ((virt_to_phys((void *)page_list[i]) &
3394 		     (LCLA_ALIGNMENT - 1)) == 0)
3395 			break;
3396 	}
3397 
3398 	for (j = 0; j < i; j++)
3399 		free_pages(page_list[j], base->lcla_pool.pages);
3400 
3401 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3402 		base->lcla_pool.base = (void *)page_list[i];
3403 	} else {
3404 		/*
3405 		 * After many attempts and no succees with finding the correct
3406 		 * alignment, try with allocating a big buffer.
3407 		 */
3408 		dev_warn(base->dev,
3409 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3410 			 __func__, base->lcla_pool.pages);
3411 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3412 							 base->num_phy_chans +
3413 							 LCLA_ALIGNMENT,
3414 							 GFP_KERNEL);
3415 		if (!base->lcla_pool.base_unaligned) {
3416 			ret = -ENOMEM;
3417 			goto free_page_list;
3418 		}
3419 
3420 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3421 						 LCLA_ALIGNMENT);
3422 	}
3423 
3424 	pool->dma_addr = dma_map_single(base->dev, pool->base,
3425 					SZ_1K * base->num_phy_chans,
3426 					DMA_TO_DEVICE);
3427 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3428 		pool->dma_addr = 0;
3429 		ret = -ENOMEM;
3430 		goto free_page_list;
3431 	}
3432 
3433 	writel(virt_to_phys(base->lcla_pool.base),
3434 	       base->virtbase + D40_DREG_LCLA);
3435 	ret = 0;
3436  free_page_list:
3437 	kfree(page_list);
3438 	return ret;
3439 }
3440 
d40_of_probe(struct platform_device * pdev,struct device_node * np)3441 static int __init d40_of_probe(struct platform_device *pdev,
3442 			       struct device_node *np)
3443 {
3444 	struct stedma40_platform_data *pdata;
3445 	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3446 	const __be32 *list;
3447 
3448 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3449 	if (!pdata)
3450 		return -ENOMEM;
3451 
3452 	/* If absent this value will be obtained from h/w. */
3453 	of_property_read_u32(np, "dma-channels", &num_phy);
3454 	if (num_phy > 0)
3455 		pdata->num_of_phy_chans = num_phy;
3456 
3457 	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3458 	num_memcpy /= sizeof(*list);
3459 
3460 	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3461 		d40_err(&pdev->dev,
3462 			"Invalid number of memcpy channels specified (%d)\n",
3463 			num_memcpy);
3464 		return -EINVAL;
3465 	}
3466 	pdata->num_of_memcpy_chans = num_memcpy;
3467 
3468 	of_property_read_u32_array(np, "memcpy-channels",
3469 				   dma40_memcpy_channels,
3470 				   num_memcpy);
3471 
3472 	list = of_get_property(np, "disabled-channels", &num_disabled);
3473 	num_disabled /= sizeof(*list);
3474 
3475 	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3476 		d40_err(&pdev->dev,
3477 			"Invalid number of disabled channels specified (%d)\n",
3478 			num_disabled);
3479 		return -EINVAL;
3480 	}
3481 
3482 	of_property_read_u32_array(np, "disabled-channels",
3483 				   pdata->disabled_channels,
3484 				   num_disabled);
3485 	pdata->disabled_channels[num_disabled] = -1;
3486 
3487 	pdev->dev.platform_data = pdata;
3488 
3489 	return 0;
3490 }
3491 
d40_probe(struct platform_device * pdev)3492 static int __init d40_probe(struct platform_device *pdev)
3493 {
3494 	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3495 	struct device_node *np = pdev->dev.of_node;
3496 	int ret = -ENOENT;
3497 	struct d40_base *base;
3498 	struct resource *res;
3499 	int num_reserved_chans;
3500 	u32 val;
3501 
3502 	if (!plat_data) {
3503 		if (np) {
3504 			if (d40_of_probe(pdev, np)) {
3505 				ret = -ENOMEM;
3506 				goto report_failure;
3507 			}
3508 		} else {
3509 			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3510 			goto report_failure;
3511 		}
3512 	}
3513 
3514 	base = d40_hw_detect_init(pdev);
3515 	if (!base)
3516 		goto report_failure;
3517 
3518 	num_reserved_chans = d40_phy_res_init(base);
3519 
3520 	platform_set_drvdata(pdev, base);
3521 
3522 	spin_lock_init(&base->interrupt_lock);
3523 	spin_lock_init(&base->execmd_lock);
3524 
3525 	/* Get IO for logical channel parameter address */
3526 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3527 	if (!res) {
3528 		ret = -ENOENT;
3529 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3530 		goto destroy_cache;
3531 	}
3532 	base->lcpa_size = resource_size(res);
3533 	base->phy_lcpa = res->start;
3534 
3535 	if (request_mem_region(res->start, resource_size(res),
3536 			       D40_NAME " I/O lcpa") == NULL) {
3537 		ret = -EBUSY;
3538 		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3539 		goto destroy_cache;
3540 	}
3541 
3542 	/* We make use of ESRAM memory for this. */
3543 	val = readl(base->virtbase + D40_DREG_LCPA);
3544 	if (res->start != val && val != 0) {
3545 		dev_warn(&pdev->dev,
3546 			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3547 			 __func__, val, &res->start);
3548 	} else
3549 		writel(res->start, base->virtbase + D40_DREG_LCPA);
3550 
3551 	base->lcpa_base = ioremap(res->start, resource_size(res));
3552 	if (!base->lcpa_base) {
3553 		ret = -ENOMEM;
3554 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3555 		goto destroy_cache;
3556 	}
3557 	/* If lcla has to be located in ESRAM we don't need to allocate */
3558 	if (base->plat_data->use_esram_lcla) {
3559 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3560 							"lcla_esram");
3561 		if (!res) {
3562 			ret = -ENOENT;
3563 			d40_err(&pdev->dev,
3564 				"No \"lcla_esram\" memory resource\n");
3565 			goto destroy_cache;
3566 		}
3567 		base->lcla_pool.base = ioremap(res->start,
3568 						resource_size(res));
3569 		if (!base->lcla_pool.base) {
3570 			ret = -ENOMEM;
3571 			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3572 			goto destroy_cache;
3573 		}
3574 		writel(res->start, base->virtbase + D40_DREG_LCLA);
3575 
3576 	} else {
3577 		ret = d40_lcla_allocate(base);
3578 		if (ret) {
3579 			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3580 			goto destroy_cache;
3581 		}
3582 	}
3583 
3584 	spin_lock_init(&base->lcla_pool.lock);
3585 
3586 	base->irq = platform_get_irq(pdev, 0);
3587 
3588 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3589 	if (ret) {
3590 		d40_err(&pdev->dev, "No IRQ defined\n");
3591 		goto destroy_cache;
3592 	}
3593 
3594 	if (base->plat_data->use_esram_lcla) {
3595 
3596 		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3597 		if (IS_ERR(base->lcpa_regulator)) {
3598 			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3599 			ret = PTR_ERR(base->lcpa_regulator);
3600 			base->lcpa_regulator = NULL;
3601 			goto destroy_cache;
3602 		}
3603 
3604 		ret = regulator_enable(base->lcpa_regulator);
3605 		if (ret) {
3606 			d40_err(&pdev->dev,
3607 				"Failed to enable lcpa_regulator\n");
3608 			regulator_put(base->lcpa_regulator);
3609 			base->lcpa_regulator = NULL;
3610 			goto destroy_cache;
3611 		}
3612 	}
3613 
3614 	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3615 
3616 	pm_runtime_irq_safe(base->dev);
3617 	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3618 	pm_runtime_use_autosuspend(base->dev);
3619 	pm_runtime_mark_last_busy(base->dev);
3620 	pm_runtime_set_active(base->dev);
3621 	pm_runtime_enable(base->dev);
3622 
3623 	ret = d40_dmaengine_init(base, num_reserved_chans);
3624 	if (ret)
3625 		goto destroy_cache;
3626 
3627 	base->dev->dma_parms = &base->dma_parms;
3628 	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3629 	if (ret) {
3630 		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3631 		goto destroy_cache;
3632 	}
3633 
3634 	d40_hw_init(base);
3635 
3636 	if (np) {
3637 		ret = of_dma_controller_register(np, d40_xlate, NULL);
3638 		if (ret)
3639 			dev_err(&pdev->dev,
3640 				"could not register of_dma_controller\n");
3641 	}
3642 
3643 	dev_info(base->dev, "initialized\n");
3644 	return 0;
3645  destroy_cache:
3646 	kmem_cache_destroy(base->desc_slab);
3647 	if (base->virtbase)
3648 		iounmap(base->virtbase);
3649 
3650 	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3651 		iounmap(base->lcla_pool.base);
3652 		base->lcla_pool.base = NULL;
3653 	}
3654 
3655 	if (base->lcla_pool.dma_addr)
3656 		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3657 				 SZ_1K * base->num_phy_chans,
3658 				 DMA_TO_DEVICE);
3659 
3660 	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3661 		free_pages((unsigned long)base->lcla_pool.base,
3662 			   base->lcla_pool.pages);
3663 
3664 	kfree(base->lcla_pool.base_unaligned);
3665 
3666 	if (base->phy_lcpa)
3667 		release_mem_region(base->phy_lcpa,
3668 				   base->lcpa_size);
3669 	if (base->phy_start)
3670 		release_mem_region(base->phy_start,
3671 				   base->phy_size);
3672 	if (base->clk) {
3673 		clk_disable_unprepare(base->clk);
3674 		clk_put(base->clk);
3675 	}
3676 
3677 	if (base->lcpa_regulator) {
3678 		regulator_disable(base->lcpa_regulator);
3679 		regulator_put(base->lcpa_regulator);
3680 	}
3681 
3682 	kfree(base->lcla_pool.alloc_map);
3683 	kfree(base->lookup_log_chans);
3684 	kfree(base->lookup_phy_chans);
3685 	kfree(base->phy_res);
3686 	kfree(base);
3687  report_failure:
3688 	d40_err(&pdev->dev, "probe failed\n");
3689 	return ret;
3690 }
3691 
3692 static const struct of_device_id d40_match[] = {
3693         { .compatible = "stericsson,dma40", },
3694         {}
3695 };
3696 
3697 static struct platform_driver d40_driver = {
3698 	.driver = {
3699 		.name  = D40_NAME,
3700 		.pm = &dma40_pm_ops,
3701 		.of_match_table = d40_match,
3702 	},
3703 };
3704 
stedma40_init(void)3705 static int __init stedma40_init(void)
3706 {
3707 	return platform_driver_probe(&d40_driver, d40_probe);
3708 }
3709 subsys_initcall(stedma40_init);
3710