1 /*
2 * offload engine driver for the Intel Xscale series of i/o processors
3 * Copyright © 2006, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15
16 /*
17 * This driver supports the asynchrounous DMA copy and RAID engines available
18 * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
19 */
20
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/memory.h>
29 #include <linux/ioport.h>
30 #include <linux/raid/pq.h>
31 #include <linux/slab.h>
32
33 #include <mach/adma.h>
34
35 #include "dmaengine.h"
36
37 #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
38 #define to_iop_adma_device(dev) \
39 container_of(dev, struct iop_adma_device, common)
40 #define tx_to_iop_adma_slot(tx) \
41 container_of(tx, struct iop_adma_desc_slot, async_tx)
42
43 /**
44 * iop_adma_free_slots - flags descriptor slots for reuse
45 * @slot: Slot to free
46 * Caller must hold &iop_chan->lock while calling this function
47 */
iop_adma_free_slots(struct iop_adma_desc_slot * slot)48 static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
49 {
50 int stride = slot->slots_per_op;
51
52 while (stride--) {
53 slot->slots_per_op = 0;
54 slot = list_entry(slot->slot_node.next,
55 struct iop_adma_desc_slot,
56 slot_node);
57 }
58 }
59
60 static dma_cookie_t
iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot * desc,struct iop_adma_chan * iop_chan,dma_cookie_t cookie)61 iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
62 struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
63 {
64 struct dma_async_tx_descriptor *tx = &desc->async_tx;
65
66 BUG_ON(tx->cookie < 0);
67 if (tx->cookie > 0) {
68 cookie = tx->cookie;
69 tx->cookie = 0;
70
71 /* call the callback (must not sleep or submit new
72 * operations to this channel)
73 */
74 dmaengine_desc_get_callback_invoke(tx, NULL);
75
76 dma_descriptor_unmap(tx);
77 if (desc->group_head)
78 desc->group_head = NULL;
79 }
80
81 /* run dependent operations */
82 dma_run_dependencies(tx);
83
84 return cookie;
85 }
86
87 static int
iop_adma_clean_slot(struct iop_adma_desc_slot * desc,struct iop_adma_chan * iop_chan)88 iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
89 struct iop_adma_chan *iop_chan)
90 {
91 /* the client is allowed to attach dependent operations
92 * until 'ack' is set
93 */
94 if (!async_tx_test_ack(&desc->async_tx))
95 return 0;
96
97 /* leave the last descriptor in the chain
98 * so we can append to it
99 */
100 if (desc->chain_node.next == &iop_chan->chain)
101 return 1;
102
103 dev_dbg(iop_chan->device->common.dev,
104 "\tfree slot: %d slots_per_op: %d\n",
105 desc->idx, desc->slots_per_op);
106
107 list_del(&desc->chain_node);
108 iop_adma_free_slots(desc);
109
110 return 0;
111 }
112
__iop_adma_slot_cleanup(struct iop_adma_chan * iop_chan)113 static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
114 {
115 struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
116 dma_cookie_t cookie = 0;
117 u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
118 int busy = iop_chan_is_busy(iop_chan);
119 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
120
121 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
122 /* free completed slots from the chain starting with
123 * the oldest descriptor
124 */
125 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
126 chain_node) {
127 pr_debug("\tcookie: %d slot: %d busy: %d "
128 "this_desc: %#x next_desc: %#x ack: %d\n",
129 iter->async_tx.cookie, iter->idx, busy,
130 iter->async_tx.phys, iop_desc_get_next_desc(iter),
131 async_tx_test_ack(&iter->async_tx));
132 prefetch(_iter);
133 prefetch(&_iter->async_tx);
134
135 /* do not advance past the current descriptor loaded into the
136 * hardware channel, subsequent descriptors are either in
137 * process or have not been submitted
138 */
139 if (seen_current)
140 break;
141
142 /* stop the search if we reach the current descriptor and the
143 * channel is busy, or if it appears that the current descriptor
144 * needs to be re-read (i.e. has been appended to)
145 */
146 if (iter->async_tx.phys == current_desc) {
147 BUG_ON(seen_current++);
148 if (busy || iop_desc_get_next_desc(iter))
149 break;
150 }
151
152 /* detect the start of a group transaction */
153 if (!slot_cnt && !slots_per_op) {
154 slot_cnt = iter->slot_cnt;
155 slots_per_op = iter->slots_per_op;
156 if (slot_cnt <= slots_per_op) {
157 slot_cnt = 0;
158 slots_per_op = 0;
159 }
160 }
161
162 if (slot_cnt) {
163 pr_debug("\tgroup++\n");
164 if (!grp_start)
165 grp_start = iter;
166 slot_cnt -= slots_per_op;
167 }
168
169 /* all the members of a group are complete */
170 if (slots_per_op != 0 && slot_cnt == 0) {
171 struct iop_adma_desc_slot *grp_iter, *_grp_iter;
172 int end_of_chain = 0;
173 pr_debug("\tgroup end\n");
174
175 /* collect the total results */
176 if (grp_start->xor_check_result) {
177 u32 zero_sum_result = 0;
178 slot_cnt = grp_start->slot_cnt;
179 grp_iter = grp_start;
180
181 list_for_each_entry_from(grp_iter,
182 &iop_chan->chain, chain_node) {
183 zero_sum_result |=
184 iop_desc_get_zero_result(grp_iter);
185 pr_debug("\titer%d result: %d\n",
186 grp_iter->idx, zero_sum_result);
187 slot_cnt -= slots_per_op;
188 if (slot_cnt == 0)
189 break;
190 }
191 pr_debug("\tgrp_start->xor_check_result: %p\n",
192 grp_start->xor_check_result);
193 *grp_start->xor_check_result = zero_sum_result;
194 }
195
196 /* clean up the group */
197 slot_cnt = grp_start->slot_cnt;
198 grp_iter = grp_start;
199 list_for_each_entry_safe_from(grp_iter, _grp_iter,
200 &iop_chan->chain, chain_node) {
201 cookie = iop_adma_run_tx_complete_actions(
202 grp_iter, iop_chan, cookie);
203
204 slot_cnt -= slots_per_op;
205 end_of_chain = iop_adma_clean_slot(grp_iter,
206 iop_chan);
207
208 if (slot_cnt == 0 || end_of_chain)
209 break;
210 }
211
212 /* the group should be complete at this point */
213 BUG_ON(slot_cnt);
214
215 slots_per_op = 0;
216 grp_start = NULL;
217 if (end_of_chain)
218 break;
219 else
220 continue;
221 } else if (slots_per_op) /* wait for group completion */
222 continue;
223
224 /* write back zero sum results (single descriptor case) */
225 if (iter->xor_check_result && iter->async_tx.cookie)
226 *iter->xor_check_result =
227 iop_desc_get_zero_result(iter);
228
229 cookie = iop_adma_run_tx_complete_actions(
230 iter, iop_chan, cookie);
231
232 if (iop_adma_clean_slot(iter, iop_chan))
233 break;
234 }
235
236 if (cookie > 0) {
237 iop_chan->common.completed_cookie = cookie;
238 pr_debug("\tcompleted cookie %d\n", cookie);
239 }
240 }
241
242 static void
iop_adma_slot_cleanup(struct iop_adma_chan * iop_chan)243 iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
244 {
245 spin_lock_bh(&iop_chan->lock);
246 __iop_adma_slot_cleanup(iop_chan);
247 spin_unlock_bh(&iop_chan->lock);
248 }
249
iop_adma_tasklet(unsigned long data)250 static void iop_adma_tasklet(unsigned long data)
251 {
252 struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
253
254 /* lockdep will flag depedency submissions as potentially
255 * recursive locking, this is not the case as a dependency
256 * submission will never recurse a channels submit routine.
257 * There are checks in async_tx.c to prevent this.
258 */
259 spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
260 __iop_adma_slot_cleanup(iop_chan);
261 spin_unlock(&iop_chan->lock);
262 }
263
264 static struct iop_adma_desc_slot *
iop_adma_alloc_slots(struct iop_adma_chan * iop_chan,int num_slots,int slots_per_op)265 iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
266 int slots_per_op)
267 {
268 struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
269 LIST_HEAD(chain);
270 int slots_found, retry = 0;
271
272 /* start search from the last allocated descrtiptor
273 * if a contiguous allocation can not be found start searching
274 * from the beginning of the list
275 */
276 retry:
277 slots_found = 0;
278 if (retry == 0)
279 iter = iop_chan->last_used;
280 else
281 iter = list_entry(&iop_chan->all_slots,
282 struct iop_adma_desc_slot,
283 slot_node);
284
285 list_for_each_entry_safe_continue(
286 iter, _iter, &iop_chan->all_slots, slot_node) {
287 prefetch(_iter);
288 prefetch(&_iter->async_tx);
289 if (iter->slots_per_op) {
290 /* give up after finding the first busy slot
291 * on the second pass through the list
292 */
293 if (retry)
294 break;
295
296 slots_found = 0;
297 continue;
298 }
299
300 /* start the allocation if the slot is correctly aligned */
301 if (!slots_found++) {
302 if (iop_desc_is_aligned(iter, slots_per_op))
303 alloc_start = iter;
304 else {
305 slots_found = 0;
306 continue;
307 }
308 }
309
310 if (slots_found == num_slots) {
311 struct iop_adma_desc_slot *alloc_tail = NULL;
312 struct iop_adma_desc_slot *last_used = NULL;
313 iter = alloc_start;
314 while (num_slots) {
315 int i;
316 dev_dbg(iop_chan->device->common.dev,
317 "allocated slot: %d "
318 "(desc %p phys: %#x) slots_per_op %d\n",
319 iter->idx, iter->hw_desc,
320 iter->async_tx.phys, slots_per_op);
321
322 /* pre-ack all but the last descriptor */
323 if (num_slots != slots_per_op)
324 async_tx_ack(&iter->async_tx);
325
326 list_add_tail(&iter->chain_node, &chain);
327 alloc_tail = iter;
328 iter->async_tx.cookie = 0;
329 iter->slot_cnt = num_slots;
330 iter->xor_check_result = NULL;
331 for (i = 0; i < slots_per_op; i++) {
332 iter->slots_per_op = slots_per_op - i;
333 last_used = iter;
334 iter = list_entry(iter->slot_node.next,
335 struct iop_adma_desc_slot,
336 slot_node);
337 }
338 num_slots -= slots_per_op;
339 }
340 alloc_tail->group_head = alloc_start;
341 alloc_tail->async_tx.cookie = -EBUSY;
342 list_splice(&chain, &alloc_tail->tx_list);
343 iop_chan->last_used = last_used;
344 iop_desc_clear_next_desc(alloc_start);
345 iop_desc_clear_next_desc(alloc_tail);
346 return alloc_tail;
347 }
348 }
349 if (!retry++)
350 goto retry;
351
352 /* perform direct reclaim if the allocation fails */
353 __iop_adma_slot_cleanup(iop_chan);
354
355 return NULL;
356 }
357
iop_adma_check_threshold(struct iop_adma_chan * iop_chan)358 static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
359 {
360 dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
361 iop_chan->pending);
362
363 if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
364 iop_chan->pending = 0;
365 iop_chan_append(iop_chan);
366 }
367 }
368
369 static dma_cookie_t
iop_adma_tx_submit(struct dma_async_tx_descriptor * tx)370 iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
371 {
372 struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
373 struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
374 struct iop_adma_desc_slot *grp_start, *old_chain_tail;
375 int slot_cnt;
376 int slots_per_op;
377 dma_cookie_t cookie;
378 dma_addr_t next_dma;
379
380 grp_start = sw_desc->group_head;
381 slot_cnt = grp_start->slot_cnt;
382 slots_per_op = grp_start->slots_per_op;
383
384 spin_lock_bh(&iop_chan->lock);
385 cookie = dma_cookie_assign(tx);
386
387 old_chain_tail = list_entry(iop_chan->chain.prev,
388 struct iop_adma_desc_slot, chain_node);
389 list_splice_init(&sw_desc->tx_list,
390 &old_chain_tail->chain_node);
391
392 /* fix up the hardware chain */
393 next_dma = grp_start->async_tx.phys;
394 iop_desc_set_next_desc(old_chain_tail, next_dma);
395 BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
396
397 /* check for pre-chained descriptors */
398 iop_paranoia(iop_desc_get_next_desc(sw_desc));
399
400 /* increment the pending count by the number of slots
401 * memcpy operations have a 1:1 (slot:operation) relation
402 * other operations are heavier and will pop the threshold
403 * more often.
404 */
405 iop_chan->pending += slot_cnt;
406 iop_adma_check_threshold(iop_chan);
407 spin_unlock_bh(&iop_chan->lock);
408
409 dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
410 __func__, sw_desc->async_tx.cookie, sw_desc->idx);
411
412 return cookie;
413 }
414
415 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
416 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
417
418 /**
419 * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
420 * @chan - allocate descriptor resources for this channel
421 * @client - current client requesting the channel be ready for requests
422 *
423 * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
424 * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
425 * greater than 2x the number slots needed to satisfy a device->max_xor
426 * request.
427 * */
iop_adma_alloc_chan_resources(struct dma_chan * chan)428 static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
429 {
430 char *hw_desc;
431 int idx;
432 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
433 struct iop_adma_desc_slot *slot = NULL;
434 int init = iop_chan->slots_allocated ? 0 : 1;
435 struct iop_adma_platform_data *plat_data =
436 dev_get_platdata(&iop_chan->device->pdev->dev);
437 int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
438
439 /* Allocate descriptor slots */
440 do {
441 idx = iop_chan->slots_allocated;
442 if (idx == num_descs_in_pool)
443 break;
444
445 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
446 if (!slot) {
447 printk(KERN_INFO "IOP ADMA Channel only initialized"
448 " %d descriptor slots", idx);
449 break;
450 }
451 hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
452 slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
453
454 dma_async_tx_descriptor_init(&slot->async_tx, chan);
455 slot->async_tx.tx_submit = iop_adma_tx_submit;
456 INIT_LIST_HEAD(&slot->tx_list);
457 INIT_LIST_HEAD(&slot->chain_node);
458 INIT_LIST_HEAD(&slot->slot_node);
459 hw_desc = (char *) iop_chan->device->dma_desc_pool;
460 slot->async_tx.phys =
461 (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
462 slot->idx = idx;
463
464 spin_lock_bh(&iop_chan->lock);
465 iop_chan->slots_allocated++;
466 list_add_tail(&slot->slot_node, &iop_chan->all_slots);
467 spin_unlock_bh(&iop_chan->lock);
468 } while (iop_chan->slots_allocated < num_descs_in_pool);
469
470 if (idx && !iop_chan->last_used)
471 iop_chan->last_used = list_entry(iop_chan->all_slots.next,
472 struct iop_adma_desc_slot,
473 slot_node);
474
475 dev_dbg(iop_chan->device->common.dev,
476 "allocated %d descriptor slots last_used: %p\n",
477 iop_chan->slots_allocated, iop_chan->last_used);
478
479 /* initialize the channel and the chain with a null operation */
480 if (init) {
481 if (dma_has_cap(DMA_MEMCPY,
482 iop_chan->device->common.cap_mask))
483 iop_chan_start_null_memcpy(iop_chan);
484 else if (dma_has_cap(DMA_XOR,
485 iop_chan->device->common.cap_mask))
486 iop_chan_start_null_xor(iop_chan);
487 else
488 BUG();
489 }
490
491 return (idx > 0) ? idx : -ENOMEM;
492 }
493
494 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_interrupt(struct dma_chan * chan,unsigned long flags)495 iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
496 {
497 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
498 struct iop_adma_desc_slot *sw_desc, *grp_start;
499 int slot_cnt, slots_per_op;
500
501 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
502
503 spin_lock_bh(&iop_chan->lock);
504 slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
505 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
506 if (sw_desc) {
507 grp_start = sw_desc->group_head;
508 iop_desc_init_interrupt(grp_start, iop_chan);
509 sw_desc->async_tx.flags = flags;
510 }
511 spin_unlock_bh(&iop_chan->lock);
512
513 return sw_desc ? &sw_desc->async_tx : NULL;
514 }
515
516 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)517 iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
518 dma_addr_t dma_src, size_t len, unsigned long flags)
519 {
520 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
521 struct iop_adma_desc_slot *sw_desc, *grp_start;
522 int slot_cnt, slots_per_op;
523
524 if (unlikely(!len))
525 return NULL;
526 BUG_ON(len > IOP_ADMA_MAX_BYTE_COUNT);
527
528 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
529 __func__, len);
530
531 spin_lock_bh(&iop_chan->lock);
532 slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
533 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
534 if (sw_desc) {
535 grp_start = sw_desc->group_head;
536 iop_desc_init_memcpy(grp_start, flags);
537 iop_desc_set_byte_count(grp_start, iop_chan, len);
538 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
539 iop_desc_set_memcpy_src_addr(grp_start, dma_src);
540 sw_desc->async_tx.flags = flags;
541 }
542 spin_unlock_bh(&iop_chan->lock);
543
544 return sw_desc ? &sw_desc->async_tx : NULL;
545 }
546
547 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t * dma_src,unsigned int src_cnt,size_t len,unsigned long flags)548 iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
549 dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
550 unsigned long flags)
551 {
552 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
553 struct iop_adma_desc_slot *sw_desc, *grp_start;
554 int slot_cnt, slots_per_op;
555
556 if (unlikely(!len))
557 return NULL;
558 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
559
560 dev_dbg(iop_chan->device->common.dev,
561 "%s src_cnt: %d len: %u flags: %lx\n",
562 __func__, src_cnt, len, flags);
563
564 spin_lock_bh(&iop_chan->lock);
565 slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
566 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
567 if (sw_desc) {
568 grp_start = sw_desc->group_head;
569 iop_desc_init_xor(grp_start, src_cnt, flags);
570 iop_desc_set_byte_count(grp_start, iop_chan, len);
571 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
572 sw_desc->async_tx.flags = flags;
573 while (src_cnt--)
574 iop_desc_set_xor_src_addr(grp_start, src_cnt,
575 dma_src[src_cnt]);
576 }
577 spin_unlock_bh(&iop_chan->lock);
578
579 return sw_desc ? &sw_desc->async_tx : NULL;
580 }
581
582 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor_val(struct dma_chan * chan,dma_addr_t * dma_src,unsigned int src_cnt,size_t len,u32 * result,unsigned long flags)583 iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
584 unsigned int src_cnt, size_t len, u32 *result,
585 unsigned long flags)
586 {
587 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
588 struct iop_adma_desc_slot *sw_desc, *grp_start;
589 int slot_cnt, slots_per_op;
590
591 if (unlikely(!len))
592 return NULL;
593
594 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
595 __func__, src_cnt, len);
596
597 spin_lock_bh(&iop_chan->lock);
598 slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
599 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
600 if (sw_desc) {
601 grp_start = sw_desc->group_head;
602 iop_desc_init_zero_sum(grp_start, src_cnt, flags);
603 iop_desc_set_zero_sum_byte_count(grp_start, len);
604 grp_start->xor_check_result = result;
605 pr_debug("\t%s: grp_start->xor_check_result: %p\n",
606 __func__, grp_start->xor_check_result);
607 sw_desc->async_tx.flags = flags;
608 while (src_cnt--)
609 iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
610 dma_src[src_cnt]);
611 }
612 spin_unlock_bh(&iop_chan->lock);
613
614 return sw_desc ? &sw_desc->async_tx : NULL;
615 }
616
617 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_pq(struct dma_chan * chan,dma_addr_t * dst,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)618 iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
619 unsigned int src_cnt, const unsigned char *scf, size_t len,
620 unsigned long flags)
621 {
622 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
623 struct iop_adma_desc_slot *sw_desc, *g;
624 int slot_cnt, slots_per_op;
625 int continue_srcs;
626
627 if (unlikely(!len))
628 return NULL;
629 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
630
631 dev_dbg(iop_chan->device->common.dev,
632 "%s src_cnt: %d len: %u flags: %lx\n",
633 __func__, src_cnt, len, flags);
634
635 if (dmaf_p_disabled_continue(flags))
636 continue_srcs = 1+src_cnt;
637 else if (dmaf_continue(flags))
638 continue_srcs = 3+src_cnt;
639 else
640 continue_srcs = 0+src_cnt;
641
642 spin_lock_bh(&iop_chan->lock);
643 slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
644 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
645 if (sw_desc) {
646 int i;
647
648 g = sw_desc->group_head;
649 iop_desc_set_byte_count(g, iop_chan, len);
650
651 /* even if P is disabled its destination address (bits
652 * [3:0]) must match Q. It is ok if P points to an
653 * invalid address, it won't be written.
654 */
655 if (flags & DMA_PREP_PQ_DISABLE_P)
656 dst[0] = dst[1] & 0x7;
657
658 iop_desc_set_pq_addr(g, dst);
659 sw_desc->async_tx.flags = flags;
660 for (i = 0; i < src_cnt; i++)
661 iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
662
663 /* if we are continuing a previous operation factor in
664 * the old p and q values, see the comment for dma_maxpq
665 * in include/linux/dmaengine.h
666 */
667 if (dmaf_p_disabled_continue(flags))
668 iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
669 else if (dmaf_continue(flags)) {
670 iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
671 iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
672 iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
673 }
674 iop_desc_init_pq(g, i, flags);
675 }
676 spin_unlock_bh(&iop_chan->lock);
677
678 return sw_desc ? &sw_desc->async_tx : NULL;
679 }
680
681 static struct dma_async_tx_descriptor *
iop_adma_prep_dma_pq_val(struct dma_chan * chan,dma_addr_t * pq,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,enum sum_check_flags * pqres,unsigned long flags)682 iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
683 unsigned int src_cnt, const unsigned char *scf,
684 size_t len, enum sum_check_flags *pqres,
685 unsigned long flags)
686 {
687 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
688 struct iop_adma_desc_slot *sw_desc, *g;
689 int slot_cnt, slots_per_op;
690
691 if (unlikely(!len))
692 return NULL;
693 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
694
695 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
696 __func__, src_cnt, len);
697
698 spin_lock_bh(&iop_chan->lock);
699 slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
700 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
701 if (sw_desc) {
702 /* for validate operations p and q are tagged onto the
703 * end of the source list
704 */
705 int pq_idx = src_cnt;
706
707 g = sw_desc->group_head;
708 iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
709 iop_desc_set_pq_zero_sum_byte_count(g, len);
710 g->pq_check_result = pqres;
711 pr_debug("\t%s: g->pq_check_result: %p\n",
712 __func__, g->pq_check_result);
713 sw_desc->async_tx.flags = flags;
714 while (src_cnt--)
715 iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
716 src[src_cnt],
717 scf[src_cnt]);
718 iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
719 }
720 spin_unlock_bh(&iop_chan->lock);
721
722 return sw_desc ? &sw_desc->async_tx : NULL;
723 }
724
iop_adma_free_chan_resources(struct dma_chan * chan)725 static void iop_adma_free_chan_resources(struct dma_chan *chan)
726 {
727 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
728 struct iop_adma_desc_slot *iter, *_iter;
729 int in_use_descs = 0;
730
731 iop_adma_slot_cleanup(iop_chan);
732
733 spin_lock_bh(&iop_chan->lock);
734 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
735 chain_node) {
736 in_use_descs++;
737 list_del(&iter->chain_node);
738 }
739 list_for_each_entry_safe_reverse(
740 iter, _iter, &iop_chan->all_slots, slot_node) {
741 list_del(&iter->slot_node);
742 kfree(iter);
743 iop_chan->slots_allocated--;
744 }
745 iop_chan->last_used = NULL;
746
747 dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
748 __func__, iop_chan->slots_allocated);
749 spin_unlock_bh(&iop_chan->lock);
750
751 /* one is ok since we left it on there on purpose */
752 if (in_use_descs > 1)
753 printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
754 in_use_descs - 1);
755 }
756
757 /**
758 * iop_adma_status - poll the status of an ADMA transaction
759 * @chan: ADMA channel handle
760 * @cookie: ADMA transaction identifier
761 * @txstate: a holder for the current state of the channel or NULL
762 */
iop_adma_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)763 static enum dma_status iop_adma_status(struct dma_chan *chan,
764 dma_cookie_t cookie,
765 struct dma_tx_state *txstate)
766 {
767 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
768 int ret;
769
770 ret = dma_cookie_status(chan, cookie, txstate);
771 if (ret == DMA_COMPLETE)
772 return ret;
773
774 iop_adma_slot_cleanup(iop_chan);
775
776 return dma_cookie_status(chan, cookie, txstate);
777 }
778
iop_adma_eot_handler(int irq,void * data)779 static irqreturn_t iop_adma_eot_handler(int irq, void *data)
780 {
781 struct iop_adma_chan *chan = data;
782
783 dev_dbg(chan->device->common.dev, "%s\n", __func__);
784
785 tasklet_schedule(&chan->irq_tasklet);
786
787 iop_adma_device_clear_eot_status(chan);
788
789 return IRQ_HANDLED;
790 }
791
iop_adma_eoc_handler(int irq,void * data)792 static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
793 {
794 struct iop_adma_chan *chan = data;
795
796 dev_dbg(chan->device->common.dev, "%s\n", __func__);
797
798 tasklet_schedule(&chan->irq_tasklet);
799
800 iop_adma_device_clear_eoc_status(chan);
801
802 return IRQ_HANDLED;
803 }
804
iop_adma_err_handler(int irq,void * data)805 static irqreturn_t iop_adma_err_handler(int irq, void *data)
806 {
807 struct iop_adma_chan *chan = data;
808 unsigned long status = iop_chan_get_status(chan);
809
810 dev_err(chan->device->common.dev,
811 "error ( %s%s%s%s%s%s%s)\n",
812 iop_is_err_int_parity(status, chan) ? "int_parity " : "",
813 iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
814 iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
815 iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
816 iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
817 iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
818 iop_is_err_split_tx(status, chan) ? "split_tx " : "");
819
820 iop_adma_device_clear_err_status(chan);
821
822 BUG();
823
824 return IRQ_HANDLED;
825 }
826
iop_adma_issue_pending(struct dma_chan * chan)827 static void iop_adma_issue_pending(struct dma_chan *chan)
828 {
829 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
830
831 if (iop_chan->pending) {
832 iop_chan->pending = 0;
833 iop_chan_append(iop_chan);
834 }
835 }
836
837 /*
838 * Perform a transaction to verify the HW works.
839 */
840 #define IOP_ADMA_TEST_SIZE 2000
841
iop_adma_memcpy_self_test(struct iop_adma_device * device)842 static int iop_adma_memcpy_self_test(struct iop_adma_device *device)
843 {
844 int i;
845 void *src, *dest;
846 dma_addr_t src_dma, dest_dma;
847 struct dma_chan *dma_chan;
848 dma_cookie_t cookie;
849 struct dma_async_tx_descriptor *tx;
850 int err = 0;
851 struct iop_adma_chan *iop_chan;
852
853 dev_dbg(device->common.dev, "%s\n", __func__);
854
855 src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
856 if (!src)
857 return -ENOMEM;
858 dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
859 if (!dest) {
860 kfree(src);
861 return -ENOMEM;
862 }
863
864 /* Fill in src buffer */
865 for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
866 ((u8 *) src)[i] = (u8)i;
867
868 /* Start copy, using first DMA channel */
869 dma_chan = container_of(device->common.channels.next,
870 struct dma_chan,
871 device_node);
872 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
873 err = -ENODEV;
874 goto out;
875 }
876
877 dest_dma = dma_map_single(dma_chan->device->dev, dest,
878 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
879 src_dma = dma_map_single(dma_chan->device->dev, src,
880 IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
881 tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
882 IOP_ADMA_TEST_SIZE,
883 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
884
885 cookie = iop_adma_tx_submit(tx);
886 iop_adma_issue_pending(dma_chan);
887 msleep(1);
888
889 if (iop_adma_status(dma_chan, cookie, NULL) !=
890 DMA_COMPLETE) {
891 dev_err(dma_chan->device->dev,
892 "Self-test copy timed out, disabling\n");
893 err = -ENODEV;
894 goto free_resources;
895 }
896
897 iop_chan = to_iop_adma_chan(dma_chan);
898 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
899 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
900 if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
901 dev_err(dma_chan->device->dev,
902 "Self-test copy failed compare, disabling\n");
903 err = -ENODEV;
904 goto free_resources;
905 }
906
907 free_resources:
908 iop_adma_free_chan_resources(dma_chan);
909 out:
910 kfree(src);
911 kfree(dest);
912 return err;
913 }
914
915 #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
916 static int
iop_adma_xor_val_self_test(struct iop_adma_device * device)917 iop_adma_xor_val_self_test(struct iop_adma_device *device)
918 {
919 int i, src_idx;
920 struct page *dest;
921 struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
922 struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
923 dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
924 dma_addr_t dest_dma;
925 struct dma_async_tx_descriptor *tx;
926 struct dma_chan *dma_chan;
927 dma_cookie_t cookie;
928 u8 cmp_byte = 0;
929 u32 cmp_word;
930 u32 zero_sum_result;
931 int err = 0;
932 struct iop_adma_chan *iop_chan;
933
934 dev_dbg(device->common.dev, "%s\n", __func__);
935
936 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
937 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
938 if (!xor_srcs[src_idx]) {
939 while (src_idx--)
940 __free_page(xor_srcs[src_idx]);
941 return -ENOMEM;
942 }
943 }
944
945 dest = alloc_page(GFP_KERNEL);
946 if (!dest) {
947 while (src_idx--)
948 __free_page(xor_srcs[src_idx]);
949 return -ENOMEM;
950 }
951
952 /* Fill in src buffers */
953 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
954 u8 *ptr = page_address(xor_srcs[src_idx]);
955 for (i = 0; i < PAGE_SIZE; i++)
956 ptr[i] = (1 << src_idx);
957 }
958
959 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
960 cmp_byte ^= (u8) (1 << src_idx);
961
962 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
963 (cmp_byte << 8) | cmp_byte;
964
965 memset(page_address(dest), 0, PAGE_SIZE);
966
967 dma_chan = container_of(device->common.channels.next,
968 struct dma_chan,
969 device_node);
970 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
971 err = -ENODEV;
972 goto out;
973 }
974
975 /* test xor */
976 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
977 PAGE_SIZE, DMA_FROM_DEVICE);
978 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
979 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
980 0, PAGE_SIZE, DMA_TO_DEVICE);
981 tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
982 IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
983 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
984
985 cookie = iop_adma_tx_submit(tx);
986 iop_adma_issue_pending(dma_chan);
987 msleep(8);
988
989 if (iop_adma_status(dma_chan, cookie, NULL) !=
990 DMA_COMPLETE) {
991 dev_err(dma_chan->device->dev,
992 "Self-test xor timed out, disabling\n");
993 err = -ENODEV;
994 goto free_resources;
995 }
996
997 iop_chan = to_iop_adma_chan(dma_chan);
998 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
999 PAGE_SIZE, DMA_FROM_DEVICE);
1000 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1001 u32 *ptr = page_address(dest);
1002 if (ptr[i] != cmp_word) {
1003 dev_err(dma_chan->device->dev,
1004 "Self-test xor failed compare, disabling\n");
1005 err = -ENODEV;
1006 goto free_resources;
1007 }
1008 }
1009 dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
1010 PAGE_SIZE, DMA_TO_DEVICE);
1011
1012 /* skip zero sum if the capability is not present */
1013 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
1014 goto free_resources;
1015
1016 /* zero sum the sources with the destintation page */
1017 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1018 zero_sum_srcs[i] = xor_srcs[i];
1019 zero_sum_srcs[i] = dest;
1020
1021 zero_sum_result = 1;
1022
1023 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1024 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1025 zero_sum_srcs[i], 0, PAGE_SIZE,
1026 DMA_TO_DEVICE);
1027 tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
1028 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1029 &zero_sum_result,
1030 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1031
1032 cookie = iop_adma_tx_submit(tx);
1033 iop_adma_issue_pending(dma_chan);
1034 msleep(8);
1035
1036 if (iop_adma_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1037 dev_err(dma_chan->device->dev,
1038 "Self-test zero sum timed out, disabling\n");
1039 err = -ENODEV;
1040 goto free_resources;
1041 }
1042
1043 if (zero_sum_result != 0) {
1044 dev_err(dma_chan->device->dev,
1045 "Self-test zero sum failed compare, disabling\n");
1046 err = -ENODEV;
1047 goto free_resources;
1048 }
1049
1050 /* test for non-zero parity sum */
1051 zero_sum_result = 0;
1052 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1053 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1054 zero_sum_srcs[i], 0, PAGE_SIZE,
1055 DMA_TO_DEVICE);
1056 tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
1057 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1058 &zero_sum_result,
1059 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060
1061 cookie = iop_adma_tx_submit(tx);
1062 iop_adma_issue_pending(dma_chan);
1063 msleep(8);
1064
1065 if (iop_adma_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1066 dev_err(dma_chan->device->dev,
1067 "Self-test non-zero sum timed out, disabling\n");
1068 err = -ENODEV;
1069 goto free_resources;
1070 }
1071
1072 if (zero_sum_result != 1) {
1073 dev_err(dma_chan->device->dev,
1074 "Self-test non-zero sum failed compare, disabling\n");
1075 err = -ENODEV;
1076 goto free_resources;
1077 }
1078
1079 free_resources:
1080 iop_adma_free_chan_resources(dma_chan);
1081 out:
1082 src_idx = IOP_ADMA_NUM_SRC_TEST;
1083 while (src_idx--)
1084 __free_page(xor_srcs[src_idx]);
1085 __free_page(dest);
1086 return err;
1087 }
1088
1089 #ifdef CONFIG_RAID6_PQ
1090 static int
iop_adma_pq_zero_sum_self_test(struct iop_adma_device * device)1091 iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
1092 {
1093 /* combined sources, software pq results, and extra hw pq results */
1094 struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
1095 /* ptr to the extra hw pq buffers defined above */
1096 struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
1097 /* address conversion buffers (dma_map / page_address) */
1098 void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
1099 dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST+2];
1100 dma_addr_t *pq_dest = &pq_src[IOP_ADMA_NUM_SRC_TEST];
1101
1102 int i;
1103 struct dma_async_tx_descriptor *tx;
1104 struct dma_chan *dma_chan;
1105 dma_cookie_t cookie;
1106 u32 zero_sum_result;
1107 int err = 0;
1108 struct device *dev;
1109
1110 dev_dbg(device->common.dev, "%s\n", __func__);
1111
1112 for (i = 0; i < ARRAY_SIZE(pq); i++) {
1113 pq[i] = alloc_page(GFP_KERNEL);
1114 if (!pq[i]) {
1115 while (i--)
1116 __free_page(pq[i]);
1117 return -ENOMEM;
1118 }
1119 }
1120
1121 /* Fill in src buffers */
1122 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
1123 pq_sw[i] = page_address(pq[i]);
1124 memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
1125 }
1126 pq_sw[i] = page_address(pq[i]);
1127 pq_sw[i+1] = page_address(pq[i+1]);
1128
1129 dma_chan = container_of(device->common.channels.next,
1130 struct dma_chan,
1131 device_node);
1132 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
1133 err = -ENODEV;
1134 goto out;
1135 }
1136
1137 dev = dma_chan->device->dev;
1138
1139 /* initialize the dests */
1140 memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
1141 memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
1142
1143 /* test pq */
1144 pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
1145 pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
1146 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1147 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1148 DMA_TO_DEVICE);
1149
1150 tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
1151 IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
1152 PAGE_SIZE,
1153 DMA_PREP_INTERRUPT |
1154 DMA_CTRL_ACK);
1155
1156 cookie = iop_adma_tx_submit(tx);
1157 iop_adma_issue_pending(dma_chan);
1158 msleep(8);
1159
1160 if (iop_adma_status(dma_chan, cookie, NULL) !=
1161 DMA_COMPLETE) {
1162 dev_err(dev, "Self-test pq timed out, disabling\n");
1163 err = -ENODEV;
1164 goto free_resources;
1165 }
1166
1167 raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
1168
1169 if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
1170 page_address(pq_hw[0]), PAGE_SIZE) != 0) {
1171 dev_err(dev, "Self-test p failed compare, disabling\n");
1172 err = -ENODEV;
1173 goto free_resources;
1174 }
1175 if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
1176 page_address(pq_hw[1]), PAGE_SIZE) != 0) {
1177 dev_err(dev, "Self-test q failed compare, disabling\n");
1178 err = -ENODEV;
1179 goto free_resources;
1180 }
1181
1182 /* test correct zero sum using the software generated pq values */
1183 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
1184 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1185 DMA_TO_DEVICE);
1186
1187 zero_sum_result = ~0;
1188 tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
1189 pq_src, IOP_ADMA_NUM_SRC_TEST,
1190 raid6_gfexp, PAGE_SIZE, &zero_sum_result,
1191 DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
1192
1193 cookie = iop_adma_tx_submit(tx);
1194 iop_adma_issue_pending(dma_chan);
1195 msleep(8);
1196
1197 if (iop_adma_status(dma_chan, cookie, NULL) !=
1198 DMA_COMPLETE) {
1199 dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
1200 err = -ENODEV;
1201 goto free_resources;
1202 }
1203
1204 if (zero_sum_result != 0) {
1205 dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
1206 zero_sum_result);
1207 err = -ENODEV;
1208 goto free_resources;
1209 }
1210
1211 /* test incorrect zero sum */
1212 i = IOP_ADMA_NUM_SRC_TEST;
1213 memset(pq_sw[i] + 100, 0, 100);
1214 memset(pq_sw[i+1] + 200, 0, 200);
1215 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
1216 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1217 DMA_TO_DEVICE);
1218
1219 zero_sum_result = 0;
1220 tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
1221 pq_src, IOP_ADMA_NUM_SRC_TEST,
1222 raid6_gfexp, PAGE_SIZE, &zero_sum_result,
1223 DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
1224
1225 cookie = iop_adma_tx_submit(tx);
1226 iop_adma_issue_pending(dma_chan);
1227 msleep(8);
1228
1229 if (iop_adma_status(dma_chan, cookie, NULL) !=
1230 DMA_COMPLETE) {
1231 dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
1232 err = -ENODEV;
1233 goto free_resources;
1234 }
1235
1236 if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
1237 dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
1238 zero_sum_result);
1239 err = -ENODEV;
1240 goto free_resources;
1241 }
1242
1243 free_resources:
1244 iop_adma_free_chan_resources(dma_chan);
1245 out:
1246 i = ARRAY_SIZE(pq);
1247 while (i--)
1248 __free_page(pq[i]);
1249 return err;
1250 }
1251 #endif
1252
iop_adma_remove(struct platform_device * dev)1253 static int iop_adma_remove(struct platform_device *dev)
1254 {
1255 struct iop_adma_device *device = platform_get_drvdata(dev);
1256 struct dma_chan *chan, *_chan;
1257 struct iop_adma_chan *iop_chan;
1258 struct iop_adma_platform_data *plat_data = dev_get_platdata(&dev->dev);
1259
1260 dma_async_device_unregister(&device->common);
1261
1262 dma_free_coherent(&dev->dev, plat_data->pool_size,
1263 device->dma_desc_pool_virt, device->dma_desc_pool);
1264
1265 list_for_each_entry_safe(chan, _chan, &device->common.channels,
1266 device_node) {
1267 iop_chan = to_iop_adma_chan(chan);
1268 list_del(&chan->device_node);
1269 kfree(iop_chan);
1270 }
1271 kfree(device);
1272
1273 return 0;
1274 }
1275
iop_adma_probe(struct platform_device * pdev)1276 static int iop_adma_probe(struct platform_device *pdev)
1277 {
1278 struct resource *res;
1279 int ret = 0, i;
1280 struct iop_adma_device *adev;
1281 struct iop_adma_chan *iop_chan;
1282 struct dma_device *dma_dev;
1283 struct iop_adma_platform_data *plat_data = dev_get_platdata(&pdev->dev);
1284
1285 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1286 if (!res)
1287 return -ENODEV;
1288
1289 if (!devm_request_mem_region(&pdev->dev, res->start,
1290 resource_size(res), pdev->name))
1291 return -EBUSY;
1292
1293 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
1294 if (!adev)
1295 return -ENOMEM;
1296 dma_dev = &adev->common;
1297
1298 /* allocate coherent memory for hardware descriptors
1299 * note: writecombine gives slightly better performance, but
1300 * requires that we explicitly flush the writes
1301 */
1302 adev->dma_desc_pool_virt = dma_alloc_wc(&pdev->dev,
1303 plat_data->pool_size,
1304 &adev->dma_desc_pool,
1305 GFP_KERNEL);
1306 if (!adev->dma_desc_pool_virt) {
1307 ret = -ENOMEM;
1308 goto err_free_adev;
1309 }
1310
1311 dev_dbg(&pdev->dev, "%s: allocated descriptor pool virt %p phys %p\n",
1312 __func__, adev->dma_desc_pool_virt,
1313 (void *) adev->dma_desc_pool);
1314
1315 adev->id = plat_data->hw_id;
1316
1317 /* discover transaction capabilites from the platform data */
1318 dma_dev->cap_mask = plat_data->cap_mask;
1319
1320 adev->pdev = pdev;
1321 platform_set_drvdata(pdev, adev);
1322
1323 INIT_LIST_HEAD(&dma_dev->channels);
1324
1325 /* set base routines */
1326 dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
1327 dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
1328 dma_dev->device_tx_status = iop_adma_status;
1329 dma_dev->device_issue_pending = iop_adma_issue_pending;
1330 dma_dev->dev = &pdev->dev;
1331
1332 /* set prep routines based on capability */
1333 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1334 dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
1335 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1336 dma_dev->max_xor = iop_adma_get_max_xor();
1337 dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
1338 }
1339 if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
1340 dma_dev->device_prep_dma_xor_val =
1341 iop_adma_prep_dma_xor_val;
1342 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1343 dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
1344 dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
1345 }
1346 if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
1347 dma_dev->device_prep_dma_pq_val =
1348 iop_adma_prep_dma_pq_val;
1349 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1350 dma_dev->device_prep_dma_interrupt =
1351 iop_adma_prep_dma_interrupt;
1352
1353 iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
1354 if (!iop_chan) {
1355 ret = -ENOMEM;
1356 goto err_free_dma;
1357 }
1358 iop_chan->device = adev;
1359
1360 iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
1361 resource_size(res));
1362 if (!iop_chan->mmr_base) {
1363 ret = -ENOMEM;
1364 goto err_free_iop_chan;
1365 }
1366 tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
1367 iop_chan);
1368
1369 /* clear errors before enabling interrupts */
1370 iop_adma_device_clear_err_status(iop_chan);
1371
1372 for (i = 0; i < 3; i++) {
1373 irq_handler_t handler[] = { iop_adma_eot_handler,
1374 iop_adma_eoc_handler,
1375 iop_adma_err_handler };
1376 int irq = platform_get_irq(pdev, i);
1377 if (irq < 0) {
1378 ret = -ENXIO;
1379 goto err_free_iop_chan;
1380 } else {
1381 ret = devm_request_irq(&pdev->dev, irq,
1382 handler[i], 0, pdev->name, iop_chan);
1383 if (ret)
1384 goto err_free_iop_chan;
1385 }
1386 }
1387
1388 spin_lock_init(&iop_chan->lock);
1389 INIT_LIST_HEAD(&iop_chan->chain);
1390 INIT_LIST_HEAD(&iop_chan->all_slots);
1391 iop_chan->common.device = dma_dev;
1392 dma_cookie_init(&iop_chan->common);
1393 list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
1394
1395 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1396 ret = iop_adma_memcpy_self_test(adev);
1397 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1398 if (ret)
1399 goto err_free_iop_chan;
1400 }
1401
1402 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1403 ret = iop_adma_xor_val_self_test(adev);
1404 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1405 if (ret)
1406 goto err_free_iop_chan;
1407 }
1408
1409 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
1410 dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
1411 #ifdef CONFIG_RAID6_PQ
1412 ret = iop_adma_pq_zero_sum_self_test(adev);
1413 dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
1414 #else
1415 /* can not test raid6, so do not publish capability */
1416 dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
1417 dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
1418 ret = 0;
1419 #endif
1420 if (ret)
1421 goto err_free_iop_chan;
1422 }
1423
1424 dev_info(&pdev->dev, "Intel(R) IOP: ( %s%s%s%s%s%s)\n",
1425 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
1426 dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
1427 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1428 dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
1429 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1430 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1431
1432 dma_async_device_register(dma_dev);
1433 goto out;
1434
1435 err_free_iop_chan:
1436 kfree(iop_chan);
1437 err_free_dma:
1438 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1439 adev->dma_desc_pool_virt, adev->dma_desc_pool);
1440 err_free_adev:
1441 kfree(adev);
1442 out:
1443 return ret;
1444 }
1445
iop_chan_start_null_memcpy(struct iop_adma_chan * iop_chan)1446 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
1447 {
1448 struct iop_adma_desc_slot *sw_desc, *grp_start;
1449 dma_cookie_t cookie;
1450 int slot_cnt, slots_per_op;
1451
1452 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1453
1454 spin_lock_bh(&iop_chan->lock);
1455 slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
1456 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1457 if (sw_desc) {
1458 grp_start = sw_desc->group_head;
1459
1460 list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
1461 async_tx_ack(&sw_desc->async_tx);
1462 iop_desc_init_memcpy(grp_start, 0);
1463 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1464 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1465 iop_desc_set_memcpy_src_addr(grp_start, 0);
1466
1467 cookie = dma_cookie_assign(&sw_desc->async_tx);
1468
1469 /* initialize the completed cookie to be less than
1470 * the most recently used cookie
1471 */
1472 iop_chan->common.completed_cookie = cookie - 1;
1473
1474 /* channel should not be busy */
1475 BUG_ON(iop_chan_is_busy(iop_chan));
1476
1477 /* clear any prior error-status bits */
1478 iop_adma_device_clear_err_status(iop_chan);
1479
1480 /* disable operation */
1481 iop_chan_disable(iop_chan);
1482
1483 /* set the descriptor address */
1484 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1485
1486 /* 1/ don't add pre-chained descriptors
1487 * 2/ dummy read to flush next_desc write
1488 */
1489 BUG_ON(iop_desc_get_next_desc(sw_desc));
1490
1491 /* run the descriptor */
1492 iop_chan_enable(iop_chan);
1493 } else
1494 dev_err(iop_chan->device->common.dev,
1495 "failed to allocate null descriptor\n");
1496 spin_unlock_bh(&iop_chan->lock);
1497 }
1498
iop_chan_start_null_xor(struct iop_adma_chan * iop_chan)1499 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
1500 {
1501 struct iop_adma_desc_slot *sw_desc, *grp_start;
1502 dma_cookie_t cookie;
1503 int slot_cnt, slots_per_op;
1504
1505 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1506
1507 spin_lock_bh(&iop_chan->lock);
1508 slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
1509 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1510 if (sw_desc) {
1511 grp_start = sw_desc->group_head;
1512 list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
1513 async_tx_ack(&sw_desc->async_tx);
1514 iop_desc_init_null_xor(grp_start, 2, 0);
1515 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1516 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1517 iop_desc_set_xor_src_addr(grp_start, 0, 0);
1518 iop_desc_set_xor_src_addr(grp_start, 1, 0);
1519
1520 cookie = dma_cookie_assign(&sw_desc->async_tx);
1521
1522 /* initialize the completed cookie to be less than
1523 * the most recently used cookie
1524 */
1525 iop_chan->common.completed_cookie = cookie - 1;
1526
1527 /* channel should not be busy */
1528 BUG_ON(iop_chan_is_busy(iop_chan));
1529
1530 /* clear any prior error-status bits */
1531 iop_adma_device_clear_err_status(iop_chan);
1532
1533 /* disable operation */
1534 iop_chan_disable(iop_chan);
1535
1536 /* set the descriptor address */
1537 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1538
1539 /* 1/ don't add pre-chained descriptors
1540 * 2/ dummy read to flush next_desc write
1541 */
1542 BUG_ON(iop_desc_get_next_desc(sw_desc));
1543
1544 /* run the descriptor */
1545 iop_chan_enable(iop_chan);
1546 } else
1547 dev_err(iop_chan->device->common.dev,
1548 "failed to allocate null descriptor\n");
1549 spin_unlock_bh(&iop_chan->lock);
1550 }
1551
1552 static struct platform_driver iop_adma_driver = {
1553 .probe = iop_adma_probe,
1554 .remove = iop_adma_remove,
1555 .driver = {
1556 .name = "iop-adma",
1557 },
1558 };
1559
1560 module_platform_driver(iop_adma_driver);
1561
1562 MODULE_AUTHOR("Intel Corporation");
1563 MODULE_DESCRIPTION("IOP ADMA Engine Driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("platform:iop-adma");
1566