1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * offload engine driver for the Intel Xscale series of i/o processors
4 * Copyright © 2006, Intel Corporation.
5 */
6
7 /*
8 * This driver supports the asynchrounous DMA copy and RAID engines available
9 * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
10 */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/prefetch.h>
20 #include <linux/memory.h>
21 #include <linux/ioport.h>
22 #include <linux/raid/pq.h>
23 #include <linux/slab.h>
24
25 #include "iop-adma.h"
26 #include "dmaengine.h"
27
28 #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
29 #define to_iop_adma_device(dev) \
30 container_of(dev, struct iop_adma_device, common)
31 #define tx_to_iop_adma_slot(tx) \
32 container_of(tx, struct iop_adma_desc_slot, async_tx)
33
34 /**
35 * iop_adma_free_slots - flags descriptor slots for reuse
36 * @slot: Slot to free
37 * Caller must hold &iop_chan->lock while calling this function
38 */
iop_adma_free_slots(struct iop_adma_desc_slot * slot)39 static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
40 {
41 int stride = slot->slots_per_op;
42
43 while (stride--) {
44 slot->slots_per_op = 0;
45 slot = list_entry(slot->slot_node.next,
46 struct iop_adma_desc_slot,
47 slot_node);
48 }
49 }
50
51 static dma_cookie_t
iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot * desc,struct iop_adma_chan * iop_chan,dma_cookie_t cookie)52 iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
53 struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
54 {
55 struct dma_async_tx_descriptor *tx = &desc->async_tx;
56
57 BUG_ON(tx->cookie < 0);
58 if (tx->cookie > 0) {
59 cookie = tx->cookie;
60 tx->cookie = 0;
61
62 /* call the callback (must not sleep or submit new
63 * operations to this channel)
64 */
65 dmaengine_desc_get_callback_invoke(tx, NULL);
66
67 dma_descriptor_unmap(tx);
68 if (desc->group_head)
69 desc->group_head = NULL;
70 }
71
72 /* run dependent operations */
73 dma_run_dependencies(tx);
74
75 return cookie;
76 }
77
78 static int
iop_adma_clean_slot(struct iop_adma_desc_slot * desc,struct iop_adma_chan * iop_chan)79 iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
80 struct iop_adma_chan *iop_chan)
81 {
82 /* the client is allowed to attach dependent operations
83 * until 'ack' is set
84 */
85 if (!async_tx_test_ack(&desc->async_tx))
86 return 0;
87
88 /* leave the last descriptor in the chain
89 * so we can append to it
90 */
91 if (desc->chain_node.next == &iop_chan->chain)
92 return 1;
93
94 dev_dbg(iop_chan->device->common.dev,
95 "\tfree slot: %d slots_per_op: %d\n",
96 desc->idx, desc->slots_per_op);
97
98 list_del(&desc->chain_node);
99 iop_adma_free_slots(desc);
100
101 return 0;
102 }
103
__iop_adma_slot_cleanup(struct iop_adma_chan * iop_chan)104 static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
105 {
106 struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
107 dma_cookie_t cookie = 0;
108 u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
109 int busy = iop_chan_is_busy(iop_chan);
110 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
111
112 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
113 /* free completed slots from the chain starting with
114 * the oldest descriptor
115 */
116 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
117 chain_node) {
118 pr_debug("\tcookie: %d slot: %d busy: %d "
119 "this_desc: %pad next_desc: %#llx ack: %d\n",
120 iter->async_tx.cookie, iter->idx, busy,
121 &iter->async_tx.phys, (u64)iop_desc_get_next_desc(iter),
122 async_tx_test_ack(&iter->async_tx));
123 prefetch(_iter);
124 prefetch(&_iter->async_tx);
125
126 /* do not advance past the current descriptor loaded into the
127 * hardware channel, subsequent descriptors are either in
128 * process or have not been submitted
129 */
130 if (seen_current)
131 break;
132
133 /* stop the search if we reach the current descriptor and the
134 * channel is busy, or if it appears that the current descriptor
135 * needs to be re-read (i.e. has been appended to)
136 */
137 if (iter->async_tx.phys == current_desc) {
138 BUG_ON(seen_current++);
139 if (busy || iop_desc_get_next_desc(iter))
140 break;
141 }
142
143 /* detect the start of a group transaction */
144 if (!slot_cnt && !slots_per_op) {
145 slot_cnt = iter->slot_cnt;
146 slots_per_op = iter->slots_per_op;
147 if (slot_cnt <= slots_per_op) {
148 slot_cnt = 0;
149 slots_per_op = 0;
150 }
151 }
152
153 if (slot_cnt) {
154 pr_debug("\tgroup++\n");
155 if (!grp_start)
156 grp_start = iter;
157 slot_cnt -= slots_per_op;
158 }
159
160 /* all the members of a group are complete */
161 if (slots_per_op != 0 && slot_cnt == 0) {
162 struct iop_adma_desc_slot *grp_iter, *_grp_iter;
163 int end_of_chain = 0;
164 pr_debug("\tgroup end\n");
165
166 /* collect the total results */
167 if (grp_start->xor_check_result) {
168 u32 zero_sum_result = 0;
169 slot_cnt = grp_start->slot_cnt;
170 grp_iter = grp_start;
171
172 list_for_each_entry_from(grp_iter,
173 &iop_chan->chain, chain_node) {
174 zero_sum_result |=
175 iop_desc_get_zero_result(grp_iter);
176 pr_debug("\titer%d result: %d\n",
177 grp_iter->idx, zero_sum_result);
178 slot_cnt -= slots_per_op;
179 if (slot_cnt == 0)
180 break;
181 }
182 pr_debug("\tgrp_start->xor_check_result: %p\n",
183 grp_start->xor_check_result);
184 *grp_start->xor_check_result = zero_sum_result;
185 }
186
187 /* clean up the group */
188 slot_cnt = grp_start->slot_cnt;
189 grp_iter = grp_start;
190 list_for_each_entry_safe_from(grp_iter, _grp_iter,
191 &iop_chan->chain, chain_node) {
192 cookie = iop_adma_run_tx_complete_actions(
193 grp_iter, iop_chan, cookie);
194
195 slot_cnt -= slots_per_op;
196 end_of_chain = iop_adma_clean_slot(grp_iter,
197 iop_chan);
198
199 if (slot_cnt == 0 || end_of_chain)
200 break;
201 }
202
203 /* the group should be complete at this point */
204 BUG_ON(slot_cnt);
205
206 slots_per_op = 0;
207 grp_start = NULL;
208 if (end_of_chain)
209 break;
210 else
211 continue;
212 } else if (slots_per_op) /* wait for group completion */
213 continue;
214
215 /* write back zero sum results (single descriptor case) */
216 if (iter->xor_check_result && iter->async_tx.cookie)
217 *iter->xor_check_result =
218 iop_desc_get_zero_result(iter);
219
220 cookie = iop_adma_run_tx_complete_actions(
221 iter, iop_chan, cookie);
222
223 if (iop_adma_clean_slot(iter, iop_chan))
224 break;
225 }
226
227 if (cookie > 0) {
228 iop_chan->common.completed_cookie = cookie;
229 pr_debug("\tcompleted cookie %d\n", cookie);
230 }
231 }
232
233 static void
iop_adma_slot_cleanup(struct iop_adma_chan * iop_chan)234 iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
235 {
236 spin_lock_bh(&iop_chan->lock);
237 __iop_adma_slot_cleanup(iop_chan);
238 spin_unlock_bh(&iop_chan->lock);
239 }
240
iop_adma_tasklet(struct tasklet_struct * t)241 static void iop_adma_tasklet(struct tasklet_struct *t)
242 {
243 struct iop_adma_chan *iop_chan = from_tasklet(iop_chan, t,
244 irq_tasklet);
245
246 /* lockdep will flag depedency submissions as potentially
247 * recursive locking, this is not the case as a dependency
248 * submission will never recurse a channels submit routine.
249 * There are checks in async_tx.c to prevent this.
250 */
251 spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
252 __iop_adma_slot_cleanup(iop_chan);
253 spin_unlock(&iop_chan->lock);
254 }
255
256 static struct iop_adma_desc_slot *
iop_adma_alloc_slots(struct iop_adma_chan * iop_chan,int num_slots,int slots_per_op)257 iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
258 int slots_per_op)
259 {
260 struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
261 LIST_HEAD(chain);
262 int slots_found, retry = 0;
263
264 /* start search from the last allocated descrtiptor
265 * if a contiguous allocation can not be found start searching
266 * from the beginning of the list
267 */
268 retry:
269 slots_found = 0;
270 if (retry == 0)
271 iter = iop_chan->last_used;
272 else
273 iter = list_entry(&iop_chan->all_slots,
274 struct iop_adma_desc_slot,
275 slot_node);
276
277 list_for_each_entry_safe_continue(
278 iter, _iter, &iop_chan->all_slots, slot_node) {
279 prefetch(_iter);
280 prefetch(&_iter->async_tx);
281 if (iter->slots_per_op) {
282 /* give up after finding the first busy slot
283 * on the second pass through the list
284 */
285 if (retry)
286 break;
287
288 slots_found = 0;
289 continue;
290 }
291
292 /* start the allocation if the slot is correctly aligned */
293 if (!slots_found++) {
294 if (iop_desc_is_aligned(iter, slots_per_op))
295 alloc_start = iter;
296 else {
297 slots_found = 0;
298 continue;
299 }
300 }
301
302 if (slots_found == num_slots) {
303 struct iop_adma_desc_slot *alloc_tail = NULL;
304 struct iop_adma_desc_slot *last_used = NULL;
305 iter = alloc_start;
306 while (num_slots) {
307 int i;
308 dev_dbg(iop_chan->device->common.dev,
309 "allocated slot: %d "
310 "(desc %p phys: %#llx) slots_per_op %d\n",
311 iter->idx, iter->hw_desc,
312 (u64)iter->async_tx.phys, slots_per_op);
313
314 /* pre-ack all but the last descriptor */
315 if (num_slots != slots_per_op)
316 async_tx_ack(&iter->async_tx);
317
318 list_add_tail(&iter->chain_node, &chain);
319 alloc_tail = iter;
320 iter->async_tx.cookie = 0;
321 iter->slot_cnt = num_slots;
322 iter->xor_check_result = NULL;
323 for (i = 0; i < slots_per_op; i++) {
324 iter->slots_per_op = slots_per_op - i;
325 last_used = iter;
326 iter = list_entry(iter->slot_node.next,
327 struct iop_adma_desc_slot,
328 slot_node);
329 }
330 num_slots -= slots_per_op;
331 }
332 alloc_tail->group_head = alloc_start;
333 alloc_tail->async_tx.cookie = -EBUSY;
334 list_splice(&chain, &alloc_tail->tx_list);
335 iop_chan->last_used = last_used;
336 iop_desc_clear_next_desc(alloc_start);
337 iop_desc_clear_next_desc(alloc_tail);
338 return alloc_tail;
339 }
340 }
341 if (!retry++)
342 goto retry;
343
344 /* perform direct reclaim if the allocation fails */
345 __iop_adma_slot_cleanup(iop_chan);
346
347 return NULL;
348 }
349
iop_adma_check_threshold(struct iop_adma_chan * iop_chan)350 static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
351 {
352 dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
353 iop_chan->pending);
354
355 if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
356 iop_chan->pending = 0;
357 iop_chan_append(iop_chan);
358 }
359 }
360
361 static dma_cookie_t
iop_adma_tx_submit(struct dma_async_tx_descriptor * tx)362 iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
363 {
364 struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
365 struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
366 struct iop_adma_desc_slot *grp_start, *old_chain_tail;
367 int slot_cnt;
368 dma_cookie_t cookie;
369 dma_addr_t next_dma;
370
371 grp_start = sw_desc->group_head;
372 slot_cnt = grp_start->slot_cnt;
373
374 spin_lock_bh(&iop_chan->lock);
375 cookie = dma_cookie_assign(tx);
376
377 old_chain_tail = list_entry(iop_chan->chain.prev,
378 struct iop_adma_desc_slot, chain_node);
379 list_splice_init(&sw_desc->tx_list,
380 &old_chain_tail->chain_node);
381
382 /* fix up the hardware chain */
383 next_dma = grp_start->async_tx.phys;
384 iop_desc_set_next_desc(old_chain_tail, next_dma);
385 BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
386
387 /* check for pre-chained descriptors */
388 iop_paranoia(iop_desc_get_next_desc(sw_desc));
389
390 /* increment the pending count by the number of slots
391 * memcpy operations have a 1:1 (slot:operation) relation
392 * other operations are heavier and will pop the threshold
393 * more often.
394 */
395 iop_chan->pending += slot_cnt;
396 iop_adma_check_threshold(iop_chan);
397 spin_unlock_bh(&iop_chan->lock);
398
399 dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
400 __func__, sw_desc->async_tx.cookie, sw_desc->idx);
401
402 return cookie;
403 }
404
405 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
406 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
407
408 /**
409 * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
410 * @chan: allocate descriptor resources for this channel
411 *
412 * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
413 * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
414 * greater than 2x the number slots needed to satisfy a device->max_xor
415 * request.
416 * */
iop_adma_alloc_chan_resources(struct dma_chan * chan)417 static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
418 {
419 char *hw_desc;
420 dma_addr_t dma_desc;
421 int idx;
422 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
423 struct iop_adma_desc_slot *slot = NULL;
424 int init = iop_chan->slots_allocated ? 0 : 1;
425 struct iop_adma_platform_data *plat_data =
426 dev_get_platdata(&iop_chan->device->pdev->dev);
427 int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
428
429 /* Allocate descriptor slots */
430 do {
431 idx = iop_chan->slots_allocated;
432 if (idx == num_descs_in_pool)
433 break;
434
435 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
436 if (!slot) {
437 printk(KERN_INFO "IOP ADMA Channel only initialized"
438 " %d descriptor slots", idx);
439 break;
440 }
441 hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
442 slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
443
444 dma_async_tx_descriptor_init(&slot->async_tx, chan);
445 slot->async_tx.tx_submit = iop_adma_tx_submit;
446 INIT_LIST_HEAD(&slot->tx_list);
447 INIT_LIST_HEAD(&slot->chain_node);
448 INIT_LIST_HEAD(&slot->slot_node);
449 dma_desc = iop_chan->device->dma_desc_pool;
450 slot->async_tx.phys = dma_desc + idx * IOP_ADMA_SLOT_SIZE;
451 slot->idx = idx;
452
453 spin_lock_bh(&iop_chan->lock);
454 iop_chan->slots_allocated++;
455 list_add_tail(&slot->slot_node, &iop_chan->all_slots);
456 spin_unlock_bh(&iop_chan->lock);
457 } while (iop_chan->slots_allocated < num_descs_in_pool);
458
459 if (idx && !iop_chan->last_used)
460 iop_chan->last_used = list_entry(iop_chan->all_slots.next,
461 struct iop_adma_desc_slot,
462 slot_node);
463
464 dev_dbg(iop_chan->device->common.dev,
465 "allocated %d descriptor slots last_used: %p\n",
466 iop_chan->slots_allocated, iop_chan->last_used);
467
468 /* initialize the channel and the chain with a null operation */
469 if (init) {
470 if (dma_has_cap(DMA_MEMCPY,
471 iop_chan->device->common.cap_mask))
472 iop_chan_start_null_memcpy(iop_chan);
473 else if (dma_has_cap(DMA_XOR,
474 iop_chan->device->common.cap_mask))
475 iop_chan_start_null_xor(iop_chan);
476 else
477 BUG();
478 }
479
480 return (idx > 0) ? idx : -ENOMEM;
481 }
482
483 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_interrupt(struct dma_chan * chan,unsigned long flags)484 iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
485 {
486 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
487 struct iop_adma_desc_slot *sw_desc, *grp_start;
488 int slot_cnt, slots_per_op;
489
490 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
491
492 spin_lock_bh(&iop_chan->lock);
493 slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
494 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
495 if (sw_desc) {
496 grp_start = sw_desc->group_head;
497 iop_desc_init_interrupt(grp_start, iop_chan);
498 sw_desc->async_tx.flags = flags;
499 }
500 spin_unlock_bh(&iop_chan->lock);
501
502 return sw_desc ? &sw_desc->async_tx : NULL;
503 }
504
505 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)506 iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
507 dma_addr_t dma_src, size_t len, unsigned long flags)
508 {
509 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
510 struct iop_adma_desc_slot *sw_desc, *grp_start;
511 int slot_cnt, slots_per_op;
512
513 if (unlikely(!len))
514 return NULL;
515 BUG_ON(len > IOP_ADMA_MAX_BYTE_COUNT);
516
517 dev_dbg(iop_chan->device->common.dev, "%s len: %zu\n",
518 __func__, len);
519
520 spin_lock_bh(&iop_chan->lock);
521 slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
522 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
523 if (sw_desc) {
524 grp_start = sw_desc->group_head;
525 iop_desc_init_memcpy(grp_start, flags);
526 iop_desc_set_byte_count(grp_start, iop_chan, len);
527 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
528 iop_desc_set_memcpy_src_addr(grp_start, dma_src);
529 sw_desc->async_tx.flags = flags;
530 }
531 spin_unlock_bh(&iop_chan->lock);
532
533 return sw_desc ? &sw_desc->async_tx : NULL;
534 }
535
536 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t * dma_src,unsigned int src_cnt,size_t len,unsigned long flags)537 iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
538 dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
539 unsigned long flags)
540 {
541 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
542 struct iop_adma_desc_slot *sw_desc, *grp_start;
543 int slot_cnt, slots_per_op;
544
545 if (unlikely(!len))
546 return NULL;
547 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
548
549 dev_dbg(iop_chan->device->common.dev,
550 "%s src_cnt: %d len: %zu flags: %lx\n",
551 __func__, src_cnt, len, flags);
552
553 spin_lock_bh(&iop_chan->lock);
554 slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
555 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
556 if (sw_desc) {
557 grp_start = sw_desc->group_head;
558 iop_desc_init_xor(grp_start, src_cnt, flags);
559 iop_desc_set_byte_count(grp_start, iop_chan, len);
560 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
561 sw_desc->async_tx.flags = flags;
562 while (src_cnt--)
563 iop_desc_set_xor_src_addr(grp_start, src_cnt,
564 dma_src[src_cnt]);
565 }
566 spin_unlock_bh(&iop_chan->lock);
567
568 return sw_desc ? &sw_desc->async_tx : NULL;
569 }
570
571 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor_val(struct dma_chan * chan,dma_addr_t * dma_src,unsigned int src_cnt,size_t len,u32 * result,unsigned long flags)572 iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
573 unsigned int src_cnt, size_t len, u32 *result,
574 unsigned long flags)
575 {
576 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
577 struct iop_adma_desc_slot *sw_desc, *grp_start;
578 int slot_cnt, slots_per_op;
579
580 if (unlikely(!len))
581 return NULL;
582
583 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %zu\n",
584 __func__, src_cnt, len);
585
586 spin_lock_bh(&iop_chan->lock);
587 slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
588 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
589 if (sw_desc) {
590 grp_start = sw_desc->group_head;
591 iop_desc_init_zero_sum(grp_start, src_cnt, flags);
592 iop_desc_set_zero_sum_byte_count(grp_start, len);
593 grp_start->xor_check_result = result;
594 pr_debug("\t%s: grp_start->xor_check_result: %p\n",
595 __func__, grp_start->xor_check_result);
596 sw_desc->async_tx.flags = flags;
597 while (src_cnt--)
598 iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
599 dma_src[src_cnt]);
600 }
601 spin_unlock_bh(&iop_chan->lock);
602
603 return sw_desc ? &sw_desc->async_tx : NULL;
604 }
605
606 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_pq(struct dma_chan * chan,dma_addr_t * dst,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)607 iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
608 unsigned int src_cnt, const unsigned char *scf, size_t len,
609 unsigned long flags)
610 {
611 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
612 struct iop_adma_desc_slot *sw_desc, *g;
613 int slot_cnt, slots_per_op;
614 int continue_srcs;
615
616 if (unlikely(!len))
617 return NULL;
618 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
619
620 dev_dbg(iop_chan->device->common.dev,
621 "%s src_cnt: %d len: %zu flags: %lx\n",
622 __func__, src_cnt, len, flags);
623
624 if (dmaf_p_disabled_continue(flags))
625 continue_srcs = 1+src_cnt;
626 else if (dmaf_continue(flags))
627 continue_srcs = 3+src_cnt;
628 else
629 continue_srcs = 0+src_cnt;
630
631 spin_lock_bh(&iop_chan->lock);
632 slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
633 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
634 if (sw_desc) {
635 int i;
636
637 g = sw_desc->group_head;
638 iop_desc_set_byte_count(g, iop_chan, len);
639
640 /* even if P is disabled its destination address (bits
641 * [3:0]) must match Q. It is ok if P points to an
642 * invalid address, it won't be written.
643 */
644 if (flags & DMA_PREP_PQ_DISABLE_P)
645 dst[0] = dst[1] & 0x7;
646
647 iop_desc_set_pq_addr(g, dst);
648 sw_desc->async_tx.flags = flags;
649 for (i = 0; i < src_cnt; i++)
650 iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
651
652 /* if we are continuing a previous operation factor in
653 * the old p and q values, see the comment for dma_maxpq
654 * in include/linux/dmaengine.h
655 */
656 if (dmaf_p_disabled_continue(flags))
657 iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
658 else if (dmaf_continue(flags)) {
659 iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
660 iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
661 iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
662 }
663 iop_desc_init_pq(g, i, flags);
664 }
665 spin_unlock_bh(&iop_chan->lock);
666
667 return sw_desc ? &sw_desc->async_tx : NULL;
668 }
669
670 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_pq_val(struct dma_chan * chan,dma_addr_t * pq,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,enum sum_check_flags * pqres,unsigned long flags)671 iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
672 unsigned int src_cnt, const unsigned char *scf,
673 size_t len, enum sum_check_flags *pqres,
674 unsigned long flags)
675 {
676 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
677 struct iop_adma_desc_slot *sw_desc, *g;
678 int slot_cnt, slots_per_op;
679
680 if (unlikely(!len))
681 return NULL;
682 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
683
684 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %zu\n",
685 __func__, src_cnt, len);
686
687 spin_lock_bh(&iop_chan->lock);
688 slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
689 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
690 if (sw_desc) {
691 /* for validate operations p and q are tagged onto the
692 * end of the source list
693 */
694 int pq_idx = src_cnt;
695
696 g = sw_desc->group_head;
697 iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
698 iop_desc_set_pq_zero_sum_byte_count(g, len);
699 g->pq_check_result = pqres;
700 pr_debug("\t%s: g->pq_check_result: %p\n",
701 __func__, g->pq_check_result);
702 sw_desc->async_tx.flags = flags;
703 while (src_cnt--)
704 iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
705 src[src_cnt],
706 scf[src_cnt]);
707 iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
708 }
709 spin_unlock_bh(&iop_chan->lock);
710
711 return sw_desc ? &sw_desc->async_tx : NULL;
712 }
713
iop_adma_free_chan_resources(struct dma_chan * chan)714 static void iop_adma_free_chan_resources(struct dma_chan *chan)
715 {
716 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
717 struct iop_adma_desc_slot *iter, *_iter;
718 int in_use_descs = 0;
719
720 iop_adma_slot_cleanup(iop_chan);
721
722 spin_lock_bh(&iop_chan->lock);
723 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
724 chain_node) {
725 in_use_descs++;
726 list_del(&iter->chain_node);
727 }
728 list_for_each_entry_safe_reverse(
729 iter, _iter, &iop_chan->all_slots, slot_node) {
730 list_del(&iter->slot_node);
731 kfree(iter);
732 iop_chan->slots_allocated--;
733 }
734 iop_chan->last_used = NULL;
735
736 dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
737 __func__, iop_chan->slots_allocated);
738 spin_unlock_bh(&iop_chan->lock);
739
740 /* one is ok since we left it on there on purpose */
741 if (in_use_descs > 1)
742 printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
743 in_use_descs - 1);
744 }
745
746 /**
747 * iop_adma_status - poll the status of an ADMA transaction
748 * @chan: ADMA channel handle
749 * @cookie: ADMA transaction identifier
750 * @txstate: a holder for the current state of the channel or NULL
751 */
iop_adma_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)752 static enum dma_status iop_adma_status(struct dma_chan *chan,
753 dma_cookie_t cookie,
754 struct dma_tx_state *txstate)
755 {
756 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
757 int ret;
758
759 ret = dma_cookie_status(chan, cookie, txstate);
760 if (ret == DMA_COMPLETE)
761 return ret;
762
763 iop_adma_slot_cleanup(iop_chan);
764
765 return dma_cookie_status(chan, cookie, txstate);
766 }
767
iop_adma_eot_handler(int irq,void * data)768 static irqreturn_t iop_adma_eot_handler(int irq, void *data)
769 {
770 struct iop_adma_chan *chan = data;
771
772 dev_dbg(chan->device->common.dev, "%s\n", __func__);
773
774 tasklet_schedule(&chan->irq_tasklet);
775
776 iop_adma_device_clear_eot_status(chan);
777
778 return IRQ_HANDLED;
779 }
780
iop_adma_eoc_handler(int irq,void * data)781 static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
782 {
783 struct iop_adma_chan *chan = data;
784
785 dev_dbg(chan->device->common.dev, "%s\n", __func__);
786
787 tasklet_schedule(&chan->irq_tasklet);
788
789 iop_adma_device_clear_eoc_status(chan);
790
791 return IRQ_HANDLED;
792 }
793
iop_adma_err_handler(int irq,void * data)794 static irqreturn_t iop_adma_err_handler(int irq, void *data)
795 {
796 struct iop_adma_chan *chan = data;
797 unsigned long status = iop_chan_get_status(chan);
798
799 dev_err(chan->device->common.dev,
800 "error ( %s%s%s%s%s%s%s)\n",
801 iop_is_err_int_parity(status, chan) ? "int_parity " : "",
802 iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
803 iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
804 iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
805 iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
806 iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
807 iop_is_err_split_tx(status, chan) ? "split_tx " : "");
808
809 iop_adma_device_clear_err_status(chan);
810
811 BUG();
812
813 return IRQ_HANDLED;
814 }
815
iop_adma_issue_pending(struct dma_chan * chan)816 static void iop_adma_issue_pending(struct dma_chan *chan)
817 {
818 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
819
820 if (iop_chan->pending) {
821 iop_chan->pending = 0;
822 iop_chan_append(iop_chan);
823 }
824 }
825
826 /*
827 * Perform a transaction to verify the HW works.
828 */
829 #define IOP_ADMA_TEST_SIZE 2000
830
iop_adma_memcpy_self_test(struct iop_adma_device * device)831 static int iop_adma_memcpy_self_test(struct iop_adma_device *device)
832 {
833 int i;
834 void *src, *dest;
835 dma_addr_t src_dma, dest_dma;
836 struct dma_chan *dma_chan;
837 dma_cookie_t cookie;
838 struct dma_async_tx_descriptor *tx;
839 int err = 0;
840 struct iop_adma_chan *iop_chan;
841
842 dev_dbg(device->common.dev, "%s\n", __func__);
843
844 src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
845 if (!src)
846 return -ENOMEM;
847 dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
848 if (!dest) {
849 kfree(src);
850 return -ENOMEM;
851 }
852
853 /* Fill in src buffer */
854 for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
855 ((u8 *) src)[i] = (u8)i;
856
857 /* Start copy, using first DMA channel */
858 dma_chan = container_of(device->common.channels.next,
859 struct dma_chan,
860 device_node);
861 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
862 err = -ENODEV;
863 goto out;
864 }
865
866 dest_dma = dma_map_single(dma_chan->device->dev, dest,
867 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
868 src_dma = dma_map_single(dma_chan->device->dev, src,
869 IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
870 tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
871 IOP_ADMA_TEST_SIZE,
872 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
873
874 cookie = iop_adma_tx_submit(tx);
875 iop_adma_issue_pending(dma_chan);
876 msleep(1);
877
878 if (iop_adma_status(dma_chan, cookie, NULL) !=
879 DMA_COMPLETE) {
880 dev_err(dma_chan->device->dev,
881 "Self-test copy timed out, disabling\n");
882 err = -ENODEV;
883 goto free_resources;
884 }
885
886 iop_chan = to_iop_adma_chan(dma_chan);
887 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
888 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
889 if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
890 dev_err(dma_chan->device->dev,
891 "Self-test copy failed compare, disabling\n");
892 err = -ENODEV;
893 goto free_resources;
894 }
895
896 free_resources:
897 iop_adma_free_chan_resources(dma_chan);
898 out:
899 kfree(src);
900 kfree(dest);
901 return err;
902 }
903
904 #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
905 static int
iop_adma_xor_val_self_test(struct iop_adma_device * device)906 iop_adma_xor_val_self_test(struct iop_adma_device *device)
907 {
908 int i, src_idx;
909 struct page *dest;
910 struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
911 struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
912 dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
913 dma_addr_t dest_dma;
914 struct dma_async_tx_descriptor *tx;
915 struct dma_chan *dma_chan;
916 dma_cookie_t cookie;
917 u8 cmp_byte = 0;
918 u32 cmp_word;
919 u32 zero_sum_result;
920 int err = 0;
921 struct iop_adma_chan *iop_chan;
922
923 dev_dbg(device->common.dev, "%s\n", __func__);
924
925 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
926 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
927 if (!xor_srcs[src_idx]) {
928 while (src_idx--)
929 __free_page(xor_srcs[src_idx]);
930 return -ENOMEM;
931 }
932 }
933
934 dest = alloc_page(GFP_KERNEL);
935 if (!dest) {
936 while (src_idx--)
937 __free_page(xor_srcs[src_idx]);
938 return -ENOMEM;
939 }
940
941 /* Fill in src buffers */
942 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
943 u8 *ptr = page_address(xor_srcs[src_idx]);
944 for (i = 0; i < PAGE_SIZE; i++)
945 ptr[i] = (1 << src_idx);
946 }
947
948 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
949 cmp_byte ^= (u8) (1 << src_idx);
950
951 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
952 (cmp_byte << 8) | cmp_byte;
953
954 memset(page_address(dest), 0, PAGE_SIZE);
955
956 dma_chan = container_of(device->common.channels.next,
957 struct dma_chan,
958 device_node);
959 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
960 err = -ENODEV;
961 goto out;
962 }
963
964 /* test xor */
965 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
966 PAGE_SIZE, DMA_FROM_DEVICE);
967 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
968 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
969 0, PAGE_SIZE, DMA_TO_DEVICE);
970 tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
971 IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
972 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
973
974 cookie = iop_adma_tx_submit(tx);
975 iop_adma_issue_pending(dma_chan);
976 msleep(8);
977
978 if (iop_adma_status(dma_chan, cookie, NULL) !=
979 DMA_COMPLETE) {
980 dev_err(dma_chan->device->dev,
981 "Self-test xor timed out, disabling\n");
982 err = -ENODEV;
983 goto free_resources;
984 }
985
986 iop_chan = to_iop_adma_chan(dma_chan);
987 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
988 PAGE_SIZE, DMA_FROM_DEVICE);
989 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
990 u32 *ptr = page_address(dest);
991 if (ptr[i] != cmp_word) {
992 dev_err(dma_chan->device->dev,
993 "Self-test xor failed compare, disabling\n");
994 err = -ENODEV;
995 goto free_resources;
996 }
997 }
998 dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
999 PAGE_SIZE, DMA_TO_DEVICE);
1000
1001 /* skip zero sum if the capability is not present */
1002 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
1003 goto free_resources;
1004
1005 /* zero sum the sources with the destintation page */
1006 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1007 zero_sum_srcs[i] = xor_srcs[i];
1008 zero_sum_srcs[i] = dest;
1009
1010 zero_sum_result = 1;
1011
1012 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1013 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1014 zero_sum_srcs[i], 0, PAGE_SIZE,
1015 DMA_TO_DEVICE);
1016 tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
1017 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1018 &zero_sum_result,
1019 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1020
1021 cookie = iop_adma_tx_submit(tx);
1022 iop_adma_issue_pending(dma_chan);
1023 msleep(8);
1024
1025 if (iop_adma_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1026 dev_err(dma_chan->device->dev,
1027 "Self-test zero sum timed out, disabling\n");
1028 err = -ENODEV;
1029 goto free_resources;
1030 }
1031
1032 if (zero_sum_result != 0) {
1033 dev_err(dma_chan->device->dev,
1034 "Self-test zero sum failed compare, disabling\n");
1035 err = -ENODEV;
1036 goto free_resources;
1037 }
1038
1039 /* test for non-zero parity sum */
1040 zero_sum_result = 0;
1041 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1042 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1043 zero_sum_srcs[i], 0, PAGE_SIZE,
1044 DMA_TO_DEVICE);
1045 tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
1046 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1047 &zero_sum_result,
1048 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1049
1050 cookie = iop_adma_tx_submit(tx);
1051 iop_adma_issue_pending(dma_chan);
1052 msleep(8);
1053
1054 if (iop_adma_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1055 dev_err(dma_chan->device->dev,
1056 "Self-test non-zero sum timed out, disabling\n");
1057 err = -ENODEV;
1058 goto free_resources;
1059 }
1060
1061 if (zero_sum_result != 1) {
1062 dev_err(dma_chan->device->dev,
1063 "Self-test non-zero sum failed compare, disabling\n");
1064 err = -ENODEV;
1065 goto free_resources;
1066 }
1067
1068 free_resources:
1069 iop_adma_free_chan_resources(dma_chan);
1070 out:
1071 src_idx = IOP_ADMA_NUM_SRC_TEST;
1072 while (src_idx--)
1073 __free_page(xor_srcs[src_idx]);
1074 __free_page(dest);
1075 return err;
1076 }
1077
1078 #ifdef CONFIG_RAID6_PQ
1079 static int
iop_adma_pq_zero_sum_self_test(struct iop_adma_device * device)1080 iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
1081 {
1082 /* combined sources, software pq results, and extra hw pq results */
1083 struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
1084 /* ptr to the extra hw pq buffers defined above */
1085 struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
1086 /* address conversion buffers (dma_map / page_address) */
1087 void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
1088 dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST+2];
1089 dma_addr_t *pq_dest = &pq_src[IOP_ADMA_NUM_SRC_TEST];
1090
1091 int i;
1092 struct dma_async_tx_descriptor *tx;
1093 struct dma_chan *dma_chan;
1094 dma_cookie_t cookie;
1095 u32 zero_sum_result;
1096 int err = 0;
1097 struct device *dev;
1098
1099 dev_dbg(device->common.dev, "%s\n", __func__);
1100
1101 for (i = 0; i < ARRAY_SIZE(pq); i++) {
1102 pq[i] = alloc_page(GFP_KERNEL);
1103 if (!pq[i]) {
1104 while (i--)
1105 __free_page(pq[i]);
1106 return -ENOMEM;
1107 }
1108 }
1109
1110 /* Fill in src buffers */
1111 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
1112 pq_sw[i] = page_address(pq[i]);
1113 memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
1114 }
1115 pq_sw[i] = page_address(pq[i]);
1116 pq_sw[i+1] = page_address(pq[i+1]);
1117
1118 dma_chan = container_of(device->common.channels.next,
1119 struct dma_chan,
1120 device_node);
1121 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
1122 err = -ENODEV;
1123 goto out;
1124 }
1125
1126 dev = dma_chan->device->dev;
1127
1128 /* initialize the dests */
1129 memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
1130 memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
1131
1132 /* test pq */
1133 pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
1134 pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
1135 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1136 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1137 DMA_TO_DEVICE);
1138
1139 tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
1140 IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
1141 PAGE_SIZE,
1142 DMA_PREP_INTERRUPT |
1143 DMA_CTRL_ACK);
1144
1145 cookie = iop_adma_tx_submit(tx);
1146 iop_adma_issue_pending(dma_chan);
1147 msleep(8);
1148
1149 if (iop_adma_status(dma_chan, cookie, NULL) !=
1150 DMA_COMPLETE) {
1151 dev_err(dev, "Self-test pq timed out, disabling\n");
1152 err = -ENODEV;
1153 goto free_resources;
1154 }
1155
1156 raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
1157
1158 if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
1159 page_address(pq_hw[0]), PAGE_SIZE) != 0) {
1160 dev_err(dev, "Self-test p failed compare, disabling\n");
1161 err = -ENODEV;
1162 goto free_resources;
1163 }
1164 if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
1165 page_address(pq_hw[1]), PAGE_SIZE) != 0) {
1166 dev_err(dev, "Self-test q failed compare, disabling\n");
1167 err = -ENODEV;
1168 goto free_resources;
1169 }
1170
1171 /* test correct zero sum using the software generated pq values */
1172 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
1173 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1174 DMA_TO_DEVICE);
1175
1176 zero_sum_result = ~0;
1177 tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
1178 pq_src, IOP_ADMA_NUM_SRC_TEST,
1179 raid6_gfexp, PAGE_SIZE, &zero_sum_result,
1180 DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
1181
1182 cookie = iop_adma_tx_submit(tx);
1183 iop_adma_issue_pending(dma_chan);
1184 msleep(8);
1185
1186 if (iop_adma_status(dma_chan, cookie, NULL) !=
1187 DMA_COMPLETE) {
1188 dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
1189 err = -ENODEV;
1190 goto free_resources;
1191 }
1192
1193 if (zero_sum_result != 0) {
1194 dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
1195 zero_sum_result);
1196 err = -ENODEV;
1197 goto free_resources;
1198 }
1199
1200 /* test incorrect zero sum */
1201 i = IOP_ADMA_NUM_SRC_TEST;
1202 memset(pq_sw[i] + 100, 0, 100);
1203 memset(pq_sw[i+1] + 200, 0, 200);
1204 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
1205 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1206 DMA_TO_DEVICE);
1207
1208 zero_sum_result = 0;
1209 tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
1210 pq_src, IOP_ADMA_NUM_SRC_TEST,
1211 raid6_gfexp, PAGE_SIZE, &zero_sum_result,
1212 DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
1213
1214 cookie = iop_adma_tx_submit(tx);
1215 iop_adma_issue_pending(dma_chan);
1216 msleep(8);
1217
1218 if (iop_adma_status(dma_chan, cookie, NULL) !=
1219 DMA_COMPLETE) {
1220 dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
1221 err = -ENODEV;
1222 goto free_resources;
1223 }
1224
1225 if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
1226 dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
1227 zero_sum_result);
1228 err = -ENODEV;
1229 goto free_resources;
1230 }
1231
1232 free_resources:
1233 iop_adma_free_chan_resources(dma_chan);
1234 out:
1235 i = ARRAY_SIZE(pq);
1236 while (i--)
1237 __free_page(pq[i]);
1238 return err;
1239 }
1240 #endif
1241
iop_adma_remove(struct platform_device * dev)1242 static int iop_adma_remove(struct platform_device *dev)
1243 {
1244 struct iop_adma_device *device = platform_get_drvdata(dev);
1245 struct dma_chan *chan, *_chan;
1246 struct iop_adma_chan *iop_chan;
1247 struct iop_adma_platform_data *plat_data = dev_get_platdata(&dev->dev);
1248
1249 dma_async_device_unregister(&device->common);
1250
1251 dma_free_coherent(&dev->dev, plat_data->pool_size,
1252 device->dma_desc_pool_virt, device->dma_desc_pool);
1253
1254 list_for_each_entry_safe(chan, _chan, &device->common.channels,
1255 device_node) {
1256 iop_chan = to_iop_adma_chan(chan);
1257 list_del(&chan->device_node);
1258 kfree(iop_chan);
1259 }
1260 kfree(device);
1261
1262 return 0;
1263 }
1264
iop_adma_probe(struct platform_device * pdev)1265 static int iop_adma_probe(struct platform_device *pdev)
1266 {
1267 struct resource *res;
1268 int ret = 0, i;
1269 struct iop_adma_device *adev;
1270 struct iop_adma_chan *iop_chan;
1271 struct dma_device *dma_dev;
1272 struct iop_adma_platform_data *plat_data = dev_get_platdata(&pdev->dev);
1273
1274 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1275 if (!res)
1276 return -ENODEV;
1277
1278 if (!devm_request_mem_region(&pdev->dev, res->start,
1279 resource_size(res), pdev->name))
1280 return -EBUSY;
1281
1282 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
1283 if (!adev)
1284 return -ENOMEM;
1285 dma_dev = &adev->common;
1286
1287 /* allocate coherent memory for hardware descriptors
1288 * note: writecombine gives slightly better performance, but
1289 * requires that we explicitly flush the writes
1290 */
1291 adev->dma_desc_pool_virt = dma_alloc_wc(&pdev->dev,
1292 plat_data->pool_size,
1293 &adev->dma_desc_pool,
1294 GFP_KERNEL);
1295 if (!adev->dma_desc_pool_virt) {
1296 ret = -ENOMEM;
1297 goto err_free_adev;
1298 }
1299
1300 dev_dbg(&pdev->dev, "%s: allocated descriptor pool virt %p phys %pad\n",
1301 __func__, adev->dma_desc_pool_virt, &adev->dma_desc_pool);
1302
1303 adev->id = plat_data->hw_id;
1304
1305 /* discover transaction capabilites from the platform data */
1306 dma_dev->cap_mask = plat_data->cap_mask;
1307
1308 adev->pdev = pdev;
1309 platform_set_drvdata(pdev, adev);
1310
1311 INIT_LIST_HEAD(&dma_dev->channels);
1312
1313 /* set base routines */
1314 dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
1315 dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
1316 dma_dev->device_tx_status = iop_adma_status;
1317 dma_dev->device_issue_pending = iop_adma_issue_pending;
1318 dma_dev->dev = &pdev->dev;
1319
1320 /* set prep routines based on capability */
1321 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1322 dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
1323 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1324 dma_dev->max_xor = iop_adma_get_max_xor();
1325 dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
1326 }
1327 if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
1328 dma_dev->device_prep_dma_xor_val =
1329 iop_adma_prep_dma_xor_val;
1330 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1331 dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
1332 dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
1333 }
1334 if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
1335 dma_dev->device_prep_dma_pq_val =
1336 iop_adma_prep_dma_pq_val;
1337 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1338 dma_dev->device_prep_dma_interrupt =
1339 iop_adma_prep_dma_interrupt;
1340
1341 iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
1342 if (!iop_chan) {
1343 ret = -ENOMEM;
1344 goto err_free_dma;
1345 }
1346 iop_chan->device = adev;
1347
1348 iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
1349 resource_size(res));
1350 if (!iop_chan->mmr_base) {
1351 ret = -ENOMEM;
1352 goto err_free_iop_chan;
1353 }
1354 tasklet_setup(&iop_chan->irq_tasklet, iop_adma_tasklet);
1355
1356 /* clear errors before enabling interrupts */
1357 iop_adma_device_clear_err_status(iop_chan);
1358
1359 for (i = 0; i < 3; i++) {
1360 static const irq_handler_t handler[] = {
1361 iop_adma_eot_handler,
1362 iop_adma_eoc_handler,
1363 iop_adma_err_handler
1364 };
1365 int irq = platform_get_irq(pdev, i);
1366 if (irq < 0) {
1367 ret = -ENXIO;
1368 goto err_free_iop_chan;
1369 } else {
1370 ret = devm_request_irq(&pdev->dev, irq,
1371 handler[i], 0, pdev->name, iop_chan);
1372 if (ret)
1373 goto err_free_iop_chan;
1374 }
1375 }
1376
1377 spin_lock_init(&iop_chan->lock);
1378 INIT_LIST_HEAD(&iop_chan->chain);
1379 INIT_LIST_HEAD(&iop_chan->all_slots);
1380 iop_chan->common.device = dma_dev;
1381 dma_cookie_init(&iop_chan->common);
1382 list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
1383
1384 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1385 ret = iop_adma_memcpy_self_test(adev);
1386 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1387 if (ret)
1388 goto err_free_iop_chan;
1389 }
1390
1391 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1392 ret = iop_adma_xor_val_self_test(adev);
1393 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1394 if (ret)
1395 goto err_free_iop_chan;
1396 }
1397
1398 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
1399 dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
1400 #ifdef CONFIG_RAID6_PQ
1401 ret = iop_adma_pq_zero_sum_self_test(adev);
1402 dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
1403 #else
1404 /* can not test raid6, so do not publish capability */
1405 dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
1406 dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
1407 ret = 0;
1408 #endif
1409 if (ret)
1410 goto err_free_iop_chan;
1411 }
1412
1413 dev_info(&pdev->dev, "Intel(R) IOP: ( %s%s%s%s%s%s)\n",
1414 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
1415 dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
1416 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1417 dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
1418 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1419 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1420
1421 dma_async_device_register(dma_dev);
1422 goto out;
1423
1424 err_free_iop_chan:
1425 kfree(iop_chan);
1426 err_free_dma:
1427 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1428 adev->dma_desc_pool_virt, adev->dma_desc_pool);
1429 err_free_adev:
1430 kfree(adev);
1431 out:
1432 return ret;
1433 }
1434
iop_chan_start_null_memcpy(struct iop_adma_chan * iop_chan)1435 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
1436 {
1437 struct iop_adma_desc_slot *sw_desc, *grp_start;
1438 dma_cookie_t cookie;
1439 int slot_cnt, slots_per_op;
1440
1441 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1442
1443 spin_lock_bh(&iop_chan->lock);
1444 slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
1445 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1446 if (sw_desc) {
1447 grp_start = sw_desc->group_head;
1448
1449 list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
1450 async_tx_ack(&sw_desc->async_tx);
1451 iop_desc_init_memcpy(grp_start, 0);
1452 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1453 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1454 iop_desc_set_memcpy_src_addr(grp_start, 0);
1455
1456 cookie = dma_cookie_assign(&sw_desc->async_tx);
1457
1458 /* initialize the completed cookie to be less than
1459 * the most recently used cookie
1460 */
1461 iop_chan->common.completed_cookie = cookie - 1;
1462
1463 /* channel should not be busy */
1464 BUG_ON(iop_chan_is_busy(iop_chan));
1465
1466 /* clear any prior error-status bits */
1467 iop_adma_device_clear_err_status(iop_chan);
1468
1469 /* disable operation */
1470 iop_chan_disable(iop_chan);
1471
1472 /* set the descriptor address */
1473 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1474
1475 /* 1/ don't add pre-chained descriptors
1476 * 2/ dummy read to flush next_desc write
1477 */
1478 BUG_ON(iop_desc_get_next_desc(sw_desc));
1479
1480 /* run the descriptor */
1481 iop_chan_enable(iop_chan);
1482 } else
1483 dev_err(iop_chan->device->common.dev,
1484 "failed to allocate null descriptor\n");
1485 spin_unlock_bh(&iop_chan->lock);
1486 }
1487
iop_chan_start_null_xor(struct iop_adma_chan * iop_chan)1488 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
1489 {
1490 struct iop_adma_desc_slot *sw_desc, *grp_start;
1491 dma_cookie_t cookie;
1492 int slot_cnt, slots_per_op;
1493
1494 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1495
1496 spin_lock_bh(&iop_chan->lock);
1497 slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
1498 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1499 if (sw_desc) {
1500 grp_start = sw_desc->group_head;
1501 list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
1502 async_tx_ack(&sw_desc->async_tx);
1503 iop_desc_init_null_xor(grp_start, 2, 0);
1504 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1505 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1506 iop_desc_set_xor_src_addr(grp_start, 0, 0);
1507 iop_desc_set_xor_src_addr(grp_start, 1, 0);
1508
1509 cookie = dma_cookie_assign(&sw_desc->async_tx);
1510
1511 /* initialize the completed cookie to be less than
1512 * the most recently used cookie
1513 */
1514 iop_chan->common.completed_cookie = cookie - 1;
1515
1516 /* channel should not be busy */
1517 BUG_ON(iop_chan_is_busy(iop_chan));
1518
1519 /* clear any prior error-status bits */
1520 iop_adma_device_clear_err_status(iop_chan);
1521
1522 /* disable operation */
1523 iop_chan_disable(iop_chan);
1524
1525 /* set the descriptor address */
1526 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1527
1528 /* 1/ don't add pre-chained descriptors
1529 * 2/ dummy read to flush next_desc write
1530 */
1531 BUG_ON(iop_desc_get_next_desc(sw_desc));
1532
1533 /* run the descriptor */
1534 iop_chan_enable(iop_chan);
1535 } else
1536 dev_err(iop_chan->device->common.dev,
1537 "failed to allocate null descriptor\n");
1538 spin_unlock_bh(&iop_chan->lock);
1539 }
1540
1541 static struct platform_driver iop_adma_driver = {
1542 .probe = iop_adma_probe,
1543 .remove = iop_adma_remove,
1544 .driver = {
1545 .name = "iop-adma",
1546 },
1547 };
1548
1549 module_platform_driver(iop_adma_driver);
1550
1551 MODULE_AUTHOR("Intel Corporation");
1552 MODULE_DESCRIPTION("IOP ADMA Engine Driver");
1553 MODULE_LICENSE("GPL");
1554 MODULE_ALIAS("platform:iop-adma");
1555