1 /*
2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
3 *
4 * Copyright (C) 2014 Atmel Corporation
5 *
6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35
36 #include "dmaengine.h"
37
38 /* Global registers */
39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */
40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */
41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */
42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */
44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */
49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */
50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */
51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */
52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */
60
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */
63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */
64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */
65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */
66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */
67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */
68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */
69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */
71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */
72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */
73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */
74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */
75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */
76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */
77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */
79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */
80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */
81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */
82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */
83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */
84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */
85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */
87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */
88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */
89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */
90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */
91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */
92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */
93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */
95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */
97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */
98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */
100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */
101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */
102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */
103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */
104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */
105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */
106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */
109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */
110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */
111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */
112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1)
115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1)
116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1)
117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1)
118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */
119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4)
120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4)
121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */
122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5)
123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5)
124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */
125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */
128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7)
129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7)
130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */
131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11
132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */
134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0
135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1
136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2
137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3
138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */
139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */
140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */
141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16)
142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16)
143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16)
144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16)
145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */
146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18)
147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18)
148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18)
149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18)
150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */
151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21)
152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21)
153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */
154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22)
155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22)
156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
159 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
163
164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */
165
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */
175
176 #define AT_XDMAC_MAX_CHAN 0x20
177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */
179 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5
180
181 #define AT_XDMAC_DMA_BUSWIDTHS\
182 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
183 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
185 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
186 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
187
188 enum atc_status {
189 AT_XDMAC_CHAN_IS_CYCLIC = 0,
190 AT_XDMAC_CHAN_IS_PAUSED,
191 };
192
193 /* ----- Channels ----- */
194 struct at_xdmac_chan {
195 struct dma_chan chan;
196 void __iomem *ch_regs;
197 u32 mask; /* Channel Mask */
198 u32 cfg; /* Channel Configuration Register */
199 u8 perid; /* Peripheral ID */
200 u8 perif; /* Peripheral Interface */
201 u8 memif; /* Memory Interface */
202 u32 save_cc;
203 u32 save_cim;
204 u32 save_cnda;
205 u32 save_cndc;
206 unsigned long status;
207 struct tasklet_struct tasklet;
208 struct dma_slave_config sconfig;
209
210 spinlock_t lock;
211
212 struct list_head xfers_list;
213 struct list_head free_descs_list;
214 };
215
216
217 /* ----- Controller ----- */
218 struct at_xdmac {
219 struct dma_device dma;
220 void __iomem *regs;
221 int irq;
222 struct clk *clk;
223 u32 save_gim;
224 struct dma_pool *at_xdmac_desc_pool;
225 struct at_xdmac_chan chan[0];
226 };
227
228
229 /* ----- Descriptors ----- */
230
231 /* Linked List Descriptor */
232 struct at_xdmac_lld {
233 dma_addr_t mbr_nda; /* Next Descriptor Member */
234 u32 mbr_ubc; /* Microblock Control Member */
235 dma_addr_t mbr_sa; /* Source Address Member */
236 dma_addr_t mbr_da; /* Destination Address Member */
237 u32 mbr_cfg; /* Configuration Register */
238 u32 mbr_bc; /* Block Control Register */
239 u32 mbr_ds; /* Data Stride Register */
240 u32 mbr_sus; /* Source Microblock Stride Register */
241 u32 mbr_dus; /* Destination Microblock Stride Register */
242 };
243
244 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
245 struct at_xdmac_desc {
246 struct at_xdmac_lld lld;
247 enum dma_transfer_direction direction;
248 struct dma_async_tx_descriptor tx_dma_desc;
249 struct list_head desc_node;
250 /* Following members are only used by the first descriptor */
251 bool active_xfer;
252 unsigned int xfer_size;
253 struct list_head descs_list;
254 struct list_head xfer_node;
255 } __aligned(sizeof(u64));
256
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)257 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
258 {
259 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
260 }
261
262 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
263 #define at_xdmac_write(atxdmac, reg, value) \
264 writel_relaxed((value), (atxdmac)->regs + (reg))
265
266 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
267 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
268
to_at_xdmac_chan(struct dma_chan * dchan)269 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
270 {
271 return container_of(dchan, struct at_xdmac_chan, chan);
272 }
273
chan2dev(struct dma_chan * chan)274 static struct device *chan2dev(struct dma_chan *chan)
275 {
276 return &chan->dev->device;
277 }
278
to_at_xdmac(struct dma_device * ddev)279 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
280 {
281 return container_of(ddev, struct at_xdmac, dma);
282 }
283
txd_to_at_desc(struct dma_async_tx_descriptor * txd)284 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
285 {
286 return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
287 }
288
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)289 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
290 {
291 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
292 }
293
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)294 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
295 {
296 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
297 }
298
at_xdmac_csize(u32 maxburst)299 static inline int at_xdmac_csize(u32 maxburst)
300 {
301 int csize;
302
303 csize = ffs(maxburst) - 1;
304 if (csize > 4)
305 csize = -EINVAL;
306
307 return csize;
308 };
309
at_xdmac_get_dwidth(u32 cfg)310 static inline u8 at_xdmac_get_dwidth(u32 cfg)
311 {
312 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
313 };
314
315 static unsigned int init_nr_desc_per_channel = 64;
316 module_param(init_nr_desc_per_channel, uint, 0644);
317 MODULE_PARM_DESC(init_nr_desc_per_channel,
318 "initial descriptors per channel (default: 64)");
319
320
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)321 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
322 {
323 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
324 }
325
at_xdmac_off(struct at_xdmac * atxdmac)326 static void at_xdmac_off(struct at_xdmac *atxdmac)
327 {
328 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
329
330 /* Wait that all chans are disabled. */
331 while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
332 cpu_relax();
333
334 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
335 }
336
337 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)338 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
339 struct at_xdmac_desc *first)
340 {
341 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
342 u32 reg;
343
344 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
345
346 if (at_xdmac_chan_is_enabled(atchan))
347 return;
348
349 /* Set transfer as active to not try to start it again. */
350 first->active_xfer = true;
351
352 /* Tell xdmac where to get the first descriptor. */
353 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
354 | AT_XDMAC_CNDA_NDAIF(atchan->memif);
355 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
356
357 /*
358 * When doing non cyclic transfer we need to use the next
359 * descriptor view 2 since some fields of the configuration register
360 * depend on transfer size and src/dest addresses.
361 */
362 if (at_xdmac_chan_is_cyclic(atchan))
363 reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
364 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
365 reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
366 else
367 reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
368 /*
369 * Even if the register will be updated from the configuration in the
370 * descriptor when using view 2 or higher, the PROT bit won't be set
371 * properly. This bit can be modified only by using the channel
372 * configuration register.
373 */
374 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
375
376 reg |= AT_XDMAC_CNDC_NDDUP
377 | AT_XDMAC_CNDC_NDSUP
378 | AT_XDMAC_CNDC_NDE;
379 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
380
381 dev_vdbg(chan2dev(&atchan->chan),
382 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
383 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
384 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
386 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
387 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
388 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
389
390 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
391 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
392 /*
393 * There is no end of list when doing cyclic dma, we need to get
394 * an interrupt after each periods.
395 */
396 if (at_xdmac_chan_is_cyclic(atchan))
397 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
398 reg | AT_XDMAC_CIE_BIE);
399 else
400 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
401 reg | AT_XDMAC_CIE_LIE);
402 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
403 dev_vdbg(chan2dev(&atchan->chan),
404 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
405 wmb();
406 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
407
408 dev_vdbg(chan2dev(&atchan->chan),
409 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
410 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
411 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
413 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
414 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
415 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
416
417 }
418
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
420 {
421 struct at_xdmac_desc *desc = txd_to_at_desc(tx);
422 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan);
423 dma_cookie_t cookie;
424 unsigned long irqflags;
425
426 spin_lock_irqsave(&atchan->lock, irqflags);
427 cookie = dma_cookie_assign(tx);
428
429 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
430 __func__, atchan, desc);
431 list_add_tail(&desc->xfer_node, &atchan->xfers_list);
432 if (list_is_singular(&atchan->xfers_list))
433 at_xdmac_start_xfer(atchan, desc);
434
435 spin_unlock_irqrestore(&atchan->lock, irqflags);
436 return cookie;
437 }
438
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
440 gfp_t gfp_flags)
441 {
442 struct at_xdmac_desc *desc;
443 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
444 dma_addr_t phys;
445
446 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
447 if (desc) {
448 INIT_LIST_HEAD(&desc->descs_list);
449 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
450 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
451 desc->tx_dma_desc.phys = phys;
452 }
453
454 return desc;
455 }
456
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)457 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
458 {
459 memset(&desc->lld, 0, sizeof(desc->lld));
460 INIT_LIST_HEAD(&desc->descs_list);
461 desc->direction = DMA_TRANS_NONE;
462 desc->xfer_size = 0;
463 desc->active_xfer = false;
464 }
465
466 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)467 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
468 {
469 struct at_xdmac_desc *desc;
470
471 if (list_empty(&atchan->free_descs_list)) {
472 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
473 } else {
474 desc = list_first_entry(&atchan->free_descs_list,
475 struct at_xdmac_desc, desc_node);
476 list_del(&desc->desc_node);
477 at_xdmac_init_used_desc(desc);
478 }
479
480 return desc;
481 }
482
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)483 static void at_xdmac_queue_desc(struct dma_chan *chan,
484 struct at_xdmac_desc *prev,
485 struct at_xdmac_desc *desc)
486 {
487 if (!prev || !desc)
488 return;
489
490 prev->lld.mbr_nda = desc->tx_dma_desc.phys;
491 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
492
493 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
494 __func__, prev, &prev->lld.mbr_nda);
495 }
496
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)497 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
498 struct at_xdmac_desc *desc)
499 {
500 if (!desc)
501 return;
502
503 desc->lld.mbr_bc++;
504
505 dev_dbg(chan2dev(chan),
506 "%s: incrementing the block count of the desc 0x%p\n",
507 __func__, desc);
508 }
509
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)510 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
511 struct of_dma *of_dma)
512 {
513 struct at_xdmac *atxdmac = of_dma->of_dma_data;
514 struct at_xdmac_chan *atchan;
515 struct dma_chan *chan;
516 struct device *dev = atxdmac->dma.dev;
517
518 if (dma_spec->args_count != 1) {
519 dev_err(dev, "dma phandler args: bad number of args\n");
520 return NULL;
521 }
522
523 chan = dma_get_any_slave_channel(&atxdmac->dma);
524 if (!chan) {
525 dev_err(dev, "can't get a dma channel\n");
526 return NULL;
527 }
528
529 atchan = to_at_xdmac_chan(chan);
530 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
531 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
532 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
533 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
534 atchan->memif, atchan->perif, atchan->perid);
535
536 return chan;
537 }
538
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)539 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
540 enum dma_transfer_direction direction)
541 {
542 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
543 int csize, dwidth;
544
545 if (direction == DMA_DEV_TO_MEM) {
546 atchan->cfg =
547 AT91_XDMAC_DT_PERID(atchan->perid)
548 | AT_XDMAC_CC_DAM_INCREMENTED_AM
549 | AT_XDMAC_CC_SAM_FIXED_AM
550 | AT_XDMAC_CC_DIF(atchan->memif)
551 | AT_XDMAC_CC_SIF(atchan->perif)
552 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
553 | AT_XDMAC_CC_DSYNC_PER2MEM
554 | AT_XDMAC_CC_MBSIZE_SIXTEEN
555 | AT_XDMAC_CC_TYPE_PER_TRAN;
556 csize = ffs(atchan->sconfig.src_maxburst) - 1;
557 if (csize < 0) {
558 dev_err(chan2dev(chan), "invalid src maxburst value\n");
559 return -EINVAL;
560 }
561 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
562 dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
563 if (dwidth < 0) {
564 dev_err(chan2dev(chan), "invalid src addr width value\n");
565 return -EINVAL;
566 }
567 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
568 } else if (direction == DMA_MEM_TO_DEV) {
569 atchan->cfg =
570 AT91_XDMAC_DT_PERID(atchan->perid)
571 | AT_XDMAC_CC_DAM_FIXED_AM
572 | AT_XDMAC_CC_SAM_INCREMENTED_AM
573 | AT_XDMAC_CC_DIF(atchan->perif)
574 | AT_XDMAC_CC_SIF(atchan->memif)
575 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
576 | AT_XDMAC_CC_DSYNC_MEM2PER
577 | AT_XDMAC_CC_MBSIZE_SIXTEEN
578 | AT_XDMAC_CC_TYPE_PER_TRAN;
579 csize = ffs(atchan->sconfig.dst_maxburst) - 1;
580 if (csize < 0) {
581 dev_err(chan2dev(chan), "invalid src maxburst value\n");
582 return -EINVAL;
583 }
584 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
585 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
586 if (dwidth < 0) {
587 dev_err(chan2dev(chan), "invalid dst addr width value\n");
588 return -EINVAL;
589 }
590 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
591 }
592
593 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
594
595 return 0;
596 }
597
598 /*
599 * Only check that maxburst and addr width values are supported by the
600 * the controller but not that the configuration is good to perform the
601 * transfer since we don't know the direction at this stage.
602 */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)603 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
604 {
605 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
606 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
607 return -EINVAL;
608
609 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
610 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
611 return -EINVAL;
612
613 return 0;
614 }
615
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)616 static int at_xdmac_set_slave_config(struct dma_chan *chan,
617 struct dma_slave_config *sconfig)
618 {
619 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
620
621 if (at_xdmac_check_slave_config(sconfig)) {
622 dev_err(chan2dev(chan), "invalid slave configuration\n");
623 return -EINVAL;
624 }
625
626 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
627
628 return 0;
629 }
630
631 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)632 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
633 unsigned int sg_len, enum dma_transfer_direction direction,
634 unsigned long flags, void *context)
635 {
636 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
637 struct at_xdmac_desc *first = NULL, *prev = NULL;
638 struct scatterlist *sg;
639 int i;
640 unsigned int xfer_size = 0;
641 unsigned long irqflags;
642 struct dma_async_tx_descriptor *ret = NULL;
643
644 if (!sgl)
645 return NULL;
646
647 if (!is_slave_direction(direction)) {
648 dev_err(chan2dev(chan), "invalid DMA direction\n");
649 return NULL;
650 }
651
652 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
653 __func__, sg_len,
654 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
655 flags);
656
657 /* Protect dma_sconfig field that can be modified by set_slave_conf. */
658 spin_lock_irqsave(&atchan->lock, irqflags);
659
660 if (at_xdmac_compute_chan_conf(chan, direction))
661 goto spin_unlock;
662
663 /* Prepare descriptors. */
664 for_each_sg(sgl, sg, sg_len, i) {
665 struct at_xdmac_desc *desc = NULL;
666 u32 len, mem, dwidth, fixed_dwidth;
667
668 len = sg_dma_len(sg);
669 mem = sg_dma_address(sg);
670 if (unlikely(!len)) {
671 dev_err(chan2dev(chan), "sg data length is zero\n");
672 goto spin_unlock;
673 }
674 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
675 __func__, i, len, mem);
676
677 desc = at_xdmac_get_desc(atchan);
678 if (!desc) {
679 dev_err(chan2dev(chan), "can't get descriptor\n");
680 if (first)
681 list_splice_init(&first->descs_list, &atchan->free_descs_list);
682 goto spin_unlock;
683 }
684
685 /* Linked list descriptor setup. */
686 if (direction == DMA_DEV_TO_MEM) {
687 desc->lld.mbr_sa = atchan->sconfig.src_addr;
688 desc->lld.mbr_da = mem;
689 } else {
690 desc->lld.mbr_sa = mem;
691 desc->lld.mbr_da = atchan->sconfig.dst_addr;
692 }
693 dwidth = at_xdmac_get_dwidth(atchan->cfg);
694 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
695 ? dwidth
696 : AT_XDMAC_CC_DWIDTH_BYTE;
697 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */
698 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */
699 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */
700 | (len >> fixed_dwidth); /* microblock length */
701 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
702 AT_XDMAC_CC_DWIDTH(fixed_dwidth);
703 dev_dbg(chan2dev(chan),
704 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
705 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
706
707 /* Chain lld. */
708 if (prev)
709 at_xdmac_queue_desc(chan, prev, desc);
710
711 prev = desc;
712 if (!first)
713 first = desc;
714
715 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
716 __func__, desc, first);
717 list_add_tail(&desc->desc_node, &first->descs_list);
718 xfer_size += len;
719 }
720
721
722 first->tx_dma_desc.flags = flags;
723 first->xfer_size = xfer_size;
724 first->direction = direction;
725 ret = &first->tx_dma_desc;
726
727 spin_unlock:
728 spin_unlock_irqrestore(&atchan->lock, irqflags);
729 return ret;
730 }
731
732 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)733 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
734 size_t buf_len, size_t period_len,
735 enum dma_transfer_direction direction,
736 unsigned long flags)
737 {
738 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
739 struct at_xdmac_desc *first = NULL, *prev = NULL;
740 unsigned int periods = buf_len / period_len;
741 int i;
742 unsigned long irqflags;
743
744 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
745 __func__, &buf_addr, buf_len, period_len,
746 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
747
748 if (!is_slave_direction(direction)) {
749 dev_err(chan2dev(chan), "invalid DMA direction\n");
750 return NULL;
751 }
752
753 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
754 dev_err(chan2dev(chan), "channel currently used\n");
755 return NULL;
756 }
757
758 if (at_xdmac_compute_chan_conf(chan, direction))
759 return NULL;
760
761 for (i = 0; i < periods; i++) {
762 struct at_xdmac_desc *desc = NULL;
763
764 spin_lock_irqsave(&atchan->lock, irqflags);
765 desc = at_xdmac_get_desc(atchan);
766 if (!desc) {
767 dev_err(chan2dev(chan), "can't get descriptor\n");
768 if (first)
769 list_splice_init(&first->descs_list, &atchan->free_descs_list);
770 spin_unlock_irqrestore(&atchan->lock, irqflags);
771 return NULL;
772 }
773 spin_unlock_irqrestore(&atchan->lock, irqflags);
774 dev_dbg(chan2dev(chan),
775 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
776 __func__, desc, &desc->tx_dma_desc.phys);
777
778 if (direction == DMA_DEV_TO_MEM) {
779 desc->lld.mbr_sa = atchan->sconfig.src_addr;
780 desc->lld.mbr_da = buf_addr + i * period_len;
781 } else {
782 desc->lld.mbr_sa = buf_addr + i * period_len;
783 desc->lld.mbr_da = atchan->sconfig.dst_addr;
784 }
785 desc->lld.mbr_cfg = atchan->cfg;
786 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
787 | AT_XDMAC_MBR_UBC_NDEN
788 | AT_XDMAC_MBR_UBC_NSEN
789 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
790
791 dev_dbg(chan2dev(chan),
792 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
793 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
794
795 /* Chain lld. */
796 if (prev)
797 at_xdmac_queue_desc(chan, prev, desc);
798
799 prev = desc;
800 if (!first)
801 first = desc;
802
803 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
804 __func__, desc, first);
805 list_add_tail(&desc->desc_node, &first->descs_list);
806 }
807
808 at_xdmac_queue_desc(chan, prev, first);
809 first->tx_dma_desc.flags = flags;
810 first->xfer_size = buf_len;
811 first->direction = direction;
812
813 return &first->tx_dma_desc;
814 }
815
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)816 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
817 {
818 u32 width;
819
820 /*
821 * Check address alignment to select the greater data width we
822 * can use.
823 *
824 * Some XDMAC implementations don't provide dword transfer, in
825 * this case selecting dword has the same behavior as
826 * selecting word transfers.
827 */
828 if (!(addr & 7)) {
829 width = AT_XDMAC_CC_DWIDTH_DWORD;
830 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
831 } else if (!(addr & 3)) {
832 width = AT_XDMAC_CC_DWIDTH_WORD;
833 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
834 } else if (!(addr & 1)) {
835 width = AT_XDMAC_CC_DWIDTH_HALFWORD;
836 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
837 } else {
838 width = AT_XDMAC_CC_DWIDTH_BYTE;
839 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
840 }
841
842 return width;
843 }
844
845 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)846 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
847 struct at_xdmac_chan *atchan,
848 struct at_xdmac_desc *prev,
849 dma_addr_t src, dma_addr_t dst,
850 struct dma_interleaved_template *xt,
851 struct data_chunk *chunk)
852 {
853 struct at_xdmac_desc *desc;
854 u32 dwidth;
855 unsigned long flags;
856 size_t ublen;
857 /*
858 * WARNING: The channel configuration is set here since there is no
859 * dmaengine_slave_config call in this case. Moreover we don't know the
860 * direction, it involves we can't dynamically set the source and dest
861 * interface so we have to use the same one. Only interface 0 allows EBI
862 * access. Hopefully we can access DDR through both ports (at least on
863 * SAMA5D4x), so we can use the same interface for source and dest,
864 * that solves the fact we don't know the direction.
865 * ERRATA: Even if useless for memory transfers, the PERID has to not
866 * match the one of another channel. If not, it could lead to spurious
867 * flag status.
868 */
869 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
870 | AT_XDMAC_CC_DIF(0)
871 | AT_XDMAC_CC_SIF(0)
872 | AT_XDMAC_CC_MBSIZE_SIXTEEN
873 | AT_XDMAC_CC_TYPE_MEM_TRAN;
874
875 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
876 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
877 dev_dbg(chan2dev(chan),
878 "%s: chunk too big (%zu, max size %lu)...\n",
879 __func__, chunk->size,
880 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
881 return NULL;
882 }
883
884 if (prev)
885 dev_dbg(chan2dev(chan),
886 "Adding items at the end of desc 0x%p\n", prev);
887
888 if (xt->src_inc) {
889 if (xt->src_sgl)
890 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM;
891 else
892 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM;
893 }
894
895 if (xt->dst_inc) {
896 if (xt->dst_sgl)
897 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM;
898 else
899 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM;
900 }
901
902 spin_lock_irqsave(&atchan->lock, flags);
903 desc = at_xdmac_get_desc(atchan);
904 spin_unlock_irqrestore(&atchan->lock, flags);
905 if (!desc) {
906 dev_err(chan2dev(chan), "can't get descriptor\n");
907 return NULL;
908 }
909
910 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
911
912 ublen = chunk->size >> dwidth;
913
914 desc->lld.mbr_sa = src;
915 desc->lld.mbr_da = dst;
916 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
917 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
918
919 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
920 | AT_XDMAC_MBR_UBC_NDEN
921 | AT_XDMAC_MBR_UBC_NSEN
922 | ublen;
923 desc->lld.mbr_cfg = chan_cc;
924
925 dev_dbg(chan2dev(chan),
926 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
927 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
928 desc->lld.mbr_ubc, desc->lld.mbr_cfg);
929
930 /* Chain lld. */
931 if (prev)
932 at_xdmac_queue_desc(chan, prev, desc);
933
934 return desc;
935 }
936
937 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)938 at_xdmac_prep_interleaved(struct dma_chan *chan,
939 struct dma_interleaved_template *xt,
940 unsigned long flags)
941 {
942 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
943 struct at_xdmac_desc *prev = NULL, *first = NULL;
944 dma_addr_t dst_addr, src_addr;
945 size_t src_skip = 0, dst_skip = 0, len = 0;
946 struct data_chunk *chunk;
947 int i;
948
949 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
950 return NULL;
951
952 /*
953 * TODO: Handle the case where we have to repeat a chain of
954 * descriptors...
955 */
956 if ((xt->numf > 1) && (xt->frame_size > 1))
957 return NULL;
958
959 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
960 __func__, &xt->src_start, &xt->dst_start, xt->numf,
961 xt->frame_size, flags);
962
963 src_addr = xt->src_start;
964 dst_addr = xt->dst_start;
965
966 if (xt->numf > 1) {
967 first = at_xdmac_interleaved_queue_desc(chan, atchan,
968 NULL,
969 src_addr, dst_addr,
970 xt, xt->sgl);
971
972 /* Length of the block is (BLEN+1) microblocks. */
973 for (i = 0; i < xt->numf - 1; i++)
974 at_xdmac_increment_block_count(chan, first);
975
976 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
977 __func__, first, first);
978 list_add_tail(&first->desc_node, &first->descs_list);
979 } else {
980 for (i = 0; i < xt->frame_size; i++) {
981 size_t src_icg = 0, dst_icg = 0;
982 struct at_xdmac_desc *desc;
983
984 chunk = xt->sgl + i;
985
986 dst_icg = dmaengine_get_dst_icg(xt, chunk);
987 src_icg = dmaengine_get_src_icg(xt, chunk);
988
989 src_skip = chunk->size + src_icg;
990 dst_skip = chunk->size + dst_icg;
991
992 dev_dbg(chan2dev(chan),
993 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
994 __func__, chunk->size, src_icg, dst_icg);
995
996 desc = at_xdmac_interleaved_queue_desc(chan, atchan,
997 prev,
998 src_addr, dst_addr,
999 xt, chunk);
1000 if (!desc) {
1001 list_splice_init(&first->descs_list,
1002 &atchan->free_descs_list);
1003 return NULL;
1004 }
1005
1006 if (!first)
1007 first = desc;
1008
1009 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1010 __func__, desc, first);
1011 list_add_tail(&desc->desc_node, &first->descs_list);
1012
1013 if (xt->src_sgl)
1014 src_addr += src_skip;
1015
1016 if (xt->dst_sgl)
1017 dst_addr += dst_skip;
1018
1019 len += chunk->size;
1020 prev = desc;
1021 }
1022 }
1023
1024 first->tx_dma_desc.cookie = -EBUSY;
1025 first->tx_dma_desc.flags = flags;
1026 first->xfer_size = len;
1027
1028 return &first->tx_dma_desc;
1029 }
1030
1031 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1032 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1033 size_t len, unsigned long flags)
1034 {
1035 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1036 struct at_xdmac_desc *first = NULL, *prev = NULL;
1037 size_t remaining_size = len, xfer_size = 0, ublen;
1038 dma_addr_t src_addr = src, dst_addr = dest;
1039 u32 dwidth;
1040 /*
1041 * WARNING: We don't know the direction, it involves we can't
1042 * dynamically set the source and dest interface so we have to use the
1043 * same one. Only interface 0 allows EBI access. Hopefully we can
1044 * access DDR through both ports (at least on SAMA5D4x), so we can use
1045 * the same interface for source and dest, that solves the fact we
1046 * don't know the direction.
1047 * ERRATA: Even if useless for memory transfers, the PERID has to not
1048 * match the one of another channel. If not, it could lead to spurious
1049 * flag status.
1050 */
1051 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
1052 | AT_XDMAC_CC_DAM_INCREMENTED_AM
1053 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1054 | AT_XDMAC_CC_DIF(0)
1055 | AT_XDMAC_CC_SIF(0)
1056 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1057 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1058 unsigned long irqflags;
1059
1060 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1061 __func__, &src, &dest, len, flags);
1062
1063 if (unlikely(!len))
1064 return NULL;
1065
1066 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1067
1068 /* Prepare descriptors. */
1069 while (remaining_size) {
1070 struct at_xdmac_desc *desc = NULL;
1071
1072 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1073
1074 spin_lock_irqsave(&atchan->lock, irqflags);
1075 desc = at_xdmac_get_desc(atchan);
1076 spin_unlock_irqrestore(&atchan->lock, irqflags);
1077 if (!desc) {
1078 dev_err(chan2dev(chan), "can't get descriptor\n");
1079 if (first)
1080 list_splice_init(&first->descs_list, &atchan->free_descs_list);
1081 return NULL;
1082 }
1083
1084 /* Update src and dest addresses. */
1085 src_addr += xfer_size;
1086 dst_addr += xfer_size;
1087
1088 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1089 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1090 else
1091 xfer_size = remaining_size;
1092
1093 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1094
1095 /* Check remaining length and change data width if needed. */
1096 dwidth = at_xdmac_align_width(chan,
1097 src_addr | dst_addr | xfer_size);
1098 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1099 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1100
1101 ublen = xfer_size >> dwidth;
1102 remaining_size -= xfer_size;
1103
1104 desc->lld.mbr_sa = src_addr;
1105 desc->lld.mbr_da = dst_addr;
1106 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1107 | AT_XDMAC_MBR_UBC_NDEN
1108 | AT_XDMAC_MBR_UBC_NSEN
1109 | ublen;
1110 desc->lld.mbr_cfg = chan_cc;
1111
1112 dev_dbg(chan2dev(chan),
1113 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1114 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1115
1116 /* Chain lld. */
1117 if (prev)
1118 at_xdmac_queue_desc(chan, prev, desc);
1119
1120 prev = desc;
1121 if (!first)
1122 first = desc;
1123
1124 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1125 __func__, desc, first);
1126 list_add_tail(&desc->desc_node, &first->descs_list);
1127 }
1128
1129 first->tx_dma_desc.flags = flags;
1130 first->xfer_size = len;
1131
1132 return &first->tx_dma_desc;
1133 }
1134
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1135 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1136 struct at_xdmac_chan *atchan,
1137 dma_addr_t dst_addr,
1138 size_t len,
1139 int value)
1140 {
1141 struct at_xdmac_desc *desc;
1142 unsigned long flags;
1143 size_t ublen;
1144 u32 dwidth;
1145 /*
1146 * WARNING: The channel configuration is set here since there is no
1147 * dmaengine_slave_config call in this case. Moreover we don't know the
1148 * direction, it involves we can't dynamically set the source and dest
1149 * interface so we have to use the same one. Only interface 0 allows EBI
1150 * access. Hopefully we can access DDR through both ports (at least on
1151 * SAMA5D4x), so we can use the same interface for source and dest,
1152 * that solves the fact we don't know the direction.
1153 * ERRATA: Even if useless for memory transfers, the PERID has to not
1154 * match the one of another channel. If not, it could lead to spurious
1155 * flag status.
1156 */
1157 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
1158 | AT_XDMAC_CC_DAM_UBS_AM
1159 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1160 | AT_XDMAC_CC_DIF(0)
1161 | AT_XDMAC_CC_SIF(0)
1162 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1163 | AT_XDMAC_CC_MEMSET_HW_MODE
1164 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1165
1166 dwidth = at_xdmac_align_width(chan, dst_addr);
1167
1168 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1169 dev_err(chan2dev(chan),
1170 "%s: Transfer too large, aborting...\n",
1171 __func__);
1172 return NULL;
1173 }
1174
1175 spin_lock_irqsave(&atchan->lock, flags);
1176 desc = at_xdmac_get_desc(atchan);
1177 spin_unlock_irqrestore(&atchan->lock, flags);
1178 if (!desc) {
1179 dev_err(chan2dev(chan), "can't get descriptor\n");
1180 return NULL;
1181 }
1182
1183 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1184
1185 ublen = len >> dwidth;
1186
1187 desc->lld.mbr_da = dst_addr;
1188 desc->lld.mbr_ds = value;
1189 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1190 | AT_XDMAC_MBR_UBC_NDEN
1191 | AT_XDMAC_MBR_UBC_NSEN
1192 | ublen;
1193 desc->lld.mbr_cfg = chan_cc;
1194
1195 dev_dbg(chan2dev(chan),
1196 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1197 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1198 desc->lld.mbr_cfg);
1199
1200 return desc;
1201 }
1202
1203 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1204 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1205 size_t len, unsigned long flags)
1206 {
1207 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1208 struct at_xdmac_desc *desc;
1209
1210 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1211 __func__, &dest, len, value, flags);
1212
1213 if (unlikely(!len))
1214 return NULL;
1215
1216 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1217 list_add_tail(&desc->desc_node, &desc->descs_list);
1218
1219 desc->tx_dma_desc.cookie = -EBUSY;
1220 desc->tx_dma_desc.flags = flags;
1221 desc->xfer_size = len;
1222
1223 return &desc->tx_dma_desc;
1224 }
1225
1226 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1227 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1228 unsigned int sg_len, int value,
1229 unsigned long flags)
1230 {
1231 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1232 struct at_xdmac_desc *desc, *pdesc = NULL,
1233 *ppdesc = NULL, *first = NULL;
1234 struct scatterlist *sg, *psg = NULL, *ppsg = NULL;
1235 size_t stride = 0, pstride = 0, len = 0;
1236 int i;
1237
1238 if (!sgl)
1239 return NULL;
1240
1241 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1242 __func__, sg_len, value, flags);
1243
1244 /* Prepare descriptors. */
1245 for_each_sg(sgl, sg, sg_len, i) {
1246 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1247 __func__, &sg_dma_address(sg), sg_dma_len(sg),
1248 value, flags);
1249 desc = at_xdmac_memset_create_desc(chan, atchan,
1250 sg_dma_address(sg),
1251 sg_dma_len(sg),
1252 value);
1253 if (!desc && first)
1254 list_splice_init(&first->descs_list,
1255 &atchan->free_descs_list);
1256
1257 if (!first)
1258 first = desc;
1259
1260 /* Update our strides */
1261 pstride = stride;
1262 if (psg)
1263 stride = sg_dma_address(sg) -
1264 (sg_dma_address(psg) + sg_dma_len(psg));
1265
1266 /*
1267 * The scatterlist API gives us only the address and
1268 * length of each elements.
1269 *
1270 * Unfortunately, we don't have the stride, which we
1271 * will need to compute.
1272 *
1273 * That make us end up in a situation like this one:
1274 * len stride len stride len
1275 * +-------+ +-------+ +-------+
1276 * | N-2 | | N-1 | | N |
1277 * +-------+ +-------+ +-------+
1278 *
1279 * We need all these three elements (N-2, N-1 and N)
1280 * to actually take the decision on whether we need to
1281 * queue N-1 or reuse N-2.
1282 *
1283 * We will only consider N if it is the last element.
1284 */
1285 if (ppdesc && pdesc) {
1286 if ((stride == pstride) &&
1287 (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1288 dev_dbg(chan2dev(chan),
1289 "%s: desc 0x%p can be merged with desc 0x%p\n",
1290 __func__, pdesc, ppdesc);
1291
1292 /*
1293 * Increment the block count of the
1294 * N-2 descriptor
1295 */
1296 at_xdmac_increment_block_count(chan, ppdesc);
1297 ppdesc->lld.mbr_dus = stride;
1298
1299 /*
1300 * Put back the N-1 descriptor in the
1301 * free descriptor list
1302 */
1303 list_add_tail(&pdesc->desc_node,
1304 &atchan->free_descs_list);
1305
1306 /*
1307 * Make our N-1 descriptor pointer
1308 * point to the N-2 since they were
1309 * actually merged.
1310 */
1311 pdesc = ppdesc;
1312
1313 /*
1314 * Rule out the case where we don't have
1315 * pstride computed yet (our second sg
1316 * element)
1317 *
1318 * We also want to catch the case where there
1319 * would be a negative stride,
1320 */
1321 } else if (pstride ||
1322 sg_dma_address(sg) < sg_dma_address(psg)) {
1323 /*
1324 * Queue the N-1 descriptor after the
1325 * N-2
1326 */
1327 at_xdmac_queue_desc(chan, ppdesc, pdesc);
1328
1329 /*
1330 * Add the N-1 descriptor to the list
1331 * of the descriptors used for this
1332 * transfer
1333 */
1334 list_add_tail(&desc->desc_node,
1335 &first->descs_list);
1336 dev_dbg(chan2dev(chan),
1337 "%s: add desc 0x%p to descs_list 0x%p\n",
1338 __func__, desc, first);
1339 }
1340 }
1341
1342 /*
1343 * If we are the last element, just see if we have the
1344 * same size than the previous element.
1345 *
1346 * If so, we can merge it with the previous descriptor
1347 * since we don't care about the stride anymore.
1348 */
1349 if ((i == (sg_len - 1)) &&
1350 sg_dma_len(psg) == sg_dma_len(sg)) {
1351 dev_dbg(chan2dev(chan),
1352 "%s: desc 0x%p can be merged with desc 0x%p\n",
1353 __func__, desc, pdesc);
1354
1355 /*
1356 * Increment the block count of the N-1
1357 * descriptor
1358 */
1359 at_xdmac_increment_block_count(chan, pdesc);
1360 pdesc->lld.mbr_dus = stride;
1361
1362 /*
1363 * Put back the N descriptor in the free
1364 * descriptor list
1365 */
1366 list_add_tail(&desc->desc_node,
1367 &atchan->free_descs_list);
1368 }
1369
1370 /* Update our descriptors */
1371 ppdesc = pdesc;
1372 pdesc = desc;
1373
1374 /* Update our scatter pointers */
1375 ppsg = psg;
1376 psg = sg;
1377
1378 len += sg_dma_len(sg);
1379 }
1380
1381 first->tx_dma_desc.cookie = -EBUSY;
1382 first->tx_dma_desc.flags = flags;
1383 first->xfer_size = len;
1384
1385 return &first->tx_dma_desc;
1386 }
1387
1388 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1389 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1390 struct dma_tx_state *txstate)
1391 {
1392 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1393 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1394 struct at_xdmac_desc *desc, *_desc;
1395 struct list_head *descs_list;
1396 enum dma_status ret;
1397 int residue, retry;
1398 u32 cur_nda, check_nda, cur_ubc, mask, value;
1399 u8 dwidth = 0;
1400 unsigned long flags;
1401 bool initd;
1402
1403 ret = dma_cookie_status(chan, cookie, txstate);
1404 if (ret == DMA_COMPLETE)
1405 return ret;
1406
1407 if (!txstate)
1408 return ret;
1409
1410 spin_lock_irqsave(&atchan->lock, flags);
1411
1412 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1413
1414 /*
1415 * If the transfer has not been started yet, don't need to compute the
1416 * residue, it's the transfer length.
1417 */
1418 if (!desc->active_xfer) {
1419 dma_set_residue(txstate, desc->xfer_size);
1420 goto spin_unlock;
1421 }
1422
1423 residue = desc->xfer_size;
1424 /*
1425 * Flush FIFO: only relevant when the transfer is source peripheral
1426 * synchronized. Flush is needed before reading CUBC because data in
1427 * the FIFO are not reported by CUBC. Reporting a residue of the
1428 * transfer length while we have data in FIFO can cause issue.
1429 * Usecase: atmel USART has a timeout which means I have received
1430 * characters but there is no more character received for a while. On
1431 * timeout, it requests the residue. If the data are in the DMA FIFO,
1432 * we will return a residue of the transfer length. It means no data
1433 * received. If an application is waiting for these data, it will hang
1434 * since we won't have another USART timeout without receiving new
1435 * data.
1436 */
1437 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1438 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1439 if ((desc->lld.mbr_cfg & mask) == value) {
1440 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1441 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1442 cpu_relax();
1443 }
1444
1445 /*
1446 * The easiest way to compute the residue should be to pause the DMA
1447 * but doing this can lead to miss some data as some devices don't
1448 * have FIFO.
1449 * We need to read several registers because:
1450 * - DMA is running therefore a descriptor change is possible while
1451 * reading these registers
1452 * - When the block transfer is done, the value of the CUBC register
1453 * is set to its initial value until the fetch of the next descriptor.
1454 * This value will corrupt the residue calculation so we have to skip
1455 * it.
1456 *
1457 * INITD -------- ------------
1458 * |____________________|
1459 * _______________________ _______________
1460 * NDA @desc2 \/ @desc3
1461 * _______________________/\_______________
1462 * __________ ___________ _______________
1463 * CUBC 0 \/ MAX desc1 \/ MAX desc2
1464 * __________/\___________/\_______________
1465 *
1466 * Since descriptors are aligned on 64 bits, we can assume that
1467 * the update of NDA and CUBC is atomic.
1468 * Memory barriers are used to ensure the read order of the registers.
1469 * A max number of retries is set because unlikely it could never ends.
1470 */
1471 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1472 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1473 rmb();
1474 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1475 rmb();
1476 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1477 rmb();
1478 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1479 rmb();
1480
1481 if ((check_nda == cur_nda) && initd)
1482 break;
1483 }
1484
1485 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1486 ret = DMA_ERROR;
1487 goto spin_unlock;
1488 }
1489
1490 /*
1491 * Flush FIFO: only relevant when the transfer is source peripheral
1492 * synchronized. Another flush is needed here because CUBC is updated
1493 * when the controller sends the data write command. It can lead to
1494 * report data that are not written in the memory or the device. The
1495 * FIFO flush ensures that data are really written.
1496 */
1497 if ((desc->lld.mbr_cfg & mask) == value) {
1498 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1499 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1500 cpu_relax();
1501 }
1502
1503 /*
1504 * Remove size of all microblocks already transferred and the current
1505 * one. Then add the remaining size to transfer of the current
1506 * microblock.
1507 */
1508 descs_list = &desc->descs_list;
1509 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1510 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1511 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1512 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1513 break;
1514 }
1515 residue += cur_ubc << dwidth;
1516
1517 dma_set_residue(txstate, residue);
1518
1519 dev_dbg(chan2dev(chan),
1520 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1521 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1522
1523 spin_unlock:
1524 spin_unlock_irqrestore(&atchan->lock, flags);
1525 return ret;
1526 }
1527
1528 /* Call must be protected by lock. */
at_xdmac_remove_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * desc)1529 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1530 struct at_xdmac_desc *desc)
1531 {
1532 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1533
1534 /*
1535 * Remove the transfer from the transfer list then move the transfer
1536 * descriptors into the free descriptors list.
1537 */
1538 list_del(&desc->xfer_node);
1539 list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1540 }
1541
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1542 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1543 {
1544 struct at_xdmac_desc *desc;
1545 unsigned long flags;
1546
1547 spin_lock_irqsave(&atchan->lock, flags);
1548
1549 /*
1550 * If channel is enabled, do nothing, advance_work will be triggered
1551 * after the interruption.
1552 */
1553 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1554 desc = list_first_entry(&atchan->xfers_list,
1555 struct at_xdmac_desc,
1556 xfer_node);
1557 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1558 if (!desc->active_xfer)
1559 at_xdmac_start_xfer(atchan, desc);
1560 }
1561
1562 spin_unlock_irqrestore(&atchan->lock, flags);
1563 }
1564
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1565 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1566 {
1567 struct at_xdmac_desc *desc;
1568 struct dma_async_tx_descriptor *txd;
1569
1570 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1571 txd = &desc->tx_dma_desc;
1572
1573 if (txd->flags & DMA_PREP_INTERRUPT)
1574 dmaengine_desc_get_callback_invoke(txd, NULL);
1575 }
1576
at_xdmac_tasklet(unsigned long data)1577 static void at_xdmac_tasklet(unsigned long data)
1578 {
1579 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data;
1580 struct at_xdmac_desc *desc;
1581 u32 error_mask;
1582
1583 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1584 __func__, atchan->status);
1585
1586 error_mask = AT_XDMAC_CIS_RBEIS
1587 | AT_XDMAC_CIS_WBEIS
1588 | AT_XDMAC_CIS_ROIS;
1589
1590 if (at_xdmac_chan_is_cyclic(atchan)) {
1591 at_xdmac_handle_cyclic(atchan);
1592 } else if ((atchan->status & AT_XDMAC_CIS_LIS)
1593 || (atchan->status & error_mask)) {
1594 struct dma_async_tx_descriptor *txd;
1595
1596 if (atchan->status & AT_XDMAC_CIS_RBEIS)
1597 dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1598 if (atchan->status & AT_XDMAC_CIS_WBEIS)
1599 dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1600 if (atchan->status & AT_XDMAC_CIS_ROIS)
1601 dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1602
1603 spin_lock_bh(&atchan->lock);
1604 desc = list_first_entry(&atchan->xfers_list,
1605 struct at_xdmac_desc,
1606 xfer_node);
1607 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1608 BUG_ON(!desc->active_xfer);
1609
1610 txd = &desc->tx_dma_desc;
1611
1612 at_xdmac_remove_xfer(atchan, desc);
1613 spin_unlock_bh(&atchan->lock);
1614
1615 if (!at_xdmac_chan_is_cyclic(atchan)) {
1616 dma_cookie_complete(txd);
1617 if (txd->flags & DMA_PREP_INTERRUPT)
1618 dmaengine_desc_get_callback_invoke(txd, NULL);
1619 }
1620
1621 dma_run_dependencies(txd);
1622
1623 at_xdmac_advance_work(atchan);
1624 }
1625 }
1626
at_xdmac_interrupt(int irq,void * dev_id)1627 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1628 {
1629 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id;
1630 struct at_xdmac_chan *atchan;
1631 u32 imr, status, pending;
1632 u32 chan_imr, chan_status;
1633 int i, ret = IRQ_NONE;
1634
1635 do {
1636 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1637 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1638 pending = status & imr;
1639
1640 dev_vdbg(atxdmac->dma.dev,
1641 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1642 __func__, status, imr, pending);
1643
1644 if (!pending)
1645 break;
1646
1647 /* We have to find which channel has generated the interrupt. */
1648 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1649 if (!((1 << i) & pending))
1650 continue;
1651
1652 atchan = &atxdmac->chan[i];
1653 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1654 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1655 atchan->status = chan_status & chan_imr;
1656 dev_vdbg(atxdmac->dma.dev,
1657 "%s: chan%d: imr=0x%x, status=0x%x\n",
1658 __func__, i, chan_imr, chan_status);
1659 dev_vdbg(chan2dev(&atchan->chan),
1660 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1661 __func__,
1662 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1663 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1664 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1665 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1666 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1667 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1668
1669 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1670 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1671
1672 tasklet_schedule(&atchan->tasklet);
1673 ret = IRQ_HANDLED;
1674 }
1675
1676 } while (pending);
1677
1678 return ret;
1679 }
1680
at_xdmac_issue_pending(struct dma_chan * chan)1681 static void at_xdmac_issue_pending(struct dma_chan *chan)
1682 {
1683 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1684
1685 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1686
1687 if (!at_xdmac_chan_is_cyclic(atchan))
1688 at_xdmac_advance_work(atchan);
1689
1690 return;
1691 }
1692
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1693 static int at_xdmac_device_config(struct dma_chan *chan,
1694 struct dma_slave_config *config)
1695 {
1696 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1697 int ret;
1698 unsigned long flags;
1699
1700 dev_dbg(chan2dev(chan), "%s\n", __func__);
1701
1702 spin_lock_irqsave(&atchan->lock, flags);
1703 ret = at_xdmac_set_slave_config(chan, config);
1704 spin_unlock_irqrestore(&atchan->lock, flags);
1705
1706 return ret;
1707 }
1708
at_xdmac_device_pause(struct dma_chan * chan)1709 static int at_xdmac_device_pause(struct dma_chan *chan)
1710 {
1711 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1712 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1713 unsigned long flags;
1714
1715 dev_dbg(chan2dev(chan), "%s\n", __func__);
1716
1717 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1718 return 0;
1719
1720 spin_lock_irqsave(&atchan->lock, flags);
1721 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1722 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1723 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1724 cpu_relax();
1725 spin_unlock_irqrestore(&atchan->lock, flags);
1726
1727 return 0;
1728 }
1729
at_xdmac_device_resume(struct dma_chan * chan)1730 static int at_xdmac_device_resume(struct dma_chan *chan)
1731 {
1732 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1733 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1734 unsigned long flags;
1735
1736 dev_dbg(chan2dev(chan), "%s\n", __func__);
1737
1738 spin_lock_irqsave(&atchan->lock, flags);
1739 if (!at_xdmac_chan_is_paused(atchan)) {
1740 spin_unlock_irqrestore(&atchan->lock, flags);
1741 return 0;
1742 }
1743
1744 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1745 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1746 spin_unlock_irqrestore(&atchan->lock, flags);
1747
1748 return 0;
1749 }
1750
at_xdmac_device_terminate_all(struct dma_chan * chan)1751 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1752 {
1753 struct at_xdmac_desc *desc, *_desc;
1754 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1755 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1756 unsigned long flags;
1757
1758 dev_dbg(chan2dev(chan), "%s\n", __func__);
1759
1760 spin_lock_irqsave(&atchan->lock, flags);
1761 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1762 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1763 cpu_relax();
1764
1765 /* Cancel all pending transfers. */
1766 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1767 at_xdmac_remove_xfer(atchan, desc);
1768
1769 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1770 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1771 spin_unlock_irqrestore(&atchan->lock, flags);
1772
1773 return 0;
1774 }
1775
at_xdmac_alloc_chan_resources(struct dma_chan * chan)1776 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1777 {
1778 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1779 struct at_xdmac_desc *desc;
1780 int i;
1781 unsigned long flags;
1782
1783 spin_lock_irqsave(&atchan->lock, flags);
1784
1785 if (at_xdmac_chan_is_enabled(atchan)) {
1786 dev_err(chan2dev(chan),
1787 "can't allocate channel resources (channel enabled)\n");
1788 i = -EIO;
1789 goto spin_unlock;
1790 }
1791
1792 if (!list_empty(&atchan->free_descs_list)) {
1793 dev_err(chan2dev(chan),
1794 "can't allocate channel resources (channel not free from a previous use)\n");
1795 i = -EIO;
1796 goto spin_unlock;
1797 }
1798
1799 for (i = 0; i < init_nr_desc_per_channel; i++) {
1800 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1801 if (!desc) {
1802 dev_warn(chan2dev(chan),
1803 "only %d descriptors have been allocated\n", i);
1804 break;
1805 }
1806 list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1807 }
1808
1809 dma_cookie_init(chan);
1810
1811 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1812
1813 spin_unlock:
1814 spin_unlock_irqrestore(&atchan->lock, flags);
1815 return i;
1816 }
1817
at_xdmac_free_chan_resources(struct dma_chan * chan)1818 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1819 {
1820 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1821 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
1822 struct at_xdmac_desc *desc, *_desc;
1823
1824 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1825 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1826 list_del(&desc->desc_node);
1827 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1828 }
1829
1830 return;
1831 }
1832
1833 #ifdef CONFIG_PM
atmel_xdmac_prepare(struct device * dev)1834 static int atmel_xdmac_prepare(struct device *dev)
1835 {
1836 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1837 struct dma_chan *chan, *_chan;
1838
1839 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1840 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1841
1842 /* Wait for transfer completion, except in cyclic case. */
1843 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1844 return -EAGAIN;
1845 }
1846 return 0;
1847 }
1848 #else
1849 # define atmel_xdmac_prepare NULL
1850 #endif
1851
1852 #ifdef CONFIG_PM_SLEEP
atmel_xdmac_suspend(struct device * dev)1853 static int atmel_xdmac_suspend(struct device *dev)
1854 {
1855 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1856 struct dma_chan *chan, *_chan;
1857
1858 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1859 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1860
1861 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1862 if (at_xdmac_chan_is_cyclic(atchan)) {
1863 if (!at_xdmac_chan_is_paused(atchan))
1864 at_xdmac_device_pause(chan);
1865 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1866 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1867 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1868 }
1869 }
1870 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1871
1872 at_xdmac_off(atxdmac);
1873 clk_disable_unprepare(atxdmac->clk);
1874 return 0;
1875 }
1876
atmel_xdmac_resume(struct device * dev)1877 static int atmel_xdmac_resume(struct device *dev)
1878 {
1879 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1880 struct at_xdmac_chan *atchan;
1881 struct dma_chan *chan, *_chan;
1882 int i;
1883 int ret;
1884
1885 ret = clk_prepare_enable(atxdmac->clk);
1886 if (ret)
1887 return ret;
1888
1889 /* Clear pending interrupts. */
1890 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1891 atchan = &atxdmac->chan[i];
1892 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1893 cpu_relax();
1894 }
1895
1896 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1897 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1898 atchan = to_at_xdmac_chan(chan);
1899 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1900 if (at_xdmac_chan_is_cyclic(atchan)) {
1901 if (at_xdmac_chan_is_paused(atchan))
1902 at_xdmac_device_resume(chan);
1903 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1904 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1905 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1906 wmb();
1907 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1908 }
1909 }
1910 return 0;
1911 }
1912 #endif /* CONFIG_PM_SLEEP */
1913
at_xdmac_probe(struct platform_device * pdev)1914 static int at_xdmac_probe(struct platform_device *pdev)
1915 {
1916 struct resource *res;
1917 struct at_xdmac *atxdmac;
1918 int irq, size, nr_channels, i, ret;
1919 void __iomem *base;
1920 u32 reg;
1921
1922 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1923 if (!res)
1924 return -EINVAL;
1925
1926 irq = platform_get_irq(pdev, 0);
1927 if (irq < 0)
1928 return irq;
1929
1930 base = devm_ioremap_resource(&pdev->dev, res);
1931 if (IS_ERR(base))
1932 return PTR_ERR(base);
1933
1934 /*
1935 * Read number of xdmac channels, read helper function can't be used
1936 * since atxdmac is not yet allocated and we need to know the number
1937 * of channels to do the allocation.
1938 */
1939 reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1940 nr_channels = AT_XDMAC_NB_CH(reg);
1941 if (nr_channels > AT_XDMAC_MAX_CHAN) {
1942 dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1943 nr_channels);
1944 return -EINVAL;
1945 }
1946
1947 size = sizeof(*atxdmac);
1948 size += nr_channels * sizeof(struct at_xdmac_chan);
1949 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1950 if (!atxdmac) {
1951 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1952 return -ENOMEM;
1953 }
1954
1955 atxdmac->regs = base;
1956 atxdmac->irq = irq;
1957
1958 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1959 if (IS_ERR(atxdmac->clk)) {
1960 dev_err(&pdev->dev, "can't get dma_clk\n");
1961 return PTR_ERR(atxdmac->clk);
1962 }
1963
1964 /* Do not use dev res to prevent races with tasklet */
1965 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1966 if (ret) {
1967 dev_err(&pdev->dev, "can't request irq\n");
1968 return ret;
1969 }
1970
1971 ret = clk_prepare_enable(atxdmac->clk);
1972 if (ret) {
1973 dev_err(&pdev->dev, "can't prepare or enable clock\n");
1974 goto err_free_irq;
1975 }
1976
1977 atxdmac->at_xdmac_desc_pool =
1978 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1979 sizeof(struct at_xdmac_desc), 4, 0);
1980 if (!atxdmac->at_xdmac_desc_pool) {
1981 dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1982 ret = -ENOMEM;
1983 goto err_clk_disable;
1984 }
1985
1986 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1987 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1988 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1989 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1990 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1991 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1992 /*
1993 * Without DMA_PRIVATE the driver is not able to allocate more than
1994 * one channel, second allocation fails in private_candidate.
1995 */
1996 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
1997 atxdmac->dma.dev = &pdev->dev;
1998 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources;
1999 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources;
2000 atxdmac->dma.device_tx_status = at_xdmac_tx_status;
2001 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending;
2002 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic;
2003 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved;
2004 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy;
2005 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset;
2006 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg;
2007 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg;
2008 atxdmac->dma.device_config = at_xdmac_device_config;
2009 atxdmac->dma.device_pause = at_xdmac_device_pause;
2010 atxdmac->dma.device_resume = at_xdmac_device_resume;
2011 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all;
2012 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2013 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2014 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2015 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2016
2017 /* Disable all chans and interrupts. */
2018 at_xdmac_off(atxdmac);
2019
2020 /* Init channels. */
2021 INIT_LIST_HEAD(&atxdmac->dma.channels);
2022 for (i = 0; i < nr_channels; i++) {
2023 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2024
2025 atchan->chan.device = &atxdmac->dma;
2026 list_add_tail(&atchan->chan.device_node,
2027 &atxdmac->dma.channels);
2028
2029 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2030 atchan->mask = 1 << i;
2031
2032 spin_lock_init(&atchan->lock);
2033 INIT_LIST_HEAD(&atchan->xfers_list);
2034 INIT_LIST_HEAD(&atchan->free_descs_list);
2035 tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2036 (unsigned long)atchan);
2037
2038 /* Clear pending interrupts. */
2039 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2040 cpu_relax();
2041 }
2042 platform_set_drvdata(pdev, atxdmac);
2043
2044 ret = dma_async_device_register(&atxdmac->dma);
2045 if (ret) {
2046 dev_err(&pdev->dev, "fail to register DMA engine device\n");
2047 goto err_clk_disable;
2048 }
2049
2050 ret = of_dma_controller_register(pdev->dev.of_node,
2051 at_xdmac_xlate, atxdmac);
2052 if (ret) {
2053 dev_err(&pdev->dev, "could not register of dma controller\n");
2054 goto err_dma_unregister;
2055 }
2056
2057 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2058 nr_channels, atxdmac->regs);
2059
2060 return 0;
2061
2062 err_dma_unregister:
2063 dma_async_device_unregister(&atxdmac->dma);
2064 err_clk_disable:
2065 clk_disable_unprepare(atxdmac->clk);
2066 err_free_irq:
2067 free_irq(atxdmac->irq, atxdmac);
2068 return ret;
2069 }
2070
at_xdmac_remove(struct platform_device * pdev)2071 static int at_xdmac_remove(struct platform_device *pdev)
2072 {
2073 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2074 int i;
2075
2076 at_xdmac_off(atxdmac);
2077 of_dma_controller_free(pdev->dev.of_node);
2078 dma_async_device_unregister(&atxdmac->dma);
2079 clk_disable_unprepare(atxdmac->clk);
2080
2081 free_irq(atxdmac->irq, atxdmac);
2082
2083 for (i = 0; i < atxdmac->dma.chancnt; i++) {
2084 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2085
2086 tasklet_kill(&atchan->tasklet);
2087 at_xdmac_free_chan_resources(&atchan->chan);
2088 }
2089
2090 return 0;
2091 }
2092
2093 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2094 .prepare = atmel_xdmac_prepare,
2095 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2096 };
2097
2098 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2099 {
2100 .compatible = "atmel,sama5d4-dma",
2101 }, {
2102 /* sentinel */
2103 }
2104 };
2105 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2106
2107 static struct platform_driver at_xdmac_driver = {
2108 .probe = at_xdmac_probe,
2109 .remove = at_xdmac_remove,
2110 .driver = {
2111 .name = "at_xdmac",
2112 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
2113 .pm = &atmel_xdmac_dev_pm_ops,
2114 }
2115 };
2116
at_xdmac_init(void)2117 static int __init at_xdmac_init(void)
2118 {
2119 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2120 }
2121 subsys_initcall(at_xdmac_init);
2122
2123 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2124 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2125 MODULE_LICENSE("GPL");
2126