1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips
4 *
5 * Copyright (C) The Asahi Linux Contributors
6 */
7
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19
20 #include "dmaengine.h"
21
22 #define NCHANNELS_MAX 64
23 #define IRQ_NOUTPUTS 4
24
25 /*
26 * For allocation purposes we split the cache
27 * memory into blocks of fixed size (given in bytes).
28 */
29 #define SRAM_BLOCK 2048
30
31 #define RING_WRITE_SLOT GENMASK(1, 0)
32 #define RING_READ_SLOT GENMASK(5, 4)
33 #define RING_FULL BIT(9)
34 #define RING_EMPTY BIT(8)
35 #define RING_ERR BIT(10)
36
37 #define STATUS_DESC_DONE BIT(0)
38 #define STATUS_ERR BIT(6)
39
40 #define FLAG_DESC_NOTIFY BIT(16)
41
42 #define REG_TX_START 0x0000
43 #define REG_TX_STOP 0x0004
44 #define REG_RX_START 0x0008
45 #define REG_RX_STOP 0x000c
46 #define REG_IMPRINT 0x0090
47 #define REG_TX_SRAM_SIZE 0x0094
48 #define REG_RX_SRAM_SIZE 0x0098
49
50 #define REG_CHAN_CTL(ch) (0x8000 + (ch) * 0x200)
51 #define REG_CHAN_CTL_RST_RINGS BIT(0)
52
53 #define REG_DESC_RING(ch) (0x8070 + (ch) * 0x200)
54 #define REG_REPORT_RING(ch) (0x8074 + (ch) * 0x200)
55
56 #define REG_RESIDUE(ch) (0x8064 + (ch) * 0x200)
57
58 #define REG_BUS_WIDTH(ch) (0x8040 + (ch) * 0x200)
59
60 #define BUS_WIDTH_8BIT 0x00
61 #define BUS_WIDTH_16BIT 0x01
62 #define BUS_WIDTH_32BIT 0x02
63 #define BUS_WIDTH_FRAME_2_WORDS 0x10
64 #define BUS_WIDTH_FRAME_4_WORDS 0x20
65
66 #define REG_CHAN_SRAM_CARVEOUT(ch) (0x8050 + (ch) * 0x200)
67 #define CHAN_SRAM_CARVEOUT_SIZE GENMASK(31, 16)
68 #define CHAN_SRAM_CARVEOUT_BASE GENMASK(15, 0)
69
70 #define REG_CHAN_FIFOCTL(ch) (0x8054 + (ch) * 0x200)
71 #define CHAN_FIFOCTL_LIMIT GENMASK(31, 16)
72 #define CHAN_FIFOCTL_THRESHOLD GENMASK(15, 0)
73
74 #define REG_DESC_WRITE(ch) (0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
75 #define REG_REPORT_READ(ch) (0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
76
77 #define REG_TX_INTSTATE(idx) (0x0030 + (idx) * 4)
78 #define REG_RX_INTSTATE(idx) (0x0040 + (idx) * 4)
79 #define REG_GLOBAL_INTSTATE(idx) (0x0050 + (idx) * 4)
80 #define REG_CHAN_INTSTATUS(ch, idx) (0x8010 + (ch) * 0x200 + (idx) * 4)
81 #define REG_CHAN_INTMASK(ch, idx) (0x8020 + (ch) * 0x200 + (idx) * 4)
82
83 struct admac_data;
84 struct admac_tx;
85
86 struct admac_chan {
87 unsigned int no;
88 struct admac_data *host;
89 struct dma_chan chan;
90 struct tasklet_struct tasklet;
91
92 u32 carveout;
93
94 spinlock_t lock;
95 struct admac_tx *current_tx;
96 int nperiod_acks;
97
98 /*
99 * We maintain a 'submitted' and 'issued' list mainly for interface
100 * correctness. Typical use of the driver (per channel) will be
101 * prepping, submitting and issuing a single cyclic transaction which
102 * will stay current until terminate_all is called.
103 */
104 struct list_head submitted;
105 struct list_head issued;
106
107 struct list_head to_free;
108 };
109
110 struct admac_sram {
111 u32 size;
112 /*
113 * SRAM_CARVEOUT has 16-bit fields, so the SRAM cannot be larger than
114 * 64K and a 32-bit bitfield over 2K blocks covers it.
115 */
116 u32 allocated;
117 };
118
119 struct admac_data {
120 struct dma_device dma;
121 struct device *dev;
122 __iomem void *base;
123 struct reset_control *rstc;
124
125 struct mutex cache_alloc_lock;
126 struct admac_sram txcache, rxcache;
127
128 int irq;
129 int irq_index;
130 int nchannels;
131 struct admac_chan channels[];
132 };
133
134 struct admac_tx {
135 struct dma_async_tx_descriptor tx;
136 bool cyclic;
137 dma_addr_t buf_addr;
138 dma_addr_t buf_end;
139 size_t buf_len;
140 size_t period_len;
141
142 size_t submitted_pos;
143 size_t reclaimed_pos;
144
145 struct list_head node;
146 };
147
admac_alloc_sram_carveout(struct admac_data * ad,enum dma_transfer_direction dir,u32 * out)148 static int admac_alloc_sram_carveout(struct admac_data *ad,
149 enum dma_transfer_direction dir,
150 u32 *out)
151 {
152 struct admac_sram *sram;
153 int i, ret = 0, nblocks;
154
155 if (dir == DMA_MEM_TO_DEV)
156 sram = &ad->txcache;
157 else
158 sram = &ad->rxcache;
159
160 mutex_lock(&ad->cache_alloc_lock);
161
162 nblocks = sram->size / SRAM_BLOCK;
163 for (i = 0; i < nblocks; i++)
164 if (!(sram->allocated & BIT(i)))
165 break;
166
167 if (i < nblocks) {
168 *out = FIELD_PREP(CHAN_SRAM_CARVEOUT_BASE, i * SRAM_BLOCK) |
169 FIELD_PREP(CHAN_SRAM_CARVEOUT_SIZE, SRAM_BLOCK);
170 sram->allocated |= BIT(i);
171 } else {
172 ret = -EBUSY;
173 }
174
175 mutex_unlock(&ad->cache_alloc_lock);
176
177 return ret;
178 }
179
admac_free_sram_carveout(struct admac_data * ad,enum dma_transfer_direction dir,u32 carveout)180 static void admac_free_sram_carveout(struct admac_data *ad,
181 enum dma_transfer_direction dir,
182 u32 carveout)
183 {
184 struct admac_sram *sram;
185 u32 base = FIELD_GET(CHAN_SRAM_CARVEOUT_BASE, carveout);
186 int i;
187
188 if (dir == DMA_MEM_TO_DEV)
189 sram = &ad->txcache;
190 else
191 sram = &ad->rxcache;
192
193 if (WARN_ON(base >= sram->size))
194 return;
195
196 mutex_lock(&ad->cache_alloc_lock);
197 i = base / SRAM_BLOCK;
198 sram->allocated &= ~BIT(i);
199 mutex_unlock(&ad->cache_alloc_lock);
200 }
201
admac_modify(struct admac_data * ad,int reg,u32 mask,u32 val)202 static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val)
203 {
204 void __iomem *addr = ad->base + reg;
205 u32 curr = readl_relaxed(addr);
206
207 writel_relaxed((curr & ~mask) | (val & mask), addr);
208 }
209
to_admac_chan(struct dma_chan * chan)210 static struct admac_chan *to_admac_chan(struct dma_chan *chan)
211 {
212 return container_of(chan, struct admac_chan, chan);
213 }
214
to_admac_tx(struct dma_async_tx_descriptor * tx)215 static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx)
216 {
217 return container_of(tx, struct admac_tx, tx);
218 }
219
admac_chan_direction(int channo)220 static enum dma_transfer_direction admac_chan_direction(int channo)
221 {
222 /* Channel directions are hardwired */
223 return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
224 }
225
admac_tx_submit(struct dma_async_tx_descriptor * tx)226 static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx)
227 {
228 struct admac_tx *adtx = to_admac_tx(tx);
229 struct admac_chan *adchan = to_admac_chan(tx->chan);
230 unsigned long flags;
231 dma_cookie_t cookie;
232
233 spin_lock_irqsave(&adchan->lock, flags);
234 cookie = dma_cookie_assign(tx);
235 list_add_tail(&adtx->node, &adchan->submitted);
236 spin_unlock_irqrestore(&adchan->lock, flags);
237
238 return cookie;
239 }
240
admac_desc_free(struct dma_async_tx_descriptor * tx)241 static int admac_desc_free(struct dma_async_tx_descriptor *tx)
242 {
243 kfree(to_admac_tx(tx));
244
245 return 0;
246 }
247
admac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)248 static struct dma_async_tx_descriptor *admac_prep_dma_cyclic(
249 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
250 size_t period_len, enum dma_transfer_direction direction,
251 unsigned long flags)
252 {
253 struct admac_chan *adchan = container_of(chan, struct admac_chan, chan);
254 struct admac_tx *adtx;
255
256 if (direction != admac_chan_direction(adchan->no))
257 return NULL;
258
259 adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT);
260 if (!adtx)
261 return NULL;
262
263 adtx->cyclic = true;
264
265 adtx->buf_addr = buf_addr;
266 adtx->buf_len = buf_len;
267 adtx->buf_end = buf_addr + buf_len;
268 adtx->period_len = period_len;
269
270 adtx->submitted_pos = 0;
271 adtx->reclaimed_pos = 0;
272
273 dma_async_tx_descriptor_init(&adtx->tx, chan);
274 adtx->tx.tx_submit = admac_tx_submit;
275 adtx->tx.desc_free = admac_desc_free;
276
277 return &adtx->tx;
278 }
279
280 /*
281 * Write one hardware descriptor for a dmaengine cyclic transaction.
282 */
admac_cyclic_write_one_desc(struct admac_data * ad,int channo,struct admac_tx * tx)283 static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo,
284 struct admac_tx *tx)
285 {
286 dma_addr_t addr;
287
288 addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len);
289
290 /* If happens means we have buggy code */
291 WARN_ON_ONCE(addr + tx->period_len > tx->buf_end);
292
293 dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n",
294 channo, &addr, tx->period_len, FLAG_DESC_NOTIFY);
295
296 writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
297 writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
298 writel_relaxed(tx->period_len, ad->base + REG_DESC_WRITE(channo));
299 writel_relaxed(FLAG_DESC_NOTIFY, ad->base + REG_DESC_WRITE(channo));
300
301 tx->submitted_pos += tx->period_len;
302 tx->submitted_pos %= 2 * tx->buf_len;
303 }
304
305 /*
306 * Write all the hardware descriptors for a dmaengine cyclic
307 * transaction there is space for.
308 */
admac_cyclic_write_desc(struct admac_data * ad,int channo,struct admac_tx * tx)309 static void admac_cyclic_write_desc(struct admac_data *ad, int channo,
310 struct admac_tx *tx)
311 {
312 int i;
313
314 for (i = 0; i < 4; i++) {
315 if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL)
316 break;
317 admac_cyclic_write_one_desc(ad, channo, tx);
318 }
319 }
320
admac_ring_noccupied_slots(int ringval)321 static int admac_ring_noccupied_slots(int ringval)
322 {
323 int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval);
324 int rdslot = FIELD_GET(RING_READ_SLOT, ringval);
325
326 if (wrslot != rdslot) {
327 return (wrslot + 4 - rdslot) % 4;
328 } else {
329 WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0);
330
331 if (ringval & RING_FULL)
332 return 4;
333 else
334 return 0;
335 }
336 }
337
338 /*
339 * Read from hardware the residue of a cyclic dmaengine transaction.
340 */
admac_cyclic_read_residue(struct admac_data * ad,int channo,struct admac_tx * adtx)341 static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo,
342 struct admac_tx *adtx)
343 {
344 u32 ring1, ring2;
345 u32 residue1, residue2;
346 int nreports;
347 size_t pos;
348
349 ring1 = readl_relaxed(ad->base + REG_REPORT_RING(channo));
350 residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo));
351 ring2 = readl_relaxed(ad->base + REG_REPORT_RING(channo));
352 residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo));
353
354 if (residue2 > residue1) {
355 /*
356 * Controller must have loaded next descriptor between
357 * the two residue reads
358 */
359 nreports = admac_ring_noccupied_slots(ring1) + 1;
360 } else {
361 /* No descriptor load between the two reads, ring2 is safe to use */
362 nreports = admac_ring_noccupied_slots(ring2);
363 }
364
365 pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2;
366
367 return adtx->buf_len - pos % adtx->buf_len;
368 }
369
admac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)370 static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
371 struct dma_tx_state *txstate)
372 {
373 struct admac_chan *adchan = to_admac_chan(chan);
374 struct admac_data *ad = adchan->host;
375 struct admac_tx *adtx;
376
377 enum dma_status ret;
378 size_t residue;
379 unsigned long flags;
380
381 ret = dma_cookie_status(chan, cookie, txstate);
382 if (ret == DMA_COMPLETE || !txstate)
383 return ret;
384
385 spin_lock_irqsave(&adchan->lock, flags);
386 adtx = adchan->current_tx;
387
388 if (adtx && adtx->tx.cookie == cookie) {
389 ret = DMA_IN_PROGRESS;
390 residue = admac_cyclic_read_residue(ad, adchan->no, adtx);
391 } else {
392 ret = DMA_IN_PROGRESS;
393 residue = 0;
394 list_for_each_entry(adtx, &adchan->issued, node) {
395 if (adtx->tx.cookie == cookie) {
396 residue = adtx->buf_len;
397 break;
398 }
399 }
400 }
401 spin_unlock_irqrestore(&adchan->lock, flags);
402
403 dma_set_residue(txstate, residue);
404 return ret;
405 }
406
admac_start_chan(struct admac_chan * adchan)407 static void admac_start_chan(struct admac_chan *adchan)
408 {
409 struct admac_data *ad = adchan->host;
410 u32 startbit = 1 << (adchan->no / 2);
411
412 writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
413 ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index));
414 writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
415 ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index));
416
417 switch (admac_chan_direction(adchan->no)) {
418 case DMA_MEM_TO_DEV:
419 writel_relaxed(startbit, ad->base + REG_TX_START);
420 break;
421 case DMA_DEV_TO_MEM:
422 writel_relaxed(startbit, ad->base + REG_RX_START);
423 break;
424 default:
425 break;
426 }
427 dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no);
428 }
429
admac_stop_chan(struct admac_chan * adchan)430 static void admac_stop_chan(struct admac_chan *adchan)
431 {
432 struct admac_data *ad = adchan->host;
433 u32 stopbit = 1 << (adchan->no / 2);
434
435 switch (admac_chan_direction(adchan->no)) {
436 case DMA_MEM_TO_DEV:
437 writel_relaxed(stopbit, ad->base + REG_TX_STOP);
438 break;
439 case DMA_DEV_TO_MEM:
440 writel_relaxed(stopbit, ad->base + REG_RX_STOP);
441 break;
442 default:
443 break;
444 }
445 dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no);
446 }
447
admac_reset_rings(struct admac_chan * adchan)448 static void admac_reset_rings(struct admac_chan *adchan)
449 {
450 struct admac_data *ad = adchan->host;
451
452 writel_relaxed(REG_CHAN_CTL_RST_RINGS,
453 ad->base + REG_CHAN_CTL(adchan->no));
454 writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no));
455 }
456
admac_start_current_tx(struct admac_chan * adchan)457 static void admac_start_current_tx(struct admac_chan *adchan)
458 {
459 struct admac_data *ad = adchan->host;
460 int ch = adchan->no;
461
462 admac_reset_rings(adchan);
463 writel_relaxed(0, ad->base + REG_CHAN_CTL(ch));
464
465 admac_cyclic_write_one_desc(ad, ch, adchan->current_tx);
466 admac_start_chan(adchan);
467 admac_cyclic_write_desc(ad, ch, adchan->current_tx);
468 }
469
admac_issue_pending(struct dma_chan * chan)470 static void admac_issue_pending(struct dma_chan *chan)
471 {
472 struct admac_chan *adchan = to_admac_chan(chan);
473 struct admac_tx *tx;
474 unsigned long flags;
475
476 spin_lock_irqsave(&adchan->lock, flags);
477 list_splice_tail_init(&adchan->submitted, &adchan->issued);
478 if (!list_empty(&adchan->issued) && !adchan->current_tx) {
479 tx = list_first_entry(&adchan->issued, struct admac_tx, node);
480 list_del(&tx->node);
481
482 adchan->current_tx = tx;
483 adchan->nperiod_acks = 0;
484 admac_start_current_tx(adchan);
485 }
486 spin_unlock_irqrestore(&adchan->lock, flags);
487 }
488
admac_pause(struct dma_chan * chan)489 static int admac_pause(struct dma_chan *chan)
490 {
491 struct admac_chan *adchan = to_admac_chan(chan);
492
493 admac_stop_chan(adchan);
494
495 return 0;
496 }
497
admac_resume(struct dma_chan * chan)498 static int admac_resume(struct dma_chan *chan)
499 {
500 struct admac_chan *adchan = to_admac_chan(chan);
501
502 admac_start_chan(adchan);
503
504 return 0;
505 }
506
admac_terminate_all(struct dma_chan * chan)507 static int admac_terminate_all(struct dma_chan *chan)
508 {
509 struct admac_chan *adchan = to_admac_chan(chan);
510 unsigned long flags;
511
512 spin_lock_irqsave(&adchan->lock, flags);
513 admac_stop_chan(adchan);
514 admac_reset_rings(adchan);
515
516 if (adchan->current_tx) {
517 list_add_tail(&adchan->current_tx->node, &adchan->to_free);
518 adchan->current_tx = NULL;
519 }
520 /*
521 * Descriptors can only be freed after the tasklet
522 * has been killed (in admac_synchronize).
523 */
524 list_splice_tail_init(&adchan->submitted, &adchan->to_free);
525 list_splice_tail_init(&adchan->issued, &adchan->to_free);
526 spin_unlock_irqrestore(&adchan->lock, flags);
527
528 return 0;
529 }
530
admac_synchronize(struct dma_chan * chan)531 static void admac_synchronize(struct dma_chan *chan)
532 {
533 struct admac_chan *adchan = to_admac_chan(chan);
534 struct admac_tx *adtx, *_adtx;
535 unsigned long flags;
536 LIST_HEAD(head);
537
538 spin_lock_irqsave(&adchan->lock, flags);
539 list_splice_tail_init(&adchan->to_free, &head);
540 spin_unlock_irqrestore(&adchan->lock, flags);
541
542 tasklet_kill(&adchan->tasklet);
543
544 list_for_each_entry_safe(adtx, _adtx, &head, node) {
545 list_del(&adtx->node);
546 admac_desc_free(&adtx->tx);
547 }
548 }
549
admac_alloc_chan_resources(struct dma_chan * chan)550 static int admac_alloc_chan_resources(struct dma_chan *chan)
551 {
552 struct admac_chan *adchan = to_admac_chan(chan);
553 struct admac_data *ad = adchan->host;
554 int ret;
555
556 dma_cookie_init(&adchan->chan);
557 ret = admac_alloc_sram_carveout(ad, admac_chan_direction(adchan->no),
558 &adchan->carveout);
559 if (ret < 0)
560 return ret;
561
562 writel_relaxed(adchan->carveout,
563 ad->base + REG_CHAN_SRAM_CARVEOUT(adchan->no));
564 return 0;
565 }
566
admac_free_chan_resources(struct dma_chan * chan)567 static void admac_free_chan_resources(struct dma_chan *chan)
568 {
569 struct admac_chan *adchan = to_admac_chan(chan);
570
571 admac_terminate_all(chan);
572 admac_synchronize(chan);
573 admac_free_sram_carveout(adchan->host, admac_chan_direction(adchan->no),
574 adchan->carveout);
575 }
576
admac_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)577 static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec,
578 struct of_dma *ofdma)
579 {
580 struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data;
581 unsigned int index;
582
583 if (dma_spec->args_count != 1)
584 return NULL;
585
586 index = dma_spec->args[0];
587
588 if (index >= ad->nchannels) {
589 dev_err(ad->dev, "channel index %u out of bounds\n", index);
590 return NULL;
591 }
592
593 return dma_get_slave_channel(&ad->channels[index].chan);
594 }
595
admac_drain_reports(struct admac_data * ad,int channo)596 static int admac_drain_reports(struct admac_data *ad, int channo)
597 {
598 int count;
599
600 for (count = 0; count < 4; count++) {
601 u32 countval_hi, countval_lo, unk1, flags;
602
603 if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY)
604 break;
605
606 countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo));
607 countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo));
608 unk1 = readl_relaxed(ad->base + REG_REPORT_READ(channo));
609 flags = readl_relaxed(ad->base + REG_REPORT_READ(channo));
610
611 dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n",
612 channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags);
613 }
614
615 return count;
616 }
617
admac_handle_status_err(struct admac_data * ad,int channo)618 static void admac_handle_status_err(struct admac_data *ad, int channo)
619 {
620 bool handled = false;
621
622 if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) {
623 writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo));
624 dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo);
625 handled = true;
626 }
627
628 if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) {
629 writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo));
630 dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo);
631 handled = true;
632 }
633
634 if (unlikely(!handled)) {
635 dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo);
636 admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index),
637 STATUS_ERR, 0);
638 }
639 }
640
admac_handle_status_desc_done(struct admac_data * ad,int channo)641 static void admac_handle_status_desc_done(struct admac_data *ad, int channo)
642 {
643 struct admac_chan *adchan = &ad->channels[channo];
644 unsigned long flags;
645 int nreports;
646
647 writel_relaxed(STATUS_DESC_DONE,
648 ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index));
649
650 spin_lock_irqsave(&adchan->lock, flags);
651 nreports = admac_drain_reports(ad, channo);
652
653 if (adchan->current_tx) {
654 struct admac_tx *tx = adchan->current_tx;
655
656 adchan->nperiod_acks += nreports;
657 tx->reclaimed_pos += nreports * tx->period_len;
658 tx->reclaimed_pos %= 2 * tx->buf_len;
659
660 admac_cyclic_write_desc(ad, channo, tx);
661 tasklet_schedule(&adchan->tasklet);
662 }
663 spin_unlock_irqrestore(&adchan->lock, flags);
664 }
665
admac_handle_chan_int(struct admac_data * ad,int no)666 static void admac_handle_chan_int(struct admac_data *ad, int no)
667 {
668 u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index));
669
670 if (cause & STATUS_ERR)
671 admac_handle_status_err(ad, no);
672
673 if (cause & STATUS_DESC_DONE)
674 admac_handle_status_desc_done(ad, no);
675 }
676
admac_interrupt(int irq,void * devid)677 static irqreturn_t admac_interrupt(int irq, void *devid)
678 {
679 struct admac_data *ad = devid;
680 u32 rx_intstate, tx_intstate, global_intstate;
681 int i;
682
683 rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index));
684 tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index));
685 global_intstate = readl_relaxed(ad->base + REG_GLOBAL_INTSTATE(ad->irq_index));
686
687 if (!tx_intstate && !rx_intstate && !global_intstate)
688 return IRQ_NONE;
689
690 for (i = 0; i < ad->nchannels; i += 2) {
691 if (tx_intstate & 1)
692 admac_handle_chan_int(ad, i);
693 tx_intstate >>= 1;
694 }
695
696 for (i = 1; i < ad->nchannels; i += 2) {
697 if (rx_intstate & 1)
698 admac_handle_chan_int(ad, i);
699 rx_intstate >>= 1;
700 }
701
702 if (global_intstate) {
703 dev_warn(ad->dev, "clearing unknown global interrupt flag: %x\n",
704 global_intstate);
705 writel_relaxed(~(u32) 0, ad->base + REG_GLOBAL_INTSTATE(ad->irq_index));
706 }
707
708 return IRQ_HANDLED;
709 }
710
admac_chan_tasklet(struct tasklet_struct * t)711 static void admac_chan_tasklet(struct tasklet_struct *t)
712 {
713 struct admac_chan *adchan = from_tasklet(adchan, t, tasklet);
714 struct admac_tx *adtx;
715 struct dmaengine_desc_callback cb;
716 struct dmaengine_result tx_result;
717 int nacks;
718
719 spin_lock_irq(&adchan->lock);
720 adtx = adchan->current_tx;
721 nacks = adchan->nperiod_acks;
722 adchan->nperiod_acks = 0;
723 spin_unlock_irq(&adchan->lock);
724
725 if (!adtx || !nacks)
726 return;
727
728 tx_result.result = DMA_TRANS_NOERROR;
729 tx_result.residue = 0;
730
731 dmaengine_desc_get_callback(&adtx->tx, &cb);
732 while (nacks--)
733 dmaengine_desc_callback_invoke(&cb, &tx_result);
734 }
735
admac_device_config(struct dma_chan * chan,struct dma_slave_config * config)736 static int admac_device_config(struct dma_chan *chan,
737 struct dma_slave_config *config)
738 {
739 struct admac_chan *adchan = to_admac_chan(chan);
740 struct admac_data *ad = adchan->host;
741 bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV;
742 int wordsize = 0;
743 u32 bus_width = 0;
744
745 switch (is_tx ? config->dst_addr_width : config->src_addr_width) {
746 case DMA_SLAVE_BUSWIDTH_1_BYTE:
747 wordsize = 1;
748 bus_width |= BUS_WIDTH_8BIT;
749 break;
750 case DMA_SLAVE_BUSWIDTH_2_BYTES:
751 wordsize = 2;
752 bus_width |= BUS_WIDTH_16BIT;
753 break;
754 case DMA_SLAVE_BUSWIDTH_4_BYTES:
755 wordsize = 4;
756 bus_width |= BUS_WIDTH_32BIT;
757 break;
758 default:
759 return -EINVAL;
760 }
761
762 /*
763 * We take port_window_size to be the number of words in a frame.
764 *
765 * The controller has some means of out-of-band signalling, to the peripheral,
766 * of words position in a frame. That's where the importance of this control
767 * comes from.
768 */
769 switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) {
770 case 0 ... 1:
771 break;
772 case 2:
773 bus_width |= BUS_WIDTH_FRAME_2_WORDS;
774 break;
775 case 4:
776 bus_width |= BUS_WIDTH_FRAME_4_WORDS;
777 break;
778 default:
779 return -EINVAL;
780 }
781
782 writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no));
783
784 /*
785 * By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be
786 * held in controller's per-channel FIFO. Transfers seem to be triggered
787 * around the time FIFO occupancy touches FIFOCTL_THRESHOLD.
788 *
789 * The numbers we set are more or less arbitrary.
790 */
791 writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize)
792 | FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize),
793 ad->base + REG_CHAN_FIFOCTL(adchan->no));
794
795 return 0;
796 }
797
admac_probe(struct platform_device * pdev)798 static int admac_probe(struct platform_device *pdev)
799 {
800 struct device_node *np = pdev->dev.of_node;
801 struct admac_data *ad;
802 struct dma_device *dma;
803 int nchannels;
804 int err, irq, i;
805
806 err = of_property_read_u32(np, "dma-channels", &nchannels);
807 if (err || nchannels > NCHANNELS_MAX) {
808 dev_err(&pdev->dev, "missing or invalid dma-channels property\n");
809 return -EINVAL;
810 }
811
812 ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL);
813 if (!ad)
814 return -ENOMEM;
815
816 platform_set_drvdata(pdev, ad);
817 ad->dev = &pdev->dev;
818 ad->nchannels = nchannels;
819 mutex_init(&ad->cache_alloc_lock);
820
821 /*
822 * The controller has 4 IRQ outputs. Try them all until
823 * we find one we can use.
824 */
825 for (i = 0; i < IRQ_NOUTPUTS; i++) {
826 irq = platform_get_irq_optional(pdev, i);
827 if (irq >= 0) {
828 ad->irq_index = i;
829 break;
830 }
831 }
832
833 if (irq < 0)
834 return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n");
835 ad->irq = irq;
836
837 ad->base = devm_platform_ioremap_resource(pdev, 0);
838 if (IS_ERR(ad->base))
839 return dev_err_probe(&pdev->dev, PTR_ERR(ad->base),
840 "unable to obtain MMIO resource\n");
841
842 ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
843 if (IS_ERR(ad->rstc))
844 return PTR_ERR(ad->rstc);
845
846 dma = &ad->dma;
847
848 dma_cap_set(DMA_PRIVATE, dma->cap_mask);
849 dma_cap_set(DMA_CYCLIC, dma->cap_mask);
850
851 dma->dev = &pdev->dev;
852 dma->device_alloc_chan_resources = admac_alloc_chan_resources;
853 dma->device_free_chan_resources = admac_free_chan_resources;
854 dma->device_tx_status = admac_tx_status;
855 dma->device_issue_pending = admac_issue_pending;
856 dma->device_terminate_all = admac_terminate_all;
857 dma->device_synchronize = admac_synchronize;
858 dma->device_prep_dma_cyclic = admac_prep_dma_cyclic;
859 dma->device_config = admac_device_config;
860 dma->device_pause = admac_pause;
861 dma->device_resume = admac_resume;
862
863 dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
864 dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
865 dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
866 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
867 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
868 dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
869 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
870 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
871
872 INIT_LIST_HEAD(&dma->channels);
873 for (i = 0; i < nchannels; i++) {
874 struct admac_chan *adchan = &ad->channels[i];
875
876 adchan->host = ad;
877 adchan->no = i;
878 adchan->chan.device = &ad->dma;
879 spin_lock_init(&adchan->lock);
880 INIT_LIST_HEAD(&adchan->submitted);
881 INIT_LIST_HEAD(&adchan->issued);
882 INIT_LIST_HEAD(&adchan->to_free);
883 list_add_tail(&adchan->chan.device_node, &dma->channels);
884 tasklet_setup(&adchan->tasklet, admac_chan_tasklet);
885 }
886
887 err = reset_control_reset(ad->rstc);
888 if (err)
889 return dev_err_probe(&pdev->dev, err,
890 "unable to trigger reset\n");
891
892 err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad);
893 if (err) {
894 dev_err_probe(&pdev->dev, err,
895 "unable to register interrupt\n");
896 goto free_reset;
897 }
898
899 err = dma_async_device_register(&ad->dma);
900 if (err) {
901 dev_err_probe(&pdev->dev, err, "failed to register DMA device\n");
902 goto free_irq;
903 }
904
905 err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad);
906 if (err) {
907 dma_async_device_unregister(&ad->dma);
908 dev_err_probe(&pdev->dev, err, "failed to register with OF\n");
909 goto free_irq;
910 }
911
912 ad->txcache.size = readl_relaxed(ad->base + REG_TX_SRAM_SIZE);
913 ad->rxcache.size = readl_relaxed(ad->base + REG_RX_SRAM_SIZE);
914
915 dev_info(&pdev->dev, "Audio DMA Controller\n");
916 dev_info(&pdev->dev, "imprint %x TX cache %u RX cache %u\n",
917 readl_relaxed(ad->base + REG_IMPRINT), ad->txcache.size, ad->rxcache.size);
918
919 return 0;
920
921 free_irq:
922 free_irq(ad->irq, ad);
923 free_reset:
924 reset_control_rearm(ad->rstc);
925 return err;
926 }
927
admac_remove(struct platform_device * pdev)928 static int admac_remove(struct platform_device *pdev)
929 {
930 struct admac_data *ad = platform_get_drvdata(pdev);
931
932 of_dma_controller_free(pdev->dev.of_node);
933 dma_async_device_unregister(&ad->dma);
934 free_irq(ad->irq, ad);
935 reset_control_rearm(ad->rstc);
936
937 return 0;
938 }
939
940 static const struct of_device_id admac_of_match[] = {
941 { .compatible = "apple,admac", },
942 { }
943 };
944 MODULE_DEVICE_TABLE(of, admac_of_match);
945
946 static struct platform_driver apple_admac_driver = {
947 .driver = {
948 .name = "apple-admac",
949 .of_match_table = admac_of_match,
950 },
951 .probe = admac_probe,
952 .remove = admac_remove,
953 };
954 module_platform_driver(apple_admac_driver);
955
956 MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
957 MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs");
958 MODULE_LICENSE("GPL");
959