1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 *
7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8 * The only Atmel DMA Controller that is not covered by this driver is the one
9 * found on AT91SAM9263.
10 */
11
12 #include <dt-bindings/dma/at91.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24
25 #include "at_hdmac_regs.h"
26 #include "dmaengine.h"
27
28 /*
29 * Glossary
30 * --------
31 *
32 * at_hdmac : Name of the ATmel AHB DMA Controller
33 * at_dma_ / atdma : ATmel DMA controller entity related
34 * atc_ / atchan : ATmel DMA Channel entity related
35 */
36
37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
39 |ATC_DIF(AT_DMA_MEM_IF))
40 #define ATC_DMA_BUSWIDTHS\
41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45
46 #define ATC_MAX_DSCR_TRIALS 10
47
48 /*
49 * Initial number of descriptors to allocate for each channel. This could
50 * be increased during dma usage.
51 */
52 static unsigned int init_nr_desc_per_channel = 64;
53 module_param(init_nr_desc_per_channel, uint, 0644);
54 MODULE_PARM_DESC(init_nr_desc_per_channel,
55 "initial descriptors per channel (default: 64)");
56
57 /**
58 * struct at_dma_platform_data - Controller configuration parameters
59 * @nr_channels: Number of channels supported by hardware (max 8)
60 * @cap_mask: dma_capability flags supported by the platform
61 */
62 struct at_dma_platform_data {
63 unsigned int nr_channels;
64 dma_cap_mask_t cap_mask;
65 };
66
67 /**
68 * struct at_dma_slave - Controller-specific information about a slave
69 * @dma_dev: required DMA master device
70 * @cfg: Platform-specific initializer for the CFG register
71 */
72 struct at_dma_slave {
73 struct device *dma_dev;
74 u32 cfg;
75 };
76
77 /* prototypes */
78 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
79 static void atc_issue_pending(struct dma_chan *chan);
80
81
82 /*----------------------------------------------------------------------*/
83
atc_get_xfer_width(dma_addr_t src,dma_addr_t dst,size_t len)84 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
85 size_t len)
86 {
87 unsigned int width;
88
89 if (!((src | dst | len) & 3))
90 width = 2;
91 else if (!((src | dst | len) & 1))
92 width = 1;
93 else
94 width = 0;
95
96 return width;
97 }
98
atc_first_active(struct at_dma_chan * atchan)99 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
100 {
101 return list_first_entry(&atchan->active_list,
102 struct at_desc, desc_node);
103 }
104
atc_first_queued(struct at_dma_chan * atchan)105 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
106 {
107 return list_first_entry(&atchan->queue,
108 struct at_desc, desc_node);
109 }
110
111 /**
112 * atc_alloc_descriptor - allocate and return an initialized descriptor
113 * @chan: the channel to allocate descriptors for
114 * @gfp_flags: GFP allocation flags
115 *
116 * Note: The ack-bit is positioned in the descriptor flag at creation time
117 * to make initial allocation more convenient. This bit will be cleared
118 * and control will be given to client at usage time (during
119 * preparation functions).
120 */
atc_alloc_descriptor(struct dma_chan * chan,gfp_t gfp_flags)121 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
122 gfp_t gfp_flags)
123 {
124 struct at_desc *desc = NULL;
125 struct at_dma *atdma = to_at_dma(chan->device);
126 dma_addr_t phys;
127
128 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
129 if (desc) {
130 INIT_LIST_HEAD(&desc->tx_list);
131 dma_async_tx_descriptor_init(&desc->txd, chan);
132 /* txd.flags will be overwritten in prep functions */
133 desc->txd.flags = DMA_CTRL_ACK;
134 desc->txd.tx_submit = atc_tx_submit;
135 desc->txd.phys = phys;
136 }
137
138 return desc;
139 }
140
141 /**
142 * atc_desc_get - get an unused descriptor from free_list
143 * @atchan: channel we want a new descriptor for
144 */
atc_desc_get(struct at_dma_chan * atchan)145 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
146 {
147 struct at_desc *desc, *_desc;
148 struct at_desc *ret = NULL;
149 unsigned long flags;
150 unsigned int i = 0;
151
152 spin_lock_irqsave(&atchan->lock, flags);
153 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
154 i++;
155 if (async_tx_test_ack(&desc->txd)) {
156 list_del(&desc->desc_node);
157 ret = desc;
158 break;
159 }
160 dev_dbg(chan2dev(&atchan->chan_common),
161 "desc %p not ACKed\n", desc);
162 }
163 spin_unlock_irqrestore(&atchan->lock, flags);
164 dev_vdbg(chan2dev(&atchan->chan_common),
165 "scanned %u descriptors on freelist\n", i);
166
167 /* no more descriptor available in initial pool: create one more */
168 if (!ret)
169 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
170
171 return ret;
172 }
173
174 /**
175 * atc_desc_put - move a descriptor, including any children, to the free list
176 * @atchan: channel we work on
177 * @desc: descriptor, at the head of a chain, to move to free list
178 */
atc_desc_put(struct at_dma_chan * atchan,struct at_desc * desc)179 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
180 {
181 if (desc) {
182 struct at_desc *child;
183 unsigned long flags;
184
185 spin_lock_irqsave(&atchan->lock, flags);
186 list_for_each_entry(child, &desc->tx_list, desc_node)
187 dev_vdbg(chan2dev(&atchan->chan_common),
188 "moving child desc %p to freelist\n",
189 child);
190 list_splice_init(&desc->tx_list, &atchan->free_list);
191 dev_vdbg(chan2dev(&atchan->chan_common),
192 "moving desc %p to freelist\n", desc);
193 list_add(&desc->desc_node, &atchan->free_list);
194 spin_unlock_irqrestore(&atchan->lock, flags);
195 }
196 }
197
198 /**
199 * atc_desc_chain - build chain adding a descriptor
200 * @first: address of first descriptor of the chain
201 * @prev: address of previous descriptor of the chain
202 * @desc: descriptor to queue
203 *
204 * Called from prep_* functions
205 */
atc_desc_chain(struct at_desc ** first,struct at_desc ** prev,struct at_desc * desc)206 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
207 struct at_desc *desc)
208 {
209 if (!(*first)) {
210 *first = desc;
211 } else {
212 /* inform the HW lli about chaining */
213 (*prev)->lli.dscr = desc->txd.phys;
214 /* insert the link descriptor to the LD ring */
215 list_add_tail(&desc->desc_node,
216 &(*first)->tx_list);
217 }
218 *prev = desc;
219 }
220
221 /**
222 * atc_dostart - starts the DMA engine for real
223 * @atchan: the channel we want to start
224 * @first: first descriptor in the list we want to begin with
225 *
226 * Called with atchan->lock held and bh disabled
227 */
atc_dostart(struct at_dma_chan * atchan,struct at_desc * first)228 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
229 {
230 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
231
232 /* ASSERT: channel is idle */
233 if (atc_chan_is_enabled(atchan)) {
234 dev_err(chan2dev(&atchan->chan_common),
235 "BUG: Attempted to start non-idle channel\n");
236 dev_err(chan2dev(&atchan->chan_common),
237 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
238 channel_readl(atchan, SADDR),
239 channel_readl(atchan, DADDR),
240 channel_readl(atchan, CTRLA),
241 channel_readl(atchan, CTRLB),
242 channel_readl(atchan, DSCR));
243
244 /* The tasklet will hopefully advance the queue... */
245 return;
246 }
247
248 vdbg_dump_regs(atchan);
249
250 channel_writel(atchan, SADDR, 0);
251 channel_writel(atchan, DADDR, 0);
252 channel_writel(atchan, CTRLA, 0);
253 channel_writel(atchan, CTRLB, 0);
254 channel_writel(atchan, DSCR, first->txd.phys);
255 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
256 ATC_SPIP_BOUNDARY(first->boundary));
257 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
258 ATC_DPIP_BOUNDARY(first->boundary));
259 /* Don't allow CPU to reorder channel enable. */
260 wmb();
261 dma_writel(atdma, CHER, atchan->mask);
262
263 vdbg_dump_regs(atchan);
264 }
265
266 /*
267 * atc_get_desc_by_cookie - get the descriptor of a cookie
268 * @atchan: the DMA channel
269 * @cookie: the cookie to get the descriptor for
270 */
atc_get_desc_by_cookie(struct at_dma_chan * atchan,dma_cookie_t cookie)271 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
272 dma_cookie_t cookie)
273 {
274 struct at_desc *desc, *_desc;
275
276 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
277 if (desc->txd.cookie == cookie)
278 return desc;
279 }
280
281 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
282 if (desc->txd.cookie == cookie)
283 return desc;
284 }
285
286 return NULL;
287 }
288
289 /**
290 * atc_calc_bytes_left - calculates the number of bytes left according to the
291 * value read from CTRLA.
292 *
293 * @current_len: the number of bytes left before reading CTRLA
294 * @ctrla: the value of CTRLA
295 */
atc_calc_bytes_left(int current_len,u32 ctrla)296 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
297 {
298 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
299 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
300
301 /*
302 * According to the datasheet, when reading the Control A Register
303 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
304 * number of transfers completed on the Source Interface.
305 * So btsize is always a number of source width transfers.
306 */
307 return current_len - (btsize << src_width);
308 }
309
310 /**
311 * atc_get_bytes_left - get the number of bytes residue for a cookie
312 * @chan: DMA channel
313 * @cookie: transaction identifier to check status of
314 */
atc_get_bytes_left(struct dma_chan * chan,dma_cookie_t cookie)315 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
316 {
317 struct at_dma_chan *atchan = to_at_dma_chan(chan);
318 struct at_desc *desc_first = atc_first_active(atchan);
319 struct at_desc *desc;
320 int ret;
321 u32 ctrla, dscr;
322 unsigned int i;
323
324 /*
325 * If the cookie doesn't match to the currently running transfer then
326 * we can return the total length of the associated DMA transfer,
327 * because it is still queued.
328 */
329 desc = atc_get_desc_by_cookie(atchan, cookie);
330 if (desc == NULL)
331 return -EINVAL;
332 else if (desc != desc_first)
333 return desc->total_len;
334
335 /* cookie matches to the currently running transfer */
336 ret = desc_first->total_len;
337
338 if (desc_first->lli.dscr) {
339 /* hardware linked list transfer */
340
341 /*
342 * Calculate the residue by removing the length of the child
343 * descriptors already transferred from the total length.
344 * To get the current child descriptor we can use the value of
345 * the channel's DSCR register and compare it against the value
346 * of the hardware linked list structure of each child
347 * descriptor.
348 *
349 * The CTRLA register provides us with the amount of data
350 * already read from the source for the current child
351 * descriptor. So we can compute a more accurate residue by also
352 * removing the number of bytes corresponding to this amount of
353 * data.
354 *
355 * However, the DSCR and CTRLA registers cannot be read both
356 * atomically. Hence a race condition may occur: the first read
357 * register may refer to one child descriptor whereas the second
358 * read may refer to a later child descriptor in the list
359 * because of the DMA transfer progression inbetween the two
360 * reads.
361 *
362 * One solution could have been to pause the DMA transfer, read
363 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
364 * this approach presents some drawbacks:
365 * - If the DMA transfer is paused, RX overruns or TX underruns
366 * are more likey to occur depending on the system latency.
367 * Taking the USART driver as an example, it uses a cyclic DMA
368 * transfer to read data from the Receive Holding Register
369 * (RHR) to avoid RX overruns since the RHR is not protected
370 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
371 * to compute the residue would break the USART driver design.
372 * - The atc_pause() function masks interrupts but we'd rather
373 * avoid to do so for system latency purpose.
374 *
375 * Then we'd rather use another solution: the DSCR is read a
376 * first time, the CTRLA is read in turn, next the DSCR is read
377 * a second time. If the two consecutive read values of the DSCR
378 * are the same then we assume both refers to the very same
379 * child descriptor as well as the CTRLA value read inbetween
380 * does. For cyclic tranfers, the assumption is that a full loop
381 * is "not so fast".
382 * If the two DSCR values are different, we read again the CTRLA
383 * then the DSCR till two consecutive read values from DSCR are
384 * equal or till the maxium trials is reach.
385 * This algorithm is very unlikely not to find a stable value for
386 * DSCR.
387 */
388
389 dscr = channel_readl(atchan, DSCR);
390 rmb(); /* ensure DSCR is read before CTRLA */
391 ctrla = channel_readl(atchan, CTRLA);
392 for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
393 u32 new_dscr;
394
395 rmb(); /* ensure DSCR is read after CTRLA */
396 new_dscr = channel_readl(atchan, DSCR);
397
398 /*
399 * If the DSCR register value has not changed inside the
400 * DMA controller since the previous read, we assume
401 * that both the dscr and ctrla values refers to the
402 * very same descriptor.
403 */
404 if (likely(new_dscr == dscr))
405 break;
406
407 /*
408 * DSCR has changed inside the DMA controller, so the
409 * previouly read value of CTRLA may refer to an already
410 * processed descriptor hence could be outdated.
411 * We need to update ctrla to match the current
412 * descriptor.
413 */
414 dscr = new_dscr;
415 rmb(); /* ensure DSCR is read before CTRLA */
416 ctrla = channel_readl(atchan, CTRLA);
417 }
418 if (unlikely(i == ATC_MAX_DSCR_TRIALS))
419 return -ETIMEDOUT;
420
421 /* for the first descriptor we can be more accurate */
422 if (desc_first->lli.dscr == dscr)
423 return atc_calc_bytes_left(ret, ctrla);
424
425 ret -= desc_first->len;
426 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
427 if (desc->lli.dscr == dscr)
428 break;
429
430 ret -= desc->len;
431 }
432
433 /*
434 * For the current descriptor in the chain we can calculate
435 * the remaining bytes using the channel's register.
436 */
437 ret = atc_calc_bytes_left(ret, ctrla);
438 } else {
439 /* single transfer */
440 ctrla = channel_readl(atchan, CTRLA);
441 ret = atc_calc_bytes_left(ret, ctrla);
442 }
443
444 return ret;
445 }
446
447 /**
448 * atc_chain_complete - finish work for one transaction chain
449 * @atchan: channel we work on
450 * @desc: descriptor at the head of the chain we want do complete
451 */
452 static void
atc_chain_complete(struct at_dma_chan * atchan,struct at_desc * desc)453 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
454 {
455 struct dma_async_tx_descriptor *txd = &desc->txd;
456 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
457 unsigned long flags;
458
459 dev_vdbg(chan2dev(&atchan->chan_common),
460 "descriptor %u complete\n", txd->cookie);
461
462 spin_lock_irqsave(&atchan->lock, flags);
463
464 /* mark the descriptor as complete for non cyclic cases only */
465 if (!atc_chan_is_cyclic(atchan))
466 dma_cookie_complete(txd);
467
468 spin_unlock_irqrestore(&atchan->lock, flags);
469
470 dma_descriptor_unmap(txd);
471 /* for cyclic transfers,
472 * no need to replay callback function while stopping */
473 if (!atc_chan_is_cyclic(atchan))
474 dmaengine_desc_get_callback_invoke(txd, NULL);
475
476 dma_run_dependencies(txd);
477
478 spin_lock_irqsave(&atchan->lock, flags);
479 /* move children to free_list */
480 list_splice_init(&desc->tx_list, &atchan->free_list);
481 /* add myself to free_list */
482 list_add(&desc->desc_node, &atchan->free_list);
483 spin_unlock_irqrestore(&atchan->lock, flags);
484
485 /* If the transfer was a memset, free our temporary buffer */
486 if (desc->memset_buffer) {
487 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
488 desc->memset_paddr);
489 desc->memset_buffer = false;
490 }
491 }
492
493 /**
494 * atc_advance_work - at the end of a transaction, move forward
495 * @atchan: channel where the transaction ended
496 */
atc_advance_work(struct at_dma_chan * atchan)497 static void atc_advance_work(struct at_dma_chan *atchan)
498 {
499 struct at_desc *desc;
500 unsigned long flags;
501
502 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
503
504 spin_lock_irqsave(&atchan->lock, flags);
505 if (atc_chan_is_enabled(atchan) || list_empty(&atchan->active_list))
506 return spin_unlock_irqrestore(&atchan->lock, flags);
507
508 desc = atc_first_active(atchan);
509 /* Remove the transfer node from the active list. */
510 list_del_init(&desc->desc_node);
511 spin_unlock_irqrestore(&atchan->lock, flags);
512 atc_chain_complete(atchan, desc);
513
514 /* advance work */
515 spin_lock_irqsave(&atchan->lock, flags);
516 if (!list_empty(&atchan->active_list)) {
517 desc = atc_first_queued(atchan);
518 list_move_tail(&desc->desc_node, &atchan->active_list);
519 atc_dostart(atchan, desc);
520 }
521 spin_unlock_irqrestore(&atchan->lock, flags);
522 }
523
524
525 /**
526 * atc_handle_error - handle errors reported by DMA controller
527 * @atchan: channel where error occurs
528 */
atc_handle_error(struct at_dma_chan * atchan)529 static void atc_handle_error(struct at_dma_chan *atchan)
530 {
531 struct at_desc *bad_desc;
532 struct at_desc *desc;
533 struct at_desc *child;
534 unsigned long flags;
535
536 spin_lock_irqsave(&atchan->lock, flags);
537 /*
538 * The descriptor currently at the head of the active list is
539 * broked. Since we don't have any way to report errors, we'll
540 * just have to scream loudly and try to carry on.
541 */
542 bad_desc = atc_first_active(atchan);
543 list_del_init(&bad_desc->desc_node);
544
545 /* Try to restart the controller */
546 if (!list_empty(&atchan->active_list)) {
547 desc = atc_first_queued(atchan);
548 list_move_tail(&desc->desc_node, &atchan->active_list);
549 atc_dostart(atchan, desc);
550 }
551
552 /*
553 * KERN_CRITICAL may seem harsh, but since this only happens
554 * when someone submits a bad physical address in a
555 * descriptor, we should consider ourselves lucky that the
556 * controller flagged an error instead of scribbling over
557 * random memory locations.
558 */
559 dev_crit(chan2dev(&atchan->chan_common),
560 "Bad descriptor submitted for DMA!\n");
561 dev_crit(chan2dev(&atchan->chan_common),
562 " cookie: %d\n", bad_desc->txd.cookie);
563 atc_dump_lli(atchan, &bad_desc->lli);
564 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
565 atc_dump_lli(atchan, &child->lli);
566
567 spin_unlock_irqrestore(&atchan->lock, flags);
568
569 /* Pretend the descriptor completed successfully */
570 atc_chain_complete(atchan, bad_desc);
571 }
572
573 /**
574 * atc_handle_cyclic - at the end of a period, run callback function
575 * @atchan: channel used for cyclic operations
576 */
atc_handle_cyclic(struct at_dma_chan * atchan)577 static void atc_handle_cyclic(struct at_dma_chan *atchan)
578 {
579 struct at_desc *first = atc_first_active(atchan);
580 struct dma_async_tx_descriptor *txd = &first->txd;
581
582 dev_vdbg(chan2dev(&atchan->chan_common),
583 "new cyclic period llp 0x%08x\n",
584 channel_readl(atchan, DSCR));
585
586 dmaengine_desc_get_callback_invoke(txd, NULL);
587 }
588
589 /*-- IRQ & Tasklet ---------------------------------------------------*/
590
atc_tasklet(struct tasklet_struct * t)591 static void atc_tasklet(struct tasklet_struct *t)
592 {
593 struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet);
594
595 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
596 return atc_handle_error(atchan);
597
598 if (atc_chan_is_cyclic(atchan))
599 return atc_handle_cyclic(atchan);
600
601 atc_advance_work(atchan);
602 }
603
at_dma_interrupt(int irq,void * dev_id)604 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
605 {
606 struct at_dma *atdma = (struct at_dma *)dev_id;
607 struct at_dma_chan *atchan;
608 int i;
609 u32 status, pending, imr;
610 int ret = IRQ_NONE;
611
612 do {
613 imr = dma_readl(atdma, EBCIMR);
614 status = dma_readl(atdma, EBCISR);
615 pending = status & imr;
616
617 if (!pending)
618 break;
619
620 dev_vdbg(atdma->dma_common.dev,
621 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
622 status, imr, pending);
623
624 for (i = 0; i < atdma->dma_common.chancnt; i++) {
625 atchan = &atdma->chan[i];
626 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
627 if (pending & AT_DMA_ERR(i)) {
628 /* Disable channel on AHB error */
629 dma_writel(atdma, CHDR,
630 AT_DMA_RES(i) | atchan->mask);
631 /* Give information to tasklet */
632 set_bit(ATC_IS_ERROR, &atchan->status);
633 }
634 tasklet_schedule(&atchan->tasklet);
635 ret = IRQ_HANDLED;
636 }
637 }
638
639 } while (pending);
640
641 return ret;
642 }
643
644
645 /*-- DMA Engine API --------------------------------------------------*/
646
647 /**
648 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
649 * @tx: descriptor at the head of the transaction chain
650 *
651 * Queue chain if DMA engine is working already
652 *
653 * Cookie increment and adding to active_list or queue must be atomic
654 */
atc_tx_submit(struct dma_async_tx_descriptor * tx)655 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
656 {
657 struct at_desc *desc = txd_to_at_desc(tx);
658 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
659 dma_cookie_t cookie;
660 unsigned long flags;
661
662 spin_lock_irqsave(&atchan->lock, flags);
663 cookie = dma_cookie_assign(tx);
664
665 list_add_tail(&desc->desc_node, &atchan->queue);
666 spin_unlock_irqrestore(&atchan->lock, flags);
667
668 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
669 desc->txd.cookie);
670 return cookie;
671 }
672
673 /**
674 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
675 * @chan: the channel to prepare operation on
676 * @xt: Interleaved transfer template
677 * @flags: tx descriptor status flags
678 */
679 static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)680 atc_prep_dma_interleaved(struct dma_chan *chan,
681 struct dma_interleaved_template *xt,
682 unsigned long flags)
683 {
684 struct at_dma_chan *atchan = to_at_dma_chan(chan);
685 struct data_chunk *first;
686 struct at_desc *desc = NULL;
687 size_t xfer_count;
688 unsigned int dwidth;
689 u32 ctrla;
690 u32 ctrlb;
691 size_t len = 0;
692 int i;
693
694 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
695 return NULL;
696
697 first = xt->sgl;
698
699 dev_info(chan2dev(chan),
700 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
701 __func__, &xt->src_start, &xt->dst_start, xt->numf,
702 xt->frame_size, flags);
703
704 /*
705 * The controller can only "skip" X bytes every Y bytes, so we
706 * need to make sure we are given a template that fit that
707 * description, ie a template with chunks that always have the
708 * same size, with the same ICGs.
709 */
710 for (i = 0; i < xt->frame_size; i++) {
711 struct data_chunk *chunk = xt->sgl + i;
712
713 if ((chunk->size != xt->sgl->size) ||
714 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
715 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
716 dev_err(chan2dev(chan),
717 "%s: the controller can transfer only identical chunks\n",
718 __func__);
719 return NULL;
720 }
721
722 len += chunk->size;
723 }
724
725 dwidth = atc_get_xfer_width(xt->src_start,
726 xt->dst_start, len);
727
728 xfer_count = len >> dwidth;
729 if (xfer_count > ATC_BTSIZE_MAX) {
730 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
731 return NULL;
732 }
733
734 ctrla = ATC_SRC_WIDTH(dwidth) |
735 ATC_DST_WIDTH(dwidth);
736
737 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
738 | ATC_SRC_ADDR_MODE_INCR
739 | ATC_DST_ADDR_MODE_INCR
740 | ATC_SRC_PIP
741 | ATC_DST_PIP
742 | ATC_FC_MEM2MEM;
743
744 /* create the transfer */
745 desc = atc_desc_get(atchan);
746 if (!desc) {
747 dev_err(chan2dev(chan),
748 "%s: couldn't allocate our descriptor\n", __func__);
749 return NULL;
750 }
751
752 desc->lli.saddr = xt->src_start;
753 desc->lli.daddr = xt->dst_start;
754 desc->lli.ctrla = ctrla | xfer_count;
755 desc->lli.ctrlb = ctrlb;
756
757 desc->boundary = first->size >> dwidth;
758 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
759 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
760
761 desc->txd.cookie = -EBUSY;
762 desc->total_len = desc->len = len;
763
764 /* set end-of-link to the last link descriptor of list*/
765 set_desc_eol(desc);
766
767 desc->txd.flags = flags; /* client is in control of this ack */
768
769 return &desc->txd;
770 }
771
772 /**
773 * atc_prep_dma_memcpy - prepare a memcpy operation
774 * @chan: the channel to prepare operation on
775 * @dest: operation virtual destination address
776 * @src: operation virtual source address
777 * @len: operation length
778 * @flags: tx descriptor status flags
779 */
780 static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)781 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
782 size_t len, unsigned long flags)
783 {
784 struct at_dma_chan *atchan = to_at_dma_chan(chan);
785 struct at_desc *desc = NULL;
786 struct at_desc *first = NULL;
787 struct at_desc *prev = NULL;
788 size_t xfer_count;
789 size_t offset;
790 unsigned int src_width;
791 unsigned int dst_width;
792 u32 ctrla;
793 u32 ctrlb;
794
795 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
796 &dest, &src, len, flags);
797
798 if (unlikely(!len)) {
799 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
800 return NULL;
801 }
802
803 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
804 | ATC_SRC_ADDR_MODE_INCR
805 | ATC_DST_ADDR_MODE_INCR
806 | ATC_FC_MEM2MEM;
807
808 /*
809 * We can be a lot more clever here, but this should take care
810 * of the most common optimization.
811 */
812 src_width = dst_width = atc_get_xfer_width(src, dest, len);
813
814 ctrla = ATC_SRC_WIDTH(src_width) |
815 ATC_DST_WIDTH(dst_width);
816
817 for (offset = 0; offset < len; offset += xfer_count << src_width) {
818 xfer_count = min_t(size_t, (len - offset) >> src_width,
819 ATC_BTSIZE_MAX);
820
821 desc = atc_desc_get(atchan);
822 if (!desc)
823 goto err_desc_get;
824
825 desc->lli.saddr = src + offset;
826 desc->lli.daddr = dest + offset;
827 desc->lli.ctrla = ctrla | xfer_count;
828 desc->lli.ctrlb = ctrlb;
829
830 desc->txd.cookie = 0;
831 desc->len = xfer_count << src_width;
832
833 atc_desc_chain(&first, &prev, desc);
834 }
835
836 /* First descriptor of the chain embedds additional information */
837 first->txd.cookie = -EBUSY;
838 first->total_len = len;
839
840 /* set end-of-link to the last link descriptor of list*/
841 set_desc_eol(desc);
842
843 first->txd.flags = flags; /* client is in control of this ack */
844
845 return &first->txd;
846
847 err_desc_get:
848 atc_desc_put(atchan, first);
849 return NULL;
850 }
851
atc_create_memset_desc(struct dma_chan * chan,dma_addr_t psrc,dma_addr_t pdst,size_t len)852 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
853 dma_addr_t psrc,
854 dma_addr_t pdst,
855 size_t len)
856 {
857 struct at_dma_chan *atchan = to_at_dma_chan(chan);
858 struct at_desc *desc;
859 size_t xfer_count;
860
861 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
862 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
863 ATC_SRC_ADDR_MODE_FIXED |
864 ATC_DST_ADDR_MODE_INCR |
865 ATC_FC_MEM2MEM;
866
867 xfer_count = len >> 2;
868 if (xfer_count > ATC_BTSIZE_MAX) {
869 dev_err(chan2dev(chan), "%s: buffer is too big\n",
870 __func__);
871 return NULL;
872 }
873
874 desc = atc_desc_get(atchan);
875 if (!desc) {
876 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
877 __func__);
878 return NULL;
879 }
880
881 desc->lli.saddr = psrc;
882 desc->lli.daddr = pdst;
883 desc->lli.ctrla = ctrla | xfer_count;
884 desc->lli.ctrlb = ctrlb;
885
886 desc->txd.cookie = 0;
887 desc->len = len;
888
889 return desc;
890 }
891
892 /**
893 * atc_prep_dma_memset - prepare a memcpy operation
894 * @chan: the channel to prepare operation on
895 * @dest: operation virtual destination address
896 * @value: value to set memory buffer to
897 * @len: operation length
898 * @flags: tx descriptor status flags
899 */
900 static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)901 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
902 size_t len, unsigned long flags)
903 {
904 struct at_dma *atdma = to_at_dma(chan->device);
905 struct at_desc *desc;
906 void __iomem *vaddr;
907 dma_addr_t paddr;
908 char fill_pattern;
909
910 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
911 &dest, value, len, flags);
912
913 if (unlikely(!len)) {
914 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
915 return NULL;
916 }
917
918 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
919 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
920 __func__);
921 return NULL;
922 }
923
924 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
925 if (!vaddr) {
926 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
927 __func__);
928 return NULL;
929 }
930
931 /* Only the first byte of value is to be used according to dmaengine */
932 fill_pattern = (char)value;
933
934 *(u32*)vaddr = (fill_pattern << 24) |
935 (fill_pattern << 16) |
936 (fill_pattern << 8) |
937 fill_pattern;
938
939 desc = atc_create_memset_desc(chan, paddr, dest, len);
940 if (!desc) {
941 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
942 __func__);
943 goto err_free_buffer;
944 }
945
946 desc->memset_paddr = paddr;
947 desc->memset_vaddr = vaddr;
948 desc->memset_buffer = true;
949
950 desc->txd.cookie = -EBUSY;
951 desc->total_len = len;
952
953 /* set end-of-link on the descriptor */
954 set_desc_eol(desc);
955
956 desc->txd.flags = flags;
957
958 return &desc->txd;
959
960 err_free_buffer:
961 dma_pool_free(atdma->memset_pool, vaddr, paddr);
962 return NULL;
963 }
964
965 static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)966 atc_prep_dma_memset_sg(struct dma_chan *chan,
967 struct scatterlist *sgl,
968 unsigned int sg_len, int value,
969 unsigned long flags)
970 {
971 struct at_dma_chan *atchan = to_at_dma_chan(chan);
972 struct at_dma *atdma = to_at_dma(chan->device);
973 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
974 struct scatterlist *sg;
975 void __iomem *vaddr;
976 dma_addr_t paddr;
977 size_t total_len = 0;
978 int i;
979
980 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
981 value, sg_len, flags);
982
983 if (unlikely(!sgl || !sg_len)) {
984 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
985 __func__);
986 return NULL;
987 }
988
989 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
990 if (!vaddr) {
991 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
992 __func__);
993 return NULL;
994 }
995 *(u32*)vaddr = value;
996
997 for_each_sg(sgl, sg, sg_len, i) {
998 dma_addr_t dest = sg_dma_address(sg);
999 size_t len = sg_dma_len(sg);
1000
1001 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1002 __func__, &dest, len);
1003
1004 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1005 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1006 __func__);
1007 goto err_put_desc;
1008 }
1009
1010 desc = atc_create_memset_desc(chan, paddr, dest, len);
1011 if (!desc)
1012 goto err_put_desc;
1013
1014 atc_desc_chain(&first, &prev, desc);
1015
1016 total_len += len;
1017 }
1018
1019 /*
1020 * Only set the buffer pointers on the last descriptor to
1021 * avoid free'ing while we have our transfer still going
1022 */
1023 desc->memset_paddr = paddr;
1024 desc->memset_vaddr = vaddr;
1025 desc->memset_buffer = true;
1026
1027 first->txd.cookie = -EBUSY;
1028 first->total_len = total_len;
1029
1030 /* set end-of-link on the descriptor */
1031 set_desc_eol(desc);
1032
1033 first->txd.flags = flags;
1034
1035 return &first->txd;
1036
1037 err_put_desc:
1038 atc_desc_put(atchan, first);
1039 return NULL;
1040 }
1041
1042 /**
1043 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1044 * @chan: DMA channel
1045 * @sgl: scatterlist to transfer to/from
1046 * @sg_len: number of entries in @scatterlist
1047 * @direction: DMA direction
1048 * @flags: tx descriptor status flags
1049 * @context: transaction context (ignored)
1050 */
1051 static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1052 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1053 unsigned int sg_len, enum dma_transfer_direction direction,
1054 unsigned long flags, void *context)
1055 {
1056 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1057 struct at_dma_slave *atslave = chan->private;
1058 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1059 struct at_desc *first = NULL;
1060 struct at_desc *prev = NULL;
1061 u32 ctrla;
1062 u32 ctrlb;
1063 dma_addr_t reg;
1064 unsigned int reg_width;
1065 unsigned int mem_width;
1066 unsigned int i;
1067 struct scatterlist *sg;
1068 size_t total_len = 0;
1069
1070 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1071 sg_len,
1072 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1073 flags);
1074
1075 if (unlikely(!atslave || !sg_len)) {
1076 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1077 return NULL;
1078 }
1079
1080 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1081 | ATC_DCSIZE(sconfig->dst_maxburst);
1082 ctrlb = ATC_IEN;
1083
1084 switch (direction) {
1085 case DMA_MEM_TO_DEV:
1086 reg_width = convert_buswidth(sconfig->dst_addr_width);
1087 ctrla |= ATC_DST_WIDTH(reg_width);
1088 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1089 | ATC_SRC_ADDR_MODE_INCR
1090 | ATC_FC_MEM2PER
1091 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1092 reg = sconfig->dst_addr;
1093 for_each_sg(sgl, sg, sg_len, i) {
1094 struct at_desc *desc;
1095 u32 len;
1096 u32 mem;
1097
1098 desc = atc_desc_get(atchan);
1099 if (!desc)
1100 goto err_desc_get;
1101
1102 mem = sg_dma_address(sg);
1103 len = sg_dma_len(sg);
1104 if (unlikely(!len)) {
1105 dev_dbg(chan2dev(chan),
1106 "prep_slave_sg: sg(%d) data length is zero\n", i);
1107 goto err;
1108 }
1109 mem_width = 2;
1110 if (unlikely(mem & 3 || len & 3))
1111 mem_width = 0;
1112
1113 desc->lli.saddr = mem;
1114 desc->lli.daddr = reg;
1115 desc->lli.ctrla = ctrla
1116 | ATC_SRC_WIDTH(mem_width)
1117 | len >> mem_width;
1118 desc->lli.ctrlb = ctrlb;
1119 desc->len = len;
1120
1121 atc_desc_chain(&first, &prev, desc);
1122 total_len += len;
1123 }
1124 break;
1125 case DMA_DEV_TO_MEM:
1126 reg_width = convert_buswidth(sconfig->src_addr_width);
1127 ctrla |= ATC_SRC_WIDTH(reg_width);
1128 ctrlb |= ATC_DST_ADDR_MODE_INCR
1129 | ATC_SRC_ADDR_MODE_FIXED
1130 | ATC_FC_PER2MEM
1131 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1132
1133 reg = sconfig->src_addr;
1134 for_each_sg(sgl, sg, sg_len, i) {
1135 struct at_desc *desc;
1136 u32 len;
1137 u32 mem;
1138
1139 desc = atc_desc_get(atchan);
1140 if (!desc)
1141 goto err_desc_get;
1142
1143 mem = sg_dma_address(sg);
1144 len = sg_dma_len(sg);
1145 if (unlikely(!len)) {
1146 dev_dbg(chan2dev(chan),
1147 "prep_slave_sg: sg(%d) data length is zero\n", i);
1148 goto err;
1149 }
1150 mem_width = 2;
1151 if (unlikely(mem & 3 || len & 3))
1152 mem_width = 0;
1153
1154 desc->lli.saddr = reg;
1155 desc->lli.daddr = mem;
1156 desc->lli.ctrla = ctrla
1157 | ATC_DST_WIDTH(mem_width)
1158 | len >> reg_width;
1159 desc->lli.ctrlb = ctrlb;
1160 desc->len = len;
1161
1162 atc_desc_chain(&first, &prev, desc);
1163 total_len += len;
1164 }
1165 break;
1166 default:
1167 return NULL;
1168 }
1169
1170 /* set end-of-link to the last link descriptor of list*/
1171 set_desc_eol(prev);
1172
1173 /* First descriptor of the chain embedds additional information */
1174 first->txd.cookie = -EBUSY;
1175 first->total_len = total_len;
1176
1177 /* first link descriptor of list is responsible of flags */
1178 first->txd.flags = flags; /* client is in control of this ack */
1179
1180 return &first->txd;
1181
1182 err_desc_get:
1183 dev_err(chan2dev(chan), "not enough descriptors available\n");
1184 err:
1185 atc_desc_put(atchan, first);
1186 return NULL;
1187 }
1188
1189 /*
1190 * atc_dma_cyclic_check_values
1191 * Check for too big/unaligned periods and unaligned DMA buffer
1192 */
1193 static int
atc_dma_cyclic_check_values(unsigned int reg_width,dma_addr_t buf_addr,size_t period_len)1194 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1195 size_t period_len)
1196 {
1197 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1198 goto err_out;
1199 if (unlikely(period_len & ((1 << reg_width) - 1)))
1200 goto err_out;
1201 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1202 goto err_out;
1203
1204 return 0;
1205
1206 err_out:
1207 return -EINVAL;
1208 }
1209
1210 /*
1211 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1212 */
1213 static int
atc_dma_cyclic_fill_desc(struct dma_chan * chan,struct at_desc * desc,unsigned int period_index,dma_addr_t buf_addr,unsigned int reg_width,size_t period_len,enum dma_transfer_direction direction)1214 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1215 unsigned int period_index, dma_addr_t buf_addr,
1216 unsigned int reg_width, size_t period_len,
1217 enum dma_transfer_direction direction)
1218 {
1219 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1220 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1221 u32 ctrla;
1222
1223 /* prepare common CRTLA value */
1224 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1225 | ATC_DCSIZE(sconfig->dst_maxburst)
1226 | ATC_DST_WIDTH(reg_width)
1227 | ATC_SRC_WIDTH(reg_width)
1228 | period_len >> reg_width;
1229
1230 switch (direction) {
1231 case DMA_MEM_TO_DEV:
1232 desc->lli.saddr = buf_addr + (period_len * period_index);
1233 desc->lli.daddr = sconfig->dst_addr;
1234 desc->lli.ctrla = ctrla;
1235 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1236 | ATC_SRC_ADDR_MODE_INCR
1237 | ATC_FC_MEM2PER
1238 | ATC_SIF(atchan->mem_if)
1239 | ATC_DIF(atchan->per_if);
1240 desc->len = period_len;
1241 break;
1242
1243 case DMA_DEV_TO_MEM:
1244 desc->lli.saddr = sconfig->src_addr;
1245 desc->lli.daddr = buf_addr + (period_len * period_index);
1246 desc->lli.ctrla = ctrla;
1247 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1248 | ATC_SRC_ADDR_MODE_FIXED
1249 | ATC_FC_PER2MEM
1250 | ATC_SIF(atchan->per_if)
1251 | ATC_DIF(atchan->mem_if);
1252 desc->len = period_len;
1253 break;
1254
1255 default:
1256 return -EINVAL;
1257 }
1258
1259 return 0;
1260 }
1261
1262 /**
1263 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1264 * @chan: the DMA channel to prepare
1265 * @buf_addr: physical DMA address where the buffer starts
1266 * @buf_len: total number of bytes for the entire buffer
1267 * @period_len: number of bytes for each period
1268 * @direction: transfer direction, to or from device
1269 * @flags: tx descriptor status flags
1270 */
1271 static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1272 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1273 size_t period_len, enum dma_transfer_direction direction,
1274 unsigned long flags)
1275 {
1276 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1277 struct at_dma_slave *atslave = chan->private;
1278 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1279 struct at_desc *first = NULL;
1280 struct at_desc *prev = NULL;
1281 unsigned long was_cyclic;
1282 unsigned int reg_width;
1283 unsigned int periods = buf_len / period_len;
1284 unsigned int i;
1285
1286 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1287 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1288 &buf_addr,
1289 periods, buf_len, period_len);
1290
1291 if (unlikely(!atslave || !buf_len || !period_len)) {
1292 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1293 return NULL;
1294 }
1295
1296 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1297 if (was_cyclic) {
1298 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1299 return NULL;
1300 }
1301
1302 if (unlikely(!is_slave_direction(direction)))
1303 goto err_out;
1304
1305 if (direction == DMA_MEM_TO_DEV)
1306 reg_width = convert_buswidth(sconfig->dst_addr_width);
1307 else
1308 reg_width = convert_buswidth(sconfig->src_addr_width);
1309
1310 /* Check for too big/unaligned periods and unaligned DMA buffer */
1311 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1312 goto err_out;
1313
1314 /* build cyclic linked list */
1315 for (i = 0; i < periods; i++) {
1316 struct at_desc *desc;
1317
1318 desc = atc_desc_get(atchan);
1319 if (!desc)
1320 goto err_desc_get;
1321
1322 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1323 reg_width, period_len, direction))
1324 goto err_desc_get;
1325
1326 atc_desc_chain(&first, &prev, desc);
1327 }
1328
1329 /* lets make a cyclic list */
1330 prev->lli.dscr = first->txd.phys;
1331
1332 /* First descriptor of the chain embedds additional information */
1333 first->txd.cookie = -EBUSY;
1334 first->total_len = buf_len;
1335
1336 return &first->txd;
1337
1338 err_desc_get:
1339 dev_err(chan2dev(chan), "not enough descriptors available\n");
1340 atc_desc_put(atchan, first);
1341 err_out:
1342 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1343 return NULL;
1344 }
1345
atc_config(struct dma_chan * chan,struct dma_slave_config * sconfig)1346 static int atc_config(struct dma_chan *chan,
1347 struct dma_slave_config *sconfig)
1348 {
1349 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1350
1351 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1352
1353 /* Check if it is chan is configured for slave transfers */
1354 if (!chan->private)
1355 return -EINVAL;
1356
1357 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1358
1359 convert_burst(&atchan->dma_sconfig.src_maxburst);
1360 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1361
1362 return 0;
1363 }
1364
atc_pause(struct dma_chan * chan)1365 static int atc_pause(struct dma_chan *chan)
1366 {
1367 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1368 struct at_dma *atdma = to_at_dma(chan->device);
1369 int chan_id = atchan->chan_common.chan_id;
1370 unsigned long flags;
1371
1372 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1373
1374 spin_lock_irqsave(&atchan->lock, flags);
1375
1376 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1377 set_bit(ATC_IS_PAUSED, &atchan->status);
1378
1379 spin_unlock_irqrestore(&atchan->lock, flags);
1380
1381 return 0;
1382 }
1383
atc_resume(struct dma_chan * chan)1384 static int atc_resume(struct dma_chan *chan)
1385 {
1386 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1387 struct at_dma *atdma = to_at_dma(chan->device);
1388 int chan_id = atchan->chan_common.chan_id;
1389 unsigned long flags;
1390
1391 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1392
1393 if (!atc_chan_is_paused(atchan))
1394 return 0;
1395
1396 spin_lock_irqsave(&atchan->lock, flags);
1397
1398 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1399 clear_bit(ATC_IS_PAUSED, &atchan->status);
1400
1401 spin_unlock_irqrestore(&atchan->lock, flags);
1402
1403 return 0;
1404 }
1405
atc_terminate_all(struct dma_chan * chan)1406 static int atc_terminate_all(struct dma_chan *chan)
1407 {
1408 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1409 struct at_dma *atdma = to_at_dma(chan->device);
1410 int chan_id = atchan->chan_common.chan_id;
1411 unsigned long flags;
1412
1413 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1414
1415 /*
1416 * This is only called when something went wrong elsewhere, so
1417 * we don't really care about the data. Just disable the
1418 * channel. We still have to poll the channel enable bit due
1419 * to AHB/HSB limitations.
1420 */
1421 spin_lock_irqsave(&atchan->lock, flags);
1422
1423 /* disabling channel: must also remove suspend state */
1424 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1425
1426 /* confirm that this channel is disabled */
1427 while (dma_readl(atdma, CHSR) & atchan->mask)
1428 cpu_relax();
1429
1430 /* active_list entries will end up before queued entries */
1431 list_splice_tail_init(&atchan->queue, &atchan->free_list);
1432 list_splice_tail_init(&atchan->active_list, &atchan->free_list);
1433
1434 clear_bit(ATC_IS_PAUSED, &atchan->status);
1435 /* if channel dedicated to cyclic operations, free it */
1436 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1437
1438 spin_unlock_irqrestore(&atchan->lock, flags);
1439
1440 return 0;
1441 }
1442
1443 /**
1444 * atc_tx_status - poll for transaction completion
1445 * @chan: DMA channel
1446 * @cookie: transaction identifier to check status of
1447 * @txstate: if not %NULL updated with transaction state
1448 *
1449 * If @txstate is passed in, upon return it reflect the driver
1450 * internal state and can be used with dma_async_is_complete() to check
1451 * the status of multiple cookies without re-checking hardware state.
1452 */
1453 static enum dma_status
atc_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1454 atc_tx_status(struct dma_chan *chan,
1455 dma_cookie_t cookie,
1456 struct dma_tx_state *txstate)
1457 {
1458 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1459 unsigned long flags;
1460 enum dma_status ret;
1461 int bytes = 0;
1462
1463 ret = dma_cookie_status(chan, cookie, txstate);
1464 if (ret == DMA_COMPLETE)
1465 return ret;
1466 /*
1467 * There's no point calculating the residue if there's
1468 * no txstate to store the value.
1469 */
1470 if (!txstate)
1471 return DMA_ERROR;
1472
1473 spin_lock_irqsave(&atchan->lock, flags);
1474
1475 /* Get number of bytes left in the active transactions */
1476 bytes = atc_get_bytes_left(chan, cookie);
1477
1478 spin_unlock_irqrestore(&atchan->lock, flags);
1479
1480 if (unlikely(bytes < 0)) {
1481 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1482 return DMA_ERROR;
1483 } else {
1484 dma_set_residue(txstate, bytes);
1485 }
1486
1487 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1488 ret, cookie, bytes);
1489
1490 return ret;
1491 }
1492
1493 /**
1494 * atc_issue_pending - takes the first transaction descriptor in the pending
1495 * queue and starts the transfer.
1496 * @chan: target DMA channel
1497 */
atc_issue_pending(struct dma_chan * chan)1498 static void atc_issue_pending(struct dma_chan *chan)
1499 {
1500 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1501 struct at_desc *desc;
1502 unsigned long flags;
1503
1504 dev_vdbg(chan2dev(chan), "issue_pending\n");
1505
1506 spin_lock_irqsave(&atchan->lock, flags);
1507 if (atc_chan_is_enabled(atchan) || list_empty(&atchan->queue))
1508 return spin_unlock_irqrestore(&atchan->lock, flags);
1509
1510 desc = atc_first_queued(atchan);
1511 list_move_tail(&desc->desc_node, &atchan->active_list);
1512 atc_dostart(atchan, desc);
1513 spin_unlock_irqrestore(&atchan->lock, flags);
1514 }
1515
1516 /**
1517 * atc_alloc_chan_resources - allocate resources for DMA channel
1518 * @chan: allocate descriptor resources for this channel
1519 *
1520 * return - the number of allocated descriptors
1521 */
atc_alloc_chan_resources(struct dma_chan * chan)1522 static int atc_alloc_chan_resources(struct dma_chan *chan)
1523 {
1524 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1525 struct at_dma *atdma = to_at_dma(chan->device);
1526 struct at_desc *desc;
1527 struct at_dma_slave *atslave;
1528 int i;
1529 u32 cfg;
1530
1531 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1532
1533 /* ASSERT: channel is idle */
1534 if (atc_chan_is_enabled(atchan)) {
1535 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1536 return -EIO;
1537 }
1538
1539 if (!list_empty(&atchan->free_list)) {
1540 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1541 return -EIO;
1542 }
1543
1544 cfg = ATC_DEFAULT_CFG;
1545
1546 atslave = chan->private;
1547 if (atslave) {
1548 /*
1549 * We need controller-specific data to set up slave
1550 * transfers.
1551 */
1552 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1553
1554 /* if cfg configuration specified take it instead of default */
1555 if (atslave->cfg)
1556 cfg = atslave->cfg;
1557 }
1558
1559 /* Allocate initial pool of descriptors */
1560 for (i = 0; i < init_nr_desc_per_channel; i++) {
1561 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1562 if (!desc) {
1563 dev_err(atdma->dma_common.dev,
1564 "Only %d initial descriptors\n", i);
1565 break;
1566 }
1567 list_add_tail(&desc->desc_node, &atchan->free_list);
1568 }
1569
1570 dma_cookie_init(chan);
1571
1572 /* channel parameters */
1573 channel_writel(atchan, CFG, cfg);
1574
1575 dev_dbg(chan2dev(chan),
1576 "alloc_chan_resources: allocated %d descriptors\n", i);
1577
1578 return i;
1579 }
1580
1581 /**
1582 * atc_free_chan_resources - free all channel resources
1583 * @chan: DMA channel
1584 */
atc_free_chan_resources(struct dma_chan * chan)1585 static void atc_free_chan_resources(struct dma_chan *chan)
1586 {
1587 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1588 struct at_dma *atdma = to_at_dma(chan->device);
1589 struct at_desc *desc, *_desc;
1590 LIST_HEAD(list);
1591
1592 /* ASSERT: channel is idle */
1593 BUG_ON(!list_empty(&atchan->active_list));
1594 BUG_ON(!list_empty(&atchan->queue));
1595 BUG_ON(atc_chan_is_enabled(atchan));
1596
1597 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1598 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1599 list_del(&desc->desc_node);
1600 /* free link descriptor */
1601 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1602 }
1603 list_splice_init(&atchan->free_list, &list);
1604 atchan->status = 0;
1605
1606 /*
1607 * Free atslave allocated in at_dma_xlate()
1608 */
1609 kfree(chan->private);
1610 chan->private = NULL;
1611
1612 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1613 }
1614
1615 #ifdef CONFIG_OF
at_dma_filter(struct dma_chan * chan,void * slave)1616 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1617 {
1618 struct at_dma_slave *atslave = slave;
1619
1620 if (atslave->dma_dev == chan->device->dev) {
1621 chan->private = atslave;
1622 return true;
1623 } else {
1624 return false;
1625 }
1626 }
1627
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1628 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1629 struct of_dma *of_dma)
1630 {
1631 struct dma_chan *chan;
1632 struct at_dma_chan *atchan;
1633 struct at_dma_slave *atslave;
1634 dma_cap_mask_t mask;
1635 unsigned int per_id;
1636 struct platform_device *dmac_pdev;
1637
1638 if (dma_spec->args_count != 2)
1639 return NULL;
1640
1641 dmac_pdev = of_find_device_by_node(dma_spec->np);
1642 if (!dmac_pdev)
1643 return NULL;
1644
1645 dma_cap_zero(mask);
1646 dma_cap_set(DMA_SLAVE, mask);
1647
1648 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1649 if (!atslave) {
1650 put_device(&dmac_pdev->dev);
1651 return NULL;
1652 }
1653
1654 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1655 /*
1656 * We can fill both SRC_PER and DST_PER, one of these fields will be
1657 * ignored depending on DMA transfer direction.
1658 */
1659 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1660 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1661 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1662 /*
1663 * We have to translate the value we get from the device tree since
1664 * the half FIFO configuration value had to be 0 to keep backward
1665 * compatibility.
1666 */
1667 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1668 case AT91_DMA_CFG_FIFOCFG_ALAP:
1669 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1670 break;
1671 case AT91_DMA_CFG_FIFOCFG_ASAP:
1672 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1673 break;
1674 case AT91_DMA_CFG_FIFOCFG_HALF:
1675 default:
1676 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1677 }
1678 atslave->dma_dev = &dmac_pdev->dev;
1679
1680 chan = dma_request_channel(mask, at_dma_filter, atslave);
1681 if (!chan) {
1682 put_device(&dmac_pdev->dev);
1683 kfree(atslave);
1684 return NULL;
1685 }
1686
1687 atchan = to_at_dma_chan(chan);
1688 atchan->per_if = dma_spec->args[0] & 0xff;
1689 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1690
1691 return chan;
1692 }
1693 #else
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1694 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1695 struct of_dma *of_dma)
1696 {
1697 return NULL;
1698 }
1699 #endif
1700
1701 /*-- Module Management -----------------------------------------------*/
1702
1703 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1704 static struct at_dma_platform_data at91sam9rl_config = {
1705 .nr_channels = 2,
1706 };
1707 static struct at_dma_platform_data at91sam9g45_config = {
1708 .nr_channels = 8,
1709 };
1710
1711 #if defined(CONFIG_OF)
1712 static const struct of_device_id atmel_dma_dt_ids[] = {
1713 {
1714 .compatible = "atmel,at91sam9rl-dma",
1715 .data = &at91sam9rl_config,
1716 }, {
1717 .compatible = "atmel,at91sam9g45-dma",
1718 .data = &at91sam9g45_config,
1719 }, {
1720 /* sentinel */
1721 }
1722 };
1723
1724 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1725 #endif
1726
1727 static const struct platform_device_id atdma_devtypes[] = {
1728 {
1729 .name = "at91sam9rl_dma",
1730 .driver_data = (unsigned long) &at91sam9rl_config,
1731 }, {
1732 .name = "at91sam9g45_dma",
1733 .driver_data = (unsigned long) &at91sam9g45_config,
1734 }, {
1735 /* sentinel */
1736 }
1737 };
1738
at_dma_get_driver_data(struct platform_device * pdev)1739 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1740 struct platform_device *pdev)
1741 {
1742 if (pdev->dev.of_node) {
1743 const struct of_device_id *match;
1744 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1745 if (match == NULL)
1746 return NULL;
1747 return match->data;
1748 }
1749 return (struct at_dma_platform_data *)
1750 platform_get_device_id(pdev)->driver_data;
1751 }
1752
1753 /**
1754 * at_dma_off - disable DMA controller
1755 * @atdma: the Atmel HDAMC device
1756 */
at_dma_off(struct at_dma * atdma)1757 static void at_dma_off(struct at_dma *atdma)
1758 {
1759 dma_writel(atdma, EN, 0);
1760
1761 /* disable all interrupts */
1762 dma_writel(atdma, EBCIDR, -1L);
1763
1764 /* confirm that all channels are disabled */
1765 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1766 cpu_relax();
1767 }
1768
at_dma_probe(struct platform_device * pdev)1769 static int __init at_dma_probe(struct platform_device *pdev)
1770 {
1771 struct resource *io;
1772 struct at_dma *atdma;
1773 size_t size;
1774 int irq;
1775 int err;
1776 int i;
1777 const struct at_dma_platform_data *plat_dat;
1778
1779 /* setup platform data for each SoC */
1780 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1781 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1782 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1783 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1784 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1785 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1786 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1787
1788 /* get DMA parameters from controller type */
1789 plat_dat = at_dma_get_driver_data(pdev);
1790 if (!plat_dat)
1791 return -ENODEV;
1792
1793 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794 if (!io)
1795 return -EINVAL;
1796
1797 irq = platform_get_irq(pdev, 0);
1798 if (irq < 0)
1799 return irq;
1800
1801 size = sizeof(struct at_dma);
1802 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1803 atdma = kzalloc(size, GFP_KERNEL);
1804 if (!atdma)
1805 return -ENOMEM;
1806
1807 /* discover transaction capabilities */
1808 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1809 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1810
1811 size = resource_size(io);
1812 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1813 err = -EBUSY;
1814 goto err_kfree;
1815 }
1816
1817 atdma->regs = ioremap(io->start, size);
1818 if (!atdma->regs) {
1819 err = -ENOMEM;
1820 goto err_release_r;
1821 }
1822
1823 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1824 if (IS_ERR(atdma->clk)) {
1825 err = PTR_ERR(atdma->clk);
1826 goto err_clk;
1827 }
1828 err = clk_prepare_enable(atdma->clk);
1829 if (err)
1830 goto err_clk_prepare;
1831
1832 /* force dma off, just in case */
1833 at_dma_off(atdma);
1834
1835 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1836 if (err)
1837 goto err_irq;
1838
1839 platform_set_drvdata(pdev, atdma);
1840
1841 /* create a pool of consistent memory blocks for hardware descriptors */
1842 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1843 &pdev->dev, sizeof(struct at_desc),
1844 4 /* word alignment */, 0);
1845 if (!atdma->dma_desc_pool) {
1846 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1847 err = -ENOMEM;
1848 goto err_desc_pool_create;
1849 }
1850
1851 /* create a pool of consistent memory blocks for memset blocks */
1852 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1853 &pdev->dev, sizeof(int), 4, 0);
1854 if (!atdma->memset_pool) {
1855 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1856 err = -ENOMEM;
1857 goto err_memset_pool_create;
1858 }
1859
1860 /* clear any pending interrupt */
1861 while (dma_readl(atdma, EBCISR))
1862 cpu_relax();
1863
1864 /* initialize channels related values */
1865 INIT_LIST_HEAD(&atdma->dma_common.channels);
1866 for (i = 0; i < plat_dat->nr_channels; i++) {
1867 struct at_dma_chan *atchan = &atdma->chan[i];
1868
1869 atchan->mem_if = AT_DMA_MEM_IF;
1870 atchan->per_if = AT_DMA_PER_IF;
1871 atchan->chan_common.device = &atdma->dma_common;
1872 dma_cookie_init(&atchan->chan_common);
1873 list_add_tail(&atchan->chan_common.device_node,
1874 &atdma->dma_common.channels);
1875
1876 atchan->ch_regs = atdma->regs + ch_regs(i);
1877 spin_lock_init(&atchan->lock);
1878 atchan->mask = 1 << i;
1879
1880 INIT_LIST_HEAD(&atchan->active_list);
1881 INIT_LIST_HEAD(&atchan->queue);
1882 INIT_LIST_HEAD(&atchan->free_list);
1883
1884 tasklet_setup(&atchan->tasklet, atc_tasklet);
1885 atc_enable_chan_irq(atdma, i);
1886 }
1887
1888 /* set base routines */
1889 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1890 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1891 atdma->dma_common.device_tx_status = atc_tx_status;
1892 atdma->dma_common.device_issue_pending = atc_issue_pending;
1893 atdma->dma_common.dev = &pdev->dev;
1894
1895 /* set prep routines based on capability */
1896 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1897 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1898
1899 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1900 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1901
1902 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1903 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1904 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1905 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1906 }
1907
1908 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1909 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1910 /* controller can do slave DMA: can trigger cyclic transfers */
1911 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1912 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1913 atdma->dma_common.device_config = atc_config;
1914 atdma->dma_common.device_pause = atc_pause;
1915 atdma->dma_common.device_resume = atc_resume;
1916 atdma->dma_common.device_terminate_all = atc_terminate_all;
1917 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1918 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1919 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1920 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1921 }
1922
1923 dma_writel(atdma, EN, AT_DMA_ENABLE);
1924
1925 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1926 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1927 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1928 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1929 plat_dat->nr_channels);
1930
1931 err = dma_async_device_register(&atdma->dma_common);
1932 if (err) {
1933 dev_err(&pdev->dev, "Unable to register: %d.\n", err);
1934 goto err_dma_async_device_register;
1935 }
1936
1937 /*
1938 * Do not return an error if the dmac node is not present in order to
1939 * not break the existing way of requesting channel with
1940 * dma_request_channel().
1941 */
1942 if (pdev->dev.of_node) {
1943 err = of_dma_controller_register(pdev->dev.of_node,
1944 at_dma_xlate, atdma);
1945 if (err) {
1946 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1947 goto err_of_dma_controller_register;
1948 }
1949 }
1950
1951 return 0;
1952
1953 err_of_dma_controller_register:
1954 dma_async_device_unregister(&atdma->dma_common);
1955 err_dma_async_device_register:
1956 dma_pool_destroy(atdma->memset_pool);
1957 err_memset_pool_create:
1958 dma_pool_destroy(atdma->dma_desc_pool);
1959 err_desc_pool_create:
1960 free_irq(platform_get_irq(pdev, 0), atdma);
1961 err_irq:
1962 clk_disable_unprepare(atdma->clk);
1963 err_clk_prepare:
1964 clk_put(atdma->clk);
1965 err_clk:
1966 iounmap(atdma->regs);
1967 atdma->regs = NULL;
1968 err_release_r:
1969 release_mem_region(io->start, size);
1970 err_kfree:
1971 kfree(atdma);
1972 return err;
1973 }
1974
at_dma_remove(struct platform_device * pdev)1975 static int at_dma_remove(struct platform_device *pdev)
1976 {
1977 struct at_dma *atdma = platform_get_drvdata(pdev);
1978 struct dma_chan *chan, *_chan;
1979 struct resource *io;
1980
1981 at_dma_off(atdma);
1982 if (pdev->dev.of_node)
1983 of_dma_controller_free(pdev->dev.of_node);
1984 dma_async_device_unregister(&atdma->dma_common);
1985
1986 dma_pool_destroy(atdma->memset_pool);
1987 dma_pool_destroy(atdma->dma_desc_pool);
1988 free_irq(platform_get_irq(pdev, 0), atdma);
1989
1990 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1991 device_node) {
1992 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1993
1994 /* Disable interrupts */
1995 atc_disable_chan_irq(atdma, chan->chan_id);
1996
1997 tasklet_kill(&atchan->tasklet);
1998 list_del(&chan->device_node);
1999 }
2000
2001 clk_disable_unprepare(atdma->clk);
2002 clk_put(atdma->clk);
2003
2004 iounmap(atdma->regs);
2005 atdma->regs = NULL;
2006
2007 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2008 release_mem_region(io->start, resource_size(io));
2009
2010 kfree(atdma);
2011
2012 return 0;
2013 }
2014
at_dma_shutdown(struct platform_device * pdev)2015 static void at_dma_shutdown(struct platform_device *pdev)
2016 {
2017 struct at_dma *atdma = platform_get_drvdata(pdev);
2018
2019 at_dma_off(platform_get_drvdata(pdev));
2020 clk_disable_unprepare(atdma->clk);
2021 }
2022
at_dma_prepare(struct device * dev)2023 static int at_dma_prepare(struct device *dev)
2024 {
2025 struct at_dma *atdma = dev_get_drvdata(dev);
2026 struct dma_chan *chan, *_chan;
2027
2028 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2029 device_node) {
2030 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2031 /* wait for transaction completion (except in cyclic case) */
2032 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2033 return -EAGAIN;
2034 }
2035 return 0;
2036 }
2037
atc_suspend_cyclic(struct at_dma_chan * atchan)2038 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2039 {
2040 struct dma_chan *chan = &atchan->chan_common;
2041
2042 /* Channel should be paused by user
2043 * do it anyway even if it is not done already */
2044 if (!atc_chan_is_paused(atchan)) {
2045 dev_warn(chan2dev(chan),
2046 "cyclic channel not paused, should be done by channel user\n");
2047 atc_pause(chan);
2048 }
2049
2050 /* now preserve additional data for cyclic operations */
2051 /* next descriptor address in the cyclic list */
2052 atchan->save_dscr = channel_readl(atchan, DSCR);
2053
2054 vdbg_dump_regs(atchan);
2055 }
2056
at_dma_suspend_noirq(struct device * dev)2057 static int at_dma_suspend_noirq(struct device *dev)
2058 {
2059 struct at_dma *atdma = dev_get_drvdata(dev);
2060 struct dma_chan *chan, *_chan;
2061
2062 /* preserve data */
2063 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2064 device_node) {
2065 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2066
2067 if (atc_chan_is_cyclic(atchan))
2068 atc_suspend_cyclic(atchan);
2069 atchan->save_cfg = channel_readl(atchan, CFG);
2070 }
2071 atdma->save_imr = dma_readl(atdma, EBCIMR);
2072
2073 /* disable DMA controller */
2074 at_dma_off(atdma);
2075 clk_disable_unprepare(atdma->clk);
2076 return 0;
2077 }
2078
atc_resume_cyclic(struct at_dma_chan * atchan)2079 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2080 {
2081 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2082
2083 /* restore channel status for cyclic descriptors list:
2084 * next descriptor in the cyclic list at the time of suspend */
2085 channel_writel(atchan, SADDR, 0);
2086 channel_writel(atchan, DADDR, 0);
2087 channel_writel(atchan, CTRLA, 0);
2088 channel_writel(atchan, CTRLB, 0);
2089 channel_writel(atchan, DSCR, atchan->save_dscr);
2090 dma_writel(atdma, CHER, atchan->mask);
2091
2092 /* channel pause status should be removed by channel user
2093 * We cannot take the initiative to do it here */
2094
2095 vdbg_dump_regs(atchan);
2096 }
2097
at_dma_resume_noirq(struct device * dev)2098 static int at_dma_resume_noirq(struct device *dev)
2099 {
2100 struct at_dma *atdma = dev_get_drvdata(dev);
2101 struct dma_chan *chan, *_chan;
2102
2103 /* bring back DMA controller */
2104 clk_prepare_enable(atdma->clk);
2105 dma_writel(atdma, EN, AT_DMA_ENABLE);
2106
2107 /* clear any pending interrupt */
2108 while (dma_readl(atdma, EBCISR))
2109 cpu_relax();
2110
2111 /* restore saved data */
2112 dma_writel(atdma, EBCIER, atdma->save_imr);
2113 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2114 device_node) {
2115 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2116
2117 channel_writel(atchan, CFG, atchan->save_cfg);
2118 if (atc_chan_is_cyclic(atchan))
2119 atc_resume_cyclic(atchan);
2120 }
2121 return 0;
2122 }
2123
2124 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2125 .prepare = at_dma_prepare,
2126 .suspend_noirq = at_dma_suspend_noirq,
2127 .resume_noirq = at_dma_resume_noirq,
2128 };
2129
2130 static struct platform_driver at_dma_driver = {
2131 .remove = at_dma_remove,
2132 .shutdown = at_dma_shutdown,
2133 .id_table = atdma_devtypes,
2134 .driver = {
2135 .name = "at_hdmac",
2136 .pm = &at_dma_dev_pm_ops,
2137 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2138 },
2139 };
2140
at_dma_init(void)2141 static int __init at_dma_init(void)
2142 {
2143 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2144 }
2145 subsys_initcall(at_dma_init);
2146
at_dma_exit(void)2147 static void __exit at_dma_exit(void)
2148 {
2149 platform_driver_unregister(&at_dma_driver);
2150 }
2151 module_exit(at_dma_exit);
2152
2153 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2154 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2155 MODULE_LICENSE("GPL");
2156 MODULE_ALIAS("platform:at_hdmac");
2157