1 /*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32
33 /*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51 #define ATC_MAX_DSCR_TRIALS 10
52
53 /*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66
67
68 /*----------------------------------------------------------------------*/
69
atc_get_xfer_width(dma_addr_t src,dma_addr_t dst,size_t len)70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72 {
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83 }
84
atc_first_active(struct at_dma_chan * atchan)85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89 }
90
atc_first_queued(struct at_dma_chan * atchan)91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95 }
96
97 /**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
atc_alloc_descriptor(struct dma_chan * chan,gfp_t gfp_flags)107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109 {
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 INIT_LIST_HEAD(&desc->tx_list);
117 dma_async_tx_descriptor_init(&desc->txd, chan);
118 /* txd.flags will be overwritten in prep functions */
119 desc->txd.flags = DMA_CTRL_ACK;
120 desc->txd.tx_submit = atc_tx_submit;
121 desc->txd.phys = phys;
122 }
123
124 return desc;
125 }
126
127 /**
128 * atc_desc_get - get an unused descriptor from free_list
129 * @atchan: channel we want a new descriptor for
130 */
atc_desc_get(struct at_dma_chan * atchan)131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 struct at_desc *desc, *_desc;
134 struct at_desc *ret = NULL;
135 unsigned long flags;
136 unsigned int i = 0;
137 LIST_HEAD(tmp_list);
138
139 spin_lock_irqsave(&atchan->lock, flags);
140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 i++;
142 if (async_tx_test_ack(&desc->txd)) {
143 list_del(&desc->desc_node);
144 ret = desc;
145 break;
146 }
147 dev_dbg(chan2dev(&atchan->chan_common),
148 "desc %p not ACKed\n", desc);
149 }
150 spin_unlock_irqrestore(&atchan->lock, flags);
151 dev_vdbg(chan2dev(&atchan->chan_common),
152 "scanned %u descriptors on freelist\n", i);
153
154 /* no more descriptor available in initial pool: create one more */
155 if (!ret) {
156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 if (ret) {
158 spin_lock_irqsave(&atchan->lock, flags);
159 atchan->descs_allocated++;
160 spin_unlock_irqrestore(&atchan->lock, flags);
161 } else {
162 dev_err(chan2dev(&atchan->chan_common),
163 "not enough descriptors available\n");
164 }
165 }
166
167 return ret;
168 }
169
170 /**
171 * atc_desc_put - move a descriptor, including any children, to the free list
172 * @atchan: channel we work on
173 * @desc: descriptor, at the head of a chain, to move to free list
174 */
atc_desc_put(struct at_dma_chan * atchan,struct at_desc * desc)175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176 {
177 if (desc) {
178 struct at_desc *child;
179 unsigned long flags;
180
181 spin_lock_irqsave(&atchan->lock, flags);
182 list_for_each_entry(child, &desc->tx_list, desc_node)
183 dev_vdbg(chan2dev(&atchan->chan_common),
184 "moving child desc %p to freelist\n",
185 child);
186 list_splice_init(&desc->tx_list, &atchan->free_list);
187 dev_vdbg(chan2dev(&atchan->chan_common),
188 "moving desc %p to freelist\n", desc);
189 list_add(&desc->desc_node, &atchan->free_list);
190 spin_unlock_irqrestore(&atchan->lock, flags);
191 }
192 }
193
194 /**
195 * atc_desc_chain - build chain adding a descriptor
196 * @first: address of first descriptor of the chain
197 * @prev: address of previous descriptor of the chain
198 * @desc: descriptor to queue
199 *
200 * Called from prep_* functions
201 */
atc_desc_chain(struct at_desc ** first,struct at_desc ** prev,struct at_desc * desc)202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 struct at_desc *desc)
204 {
205 if (!(*first)) {
206 *first = desc;
207 } else {
208 /* inform the HW lli about chaining */
209 (*prev)->lli.dscr = desc->txd.phys;
210 /* insert the link descriptor to the LD ring */
211 list_add_tail(&desc->desc_node,
212 &(*first)->tx_list);
213 }
214 *prev = desc;
215 }
216
217 /**
218 * atc_dostart - starts the DMA engine for real
219 * @atchan: the channel we want to start
220 * @first: first descriptor in the list we want to begin with
221 *
222 * Called with atchan->lock held and bh disabled
223 */
atc_dostart(struct at_dma_chan * atchan,struct at_desc * first)224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225 {
226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
227
228 /* ASSERT: channel is idle */
229 if (atc_chan_is_enabled(atchan)) {
230 dev_err(chan2dev(&atchan->chan_common),
231 "BUG: Attempted to start non-idle channel\n");
232 dev_err(chan2dev(&atchan->chan_common),
233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 channel_readl(atchan, SADDR),
235 channel_readl(atchan, DADDR),
236 channel_readl(atchan, CTRLA),
237 channel_readl(atchan, CTRLB),
238 channel_readl(atchan, DSCR));
239
240 /* The tasklet will hopefully advance the queue... */
241 return;
242 }
243
244 vdbg_dump_regs(atchan);
245
246 channel_writel(atchan, SADDR, 0);
247 channel_writel(atchan, DADDR, 0);
248 channel_writel(atchan, CTRLA, 0);
249 channel_writel(atchan, CTRLB, 0);
250 channel_writel(atchan, DSCR, first->txd.phys);
251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 ATC_SPIP_BOUNDARY(first->boundary));
253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 ATC_DPIP_BOUNDARY(first->boundary));
255 dma_writel(atdma, CHER, atchan->mask);
256
257 vdbg_dump_regs(atchan);
258 }
259
260 /*
261 * atc_get_desc_by_cookie - get the descriptor of a cookie
262 * @atchan: the DMA channel
263 * @cookie: the cookie to get the descriptor for
264 */
atc_get_desc_by_cookie(struct at_dma_chan * atchan,dma_cookie_t cookie)265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 dma_cookie_t cookie)
267 {
268 struct at_desc *desc, *_desc;
269
270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 if (desc->txd.cookie == cookie)
272 return desc;
273 }
274
275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 if (desc->txd.cookie == cookie)
277 return desc;
278 }
279
280 return NULL;
281 }
282
283 /**
284 * atc_calc_bytes_left - calculates the number of bytes left according to the
285 * value read from CTRLA.
286 *
287 * @current_len: the number of bytes left before reading CTRLA
288 * @ctrla: the value of CTRLA
289 */
atc_calc_bytes_left(int current_len,u32 ctrla)290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291 {
292 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294
295 /*
296 * According to the datasheet, when reading the Control A Register
297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 * number of transfers completed on the Source Interface.
299 * So btsize is always a number of source width transfers.
300 */
301 return current_len - (btsize << src_width);
302 }
303
304 /**
305 * atc_get_bytes_left - get the number of bytes residue for a cookie
306 * @chan: DMA channel
307 * @cookie: transaction identifier to check status of
308 */
atc_get_bytes_left(struct dma_chan * chan,dma_cookie_t cookie)309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310 {
311 struct at_dma_chan *atchan = to_at_dma_chan(chan);
312 struct at_desc *desc_first = atc_first_active(atchan);
313 struct at_desc *desc;
314 int ret;
315 u32 ctrla, dscr, trials;
316
317 /*
318 * If the cookie doesn't match to the currently running transfer then
319 * we can return the total length of the associated DMA transfer,
320 * because it is still queued.
321 */
322 desc = atc_get_desc_by_cookie(atchan, cookie);
323 if (desc == NULL)
324 return -EINVAL;
325 else if (desc != desc_first)
326 return desc->total_len;
327
328 /* cookie matches to the currently running transfer */
329 ret = desc_first->total_len;
330
331 if (desc_first->lli.dscr) {
332 /* hardware linked list transfer */
333
334 /*
335 * Calculate the residue by removing the length of the child
336 * descriptors already transferred from the total length.
337 * To get the current child descriptor we can use the value of
338 * the channel's DSCR register and compare it against the value
339 * of the hardware linked list structure of each child
340 * descriptor.
341 *
342 * The CTRLA register provides us with the amount of data
343 * already read from the source for the current child
344 * descriptor. So we can compute a more accurate residue by also
345 * removing the number of bytes corresponding to this amount of
346 * data.
347 *
348 * However, the DSCR and CTRLA registers cannot be read both
349 * atomically. Hence a race condition may occur: the first read
350 * register may refer to one child descriptor whereas the second
351 * read may refer to a later child descriptor in the list
352 * because of the DMA transfer progression inbetween the two
353 * reads.
354 *
355 * One solution could have been to pause the DMA transfer, read
356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 * this approach presents some drawbacks:
358 * - If the DMA transfer is paused, RX overruns or TX underruns
359 * are more likey to occur depending on the system latency.
360 * Taking the USART driver as an example, it uses a cyclic DMA
361 * transfer to read data from the Receive Holding Register
362 * (RHR) to avoid RX overruns since the RHR is not protected
363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 * to compute the residue would break the USART driver design.
365 * - The atc_pause() function masks interrupts but we'd rather
366 * avoid to do so for system latency purpose.
367 *
368 * Then we'd rather use another solution: the DSCR is read a
369 * first time, the CTRLA is read in turn, next the DSCR is read
370 * a second time. If the two consecutive read values of the DSCR
371 * are the same then we assume both refers to the very same
372 * child descriptor as well as the CTRLA value read inbetween
373 * does. For cyclic tranfers, the assumption is that a full loop
374 * is "not so fast".
375 * If the two DSCR values are different, we read again the CTRLA
376 * then the DSCR till two consecutive read values from DSCR are
377 * equal or till the maxium trials is reach.
378 * This algorithm is very unlikely not to find a stable value for
379 * DSCR.
380 */
381
382 dscr = channel_readl(atchan, DSCR);
383 rmb(); /* ensure DSCR is read before CTRLA */
384 ctrla = channel_readl(atchan, CTRLA);
385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 u32 new_dscr;
387
388 rmb(); /* ensure DSCR is read after CTRLA */
389 new_dscr = channel_readl(atchan, DSCR);
390
391 /*
392 * If the DSCR register value has not changed inside the
393 * DMA controller since the previous read, we assume
394 * that both the dscr and ctrla values refers to the
395 * very same descriptor.
396 */
397 if (likely(new_dscr == dscr))
398 break;
399
400 /*
401 * DSCR has changed inside the DMA controller, so the
402 * previouly read value of CTRLA may refer to an already
403 * processed descriptor hence could be outdated.
404 * We need to update ctrla to match the current
405 * descriptor.
406 */
407 dscr = new_dscr;
408 rmb(); /* ensure DSCR is read before CTRLA */
409 ctrla = channel_readl(atchan, CTRLA);
410 }
411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 return -ETIMEDOUT;
413
414 /* for the first descriptor we can be more accurate */
415 if (desc_first->lli.dscr == dscr)
416 return atc_calc_bytes_left(ret, ctrla);
417
418 ret -= desc_first->len;
419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 if (desc->lli.dscr == dscr)
421 break;
422
423 ret -= desc->len;
424 }
425
426 /*
427 * For the current descriptor in the chain we can calculate
428 * the remaining bytes using the channel's register.
429 */
430 ret = atc_calc_bytes_left(ret, ctrla);
431 } else {
432 /* single transfer */
433 ctrla = channel_readl(atchan, CTRLA);
434 ret = atc_calc_bytes_left(ret, ctrla);
435 }
436
437 return ret;
438 }
439
440 /**
441 * atc_chain_complete - finish work for one transaction chain
442 * @atchan: channel we work on
443 * @desc: descriptor at the head of the chain we want do complete
444 *
445 * Called with atchan->lock held and bh disabled */
446 static void
atc_chain_complete(struct at_dma_chan * atchan,struct at_desc * desc)447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448 {
449 struct dma_async_tx_descriptor *txd = &desc->txd;
450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
451
452 dev_vdbg(chan2dev(&atchan->chan_common),
453 "descriptor %u complete\n", txd->cookie);
454
455 /* mark the descriptor as complete for non cyclic cases only */
456 if (!atc_chan_is_cyclic(atchan))
457 dma_cookie_complete(txd);
458
459 /* If the transfer was a memset, free our temporary buffer */
460 if (desc->memset_buffer) {
461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 desc->memset_paddr);
463 desc->memset_buffer = false;
464 }
465
466 /* move children to free_list */
467 list_splice_init(&desc->tx_list, &atchan->free_list);
468 /* move myself to free_list */
469 list_move(&desc->desc_node, &atchan->free_list);
470
471 dma_descriptor_unmap(txd);
472 /* for cyclic transfers,
473 * no need to replay callback function while stopping */
474 if (!atc_chan_is_cyclic(atchan)) {
475 /*
476 * The API requires that no submissions are done from a
477 * callback, so we don't need to drop the lock here
478 */
479 dmaengine_desc_get_callback_invoke(txd, NULL);
480 }
481
482 dma_run_dependencies(txd);
483 }
484
485 /**
486 * atc_complete_all - finish work for all transactions
487 * @atchan: channel to complete transactions for
488 *
489 * Eventually submit queued descriptors if any
490 *
491 * Assume channel is idle while calling this function
492 * Called with atchan->lock held and bh disabled
493 */
atc_complete_all(struct at_dma_chan * atchan)494 static void atc_complete_all(struct at_dma_chan *atchan)
495 {
496 struct at_desc *desc, *_desc;
497 LIST_HEAD(list);
498
499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500
501 /*
502 * Submit queued descriptors ASAP, i.e. before we go through
503 * the completed ones.
504 */
505 if (!list_empty(&atchan->queue))
506 atc_dostart(atchan, atc_first_queued(atchan));
507 /* empty active_list now it is completed */
508 list_splice_init(&atchan->active_list, &list);
509 /* empty queue list by moving descriptors (if any) to active_list */
510 list_splice_init(&atchan->queue, &atchan->active_list);
511
512 list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 atc_chain_complete(atchan, desc);
514 }
515
516 /**
517 * atc_advance_work - at the end of a transaction, move forward
518 * @atchan: channel where the transaction ended
519 *
520 * Called with atchan->lock held and bh disabled
521 */
atc_advance_work(struct at_dma_chan * atchan)522 static void atc_advance_work(struct at_dma_chan *atchan)
523 {
524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525
526 if (atc_chan_is_enabled(atchan))
527 return;
528
529 if (list_empty(&atchan->active_list) ||
530 list_is_singular(&atchan->active_list)) {
531 atc_complete_all(atchan);
532 } else {
533 atc_chain_complete(atchan, atc_first_active(atchan));
534 /* advance work */
535 atc_dostart(atchan, atc_first_active(atchan));
536 }
537 }
538
539
540 /**
541 * atc_handle_error - handle errors reported by DMA controller
542 * @atchan: channel where error occurs
543 *
544 * Called with atchan->lock held and bh disabled
545 */
atc_handle_error(struct at_dma_chan * atchan)546 static void atc_handle_error(struct at_dma_chan *atchan)
547 {
548 struct at_desc *bad_desc;
549 struct at_desc *child;
550
551 /*
552 * The descriptor currently at the head of the active list is
553 * broked. Since we don't have any way to report errors, we'll
554 * just have to scream loudly and try to carry on.
555 */
556 bad_desc = atc_first_active(atchan);
557 list_del_init(&bad_desc->desc_node);
558
559 /* As we are stopped, take advantage to push queued descriptors
560 * in active_list */
561 list_splice_init(&atchan->queue, atchan->active_list.prev);
562
563 /* Try to restart the controller */
564 if (!list_empty(&atchan->active_list))
565 atc_dostart(atchan, atc_first_active(atchan));
566
567 /*
568 * KERN_CRITICAL may seem harsh, but since this only happens
569 * when someone submits a bad physical address in a
570 * descriptor, we should consider ourselves lucky that the
571 * controller flagged an error instead of scribbling over
572 * random memory locations.
573 */
574 dev_crit(chan2dev(&atchan->chan_common),
575 "Bad descriptor submitted for DMA!\n");
576 dev_crit(chan2dev(&atchan->chan_common),
577 " cookie: %d\n", bad_desc->txd.cookie);
578 atc_dump_lli(atchan, &bad_desc->lli);
579 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 atc_dump_lli(atchan, &child->lli);
581
582 /* Pretend the descriptor completed successfully */
583 atc_chain_complete(atchan, bad_desc);
584 }
585
586 /**
587 * atc_handle_cyclic - at the end of a period, run callback function
588 * @atchan: channel used for cyclic operations
589 *
590 * Called with atchan->lock held and bh disabled
591 */
atc_handle_cyclic(struct at_dma_chan * atchan)592 static void atc_handle_cyclic(struct at_dma_chan *atchan)
593 {
594 struct at_desc *first = atc_first_active(atchan);
595 struct dma_async_tx_descriptor *txd = &first->txd;
596
597 dev_vdbg(chan2dev(&atchan->chan_common),
598 "new cyclic period llp 0x%08x\n",
599 channel_readl(atchan, DSCR));
600
601 dmaengine_desc_get_callback_invoke(txd, NULL);
602 }
603
604 /*-- IRQ & Tasklet ---------------------------------------------------*/
605
atc_tasklet(unsigned long data)606 static void atc_tasklet(unsigned long data)
607 {
608 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 unsigned long flags;
610
611 spin_lock_irqsave(&atchan->lock, flags);
612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 atc_handle_error(atchan);
614 else if (atc_chan_is_cyclic(atchan))
615 atc_handle_cyclic(atchan);
616 else
617 atc_advance_work(atchan);
618
619 spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621
at_dma_interrupt(int irq,void * dev_id)622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 struct at_dma *atdma = (struct at_dma *)dev_id;
625 struct at_dma_chan *atchan;
626 int i;
627 u32 status, pending, imr;
628 int ret = IRQ_NONE;
629
630 do {
631 imr = dma_readl(atdma, EBCIMR);
632 status = dma_readl(atdma, EBCISR);
633 pending = status & imr;
634
635 if (!pending)
636 break;
637
638 dev_vdbg(atdma->dma_common.dev,
639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 status, imr, pending);
641
642 for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 atchan = &atdma->chan[i];
644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 if (pending & AT_DMA_ERR(i)) {
646 /* Disable channel on AHB error */
647 dma_writel(atdma, CHDR,
648 AT_DMA_RES(i) | atchan->mask);
649 /* Give information to tasklet */
650 set_bit(ATC_IS_ERROR, &atchan->status);
651 }
652 tasklet_schedule(&atchan->tasklet);
653 ret = IRQ_HANDLED;
654 }
655 }
656
657 } while (pending);
658
659 return ret;
660 }
661
662
663 /*-- DMA Engine API --------------------------------------------------*/
664
665 /**
666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667 * @desc: descriptor at the head of the transaction chain
668 *
669 * Queue chain if DMA engine is working already
670 *
671 * Cookie increment and adding to active_list or queue must be atomic
672 */
atc_tx_submit(struct dma_async_tx_descriptor * tx)673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 struct at_desc *desc = txd_to_at_desc(tx);
676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
677 dma_cookie_t cookie;
678 unsigned long flags;
679
680 spin_lock_irqsave(&atchan->lock, flags);
681 cookie = dma_cookie_assign(tx);
682
683 if (list_empty(&atchan->active_list)) {
684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 desc->txd.cookie);
686 atc_dostart(atchan, desc);
687 list_add_tail(&desc->desc_node, &atchan->active_list);
688 } else {
689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 desc->txd.cookie);
691 list_add_tail(&desc->desc_node, &atchan->queue);
692 }
693
694 spin_unlock_irqrestore(&atchan->lock, flags);
695
696 return cookie;
697 }
698
699 /**
700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701 * @chan: the channel to prepare operation on
702 * @xt: Interleaved transfer template
703 * @flags: tx descriptor status flags
704 */
705 static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 struct dma_interleaved_template *xt,
708 unsigned long flags)
709 {
710 struct at_dma_chan *atchan = to_at_dma_chan(chan);
711 struct data_chunk *first;
712 struct at_desc *desc = NULL;
713 size_t xfer_count;
714 unsigned int dwidth;
715 u32 ctrla;
716 u32 ctrlb;
717 size_t len = 0;
718 int i;
719
720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 return NULL;
722
723 first = xt->sgl;
724
725 dev_info(chan2dev(chan),
726 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
727 __func__, &xt->src_start, &xt->dst_start, xt->numf,
728 xt->frame_size, flags);
729
730 /*
731 * The controller can only "skip" X bytes every Y bytes, so we
732 * need to make sure we are given a template that fit that
733 * description, ie a template with chunks that always have the
734 * same size, with the same ICGs.
735 */
736 for (i = 0; i < xt->frame_size; i++) {
737 struct data_chunk *chunk = xt->sgl + i;
738
739 if ((chunk->size != xt->sgl->size) ||
740 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
741 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
742 dev_err(chan2dev(chan),
743 "%s: the controller can transfer only identical chunks\n",
744 __func__);
745 return NULL;
746 }
747
748 len += chunk->size;
749 }
750
751 dwidth = atc_get_xfer_width(xt->src_start,
752 xt->dst_start, len);
753
754 xfer_count = len >> dwidth;
755 if (xfer_count > ATC_BTSIZE_MAX) {
756 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
757 return NULL;
758 }
759
760 ctrla = ATC_SRC_WIDTH(dwidth) |
761 ATC_DST_WIDTH(dwidth);
762
763 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
764 | ATC_SRC_ADDR_MODE_INCR
765 | ATC_DST_ADDR_MODE_INCR
766 | ATC_SRC_PIP
767 | ATC_DST_PIP
768 | ATC_FC_MEM2MEM;
769
770 /* create the transfer */
771 desc = atc_desc_get(atchan);
772 if (!desc) {
773 dev_err(chan2dev(chan),
774 "%s: couldn't allocate our descriptor\n", __func__);
775 return NULL;
776 }
777
778 desc->lli.saddr = xt->src_start;
779 desc->lli.daddr = xt->dst_start;
780 desc->lli.ctrla = ctrla | xfer_count;
781 desc->lli.ctrlb = ctrlb;
782
783 desc->boundary = first->size >> dwidth;
784 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
785 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
786
787 desc->txd.cookie = -EBUSY;
788 desc->total_len = desc->len = len;
789
790 /* set end-of-link to the last link descriptor of list*/
791 set_desc_eol(desc);
792
793 desc->txd.flags = flags; /* client is in control of this ack */
794
795 return &desc->txd;
796 }
797
798 /**
799 * atc_prep_dma_memcpy - prepare a memcpy operation
800 * @chan: the channel to prepare operation on
801 * @dest: operation virtual destination address
802 * @src: operation virtual source address
803 * @len: operation length
804 * @flags: tx descriptor status flags
805 */
806 static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)807 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
808 size_t len, unsigned long flags)
809 {
810 struct at_dma_chan *atchan = to_at_dma_chan(chan);
811 struct at_desc *desc = NULL;
812 struct at_desc *first = NULL;
813 struct at_desc *prev = NULL;
814 size_t xfer_count;
815 size_t offset;
816 unsigned int src_width;
817 unsigned int dst_width;
818 u32 ctrla;
819 u32 ctrlb;
820
821 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
822 &dest, &src, len, flags);
823
824 if (unlikely(!len)) {
825 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
826 return NULL;
827 }
828
829 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
830 | ATC_SRC_ADDR_MODE_INCR
831 | ATC_DST_ADDR_MODE_INCR
832 | ATC_FC_MEM2MEM;
833
834 /*
835 * We can be a lot more clever here, but this should take care
836 * of the most common optimization.
837 */
838 src_width = dst_width = atc_get_xfer_width(src, dest, len);
839
840 ctrla = ATC_SRC_WIDTH(src_width) |
841 ATC_DST_WIDTH(dst_width);
842
843 for (offset = 0; offset < len; offset += xfer_count << src_width) {
844 xfer_count = min_t(size_t, (len - offset) >> src_width,
845 ATC_BTSIZE_MAX);
846
847 desc = atc_desc_get(atchan);
848 if (!desc)
849 goto err_desc_get;
850
851 desc->lli.saddr = src + offset;
852 desc->lli.daddr = dest + offset;
853 desc->lli.ctrla = ctrla | xfer_count;
854 desc->lli.ctrlb = ctrlb;
855
856 desc->txd.cookie = 0;
857 desc->len = xfer_count << src_width;
858
859 atc_desc_chain(&first, &prev, desc);
860 }
861
862 /* First descriptor of the chain embedds additional information */
863 first->txd.cookie = -EBUSY;
864 first->total_len = len;
865
866 /* set end-of-link to the last link descriptor of list*/
867 set_desc_eol(desc);
868
869 first->txd.flags = flags; /* client is in control of this ack */
870
871 return &first->txd;
872
873 err_desc_get:
874 atc_desc_put(atchan, first);
875 return NULL;
876 }
877
atc_create_memset_desc(struct dma_chan * chan,dma_addr_t psrc,dma_addr_t pdst,size_t len)878 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
879 dma_addr_t psrc,
880 dma_addr_t pdst,
881 size_t len)
882 {
883 struct at_dma_chan *atchan = to_at_dma_chan(chan);
884 struct at_desc *desc;
885 size_t xfer_count;
886
887 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
888 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
889 ATC_SRC_ADDR_MODE_FIXED |
890 ATC_DST_ADDR_MODE_INCR |
891 ATC_FC_MEM2MEM;
892
893 xfer_count = len >> 2;
894 if (xfer_count > ATC_BTSIZE_MAX) {
895 dev_err(chan2dev(chan), "%s: buffer is too big\n",
896 __func__);
897 return NULL;
898 }
899
900 desc = atc_desc_get(atchan);
901 if (!desc) {
902 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
903 __func__);
904 return NULL;
905 }
906
907 desc->lli.saddr = psrc;
908 desc->lli.daddr = pdst;
909 desc->lli.ctrla = ctrla | xfer_count;
910 desc->lli.ctrlb = ctrlb;
911
912 desc->txd.cookie = 0;
913 desc->len = len;
914
915 return desc;
916 }
917
918 /**
919 * atc_prep_dma_memset - prepare a memcpy operation
920 * @chan: the channel to prepare operation on
921 * @dest: operation virtual destination address
922 * @value: value to set memory buffer to
923 * @len: operation length
924 * @flags: tx descriptor status flags
925 */
926 static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)927 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
928 size_t len, unsigned long flags)
929 {
930 struct at_dma *atdma = to_at_dma(chan->device);
931 struct at_desc *desc;
932 void __iomem *vaddr;
933 dma_addr_t paddr;
934
935 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
936 &dest, value, len, flags);
937
938 if (unlikely(!len)) {
939 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
940 return NULL;
941 }
942
943 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
944 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
945 __func__);
946 return NULL;
947 }
948
949 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
950 if (!vaddr) {
951 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
952 __func__);
953 return NULL;
954 }
955 *(u32*)vaddr = value;
956
957 desc = atc_create_memset_desc(chan, paddr, dest, len);
958 if (!desc) {
959 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
960 __func__);
961 goto err_free_buffer;
962 }
963
964 desc->memset_paddr = paddr;
965 desc->memset_vaddr = vaddr;
966 desc->memset_buffer = true;
967
968 desc->txd.cookie = -EBUSY;
969 desc->total_len = len;
970
971 /* set end-of-link on the descriptor */
972 set_desc_eol(desc);
973
974 desc->txd.flags = flags;
975
976 return &desc->txd;
977
978 err_free_buffer:
979 dma_pool_free(atdma->memset_pool, vaddr, paddr);
980 return NULL;
981 }
982
983 static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)984 atc_prep_dma_memset_sg(struct dma_chan *chan,
985 struct scatterlist *sgl,
986 unsigned int sg_len, int value,
987 unsigned long flags)
988 {
989 struct at_dma_chan *atchan = to_at_dma_chan(chan);
990 struct at_dma *atdma = to_at_dma(chan->device);
991 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
992 struct scatterlist *sg;
993 void __iomem *vaddr;
994 dma_addr_t paddr;
995 size_t total_len = 0;
996 int i;
997
998 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
999 value, sg_len, flags);
1000
1001 if (unlikely(!sgl || !sg_len)) {
1002 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1003 __func__);
1004 return NULL;
1005 }
1006
1007 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1008 if (!vaddr) {
1009 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1010 __func__);
1011 return NULL;
1012 }
1013 *(u32*)vaddr = value;
1014
1015 for_each_sg(sgl, sg, sg_len, i) {
1016 dma_addr_t dest = sg_dma_address(sg);
1017 size_t len = sg_dma_len(sg);
1018
1019 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1020 __func__, &dest, len);
1021
1022 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1023 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1024 __func__);
1025 goto err_put_desc;
1026 }
1027
1028 desc = atc_create_memset_desc(chan, paddr, dest, len);
1029 if (!desc)
1030 goto err_put_desc;
1031
1032 atc_desc_chain(&first, &prev, desc);
1033
1034 total_len += len;
1035 }
1036
1037 /*
1038 * Only set the buffer pointers on the last descriptor to
1039 * avoid free'ing while we have our transfer still going
1040 */
1041 desc->memset_paddr = paddr;
1042 desc->memset_vaddr = vaddr;
1043 desc->memset_buffer = true;
1044
1045 first->txd.cookie = -EBUSY;
1046 first->total_len = total_len;
1047
1048 /* set end-of-link on the descriptor */
1049 set_desc_eol(desc);
1050
1051 first->txd.flags = flags;
1052
1053 return &first->txd;
1054
1055 err_put_desc:
1056 atc_desc_put(atchan, first);
1057 return NULL;
1058 }
1059
1060 /**
1061 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1062 * @chan: DMA channel
1063 * @sgl: scatterlist to transfer to/from
1064 * @sg_len: number of entries in @scatterlist
1065 * @direction: DMA direction
1066 * @flags: tx descriptor status flags
1067 * @context: transaction context (ignored)
1068 */
1069 static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1070 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1071 unsigned int sg_len, enum dma_transfer_direction direction,
1072 unsigned long flags, void *context)
1073 {
1074 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1075 struct at_dma_slave *atslave = chan->private;
1076 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1077 struct at_desc *first = NULL;
1078 struct at_desc *prev = NULL;
1079 u32 ctrla;
1080 u32 ctrlb;
1081 dma_addr_t reg;
1082 unsigned int reg_width;
1083 unsigned int mem_width;
1084 unsigned int i;
1085 struct scatterlist *sg;
1086 size_t total_len = 0;
1087
1088 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1089 sg_len,
1090 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1091 flags);
1092
1093 if (unlikely(!atslave || !sg_len)) {
1094 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1095 return NULL;
1096 }
1097
1098 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1099 | ATC_DCSIZE(sconfig->dst_maxburst);
1100 ctrlb = ATC_IEN;
1101
1102 switch (direction) {
1103 case DMA_MEM_TO_DEV:
1104 reg_width = convert_buswidth(sconfig->dst_addr_width);
1105 ctrla |= ATC_DST_WIDTH(reg_width);
1106 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1107 | ATC_SRC_ADDR_MODE_INCR
1108 | ATC_FC_MEM2PER
1109 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1110 reg = sconfig->dst_addr;
1111 for_each_sg(sgl, sg, sg_len, i) {
1112 struct at_desc *desc;
1113 u32 len;
1114 u32 mem;
1115
1116 desc = atc_desc_get(atchan);
1117 if (!desc)
1118 goto err_desc_get;
1119
1120 mem = sg_dma_address(sg);
1121 len = sg_dma_len(sg);
1122 if (unlikely(!len)) {
1123 dev_dbg(chan2dev(chan),
1124 "prep_slave_sg: sg(%d) data length is zero\n", i);
1125 goto err;
1126 }
1127 mem_width = 2;
1128 if (unlikely(mem & 3 || len & 3))
1129 mem_width = 0;
1130
1131 desc->lli.saddr = mem;
1132 desc->lli.daddr = reg;
1133 desc->lli.ctrla = ctrla
1134 | ATC_SRC_WIDTH(mem_width)
1135 | len >> mem_width;
1136 desc->lli.ctrlb = ctrlb;
1137 desc->len = len;
1138
1139 atc_desc_chain(&first, &prev, desc);
1140 total_len += len;
1141 }
1142 break;
1143 case DMA_DEV_TO_MEM:
1144 reg_width = convert_buswidth(sconfig->src_addr_width);
1145 ctrla |= ATC_SRC_WIDTH(reg_width);
1146 ctrlb |= ATC_DST_ADDR_MODE_INCR
1147 | ATC_SRC_ADDR_MODE_FIXED
1148 | ATC_FC_PER2MEM
1149 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1150
1151 reg = sconfig->src_addr;
1152 for_each_sg(sgl, sg, sg_len, i) {
1153 struct at_desc *desc;
1154 u32 len;
1155 u32 mem;
1156
1157 desc = atc_desc_get(atchan);
1158 if (!desc)
1159 goto err_desc_get;
1160
1161 mem = sg_dma_address(sg);
1162 len = sg_dma_len(sg);
1163 if (unlikely(!len)) {
1164 dev_dbg(chan2dev(chan),
1165 "prep_slave_sg: sg(%d) data length is zero\n", i);
1166 goto err;
1167 }
1168 mem_width = 2;
1169 if (unlikely(mem & 3 || len & 3))
1170 mem_width = 0;
1171
1172 desc->lli.saddr = reg;
1173 desc->lli.daddr = mem;
1174 desc->lli.ctrla = ctrla
1175 | ATC_DST_WIDTH(mem_width)
1176 | len >> reg_width;
1177 desc->lli.ctrlb = ctrlb;
1178 desc->len = len;
1179
1180 atc_desc_chain(&first, &prev, desc);
1181 total_len += len;
1182 }
1183 break;
1184 default:
1185 return NULL;
1186 }
1187
1188 /* set end-of-link to the last link descriptor of list*/
1189 set_desc_eol(prev);
1190
1191 /* First descriptor of the chain embedds additional information */
1192 first->txd.cookie = -EBUSY;
1193 first->total_len = total_len;
1194
1195 /* first link descriptor of list is responsible of flags */
1196 first->txd.flags = flags; /* client is in control of this ack */
1197
1198 return &first->txd;
1199
1200 err_desc_get:
1201 dev_err(chan2dev(chan), "not enough descriptors available\n");
1202 err:
1203 atc_desc_put(atchan, first);
1204 return NULL;
1205 }
1206
1207 /**
1208 * atc_dma_cyclic_check_values
1209 * Check for too big/unaligned periods and unaligned DMA buffer
1210 */
1211 static int
atc_dma_cyclic_check_values(unsigned int reg_width,dma_addr_t buf_addr,size_t period_len)1212 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1213 size_t period_len)
1214 {
1215 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1216 goto err_out;
1217 if (unlikely(period_len & ((1 << reg_width) - 1)))
1218 goto err_out;
1219 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1220 goto err_out;
1221
1222 return 0;
1223
1224 err_out:
1225 return -EINVAL;
1226 }
1227
1228 /**
1229 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1230 */
1231 static int
atc_dma_cyclic_fill_desc(struct dma_chan * chan,struct at_desc * desc,unsigned int period_index,dma_addr_t buf_addr,unsigned int reg_width,size_t period_len,enum dma_transfer_direction direction)1232 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1233 unsigned int period_index, dma_addr_t buf_addr,
1234 unsigned int reg_width, size_t period_len,
1235 enum dma_transfer_direction direction)
1236 {
1237 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1238 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1239 u32 ctrla;
1240
1241 /* prepare common CRTLA value */
1242 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1243 | ATC_DCSIZE(sconfig->dst_maxburst)
1244 | ATC_DST_WIDTH(reg_width)
1245 | ATC_SRC_WIDTH(reg_width)
1246 | period_len >> reg_width;
1247
1248 switch (direction) {
1249 case DMA_MEM_TO_DEV:
1250 desc->lli.saddr = buf_addr + (period_len * period_index);
1251 desc->lli.daddr = sconfig->dst_addr;
1252 desc->lli.ctrla = ctrla;
1253 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1254 | ATC_SRC_ADDR_MODE_INCR
1255 | ATC_FC_MEM2PER
1256 | ATC_SIF(atchan->mem_if)
1257 | ATC_DIF(atchan->per_if);
1258 desc->len = period_len;
1259 break;
1260
1261 case DMA_DEV_TO_MEM:
1262 desc->lli.saddr = sconfig->src_addr;
1263 desc->lli.daddr = buf_addr + (period_len * period_index);
1264 desc->lli.ctrla = ctrla;
1265 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1266 | ATC_SRC_ADDR_MODE_FIXED
1267 | ATC_FC_PER2MEM
1268 | ATC_SIF(atchan->per_if)
1269 | ATC_DIF(atchan->mem_if);
1270 desc->len = period_len;
1271 break;
1272
1273 default:
1274 return -EINVAL;
1275 }
1276
1277 return 0;
1278 }
1279
1280 /**
1281 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1282 * @chan: the DMA channel to prepare
1283 * @buf_addr: physical DMA address where the buffer starts
1284 * @buf_len: total number of bytes for the entire buffer
1285 * @period_len: number of bytes for each period
1286 * @direction: transfer direction, to or from device
1287 * @flags: tx descriptor status flags
1288 */
1289 static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1290 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1291 size_t period_len, enum dma_transfer_direction direction,
1292 unsigned long flags)
1293 {
1294 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1295 struct at_dma_slave *atslave = chan->private;
1296 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1297 struct at_desc *first = NULL;
1298 struct at_desc *prev = NULL;
1299 unsigned long was_cyclic;
1300 unsigned int reg_width;
1301 unsigned int periods = buf_len / period_len;
1302 unsigned int i;
1303
1304 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1305 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1306 &buf_addr,
1307 periods, buf_len, period_len);
1308
1309 if (unlikely(!atslave || !buf_len || !period_len)) {
1310 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1311 return NULL;
1312 }
1313
1314 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1315 if (was_cyclic) {
1316 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1317 return NULL;
1318 }
1319
1320 if (unlikely(!is_slave_direction(direction)))
1321 goto err_out;
1322
1323 if (sconfig->direction == DMA_MEM_TO_DEV)
1324 reg_width = convert_buswidth(sconfig->dst_addr_width);
1325 else
1326 reg_width = convert_buswidth(sconfig->src_addr_width);
1327
1328 /* Check for too big/unaligned periods and unaligned DMA buffer */
1329 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1330 goto err_out;
1331
1332 /* build cyclic linked list */
1333 for (i = 0; i < periods; i++) {
1334 struct at_desc *desc;
1335
1336 desc = atc_desc_get(atchan);
1337 if (!desc)
1338 goto err_desc_get;
1339
1340 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1341 reg_width, period_len, direction))
1342 goto err_desc_get;
1343
1344 atc_desc_chain(&first, &prev, desc);
1345 }
1346
1347 /* lets make a cyclic list */
1348 prev->lli.dscr = first->txd.phys;
1349
1350 /* First descriptor of the chain embedds additional information */
1351 first->txd.cookie = -EBUSY;
1352 first->total_len = buf_len;
1353
1354 return &first->txd;
1355
1356 err_desc_get:
1357 dev_err(chan2dev(chan), "not enough descriptors available\n");
1358 atc_desc_put(atchan, first);
1359 err_out:
1360 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1361 return NULL;
1362 }
1363
atc_config(struct dma_chan * chan,struct dma_slave_config * sconfig)1364 static int atc_config(struct dma_chan *chan,
1365 struct dma_slave_config *sconfig)
1366 {
1367 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1368
1369 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1370
1371 /* Check if it is chan is configured for slave transfers */
1372 if (!chan->private)
1373 return -EINVAL;
1374
1375 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1376
1377 convert_burst(&atchan->dma_sconfig.src_maxburst);
1378 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1379
1380 return 0;
1381 }
1382
atc_pause(struct dma_chan * chan)1383 static int atc_pause(struct dma_chan *chan)
1384 {
1385 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1386 struct at_dma *atdma = to_at_dma(chan->device);
1387 int chan_id = atchan->chan_common.chan_id;
1388 unsigned long flags;
1389
1390 LIST_HEAD(list);
1391
1392 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1393
1394 spin_lock_irqsave(&atchan->lock, flags);
1395
1396 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1397 set_bit(ATC_IS_PAUSED, &atchan->status);
1398
1399 spin_unlock_irqrestore(&atchan->lock, flags);
1400
1401 return 0;
1402 }
1403
atc_resume(struct dma_chan * chan)1404 static int atc_resume(struct dma_chan *chan)
1405 {
1406 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1407 struct at_dma *atdma = to_at_dma(chan->device);
1408 int chan_id = atchan->chan_common.chan_id;
1409 unsigned long flags;
1410
1411 LIST_HEAD(list);
1412
1413 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1414
1415 if (!atc_chan_is_paused(atchan))
1416 return 0;
1417
1418 spin_lock_irqsave(&atchan->lock, flags);
1419
1420 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1421 clear_bit(ATC_IS_PAUSED, &atchan->status);
1422
1423 spin_unlock_irqrestore(&atchan->lock, flags);
1424
1425 return 0;
1426 }
1427
atc_terminate_all(struct dma_chan * chan)1428 static int atc_terminate_all(struct dma_chan *chan)
1429 {
1430 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1431 struct at_dma *atdma = to_at_dma(chan->device);
1432 int chan_id = atchan->chan_common.chan_id;
1433 struct at_desc *desc, *_desc;
1434 unsigned long flags;
1435
1436 LIST_HEAD(list);
1437
1438 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1439
1440 /*
1441 * This is only called when something went wrong elsewhere, so
1442 * we don't really care about the data. Just disable the
1443 * channel. We still have to poll the channel enable bit due
1444 * to AHB/HSB limitations.
1445 */
1446 spin_lock_irqsave(&atchan->lock, flags);
1447
1448 /* disabling channel: must also remove suspend state */
1449 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1450
1451 /* confirm that this channel is disabled */
1452 while (dma_readl(atdma, CHSR) & atchan->mask)
1453 cpu_relax();
1454
1455 /* active_list entries will end up before queued entries */
1456 list_splice_init(&atchan->queue, &list);
1457 list_splice_init(&atchan->active_list, &list);
1458
1459 /* Flush all pending and queued descriptors */
1460 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1461 atc_chain_complete(atchan, desc);
1462
1463 clear_bit(ATC_IS_PAUSED, &atchan->status);
1464 /* if channel dedicated to cyclic operations, free it */
1465 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1466
1467 spin_unlock_irqrestore(&atchan->lock, flags);
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * atc_tx_status - poll for transaction completion
1474 * @chan: DMA channel
1475 * @cookie: transaction identifier to check status of
1476 * @txstate: if not %NULL updated with transaction state
1477 *
1478 * If @txstate is passed in, upon return it reflect the driver
1479 * internal state and can be used with dma_async_is_complete() to check
1480 * the status of multiple cookies without re-checking hardware state.
1481 */
1482 static enum dma_status
atc_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1483 atc_tx_status(struct dma_chan *chan,
1484 dma_cookie_t cookie,
1485 struct dma_tx_state *txstate)
1486 {
1487 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1488 unsigned long flags;
1489 enum dma_status ret;
1490 int bytes = 0;
1491
1492 ret = dma_cookie_status(chan, cookie, txstate);
1493 if (ret == DMA_COMPLETE)
1494 return ret;
1495 /*
1496 * There's no point calculating the residue if there's
1497 * no txstate to store the value.
1498 */
1499 if (!txstate)
1500 return DMA_ERROR;
1501
1502 spin_lock_irqsave(&atchan->lock, flags);
1503
1504 /* Get number of bytes left in the active transactions */
1505 bytes = atc_get_bytes_left(chan, cookie);
1506
1507 spin_unlock_irqrestore(&atchan->lock, flags);
1508
1509 if (unlikely(bytes < 0)) {
1510 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1511 return DMA_ERROR;
1512 } else {
1513 dma_set_residue(txstate, bytes);
1514 }
1515
1516 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1517 ret, cookie, bytes);
1518
1519 return ret;
1520 }
1521
1522 /**
1523 * atc_issue_pending - try to finish work
1524 * @chan: target DMA channel
1525 */
atc_issue_pending(struct dma_chan * chan)1526 static void atc_issue_pending(struct dma_chan *chan)
1527 {
1528 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1529 unsigned long flags;
1530
1531 dev_vdbg(chan2dev(chan), "issue_pending\n");
1532
1533 /* Not needed for cyclic transfers */
1534 if (atc_chan_is_cyclic(atchan))
1535 return;
1536
1537 spin_lock_irqsave(&atchan->lock, flags);
1538 atc_advance_work(atchan);
1539 spin_unlock_irqrestore(&atchan->lock, flags);
1540 }
1541
1542 /**
1543 * atc_alloc_chan_resources - allocate resources for DMA channel
1544 * @chan: allocate descriptor resources for this channel
1545 * @client: current client requesting the channel be ready for requests
1546 *
1547 * return - the number of allocated descriptors
1548 */
atc_alloc_chan_resources(struct dma_chan * chan)1549 static int atc_alloc_chan_resources(struct dma_chan *chan)
1550 {
1551 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1552 struct at_dma *atdma = to_at_dma(chan->device);
1553 struct at_desc *desc;
1554 struct at_dma_slave *atslave;
1555 unsigned long flags;
1556 int i;
1557 u32 cfg;
1558 LIST_HEAD(tmp_list);
1559
1560 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1561
1562 /* ASSERT: channel is idle */
1563 if (atc_chan_is_enabled(atchan)) {
1564 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1565 return -EIO;
1566 }
1567
1568 cfg = ATC_DEFAULT_CFG;
1569
1570 atslave = chan->private;
1571 if (atslave) {
1572 /*
1573 * We need controller-specific data to set up slave
1574 * transfers.
1575 */
1576 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1577
1578 /* if cfg configuration specified take it instead of default */
1579 if (atslave->cfg)
1580 cfg = atslave->cfg;
1581 }
1582
1583 /* have we already been set up?
1584 * reconfigure channel but no need to reallocate descriptors */
1585 if (!list_empty(&atchan->free_list))
1586 return atchan->descs_allocated;
1587
1588 /* Allocate initial pool of descriptors */
1589 for (i = 0; i < init_nr_desc_per_channel; i++) {
1590 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1591 if (!desc) {
1592 dev_err(atdma->dma_common.dev,
1593 "Only %d initial descriptors\n", i);
1594 break;
1595 }
1596 list_add_tail(&desc->desc_node, &tmp_list);
1597 }
1598
1599 spin_lock_irqsave(&atchan->lock, flags);
1600 atchan->descs_allocated = i;
1601 list_splice(&tmp_list, &atchan->free_list);
1602 dma_cookie_init(chan);
1603 spin_unlock_irqrestore(&atchan->lock, flags);
1604
1605 /* channel parameters */
1606 channel_writel(atchan, CFG, cfg);
1607
1608 dev_dbg(chan2dev(chan),
1609 "alloc_chan_resources: allocated %d descriptors\n",
1610 atchan->descs_allocated);
1611
1612 return atchan->descs_allocated;
1613 }
1614
1615 /**
1616 * atc_free_chan_resources - free all channel resources
1617 * @chan: DMA channel
1618 */
atc_free_chan_resources(struct dma_chan * chan)1619 static void atc_free_chan_resources(struct dma_chan *chan)
1620 {
1621 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1622 struct at_dma *atdma = to_at_dma(chan->device);
1623 struct at_desc *desc, *_desc;
1624 LIST_HEAD(list);
1625
1626 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1627 atchan->descs_allocated);
1628
1629 /* ASSERT: channel is idle */
1630 BUG_ON(!list_empty(&atchan->active_list));
1631 BUG_ON(!list_empty(&atchan->queue));
1632 BUG_ON(atc_chan_is_enabled(atchan));
1633
1634 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1635 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1636 list_del(&desc->desc_node);
1637 /* free link descriptor */
1638 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1639 }
1640 list_splice_init(&atchan->free_list, &list);
1641 atchan->descs_allocated = 0;
1642 atchan->status = 0;
1643
1644 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1645 }
1646
1647 #ifdef CONFIG_OF
at_dma_filter(struct dma_chan * chan,void * slave)1648 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1649 {
1650 struct at_dma_slave *atslave = slave;
1651
1652 if (atslave->dma_dev == chan->device->dev) {
1653 chan->private = atslave;
1654 return true;
1655 } else {
1656 return false;
1657 }
1658 }
1659
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1660 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1661 struct of_dma *of_dma)
1662 {
1663 struct dma_chan *chan;
1664 struct at_dma_chan *atchan;
1665 struct at_dma_slave *atslave;
1666 dma_cap_mask_t mask;
1667 unsigned int per_id;
1668 struct platform_device *dmac_pdev;
1669
1670 if (dma_spec->args_count != 2)
1671 return NULL;
1672
1673 dmac_pdev = of_find_device_by_node(dma_spec->np);
1674
1675 dma_cap_zero(mask);
1676 dma_cap_set(DMA_SLAVE, mask);
1677
1678 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1679 if (!atslave)
1680 return NULL;
1681
1682 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1683 /*
1684 * We can fill both SRC_PER and DST_PER, one of these fields will be
1685 * ignored depending on DMA transfer direction.
1686 */
1687 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1688 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1689 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1690 /*
1691 * We have to translate the value we get from the device tree since
1692 * the half FIFO configuration value had to be 0 to keep backward
1693 * compatibility.
1694 */
1695 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1696 case AT91_DMA_CFG_FIFOCFG_ALAP:
1697 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1698 break;
1699 case AT91_DMA_CFG_FIFOCFG_ASAP:
1700 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1701 break;
1702 case AT91_DMA_CFG_FIFOCFG_HALF:
1703 default:
1704 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1705 }
1706 atslave->dma_dev = &dmac_pdev->dev;
1707
1708 chan = dma_request_channel(mask, at_dma_filter, atslave);
1709 if (!chan)
1710 return NULL;
1711
1712 atchan = to_at_dma_chan(chan);
1713 atchan->per_if = dma_spec->args[0] & 0xff;
1714 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1715
1716 return chan;
1717 }
1718 #else
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1719 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1720 struct of_dma *of_dma)
1721 {
1722 return NULL;
1723 }
1724 #endif
1725
1726 /*-- Module Management -----------------------------------------------*/
1727
1728 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1729 static struct at_dma_platform_data at91sam9rl_config = {
1730 .nr_channels = 2,
1731 };
1732 static struct at_dma_platform_data at91sam9g45_config = {
1733 .nr_channels = 8,
1734 };
1735
1736 #if defined(CONFIG_OF)
1737 static const struct of_device_id atmel_dma_dt_ids[] = {
1738 {
1739 .compatible = "atmel,at91sam9rl-dma",
1740 .data = &at91sam9rl_config,
1741 }, {
1742 .compatible = "atmel,at91sam9g45-dma",
1743 .data = &at91sam9g45_config,
1744 }, {
1745 /* sentinel */
1746 }
1747 };
1748
1749 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1750 #endif
1751
1752 static const struct platform_device_id atdma_devtypes[] = {
1753 {
1754 .name = "at91sam9rl_dma",
1755 .driver_data = (unsigned long) &at91sam9rl_config,
1756 }, {
1757 .name = "at91sam9g45_dma",
1758 .driver_data = (unsigned long) &at91sam9g45_config,
1759 }, {
1760 /* sentinel */
1761 }
1762 };
1763
at_dma_get_driver_data(struct platform_device * pdev)1764 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1765 struct platform_device *pdev)
1766 {
1767 if (pdev->dev.of_node) {
1768 const struct of_device_id *match;
1769 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1770 if (match == NULL)
1771 return NULL;
1772 return match->data;
1773 }
1774 return (struct at_dma_platform_data *)
1775 platform_get_device_id(pdev)->driver_data;
1776 }
1777
1778 /**
1779 * at_dma_off - disable DMA controller
1780 * @atdma: the Atmel HDAMC device
1781 */
at_dma_off(struct at_dma * atdma)1782 static void at_dma_off(struct at_dma *atdma)
1783 {
1784 dma_writel(atdma, EN, 0);
1785
1786 /* disable all interrupts */
1787 dma_writel(atdma, EBCIDR, -1L);
1788
1789 /* confirm that all channels are disabled */
1790 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1791 cpu_relax();
1792 }
1793
at_dma_probe(struct platform_device * pdev)1794 static int __init at_dma_probe(struct platform_device *pdev)
1795 {
1796 struct resource *io;
1797 struct at_dma *atdma;
1798 size_t size;
1799 int irq;
1800 int err;
1801 int i;
1802 const struct at_dma_platform_data *plat_dat;
1803
1804 /* setup platform data for each SoC */
1805 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1806 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1807 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1808 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1809 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1810 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1811 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1812
1813 /* get DMA parameters from controller type */
1814 plat_dat = at_dma_get_driver_data(pdev);
1815 if (!plat_dat)
1816 return -ENODEV;
1817
1818 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1819 if (!io)
1820 return -EINVAL;
1821
1822 irq = platform_get_irq(pdev, 0);
1823 if (irq < 0)
1824 return irq;
1825
1826 size = sizeof(struct at_dma);
1827 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1828 atdma = kzalloc(size, GFP_KERNEL);
1829 if (!atdma)
1830 return -ENOMEM;
1831
1832 /* discover transaction capabilities */
1833 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1834 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1835
1836 size = resource_size(io);
1837 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1838 err = -EBUSY;
1839 goto err_kfree;
1840 }
1841
1842 atdma->regs = ioremap(io->start, size);
1843 if (!atdma->regs) {
1844 err = -ENOMEM;
1845 goto err_release_r;
1846 }
1847
1848 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1849 if (IS_ERR(atdma->clk)) {
1850 err = PTR_ERR(atdma->clk);
1851 goto err_clk;
1852 }
1853 err = clk_prepare_enable(atdma->clk);
1854 if (err)
1855 goto err_clk_prepare;
1856
1857 /* force dma off, just in case */
1858 at_dma_off(atdma);
1859
1860 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1861 if (err)
1862 goto err_irq;
1863
1864 platform_set_drvdata(pdev, atdma);
1865
1866 /* create a pool of consistent memory blocks for hardware descriptors */
1867 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1868 &pdev->dev, sizeof(struct at_desc),
1869 4 /* word alignment */, 0);
1870 if (!atdma->dma_desc_pool) {
1871 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1872 err = -ENOMEM;
1873 goto err_desc_pool_create;
1874 }
1875
1876 /* create a pool of consistent memory blocks for memset blocks */
1877 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1878 &pdev->dev, sizeof(int), 4, 0);
1879 if (!atdma->memset_pool) {
1880 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1881 err = -ENOMEM;
1882 goto err_memset_pool_create;
1883 }
1884
1885 /* clear any pending interrupt */
1886 while (dma_readl(atdma, EBCISR))
1887 cpu_relax();
1888
1889 /* initialize channels related values */
1890 INIT_LIST_HEAD(&atdma->dma_common.channels);
1891 for (i = 0; i < plat_dat->nr_channels; i++) {
1892 struct at_dma_chan *atchan = &atdma->chan[i];
1893
1894 atchan->mem_if = AT_DMA_MEM_IF;
1895 atchan->per_if = AT_DMA_PER_IF;
1896 atchan->chan_common.device = &atdma->dma_common;
1897 dma_cookie_init(&atchan->chan_common);
1898 list_add_tail(&atchan->chan_common.device_node,
1899 &atdma->dma_common.channels);
1900
1901 atchan->ch_regs = atdma->regs + ch_regs(i);
1902 spin_lock_init(&atchan->lock);
1903 atchan->mask = 1 << i;
1904
1905 INIT_LIST_HEAD(&atchan->active_list);
1906 INIT_LIST_HEAD(&atchan->queue);
1907 INIT_LIST_HEAD(&atchan->free_list);
1908
1909 tasklet_init(&atchan->tasklet, atc_tasklet,
1910 (unsigned long)atchan);
1911 atc_enable_chan_irq(atdma, i);
1912 }
1913
1914 /* set base routines */
1915 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1916 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1917 atdma->dma_common.device_tx_status = atc_tx_status;
1918 atdma->dma_common.device_issue_pending = atc_issue_pending;
1919 atdma->dma_common.dev = &pdev->dev;
1920
1921 /* set prep routines based on capability */
1922 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1923 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1924
1925 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1926 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1927
1928 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1929 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1930 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1931 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1932 }
1933
1934 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1935 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1936 /* controller can do slave DMA: can trigger cyclic transfers */
1937 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1938 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1939 atdma->dma_common.device_config = atc_config;
1940 atdma->dma_common.device_pause = atc_pause;
1941 atdma->dma_common.device_resume = atc_resume;
1942 atdma->dma_common.device_terminate_all = atc_terminate_all;
1943 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1944 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1945 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1946 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1947 }
1948
1949 dma_writel(atdma, EN, AT_DMA_ENABLE);
1950
1951 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1952 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1953 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1954 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1955 plat_dat->nr_channels);
1956
1957 dma_async_device_register(&atdma->dma_common);
1958
1959 /*
1960 * Do not return an error if the dmac node is not present in order to
1961 * not break the existing way of requesting channel with
1962 * dma_request_channel().
1963 */
1964 if (pdev->dev.of_node) {
1965 err = of_dma_controller_register(pdev->dev.of_node,
1966 at_dma_xlate, atdma);
1967 if (err) {
1968 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1969 goto err_of_dma_controller_register;
1970 }
1971 }
1972
1973 return 0;
1974
1975 err_of_dma_controller_register:
1976 dma_async_device_unregister(&atdma->dma_common);
1977 dma_pool_destroy(atdma->memset_pool);
1978 err_memset_pool_create:
1979 dma_pool_destroy(atdma->dma_desc_pool);
1980 err_desc_pool_create:
1981 free_irq(platform_get_irq(pdev, 0), atdma);
1982 err_irq:
1983 clk_disable_unprepare(atdma->clk);
1984 err_clk_prepare:
1985 clk_put(atdma->clk);
1986 err_clk:
1987 iounmap(atdma->regs);
1988 atdma->regs = NULL;
1989 err_release_r:
1990 release_mem_region(io->start, size);
1991 err_kfree:
1992 kfree(atdma);
1993 return err;
1994 }
1995
at_dma_remove(struct platform_device * pdev)1996 static int at_dma_remove(struct platform_device *pdev)
1997 {
1998 struct at_dma *atdma = platform_get_drvdata(pdev);
1999 struct dma_chan *chan, *_chan;
2000 struct resource *io;
2001
2002 at_dma_off(atdma);
2003 dma_async_device_unregister(&atdma->dma_common);
2004
2005 dma_pool_destroy(atdma->memset_pool);
2006 dma_pool_destroy(atdma->dma_desc_pool);
2007 free_irq(platform_get_irq(pdev, 0), atdma);
2008
2009 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2010 device_node) {
2011 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2012
2013 /* Disable interrupts */
2014 atc_disable_chan_irq(atdma, chan->chan_id);
2015
2016 tasklet_kill(&atchan->tasklet);
2017 list_del(&chan->device_node);
2018 }
2019
2020 clk_disable_unprepare(atdma->clk);
2021 clk_put(atdma->clk);
2022
2023 iounmap(atdma->regs);
2024 atdma->regs = NULL;
2025
2026 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 release_mem_region(io->start, resource_size(io));
2028
2029 kfree(atdma);
2030
2031 return 0;
2032 }
2033
at_dma_shutdown(struct platform_device * pdev)2034 static void at_dma_shutdown(struct platform_device *pdev)
2035 {
2036 struct at_dma *atdma = platform_get_drvdata(pdev);
2037
2038 at_dma_off(platform_get_drvdata(pdev));
2039 clk_disable_unprepare(atdma->clk);
2040 }
2041
at_dma_prepare(struct device * dev)2042 static int at_dma_prepare(struct device *dev)
2043 {
2044 struct at_dma *atdma = dev_get_drvdata(dev);
2045 struct dma_chan *chan, *_chan;
2046
2047 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2048 device_node) {
2049 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2050 /* wait for transaction completion (except in cyclic case) */
2051 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2052 return -EAGAIN;
2053 }
2054 return 0;
2055 }
2056
atc_suspend_cyclic(struct at_dma_chan * atchan)2057 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2058 {
2059 struct dma_chan *chan = &atchan->chan_common;
2060
2061 /* Channel should be paused by user
2062 * do it anyway even if it is not done already */
2063 if (!atc_chan_is_paused(atchan)) {
2064 dev_warn(chan2dev(chan),
2065 "cyclic channel not paused, should be done by channel user\n");
2066 atc_pause(chan);
2067 }
2068
2069 /* now preserve additional data for cyclic operations */
2070 /* next descriptor address in the cyclic list */
2071 atchan->save_dscr = channel_readl(atchan, DSCR);
2072
2073 vdbg_dump_regs(atchan);
2074 }
2075
at_dma_suspend_noirq(struct device * dev)2076 static int at_dma_suspend_noirq(struct device *dev)
2077 {
2078 struct at_dma *atdma = dev_get_drvdata(dev);
2079 struct dma_chan *chan, *_chan;
2080
2081 /* preserve data */
2082 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2083 device_node) {
2084 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2085
2086 if (atc_chan_is_cyclic(atchan))
2087 atc_suspend_cyclic(atchan);
2088 atchan->save_cfg = channel_readl(atchan, CFG);
2089 }
2090 atdma->save_imr = dma_readl(atdma, EBCIMR);
2091
2092 /* disable DMA controller */
2093 at_dma_off(atdma);
2094 clk_disable_unprepare(atdma->clk);
2095 return 0;
2096 }
2097
atc_resume_cyclic(struct at_dma_chan * atchan)2098 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2099 {
2100 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2101
2102 /* restore channel status for cyclic descriptors list:
2103 * next descriptor in the cyclic list at the time of suspend */
2104 channel_writel(atchan, SADDR, 0);
2105 channel_writel(atchan, DADDR, 0);
2106 channel_writel(atchan, CTRLA, 0);
2107 channel_writel(atchan, CTRLB, 0);
2108 channel_writel(atchan, DSCR, atchan->save_dscr);
2109 dma_writel(atdma, CHER, atchan->mask);
2110
2111 /* channel pause status should be removed by channel user
2112 * We cannot take the initiative to do it here */
2113
2114 vdbg_dump_regs(atchan);
2115 }
2116
at_dma_resume_noirq(struct device * dev)2117 static int at_dma_resume_noirq(struct device *dev)
2118 {
2119 struct at_dma *atdma = dev_get_drvdata(dev);
2120 struct dma_chan *chan, *_chan;
2121
2122 /* bring back DMA controller */
2123 clk_prepare_enable(atdma->clk);
2124 dma_writel(atdma, EN, AT_DMA_ENABLE);
2125
2126 /* clear any pending interrupt */
2127 while (dma_readl(atdma, EBCISR))
2128 cpu_relax();
2129
2130 /* restore saved data */
2131 dma_writel(atdma, EBCIER, atdma->save_imr);
2132 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2133 device_node) {
2134 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2135
2136 channel_writel(atchan, CFG, atchan->save_cfg);
2137 if (atc_chan_is_cyclic(atchan))
2138 atc_resume_cyclic(atchan);
2139 }
2140 return 0;
2141 }
2142
2143 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2144 .prepare = at_dma_prepare,
2145 .suspend_noirq = at_dma_suspend_noirq,
2146 .resume_noirq = at_dma_resume_noirq,
2147 };
2148
2149 static struct platform_driver at_dma_driver = {
2150 .remove = at_dma_remove,
2151 .shutdown = at_dma_shutdown,
2152 .id_table = atdma_devtypes,
2153 .driver = {
2154 .name = "at_hdmac",
2155 .pm = &at_dma_dev_pm_ops,
2156 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2157 },
2158 };
2159
at_dma_init(void)2160 static int __init at_dma_init(void)
2161 {
2162 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2163 }
2164 subsys_initcall(at_dma_init);
2165
at_dma_exit(void)2166 static void __exit at_dma_exit(void)
2167 {
2168 platform_driver_unregister(&at_dma_driver);
2169 }
2170 module_exit(at_dma_exit);
2171
2172 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2173 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2174 MODULE_LICENSE("GPL");
2175 MODULE_ALIAS("platform:at_hdmac");
2176