1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel MIC Platform Software Stack (MPSS)
4  *
5  * Copyright(c) 2014 Intel Corporation.
6  *
7  * Intel MIC X100 DMA Driver.
8  *
9  * Adapted from IOAT dma driver.
10  */
11 #include <linux/module.h>
12 #include <linux/io.h>
13 #include <linux/seq_file.h>
14 #include <linux/vmalloc.h>
15 
16 #include "mic_x100_dma.h"
17 
18 #define MIC_DMA_MAX_XFER_SIZE_CARD  (1 * 1024 * 1024 -\
19 				       MIC_DMA_ALIGN_BYTES)
20 #define MIC_DMA_MAX_XFER_SIZE_HOST  (1 * 1024 * 1024 >> 1)
21 #define MIC_DMA_DESC_TYPE_SHIFT	60
22 #define MIC_DMA_MEMCPY_LEN_SHIFT 46
23 #define MIC_DMA_STAT_INTR_SHIFT 59
24 
25 /* high-water mark for pushing dma descriptors */
26 static int mic_dma_pending_level = 4;
27 
28 /* Status descriptor is used to write a 64 bit value to a memory location */
29 enum mic_dma_desc_format_type {
30 	MIC_DMA_MEMCPY = 1,
31 	MIC_DMA_STATUS,
32 };
33 
mic_dma_hw_ring_inc(u32 val)34 static inline u32 mic_dma_hw_ring_inc(u32 val)
35 {
36 	return (val + 1) % MIC_DMA_DESC_RX_SIZE;
37 }
38 
mic_dma_hw_ring_dec(u32 val)39 static inline u32 mic_dma_hw_ring_dec(u32 val)
40 {
41 	return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
42 }
43 
mic_dma_hw_ring_inc_head(struct mic_dma_chan * ch)44 static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
45 {
46 	ch->head = mic_dma_hw_ring_inc(ch->head);
47 }
48 
49 /* Prepare a memcpy desc */
mic_dma_memcpy_desc(struct mic_dma_desc * desc,dma_addr_t src_phys,dma_addr_t dst_phys,u64 size)50 static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
51 	dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
52 {
53 	u64 qw0, qw1;
54 
55 	qw0 = src_phys;
56 	qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
57 	qw1 = MIC_DMA_MEMCPY;
58 	qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
59 	qw1 |= dst_phys;
60 	desc->qw0 = qw0;
61 	desc->qw1 = qw1;
62 }
63 
64 /* Prepare a status desc. with @data to be written at @dst_phys */
mic_dma_prep_status_desc(struct mic_dma_desc * desc,u64 data,dma_addr_t dst_phys,bool generate_intr)65 static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
66 	dma_addr_t dst_phys, bool generate_intr)
67 {
68 	u64 qw0, qw1;
69 
70 	qw0 = data;
71 	qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
72 	if (generate_intr)
73 		qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
74 	desc->qw0 = qw0;
75 	desc->qw1 = qw1;
76 }
77 
mic_dma_cleanup(struct mic_dma_chan * ch)78 static void mic_dma_cleanup(struct mic_dma_chan *ch)
79 {
80 	struct dma_async_tx_descriptor *tx;
81 	u32 tail;
82 	u32 last_tail;
83 
84 	spin_lock(&ch->cleanup_lock);
85 	tail = mic_dma_read_cmp_cnt(ch);
86 	/*
87 	 * This is the barrier pair for smp_wmb() in fn.
88 	 * mic_dma_tx_submit_unlock. It's required so that we read the
89 	 * updated cookie value from tx->cookie.
90 	 */
91 	smp_rmb();
92 	for (last_tail = ch->last_tail; tail != last_tail;) {
93 		tx = &ch->tx_array[last_tail];
94 		if (tx->cookie) {
95 			dma_cookie_complete(tx);
96 			dmaengine_desc_get_callback_invoke(tx, NULL);
97 			tx->callback = NULL;
98 		}
99 		last_tail = mic_dma_hw_ring_inc(last_tail);
100 	}
101 	/* finish all completion callbacks before incrementing tail */
102 	smp_mb();
103 	ch->last_tail = last_tail;
104 	spin_unlock(&ch->cleanup_lock);
105 }
106 
mic_dma_ring_count(u32 head,u32 tail)107 static u32 mic_dma_ring_count(u32 head, u32 tail)
108 {
109 	u32 count;
110 
111 	if (head >= tail)
112 		count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
113 	else
114 		count = tail - head;
115 	return count - 1;
116 }
117 
118 /* Returns the num. of free descriptors on success, -ENOMEM on failure */
mic_dma_avail_desc_ring_space(struct mic_dma_chan * ch,int required)119 static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
120 {
121 	struct device *dev = mic_dma_ch_to_device(ch);
122 	u32 count;
123 
124 	count = mic_dma_ring_count(ch->head, ch->last_tail);
125 	if (count < required) {
126 		mic_dma_cleanup(ch);
127 		count = mic_dma_ring_count(ch->head, ch->last_tail);
128 	}
129 
130 	if (count < required) {
131 		dev_dbg(dev, "Not enough desc space");
132 		dev_dbg(dev, "%s %d required=%u, avail=%u\n",
133 			__func__, __LINE__, required, count);
134 		return -ENOMEM;
135 	} else {
136 		return count;
137 	}
138 }
139 
140 /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
mic_dma_prog_memcpy_desc(struct mic_dma_chan * ch,dma_addr_t src,dma_addr_t dst,size_t len)141 static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
142 				    dma_addr_t dst, size_t len)
143 {
144 	size_t current_transfer_len;
145 	size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
146 	/* 3 is added to make sure we have enough space for status desc */
147 	int num_desc = len / max_xfer_size + 3;
148 	int ret;
149 
150 	if (len % max_xfer_size)
151 		num_desc++;
152 
153 	ret = mic_dma_avail_desc_ring_space(ch, num_desc);
154 	if (ret < 0)
155 		return ret;
156 	do {
157 		current_transfer_len = min(len, max_xfer_size);
158 		mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
159 				    src, dst, current_transfer_len);
160 		mic_dma_hw_ring_inc_head(ch);
161 		len -= current_transfer_len;
162 		dst = dst + current_transfer_len;
163 		src = src + current_transfer_len;
164 	} while (len > 0);
165 	return 0;
166 }
167 
168 /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
mic_dma_prog_intr(struct mic_dma_chan * ch)169 static void mic_dma_prog_intr(struct mic_dma_chan *ch)
170 {
171 	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
172 				 ch->status_dest_micpa, false);
173 	mic_dma_hw_ring_inc_head(ch);
174 	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
175 				 ch->status_dest_micpa, true);
176 	mic_dma_hw_ring_inc_head(ch);
177 }
178 
179 /* Wrapper function to program memcpy descriptors/status descriptors */
mic_dma_do_dma(struct mic_dma_chan * ch,int flags,dma_addr_t src,dma_addr_t dst,size_t len)180 static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
181 			  dma_addr_t dst, size_t len)
182 {
183 	if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) {
184 		return -ENOMEM;
185 	} else {
186 		/* 3 is the maximum number of status descriptors */
187 		int ret = mic_dma_avail_desc_ring_space(ch, 3);
188 
189 		if (ret < 0)
190 			return ret;
191 	}
192 
193 	/* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
194 	if (flags & DMA_PREP_FENCE) {
195 		mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
196 					 ch->status_dest_micpa, false);
197 		mic_dma_hw_ring_inc_head(ch);
198 	}
199 
200 	if (flags & DMA_PREP_INTERRUPT)
201 		mic_dma_prog_intr(ch);
202 
203 	return 0;
204 }
205 
mic_dma_issue_pending(struct dma_chan * ch)206 static inline void mic_dma_issue_pending(struct dma_chan *ch)
207 {
208 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
209 
210 	spin_lock(&mic_ch->issue_lock);
211 	/*
212 	 * Write to head triggers h/w to act on the descriptors.
213 	 * On MIC, writing the same head value twice causes
214 	 * a h/w error. On second write, h/w assumes we filled
215 	 * the entire ring & overwrote some of the descriptors.
216 	 */
217 	if (mic_ch->issued == mic_ch->submitted)
218 		goto out;
219 	mic_ch->issued = mic_ch->submitted;
220 	/*
221 	 * make descriptor updates visible before advancing head,
222 	 * this is purposefully not smp_wmb() since we are also
223 	 * publishing the descriptor updates to a dma device
224 	 */
225 	wmb();
226 	mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
227 out:
228 	spin_unlock(&mic_ch->issue_lock);
229 }
230 
mic_dma_update_pending(struct mic_dma_chan * ch)231 static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
232 {
233 	if (mic_dma_ring_count(ch->issued, ch->submitted)
234 			> mic_dma_pending_level)
235 		mic_dma_issue_pending(&ch->api_ch);
236 }
237 
mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor * tx)238 static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
239 {
240 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
241 	dma_cookie_t cookie;
242 
243 	dma_cookie_assign(tx);
244 	cookie = tx->cookie;
245 	/*
246 	 * We need an smp write barrier here because another CPU might see
247 	 * an update to submitted and update h/w head even before we
248 	 * assigned a cookie to this tx.
249 	 */
250 	smp_wmb();
251 	mic_ch->submitted = mic_ch->head;
252 	spin_unlock(&mic_ch->prep_lock);
253 	mic_dma_update_pending(mic_ch);
254 	return cookie;
255 }
256 
257 static inline struct dma_async_tx_descriptor *
allocate_tx(struct mic_dma_chan * ch)258 allocate_tx(struct mic_dma_chan *ch)
259 {
260 	u32 idx = mic_dma_hw_ring_dec(ch->head);
261 	struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
262 
263 	dma_async_tx_descriptor_init(tx, &ch->api_ch);
264 	tx->tx_submit = mic_dma_tx_submit_unlock;
265 	return tx;
266 }
267 
268 /* Program a status descriptor with dst as address and value to be written */
269 static struct dma_async_tx_descriptor *
mic_dma_prep_status_lock(struct dma_chan * ch,dma_addr_t dst,u64 src_val,unsigned long flags)270 mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val,
271 			 unsigned long flags)
272 {
273 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
274 	int result;
275 
276 	spin_lock(&mic_ch->prep_lock);
277 	result = mic_dma_avail_desc_ring_space(mic_ch, 4);
278 	if (result < 0)
279 		goto error;
280 	mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst,
281 				 false);
282 	mic_dma_hw_ring_inc_head(mic_ch);
283 	result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
284 	if (result < 0)
285 		goto error;
286 
287 	return allocate_tx(mic_ch);
288 error:
289 	dev_err(mic_dma_ch_to_device(mic_ch),
290 		"Error enqueueing dma status descriptor, error=%d\n", result);
291 	spin_unlock(&mic_ch->prep_lock);
292 	return NULL;
293 }
294 
295 /*
296  * Prepare a memcpy descriptor to be added to the ring.
297  * Note that the temporary descriptor adds an extra overhead of copying the
298  * descriptor to ring. So, we copy directly to the descriptor ring
299  */
300 static struct dma_async_tx_descriptor *
mic_dma_prep_memcpy_lock(struct dma_chan * ch,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)301 mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
302 			 dma_addr_t dma_src, size_t len, unsigned long flags)
303 {
304 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
305 	struct device *dev = mic_dma_ch_to_device(mic_ch);
306 	int result;
307 
308 	if (!len && !flags)
309 		return NULL;
310 
311 	spin_lock(&mic_ch->prep_lock);
312 	result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
313 	if (result >= 0)
314 		return allocate_tx(mic_ch);
315 	dev_err(dev, "Error enqueueing dma, error=%d\n", result);
316 	spin_unlock(&mic_ch->prep_lock);
317 	return NULL;
318 }
319 
320 static struct dma_async_tx_descriptor *
mic_dma_prep_interrupt_lock(struct dma_chan * ch,unsigned long flags)321 mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
322 {
323 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
324 	int ret;
325 
326 	spin_lock(&mic_ch->prep_lock);
327 	ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
328 	if (!ret)
329 		return allocate_tx(mic_ch);
330 	spin_unlock(&mic_ch->prep_lock);
331 	return NULL;
332 }
333 
334 /* Return the status of the transaction */
335 static enum dma_status
mic_dma_tx_status(struct dma_chan * ch,dma_cookie_t cookie,struct dma_tx_state * txstate)336 mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
337 		  struct dma_tx_state *txstate)
338 {
339 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
340 
341 	if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
342 		mic_dma_cleanup(mic_ch);
343 
344 	return dma_cookie_status(ch, cookie, txstate);
345 }
346 
mic_dma_thread_fn(int irq,void * data)347 static irqreturn_t mic_dma_thread_fn(int irq, void *data)
348 {
349 	mic_dma_cleanup((struct mic_dma_chan *)data);
350 	return IRQ_HANDLED;
351 }
352 
mic_dma_intr_handler(int irq,void * data)353 static irqreturn_t mic_dma_intr_handler(int irq, void *data)
354 {
355 	struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
356 
357 	mic_dma_ack_interrupt(ch);
358 	return IRQ_WAKE_THREAD;
359 }
360 
mic_dma_alloc_desc_ring(struct mic_dma_chan * ch)361 static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
362 {
363 	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
364 	struct device *dev = &to_mbus_device(ch)->dev;
365 
366 	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
367 	ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
368 
369 	if (!ch->desc_ring)
370 		return -ENOMEM;
371 
372 	ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
373 					     desc_ring_size, DMA_BIDIRECTIONAL);
374 	if (dma_mapping_error(dev, ch->desc_ring_micpa))
375 		goto map_error;
376 
377 	ch->tx_array = vzalloc(array_size(MIC_DMA_DESC_RX_SIZE,
378 					  sizeof(*ch->tx_array)));
379 	if (!ch->tx_array)
380 		goto tx_error;
381 	return 0;
382 tx_error:
383 	dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
384 			 DMA_BIDIRECTIONAL);
385 map_error:
386 	kfree(ch->desc_ring);
387 	return -ENOMEM;
388 }
389 
mic_dma_free_desc_ring(struct mic_dma_chan * ch)390 static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
391 {
392 	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
393 
394 	vfree(ch->tx_array);
395 	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
396 	dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
397 			 desc_ring_size, DMA_BIDIRECTIONAL);
398 	kfree(ch->desc_ring);
399 	ch->desc_ring = NULL;
400 }
401 
mic_dma_free_status_dest(struct mic_dma_chan * ch)402 static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
403 {
404 	dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
405 			 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
406 	kfree(ch->status_dest);
407 }
408 
mic_dma_alloc_status_dest(struct mic_dma_chan * ch)409 static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
410 {
411 	struct device *dev = &to_mbus_device(ch)->dev;
412 
413 	ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
414 	if (!ch->status_dest)
415 		return -ENOMEM;
416 	ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
417 					L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
418 	if (dma_mapping_error(dev, ch->status_dest_micpa)) {
419 		kfree(ch->status_dest);
420 		ch->status_dest = NULL;
421 		return -ENOMEM;
422 	}
423 	return 0;
424 }
425 
mic_dma_check_chan(struct mic_dma_chan * ch)426 static int mic_dma_check_chan(struct mic_dma_chan *ch)
427 {
428 	if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
429 	    mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
430 		mic_dma_disable_chan(ch);
431 		mic_dma_chan_mask_intr(ch);
432 		dev_err(mic_dma_ch_to_device(ch),
433 			"%s %d error setting up mic dma chan %d\n",
434 			__func__, __LINE__, ch->ch_num);
435 		return -EBUSY;
436 	}
437 	return 0;
438 }
439 
mic_dma_chan_setup(struct mic_dma_chan * ch)440 static int mic_dma_chan_setup(struct mic_dma_chan *ch)
441 {
442 	if (MIC_DMA_CHAN_MIC == ch->owner)
443 		mic_dma_chan_set_owner(ch);
444 	mic_dma_disable_chan(ch);
445 	mic_dma_chan_mask_intr(ch);
446 	mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
447 	mic_dma_chan_set_desc_ring(ch);
448 	ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
449 	ch->head = ch->last_tail;
450 	ch->issued = 0;
451 	mic_dma_chan_unmask_intr(ch);
452 	mic_dma_enable_chan(ch);
453 	return mic_dma_check_chan(ch);
454 }
455 
mic_dma_chan_destroy(struct mic_dma_chan * ch)456 static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
457 {
458 	mic_dma_disable_chan(ch);
459 	mic_dma_chan_mask_intr(ch);
460 }
461 
mic_dma_setup_irq(struct mic_dma_chan * ch)462 static int mic_dma_setup_irq(struct mic_dma_chan *ch)
463 {
464 	ch->cookie =
465 		to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
466 			mic_dma_intr_handler, mic_dma_thread_fn,
467 			"mic dma_channel", ch, ch->ch_num);
468 	return PTR_ERR_OR_ZERO(ch->cookie);
469 }
470 
mic_dma_free_irq(struct mic_dma_chan * ch)471 static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
472 {
473 	to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
474 }
475 
mic_dma_chan_init(struct mic_dma_chan * ch)476 static int mic_dma_chan_init(struct mic_dma_chan *ch)
477 {
478 	int ret = mic_dma_alloc_desc_ring(ch);
479 
480 	if (ret)
481 		goto ring_error;
482 	ret = mic_dma_alloc_status_dest(ch);
483 	if (ret)
484 		goto status_error;
485 	ret = mic_dma_chan_setup(ch);
486 	if (ret)
487 		goto chan_error;
488 	return ret;
489 chan_error:
490 	mic_dma_free_status_dest(ch);
491 status_error:
492 	mic_dma_free_desc_ring(ch);
493 ring_error:
494 	return ret;
495 }
496 
mic_dma_drain_chan(struct mic_dma_chan * ch)497 static int mic_dma_drain_chan(struct mic_dma_chan *ch)
498 {
499 	struct dma_async_tx_descriptor *tx;
500 	int err = 0;
501 	dma_cookie_t cookie;
502 
503 	tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
504 	if (!tx) {
505 		err = -ENOMEM;
506 		goto error;
507 	}
508 
509 	cookie = tx->tx_submit(tx);
510 	if (dma_submit_error(cookie))
511 		err = -ENOMEM;
512 	else
513 		err = dma_sync_wait(&ch->api_ch, cookie);
514 	if (err) {
515 		dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
516 			__func__, __LINE__, ch->ch_num);
517 		err = -EIO;
518 	}
519 error:
520 	mic_dma_cleanup(ch);
521 	return err;
522 }
523 
mic_dma_chan_uninit(struct mic_dma_chan * ch)524 static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
525 {
526 	mic_dma_chan_destroy(ch);
527 	mic_dma_cleanup(ch);
528 	mic_dma_free_status_dest(ch);
529 	mic_dma_free_desc_ring(ch);
530 }
531 
mic_dma_init(struct mic_dma_device * mic_dma_dev,enum mic_dma_chan_owner owner)532 static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
533 			enum mic_dma_chan_owner owner)
534 {
535 	int i, first_chan = mic_dma_dev->start_ch;
536 	struct mic_dma_chan *ch;
537 	int ret;
538 
539 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
540 		ch = &mic_dma_dev->mic_ch[i];
541 		ch->ch_num = i;
542 		ch->owner = owner;
543 		spin_lock_init(&ch->cleanup_lock);
544 		spin_lock_init(&ch->prep_lock);
545 		spin_lock_init(&ch->issue_lock);
546 		ret = mic_dma_setup_irq(ch);
547 		if (ret)
548 			goto error;
549 	}
550 	return 0;
551 error:
552 	for (i = i - 1; i >= first_chan; i--)
553 		mic_dma_free_irq(ch);
554 	return ret;
555 }
556 
mic_dma_uninit(struct mic_dma_device * mic_dma_dev)557 static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
558 {
559 	int i, first_chan = mic_dma_dev->start_ch;
560 	struct mic_dma_chan *ch;
561 
562 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
563 		ch = &mic_dma_dev->mic_ch[i];
564 		mic_dma_free_irq(ch);
565 	}
566 }
567 
mic_dma_alloc_chan_resources(struct dma_chan * ch)568 static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
569 {
570 	int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
571 	if (ret)
572 		return ret;
573 	return MIC_DMA_DESC_RX_SIZE;
574 }
575 
mic_dma_free_chan_resources(struct dma_chan * ch)576 static void mic_dma_free_chan_resources(struct dma_chan *ch)
577 {
578 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
579 	mic_dma_drain_chan(mic_ch);
580 	mic_dma_chan_uninit(mic_ch);
581 }
582 
583 /* Set the fn. handlers and register the dma device with dma api */
mic_dma_register_dma_device(struct mic_dma_device * mic_dma_dev,enum mic_dma_chan_owner owner)584 static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
585 				       enum mic_dma_chan_owner owner)
586 {
587 	int i, first_chan = mic_dma_dev->start_ch;
588 
589 	dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
590 	/*
591 	 * This dma engine is not capable of host memory to host memory
592 	 * transfers
593 	 */
594 	dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
595 
596 	if (MIC_DMA_CHAN_HOST == owner)
597 		dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
598 	mic_dma_dev->dma_dev.device_alloc_chan_resources =
599 		mic_dma_alloc_chan_resources;
600 	mic_dma_dev->dma_dev.device_free_chan_resources =
601 		mic_dma_free_chan_resources;
602 	mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
603 	mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
604 	mic_dma_dev->dma_dev.device_prep_dma_imm_data =
605 		mic_dma_prep_status_lock;
606 	mic_dma_dev->dma_dev.device_prep_dma_interrupt =
607 		mic_dma_prep_interrupt_lock;
608 	mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
609 	mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
610 	INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
611 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
612 		mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
613 		dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
614 		list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
615 			      &mic_dma_dev->dma_dev.channels);
616 	}
617 	return dmaenginem_async_device_register(&mic_dma_dev->dma_dev);
618 }
619 
620 /*
621  * Initializes dma channels and registers the dma device with the
622  * dma engine api.
623  */
mic_dma_dev_reg(struct mbus_device * mbdev,enum mic_dma_chan_owner owner)624 static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
625 					      enum mic_dma_chan_owner owner)
626 {
627 	struct mic_dma_device *mic_dma_dev;
628 	int ret;
629 	struct device *dev = &mbdev->dev;
630 
631 	mic_dma_dev = devm_kzalloc(dev, sizeof(*mic_dma_dev), GFP_KERNEL);
632 	if (!mic_dma_dev) {
633 		ret = -ENOMEM;
634 		goto alloc_error;
635 	}
636 	mic_dma_dev->mbdev = mbdev;
637 	mic_dma_dev->dma_dev.dev = dev;
638 	mic_dma_dev->mmio = mbdev->mmio_va;
639 	if (MIC_DMA_CHAN_HOST == owner) {
640 		mic_dma_dev->start_ch = 0;
641 		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
642 	} else {
643 		mic_dma_dev->start_ch = 4;
644 		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
645 	}
646 	ret = mic_dma_init(mic_dma_dev, owner);
647 	if (ret)
648 		goto init_error;
649 	ret = mic_dma_register_dma_device(mic_dma_dev, owner);
650 	if (ret)
651 		goto reg_error;
652 	return mic_dma_dev;
653 reg_error:
654 	mic_dma_uninit(mic_dma_dev);
655 init_error:
656 	mic_dma_dev = NULL;
657 alloc_error:
658 	dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
659 	return mic_dma_dev;
660 }
661 
mic_dma_dev_unreg(struct mic_dma_device * mic_dma_dev)662 static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
663 {
664 	mic_dma_uninit(mic_dma_dev);
665 }
666 
667 /* DEBUGFS CODE */
mic_dma_reg_show(struct seq_file * s,void * pos)668 static int mic_dma_reg_show(struct seq_file *s, void *pos)
669 {
670 	struct mic_dma_device *mic_dma_dev = s->private;
671 	int i, chan_num, first_chan = mic_dma_dev->start_ch;
672 	struct mic_dma_chan *ch;
673 
674 	seq_printf(s, "SBOX_DCR: %#x\n",
675 		   mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
676 				     MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
677 	seq_puts(s, "DMA Channel Registers\n");
678 	seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
679 		   "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
680 	seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
681 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
682 		ch = &mic_dma_dev->mic_ch[i];
683 		chan_num = ch->ch_num;
684 		seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
685 			   chan_num,
686 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
687 			   mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
688 			   mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
689 			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
690 		seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
691 			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
692 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
693 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
694 			   mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
695 	}
696 	return 0;
697 }
698 
699 DEFINE_SHOW_ATTRIBUTE(mic_dma_reg);
700 
701 /* Debugfs parent dir */
702 static struct dentry *mic_dma_dbg;
703 
mic_dma_driver_probe(struct mbus_device * mbdev)704 static int mic_dma_driver_probe(struct mbus_device *mbdev)
705 {
706 	struct mic_dma_device *mic_dma_dev;
707 	enum mic_dma_chan_owner owner;
708 
709 	if (MBUS_DEV_DMA_MIC == mbdev->id.device)
710 		owner = MIC_DMA_CHAN_MIC;
711 	else
712 		owner = MIC_DMA_CHAN_HOST;
713 
714 	mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
715 	dev_set_drvdata(&mbdev->dev, mic_dma_dev);
716 
717 	if (mic_dma_dbg) {
718 		mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
719 							  mic_dma_dbg);
720 		debugfs_create_file("mic_dma_reg", 0444, mic_dma_dev->dbg_dir,
721 				    mic_dma_dev, &mic_dma_reg_fops);
722 	}
723 	return 0;
724 }
725 
mic_dma_driver_remove(struct mbus_device * mbdev)726 static void mic_dma_driver_remove(struct mbus_device *mbdev)
727 {
728 	struct mic_dma_device *mic_dma_dev;
729 
730 	mic_dma_dev = dev_get_drvdata(&mbdev->dev);
731 	debugfs_remove_recursive(mic_dma_dev->dbg_dir);
732 	mic_dma_dev_unreg(mic_dma_dev);
733 }
734 
735 static struct mbus_device_id id_table[] = {
736 	{MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
737 	{MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
738 	{0},
739 };
740 
741 static struct mbus_driver mic_dma_driver = {
742 	.driver.name =	KBUILD_MODNAME,
743 	.driver.owner =	THIS_MODULE,
744 	.id_table = id_table,
745 	.probe = mic_dma_driver_probe,
746 	.remove = mic_dma_driver_remove,
747 };
748 
mic_x100_dma_init(void)749 static int __init mic_x100_dma_init(void)
750 {
751 	int rc = mbus_register_driver(&mic_dma_driver);
752 	if (rc)
753 		return rc;
754 	mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
755 	return 0;
756 }
757 
mic_x100_dma_exit(void)758 static void __exit mic_x100_dma_exit(void)
759 {
760 	debugfs_remove_recursive(mic_dma_dbg);
761 	mbus_unregister_driver(&mic_dma_driver);
762 }
763 
764 module_init(mic_x100_dma_init);
765 module_exit(mic_x100_dma_exit);
766 
767 MODULE_DEVICE_TABLE(mbus, id_table);
768 MODULE_AUTHOR("Intel Corporation");
769 MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
770 MODULE_LICENSE("GPL v2");
771