1 /*
2  * Intel MIC Platform Software Stack (MPSS)
3  *
4  * Copyright(c) 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * General Public License for more details.
14  *
15  * The full GNU General Public License is included in this distribution in
16  * the file called "COPYING".
17  *
18  * Intel MIC X100 DMA Driver.
19  *
20  * Adapted from IOAT dma driver.
21  */
22 #include <linux/module.h>
23 #include <linux/io.h>
24 #include <linux/seq_file.h>
25 #include <linux/vmalloc.h>
26 
27 #include "mic_x100_dma.h"
28 
29 #define MIC_DMA_MAX_XFER_SIZE_CARD  (1 * 1024 * 1024 -\
30 				       MIC_DMA_ALIGN_BYTES)
31 #define MIC_DMA_MAX_XFER_SIZE_HOST  (1 * 1024 * 1024 >> 1)
32 #define MIC_DMA_DESC_TYPE_SHIFT	60
33 #define MIC_DMA_MEMCPY_LEN_SHIFT 46
34 #define MIC_DMA_STAT_INTR_SHIFT 59
35 
36 /* high-water mark for pushing dma descriptors */
37 static int mic_dma_pending_level = 4;
38 
39 /* Status descriptor is used to write a 64 bit value to a memory location */
40 enum mic_dma_desc_format_type {
41 	MIC_DMA_MEMCPY = 1,
42 	MIC_DMA_STATUS,
43 };
44 
mic_dma_hw_ring_inc(u32 val)45 static inline u32 mic_dma_hw_ring_inc(u32 val)
46 {
47 	return (val + 1) % MIC_DMA_DESC_RX_SIZE;
48 }
49 
mic_dma_hw_ring_dec(u32 val)50 static inline u32 mic_dma_hw_ring_dec(u32 val)
51 {
52 	return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
53 }
54 
mic_dma_hw_ring_inc_head(struct mic_dma_chan * ch)55 static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
56 {
57 	ch->head = mic_dma_hw_ring_inc(ch->head);
58 }
59 
60 /* Prepare a memcpy desc */
mic_dma_memcpy_desc(struct mic_dma_desc * desc,dma_addr_t src_phys,dma_addr_t dst_phys,u64 size)61 static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
62 	dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
63 {
64 	u64 qw0, qw1;
65 
66 	qw0 = src_phys;
67 	qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
68 	qw1 = MIC_DMA_MEMCPY;
69 	qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
70 	qw1 |= dst_phys;
71 	desc->qw0 = qw0;
72 	desc->qw1 = qw1;
73 }
74 
75 /* Prepare a status desc. with @data to be written at @dst_phys */
mic_dma_prep_status_desc(struct mic_dma_desc * desc,u64 data,dma_addr_t dst_phys,bool generate_intr)76 static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
77 	dma_addr_t dst_phys, bool generate_intr)
78 {
79 	u64 qw0, qw1;
80 
81 	qw0 = data;
82 	qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
83 	if (generate_intr)
84 		qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
85 	desc->qw0 = qw0;
86 	desc->qw1 = qw1;
87 }
88 
mic_dma_cleanup(struct mic_dma_chan * ch)89 static void mic_dma_cleanup(struct mic_dma_chan *ch)
90 {
91 	struct dma_async_tx_descriptor *tx;
92 	u32 tail;
93 	u32 last_tail;
94 
95 	spin_lock(&ch->cleanup_lock);
96 	tail = mic_dma_read_cmp_cnt(ch);
97 	/*
98 	 * This is the barrier pair for smp_wmb() in fn.
99 	 * mic_dma_tx_submit_unlock. It's required so that we read the
100 	 * updated cookie value from tx->cookie.
101 	 */
102 	smp_rmb();
103 	for (last_tail = ch->last_tail; tail != last_tail;) {
104 		tx = &ch->tx_array[last_tail];
105 		if (tx->cookie) {
106 			dma_cookie_complete(tx);
107 			dmaengine_desc_get_callback_invoke(tx, NULL);
108 			tx->callback = NULL;
109 		}
110 		last_tail = mic_dma_hw_ring_inc(last_tail);
111 	}
112 	/* finish all completion callbacks before incrementing tail */
113 	smp_mb();
114 	ch->last_tail = last_tail;
115 	spin_unlock(&ch->cleanup_lock);
116 }
117 
mic_dma_ring_count(u32 head,u32 tail)118 static u32 mic_dma_ring_count(u32 head, u32 tail)
119 {
120 	u32 count;
121 
122 	if (head >= tail)
123 		count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
124 	else
125 		count = tail - head;
126 	return count - 1;
127 }
128 
129 /* Returns the num. of free descriptors on success, -ENOMEM on failure */
mic_dma_avail_desc_ring_space(struct mic_dma_chan * ch,int required)130 static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
131 {
132 	struct device *dev = mic_dma_ch_to_device(ch);
133 	u32 count;
134 
135 	count = mic_dma_ring_count(ch->head, ch->last_tail);
136 	if (count < required) {
137 		mic_dma_cleanup(ch);
138 		count = mic_dma_ring_count(ch->head, ch->last_tail);
139 	}
140 
141 	if (count < required) {
142 		dev_dbg(dev, "Not enough desc space");
143 		dev_dbg(dev, "%s %d required=%u, avail=%u\n",
144 			__func__, __LINE__, required, count);
145 		return -ENOMEM;
146 	} else {
147 		return count;
148 	}
149 }
150 
151 /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
mic_dma_prog_memcpy_desc(struct mic_dma_chan * ch,dma_addr_t src,dma_addr_t dst,size_t len)152 static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
153 				    dma_addr_t dst, size_t len)
154 {
155 	size_t current_transfer_len;
156 	size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
157 	/* 3 is added to make sure we have enough space for status desc */
158 	int num_desc = len / max_xfer_size + 3;
159 	int ret;
160 
161 	if (len % max_xfer_size)
162 		num_desc++;
163 
164 	ret = mic_dma_avail_desc_ring_space(ch, num_desc);
165 	if (ret < 0)
166 		return ret;
167 	do {
168 		current_transfer_len = min(len, max_xfer_size);
169 		mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
170 				    src, dst, current_transfer_len);
171 		mic_dma_hw_ring_inc_head(ch);
172 		len -= current_transfer_len;
173 		dst = dst + current_transfer_len;
174 		src = src + current_transfer_len;
175 	} while (len > 0);
176 	return 0;
177 }
178 
179 /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
mic_dma_prog_intr(struct mic_dma_chan * ch)180 static void mic_dma_prog_intr(struct mic_dma_chan *ch)
181 {
182 	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
183 				 ch->status_dest_micpa, false);
184 	mic_dma_hw_ring_inc_head(ch);
185 	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
186 				 ch->status_dest_micpa, true);
187 	mic_dma_hw_ring_inc_head(ch);
188 }
189 
190 /* Wrapper function to program memcpy descriptors/status descriptors */
mic_dma_do_dma(struct mic_dma_chan * ch,int flags,dma_addr_t src,dma_addr_t dst,size_t len)191 static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
192 			  dma_addr_t dst, size_t len)
193 {
194 	if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) {
195 		return -ENOMEM;
196 	} else {
197 		/* 3 is the maximum number of status descriptors */
198 		int ret = mic_dma_avail_desc_ring_space(ch, 3);
199 
200 		if (ret < 0)
201 			return ret;
202 	}
203 
204 	/* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
205 	if (flags & DMA_PREP_FENCE) {
206 		mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
207 					 ch->status_dest_micpa, false);
208 		mic_dma_hw_ring_inc_head(ch);
209 	}
210 
211 	if (flags & DMA_PREP_INTERRUPT)
212 		mic_dma_prog_intr(ch);
213 
214 	return 0;
215 }
216 
mic_dma_issue_pending(struct dma_chan * ch)217 static inline void mic_dma_issue_pending(struct dma_chan *ch)
218 {
219 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
220 
221 	spin_lock(&mic_ch->issue_lock);
222 	/*
223 	 * Write to head triggers h/w to act on the descriptors.
224 	 * On MIC, writing the same head value twice causes
225 	 * a h/w error. On second write, h/w assumes we filled
226 	 * the entire ring & overwrote some of the descriptors.
227 	 */
228 	if (mic_ch->issued == mic_ch->submitted)
229 		goto out;
230 	mic_ch->issued = mic_ch->submitted;
231 	/*
232 	 * make descriptor updates visible before advancing head,
233 	 * this is purposefully not smp_wmb() since we are also
234 	 * publishing the descriptor updates to a dma device
235 	 */
236 	wmb();
237 	mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
238 out:
239 	spin_unlock(&mic_ch->issue_lock);
240 }
241 
mic_dma_update_pending(struct mic_dma_chan * ch)242 static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
243 {
244 	if (mic_dma_ring_count(ch->issued, ch->submitted)
245 			> mic_dma_pending_level)
246 		mic_dma_issue_pending(&ch->api_ch);
247 }
248 
mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor * tx)249 static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
250 {
251 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
252 	dma_cookie_t cookie;
253 
254 	dma_cookie_assign(tx);
255 	cookie = tx->cookie;
256 	/*
257 	 * We need an smp write barrier here because another CPU might see
258 	 * an update to submitted and update h/w head even before we
259 	 * assigned a cookie to this tx.
260 	 */
261 	smp_wmb();
262 	mic_ch->submitted = mic_ch->head;
263 	spin_unlock(&mic_ch->prep_lock);
264 	mic_dma_update_pending(mic_ch);
265 	return cookie;
266 }
267 
268 static inline struct dma_async_tx_descriptor *
allocate_tx(struct mic_dma_chan * ch)269 allocate_tx(struct mic_dma_chan *ch)
270 {
271 	u32 idx = mic_dma_hw_ring_dec(ch->head);
272 	struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
273 
274 	dma_async_tx_descriptor_init(tx, &ch->api_ch);
275 	tx->tx_submit = mic_dma_tx_submit_unlock;
276 	return tx;
277 }
278 
279 /* Program a status descriptor with dst as address and value to be written */
280 static struct dma_async_tx_descriptor *
mic_dma_prep_status_lock(struct dma_chan * ch,dma_addr_t dst,u64 src_val,unsigned long flags)281 mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val,
282 			 unsigned long flags)
283 {
284 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
285 	int result;
286 
287 	spin_lock(&mic_ch->prep_lock);
288 	result = mic_dma_avail_desc_ring_space(mic_ch, 4);
289 	if (result < 0)
290 		goto error;
291 	mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst,
292 				 false);
293 	mic_dma_hw_ring_inc_head(mic_ch);
294 	result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
295 	if (result < 0)
296 		goto error;
297 
298 	return allocate_tx(mic_ch);
299 error:
300 	dev_err(mic_dma_ch_to_device(mic_ch),
301 		"Error enqueueing dma status descriptor, error=%d\n", result);
302 	spin_unlock(&mic_ch->prep_lock);
303 	return NULL;
304 }
305 
306 /*
307  * Prepare a memcpy descriptor to be added to the ring.
308  * Note that the temporary descriptor adds an extra overhead of copying the
309  * descriptor to ring. So, we copy directly to the descriptor ring
310  */
311 static struct dma_async_tx_descriptor *
mic_dma_prep_memcpy_lock(struct dma_chan * ch,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)312 mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
313 			 dma_addr_t dma_src, size_t len, unsigned long flags)
314 {
315 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
316 	struct device *dev = mic_dma_ch_to_device(mic_ch);
317 	int result;
318 
319 	if (!len && !flags)
320 		return NULL;
321 
322 	spin_lock(&mic_ch->prep_lock);
323 	result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
324 	if (result >= 0)
325 		return allocate_tx(mic_ch);
326 	dev_err(dev, "Error enqueueing dma, error=%d\n", result);
327 	spin_unlock(&mic_ch->prep_lock);
328 	return NULL;
329 }
330 
331 static struct dma_async_tx_descriptor *
mic_dma_prep_interrupt_lock(struct dma_chan * ch,unsigned long flags)332 mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
333 {
334 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
335 	int ret;
336 
337 	spin_lock(&mic_ch->prep_lock);
338 	ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
339 	if (!ret)
340 		return allocate_tx(mic_ch);
341 	spin_unlock(&mic_ch->prep_lock);
342 	return NULL;
343 }
344 
345 /* Return the status of the transaction */
346 static enum dma_status
mic_dma_tx_status(struct dma_chan * ch,dma_cookie_t cookie,struct dma_tx_state * txstate)347 mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
348 		  struct dma_tx_state *txstate)
349 {
350 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
351 
352 	if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
353 		mic_dma_cleanup(mic_ch);
354 
355 	return dma_cookie_status(ch, cookie, txstate);
356 }
357 
mic_dma_thread_fn(int irq,void * data)358 static irqreturn_t mic_dma_thread_fn(int irq, void *data)
359 {
360 	mic_dma_cleanup((struct mic_dma_chan *)data);
361 	return IRQ_HANDLED;
362 }
363 
mic_dma_intr_handler(int irq,void * data)364 static irqreturn_t mic_dma_intr_handler(int irq, void *data)
365 {
366 	struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
367 
368 	mic_dma_ack_interrupt(ch);
369 	return IRQ_WAKE_THREAD;
370 }
371 
mic_dma_alloc_desc_ring(struct mic_dma_chan * ch)372 static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
373 {
374 	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
375 	struct device *dev = &to_mbus_device(ch)->dev;
376 
377 	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
378 	ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
379 
380 	if (!ch->desc_ring)
381 		return -ENOMEM;
382 
383 	ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
384 					     desc_ring_size, DMA_BIDIRECTIONAL);
385 	if (dma_mapping_error(dev, ch->desc_ring_micpa))
386 		goto map_error;
387 
388 	ch->tx_array = vzalloc(array_size(MIC_DMA_DESC_RX_SIZE,
389 					  sizeof(*ch->tx_array)));
390 	if (!ch->tx_array)
391 		goto tx_error;
392 	return 0;
393 tx_error:
394 	dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
395 			 DMA_BIDIRECTIONAL);
396 map_error:
397 	kfree(ch->desc_ring);
398 	return -ENOMEM;
399 }
400 
mic_dma_free_desc_ring(struct mic_dma_chan * ch)401 static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
402 {
403 	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
404 
405 	vfree(ch->tx_array);
406 	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
407 	dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
408 			 desc_ring_size, DMA_BIDIRECTIONAL);
409 	kfree(ch->desc_ring);
410 	ch->desc_ring = NULL;
411 }
412 
mic_dma_free_status_dest(struct mic_dma_chan * ch)413 static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
414 {
415 	dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
416 			 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
417 	kfree(ch->status_dest);
418 }
419 
mic_dma_alloc_status_dest(struct mic_dma_chan * ch)420 static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
421 {
422 	struct device *dev = &to_mbus_device(ch)->dev;
423 
424 	ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
425 	if (!ch->status_dest)
426 		return -ENOMEM;
427 	ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
428 					L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
429 	if (dma_mapping_error(dev, ch->status_dest_micpa)) {
430 		kfree(ch->status_dest);
431 		ch->status_dest = NULL;
432 		return -ENOMEM;
433 	}
434 	return 0;
435 }
436 
mic_dma_check_chan(struct mic_dma_chan * ch)437 static int mic_dma_check_chan(struct mic_dma_chan *ch)
438 {
439 	if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
440 	    mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
441 		mic_dma_disable_chan(ch);
442 		mic_dma_chan_mask_intr(ch);
443 		dev_err(mic_dma_ch_to_device(ch),
444 			"%s %d error setting up mic dma chan %d\n",
445 			__func__, __LINE__, ch->ch_num);
446 		return -EBUSY;
447 	}
448 	return 0;
449 }
450 
mic_dma_chan_setup(struct mic_dma_chan * ch)451 static int mic_dma_chan_setup(struct mic_dma_chan *ch)
452 {
453 	if (MIC_DMA_CHAN_MIC == ch->owner)
454 		mic_dma_chan_set_owner(ch);
455 	mic_dma_disable_chan(ch);
456 	mic_dma_chan_mask_intr(ch);
457 	mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
458 	mic_dma_chan_set_desc_ring(ch);
459 	ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
460 	ch->head = ch->last_tail;
461 	ch->issued = 0;
462 	mic_dma_chan_unmask_intr(ch);
463 	mic_dma_enable_chan(ch);
464 	return mic_dma_check_chan(ch);
465 }
466 
mic_dma_chan_destroy(struct mic_dma_chan * ch)467 static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
468 {
469 	mic_dma_disable_chan(ch);
470 	mic_dma_chan_mask_intr(ch);
471 }
472 
mic_dma_setup_irq(struct mic_dma_chan * ch)473 static int mic_dma_setup_irq(struct mic_dma_chan *ch)
474 {
475 	ch->cookie =
476 		to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
477 			mic_dma_intr_handler, mic_dma_thread_fn,
478 			"mic dma_channel", ch, ch->ch_num);
479 	return PTR_ERR_OR_ZERO(ch->cookie);
480 }
481 
mic_dma_free_irq(struct mic_dma_chan * ch)482 static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
483 {
484 	to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
485 }
486 
mic_dma_chan_init(struct mic_dma_chan * ch)487 static int mic_dma_chan_init(struct mic_dma_chan *ch)
488 {
489 	int ret = mic_dma_alloc_desc_ring(ch);
490 
491 	if (ret)
492 		goto ring_error;
493 	ret = mic_dma_alloc_status_dest(ch);
494 	if (ret)
495 		goto status_error;
496 	ret = mic_dma_chan_setup(ch);
497 	if (ret)
498 		goto chan_error;
499 	return ret;
500 chan_error:
501 	mic_dma_free_status_dest(ch);
502 status_error:
503 	mic_dma_free_desc_ring(ch);
504 ring_error:
505 	return ret;
506 }
507 
mic_dma_drain_chan(struct mic_dma_chan * ch)508 static int mic_dma_drain_chan(struct mic_dma_chan *ch)
509 {
510 	struct dma_async_tx_descriptor *tx;
511 	int err = 0;
512 	dma_cookie_t cookie;
513 
514 	tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
515 	if (!tx) {
516 		err = -ENOMEM;
517 		goto error;
518 	}
519 
520 	cookie = tx->tx_submit(tx);
521 	if (dma_submit_error(cookie))
522 		err = -ENOMEM;
523 	else
524 		err = dma_sync_wait(&ch->api_ch, cookie);
525 	if (err) {
526 		dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
527 			__func__, __LINE__, ch->ch_num);
528 		err = -EIO;
529 	}
530 error:
531 	mic_dma_cleanup(ch);
532 	return err;
533 }
534 
mic_dma_chan_uninit(struct mic_dma_chan * ch)535 static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
536 {
537 	mic_dma_chan_destroy(ch);
538 	mic_dma_cleanup(ch);
539 	mic_dma_free_status_dest(ch);
540 	mic_dma_free_desc_ring(ch);
541 }
542 
mic_dma_init(struct mic_dma_device * mic_dma_dev,enum mic_dma_chan_owner owner)543 static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
544 			enum mic_dma_chan_owner owner)
545 {
546 	int i, first_chan = mic_dma_dev->start_ch;
547 	struct mic_dma_chan *ch;
548 	int ret;
549 
550 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
551 		ch = &mic_dma_dev->mic_ch[i];
552 		ch->ch_num = i;
553 		ch->owner = owner;
554 		spin_lock_init(&ch->cleanup_lock);
555 		spin_lock_init(&ch->prep_lock);
556 		spin_lock_init(&ch->issue_lock);
557 		ret = mic_dma_setup_irq(ch);
558 		if (ret)
559 			goto error;
560 	}
561 	return 0;
562 error:
563 	for (i = i - 1; i >= first_chan; i--)
564 		mic_dma_free_irq(ch);
565 	return ret;
566 }
567 
mic_dma_uninit(struct mic_dma_device * mic_dma_dev)568 static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
569 {
570 	int i, first_chan = mic_dma_dev->start_ch;
571 	struct mic_dma_chan *ch;
572 
573 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
574 		ch = &mic_dma_dev->mic_ch[i];
575 		mic_dma_free_irq(ch);
576 	}
577 }
578 
mic_dma_alloc_chan_resources(struct dma_chan * ch)579 static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
580 {
581 	int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
582 	if (ret)
583 		return ret;
584 	return MIC_DMA_DESC_RX_SIZE;
585 }
586 
mic_dma_free_chan_resources(struct dma_chan * ch)587 static void mic_dma_free_chan_resources(struct dma_chan *ch)
588 {
589 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
590 	mic_dma_drain_chan(mic_ch);
591 	mic_dma_chan_uninit(mic_ch);
592 }
593 
594 /* Set the fn. handlers and register the dma device with dma api */
mic_dma_register_dma_device(struct mic_dma_device * mic_dma_dev,enum mic_dma_chan_owner owner)595 static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
596 				       enum mic_dma_chan_owner owner)
597 {
598 	int i, first_chan = mic_dma_dev->start_ch;
599 
600 	dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
601 	/*
602 	 * This dma engine is not capable of host memory to host memory
603 	 * transfers
604 	 */
605 	dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
606 
607 	if (MIC_DMA_CHAN_HOST == owner)
608 		dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
609 	mic_dma_dev->dma_dev.device_alloc_chan_resources =
610 		mic_dma_alloc_chan_resources;
611 	mic_dma_dev->dma_dev.device_free_chan_resources =
612 		mic_dma_free_chan_resources;
613 	mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
614 	mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
615 	mic_dma_dev->dma_dev.device_prep_dma_imm_data =
616 		mic_dma_prep_status_lock;
617 	mic_dma_dev->dma_dev.device_prep_dma_interrupt =
618 		mic_dma_prep_interrupt_lock;
619 	mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
620 	mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
621 	INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
622 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
623 		mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
624 		dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
625 		list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
626 			      &mic_dma_dev->dma_dev.channels);
627 	}
628 	return dmaenginem_async_device_register(&mic_dma_dev->dma_dev);
629 }
630 
631 /*
632  * Initializes dma channels and registers the dma device with the
633  * dma engine api.
634  */
mic_dma_dev_reg(struct mbus_device * mbdev,enum mic_dma_chan_owner owner)635 static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
636 					      enum mic_dma_chan_owner owner)
637 {
638 	struct mic_dma_device *mic_dma_dev;
639 	int ret;
640 	struct device *dev = &mbdev->dev;
641 
642 	mic_dma_dev = devm_kzalloc(dev, sizeof(*mic_dma_dev), GFP_KERNEL);
643 	if (!mic_dma_dev) {
644 		ret = -ENOMEM;
645 		goto alloc_error;
646 	}
647 	mic_dma_dev->mbdev = mbdev;
648 	mic_dma_dev->dma_dev.dev = dev;
649 	mic_dma_dev->mmio = mbdev->mmio_va;
650 	if (MIC_DMA_CHAN_HOST == owner) {
651 		mic_dma_dev->start_ch = 0;
652 		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
653 	} else {
654 		mic_dma_dev->start_ch = 4;
655 		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
656 	}
657 	ret = mic_dma_init(mic_dma_dev, owner);
658 	if (ret)
659 		goto init_error;
660 	ret = mic_dma_register_dma_device(mic_dma_dev, owner);
661 	if (ret)
662 		goto reg_error;
663 	return mic_dma_dev;
664 reg_error:
665 	mic_dma_uninit(mic_dma_dev);
666 init_error:
667 	mic_dma_dev = NULL;
668 alloc_error:
669 	dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
670 	return mic_dma_dev;
671 }
672 
mic_dma_dev_unreg(struct mic_dma_device * mic_dma_dev)673 static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
674 {
675 	mic_dma_uninit(mic_dma_dev);
676 }
677 
678 /* DEBUGFS CODE */
mic_dma_reg_seq_show(struct seq_file * s,void * pos)679 static int mic_dma_reg_seq_show(struct seq_file *s, void *pos)
680 {
681 	struct mic_dma_device *mic_dma_dev = s->private;
682 	int i, chan_num, first_chan = mic_dma_dev->start_ch;
683 	struct mic_dma_chan *ch;
684 
685 	seq_printf(s, "SBOX_DCR: %#x\n",
686 		   mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
687 				     MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
688 	seq_puts(s, "DMA Channel Registers\n");
689 	seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
690 		   "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
691 	seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
692 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
693 		ch = &mic_dma_dev->mic_ch[i];
694 		chan_num = ch->ch_num;
695 		seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
696 			   chan_num,
697 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
698 			   mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
699 			   mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
700 			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
701 		seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
702 			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
703 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
704 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
705 			   mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
706 	}
707 	return 0;
708 }
709 
mic_dma_reg_debug_open(struct inode * inode,struct file * file)710 static int mic_dma_reg_debug_open(struct inode *inode, struct file *file)
711 {
712 	return single_open(file, mic_dma_reg_seq_show, inode->i_private);
713 }
714 
mic_dma_reg_debug_release(struct inode * inode,struct file * file)715 static int mic_dma_reg_debug_release(struct inode *inode, struct file *file)
716 {
717 	return single_release(inode, file);
718 }
719 
720 static const struct file_operations mic_dma_reg_ops = {
721 	.owner   = THIS_MODULE,
722 	.open    = mic_dma_reg_debug_open,
723 	.read    = seq_read,
724 	.llseek  = seq_lseek,
725 	.release = mic_dma_reg_debug_release
726 };
727 
728 /* Debugfs parent dir */
729 static struct dentry *mic_dma_dbg;
730 
mic_dma_driver_probe(struct mbus_device * mbdev)731 static int mic_dma_driver_probe(struct mbus_device *mbdev)
732 {
733 	struct mic_dma_device *mic_dma_dev;
734 	enum mic_dma_chan_owner owner;
735 
736 	if (MBUS_DEV_DMA_MIC == mbdev->id.device)
737 		owner = MIC_DMA_CHAN_MIC;
738 	else
739 		owner = MIC_DMA_CHAN_HOST;
740 
741 	mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
742 	dev_set_drvdata(&mbdev->dev, mic_dma_dev);
743 
744 	if (mic_dma_dbg) {
745 		mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
746 							  mic_dma_dbg);
747 		if (mic_dma_dev->dbg_dir)
748 			debugfs_create_file("mic_dma_reg", 0444,
749 					    mic_dma_dev->dbg_dir, mic_dma_dev,
750 					    &mic_dma_reg_ops);
751 	}
752 	return 0;
753 }
754 
mic_dma_driver_remove(struct mbus_device * mbdev)755 static void mic_dma_driver_remove(struct mbus_device *mbdev)
756 {
757 	struct mic_dma_device *mic_dma_dev;
758 
759 	mic_dma_dev = dev_get_drvdata(&mbdev->dev);
760 	debugfs_remove_recursive(mic_dma_dev->dbg_dir);
761 	mic_dma_dev_unreg(mic_dma_dev);
762 }
763 
764 static struct mbus_device_id id_table[] = {
765 	{MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
766 	{MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
767 	{0},
768 };
769 
770 static struct mbus_driver mic_dma_driver = {
771 	.driver.name =	KBUILD_MODNAME,
772 	.driver.owner =	THIS_MODULE,
773 	.id_table = id_table,
774 	.probe = mic_dma_driver_probe,
775 	.remove = mic_dma_driver_remove,
776 };
777 
mic_x100_dma_init(void)778 static int __init mic_x100_dma_init(void)
779 {
780 	int rc = mbus_register_driver(&mic_dma_driver);
781 	if (rc)
782 		return rc;
783 	mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
784 	return 0;
785 }
786 
mic_x100_dma_exit(void)787 static void __exit mic_x100_dma_exit(void)
788 {
789 	debugfs_remove_recursive(mic_dma_dbg);
790 	mbus_unregister_driver(&mic_dma_driver);
791 }
792 
793 module_init(mic_x100_dma_init);
794 module_exit(mic_x100_dma_exit);
795 
796 MODULE_DEVICE_TABLE(mbus, id_table);
797 MODULE_AUTHOR("Intel Corporation");
798 MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
799 MODULE_LICENSE("GPL v2");
800