1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35
36 #define _SBF(s, v) ((v) << (s))
37
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT 0x0000
40 #define SSS_FCINTSTAT_HPARTINT BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
46
47 #define SSS_REG_FCINTENSET 0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
54
55 #define SSS_REG_FCINTENCLR 0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
62
63 #define SSS_REG_FCINTPEND 0x000C
64 #define SSS_FCINTPEND_HPARTINTP BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
70
71 #define SSS_REG_FCFIFOSTAT 0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
80
81 #define SSS_REG_FCFIFOCTRL 0x0014
82 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
86 #define SSS_HASHIN_MASK _SBF(0, 0x03)
87
88 #define SSS_REG_FCBRDMAS 0x0020
89 #define SSS_REG_FCBRDMAL 0x0024
90 #define SSS_REG_FCBRDMAC 0x0028
91 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
92 #define SSS_FCBRDMAC_FLUSH BIT(0)
93
94 #define SSS_REG_FCBTDMAS 0x0030
95 #define SSS_REG_FCBTDMAL 0x0034
96 #define SSS_REG_FCBTDMAC 0x0038
97 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
98 #define SSS_FCBTDMAC_FLUSH BIT(0)
99
100 #define SSS_REG_FCHRDMAS 0x0040
101 #define SSS_REG_FCHRDMAL 0x0044
102 #define SSS_REG_FCHRDMAC 0x0048
103 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
104 #define SSS_FCHRDMAC_FLUSH BIT(0)
105
106 #define SSS_REG_FCPKDMAS 0x0050
107 #define SSS_REG_FCPKDMAL 0x0054
108 #define SSS_REG_FCPKDMAC 0x0058
109 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
110 #define SSS_FCPKDMAC_DESCEND BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
112 #define SSS_FCPKDMAC_FLUSH BIT(0)
113
114 #define SSS_REG_FCPKDMAO 0x005C
115
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL 0x00
118 #define SSS_AES_BYTESWAP_DI BIT(11)
119 #define SSS_AES_BYTESWAP_DO BIT(10)
120 #define SSS_AES_BYTESWAP_IV BIT(9)
121 #define SSS_AES_BYTESWAP_CNT BIT(8)
122 #define SSS_AES_BYTESWAP_KEY BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT BIT(0)
132
133 #define SSS_REG_AES_STATUS 0x04
134 #define SSS_AES_BUSY BIT(2)
135 #define SSS_AES_INPUT_READY BIT(1)
136 #define SSS_AES_OUTPUT_READY BIT(0)
137
138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
143
144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
147
148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
151
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT BIT(0)
154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155 #define FLAGS_AES_CBC _SBF(1, 0x01)
156 #define FLAGS_AES_CTR _SBF(1, 0x02)
157
158 #define AES_KEY_LEN 16
159 #define CRYPTO_QUEUE_LEN 1
160
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL 0x00
163
164 #define SSS_HASH_USER_IV_EN BIT(5)
165 #define SSS_HASH_INIT_BIT BIT(4)
166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
169
170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
171
172 #define SSS_REG_HASH_CTRL_PAUSE 0x04
173
174 #define SSS_HASH_PAUSE BIT(0)
175
176 #define SSS_REG_HASH_CTRL_FIFO 0x08
177
178 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU 0
180
181 #define SSS_REG_HASH_CTRL_SWAP 0x0C
182
183 #define SSS_HASH_BYTESWAP_DI BIT(3)
184 #define SSS_HASH_BYTESWAP_DO BIT(2)
185 #define SSS_HASH_BYTESWAP_IV BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY BIT(0)
187
188 #define SSS_REG_HASH_STATUS 0x10
189
190 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
193
194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
196
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
199
200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
202
203 #define HASH_BLOCK_SIZE 64
204 #define HASH_REG_SIZEOF 4
205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208
209 /*
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214 */
215 #define HASH_FLAGS_BUSY 0
216 #define HASH_FLAGS_FINAL 1
217 #define HASH_FLAGS_DMA_ACTIVE 2
218 #define HASH_FLAGS_OUTPUT_READY 3
219 #define HASH_FLAGS_DMA_READY 4
220 #define HASH_FLAGS_SGS_COPIED 5
221 #define HASH_FLAGS_SGS_ALLOCED 6
222
223 /* HASH HW constants */
224 #define BUFLEN HASH_BLOCK_SIZE
225
226 #define SSS_HASH_DMA_LEN_ALIGN 8
227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
228
229 #define SSS_HASH_QUEUE_LENGTH 10
230
231 /**
232 * struct samsung_aes_variant - platform specific SSS driver data
233 * @aes_offset: AES register offset from SSS module's base.
234 * @hash_offset: HASH register offset from SSS module's base.
235 *
236 * Specifies platform specific configuration of SSS module.
237 * Note: A structure for driver specific platform data is used for future
238 * expansion of its usage.
239 */
240 struct samsung_aes_variant {
241 unsigned int aes_offset;
242 unsigned int hash_offset;
243 };
244
245 struct s5p_aes_reqctx {
246 unsigned long mode;
247 };
248
249 struct s5p_aes_ctx {
250 struct s5p_aes_dev *dev;
251
252 uint8_t aes_key[AES_MAX_KEY_SIZE];
253 uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
254 int keylen;
255 };
256
257 /**
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @ioaddr: Mapped IO memory region
262 * @aes_ioaddr: Per-varian offset for AES block IO memory
263 * @irq_fc: Feed control interrupt line
264 * @req: Crypto request currently handled by the device
265 * @ctx: Configuration for currently handled crypto request
266 * @sg_src: Scatter list with source data for currently handled block
267 * in device. This is DMA-mapped into device.
268 * @sg_dst: Scatter list with destination data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_src_cpy: In case of unaligned access, copied scatter list
271 * with source data.
272 * @sg_dst_cpy: In case of unaligned access, copied scatter list
273 * with destination data.
274 * @tasklet: New request scheduling jib
275 * @queue: Crypto queue
276 * @busy: Indicates whether the device is currently handling some request
277 * thus it uses some of the fields from this state, like:
278 * req, ctx, sg_src/dst (and copies). This essentially
279 * protects against concurrent access to these fields.
280 * @lock: Lock for protecting both access to device hardware registers
281 * and fields related to current request (including the busy field).
282 * @res: Resources for hash.
283 * @io_hash_base: Per-variant offset for HASH block IO memory.
284 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
285 * variable.
286 * @hash_flags: Flags for current HASH op.
287 * @hash_queue: Async hash queue.
288 * @hash_tasklet: New HASH request scheduling job.
289 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
290 * @hash_req: Current request sending to SSS HASH block.
291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292 * @hash_sg_cnt: Counter for hash_sg_iter.
293 *
294 * @use_hash: true if HASH algs enabled
295 */
296 struct s5p_aes_dev {
297 struct device *dev;
298 struct clk *clk;
299 void __iomem *ioaddr;
300 void __iomem *aes_ioaddr;
301 int irq_fc;
302
303 struct ablkcipher_request *req;
304 struct s5p_aes_ctx *ctx;
305 struct scatterlist *sg_src;
306 struct scatterlist *sg_dst;
307
308 struct scatterlist *sg_src_cpy;
309 struct scatterlist *sg_dst_cpy;
310
311 struct tasklet_struct tasklet;
312 struct crypto_queue queue;
313 bool busy;
314 spinlock_t lock;
315
316 struct resource *res;
317 void __iomem *io_hash_base;
318
319 spinlock_t hash_lock; /* protect hash_ vars */
320 unsigned long hash_flags;
321 struct crypto_queue hash_queue;
322 struct tasklet_struct hash_tasklet;
323
324 u8 xmit_buf[BUFLEN];
325 struct ahash_request *hash_req;
326 struct scatterlist *hash_sg_iter;
327 unsigned int hash_sg_cnt;
328
329 bool use_hash;
330 };
331
332 /**
333 * struct s5p_hash_reqctx - HASH request context
334 * @dd: Associated device
335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
336 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
337 * @digest: Digest message or IV for partial result
338 * @nregs: Number of HW registers for digest or IV read/write
339 * @engine: Bits for selecting type of HASH in SSS block
340 * @sg: sg for DMA transfer
341 * @sg_len: Length of sg for DMA transfer
342 * @sgl[]: sg for joining buffer and req->src scatterlist
343 * @skip: Skip offset in req->src for current op
344 * @total: Total number of bytes for current request
345 * @finup: Keep state for finup or final.
346 * @error: Keep track of error.
347 * @bufcnt: Number of bytes holded in buffer[]
348 * @buffer[]: For byte(s) from end of req->src in UPDATE op
349 */
350 struct s5p_hash_reqctx {
351 struct s5p_aes_dev *dd;
352 bool op_update;
353
354 u64 digcnt;
355 u8 digest[SHA256_DIGEST_SIZE];
356
357 unsigned int nregs; /* digest_size / sizeof(reg) */
358 u32 engine;
359
360 struct scatterlist *sg;
361 unsigned int sg_len;
362 struct scatterlist sgl[2];
363 unsigned int skip;
364 unsigned int total;
365 bool finup;
366 bool error;
367
368 u32 bufcnt;
369 u8 buffer[0];
370 };
371
372 /**
373 * struct s5p_hash_ctx - HASH transformation context
374 * @dd: Associated device
375 * @flags: Bits for algorithm HASH.
376 * @fallback: Software transformation for zero message or size < BUFLEN.
377 */
378 struct s5p_hash_ctx {
379 struct s5p_aes_dev *dd;
380 unsigned long flags;
381 struct crypto_shash *fallback;
382 };
383
384 static const struct samsung_aes_variant s5p_aes_data = {
385 .aes_offset = 0x4000,
386 .hash_offset = 0x6000,
387 };
388
389 static const struct samsung_aes_variant exynos_aes_data = {
390 .aes_offset = 0x200,
391 .hash_offset = 0x400,
392 };
393
394 static const struct of_device_id s5p_sss_dt_match[] = {
395 {
396 .compatible = "samsung,s5pv210-secss",
397 .data = &s5p_aes_data,
398 },
399 {
400 .compatible = "samsung,exynos4210-secss",
401 .data = &exynos_aes_data,
402 },
403 { },
404 };
405 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
406
find_s5p_sss_version(const struct platform_device * pdev)407 static inline const struct samsung_aes_variant *find_s5p_sss_version
408 (const struct platform_device *pdev)
409 {
410 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
411 const struct of_device_id *match;
412
413 match = of_match_node(s5p_sss_dt_match,
414 pdev->dev.of_node);
415 return (const struct samsung_aes_variant *)match->data;
416 }
417 return (const struct samsung_aes_variant *)
418 platform_get_device_id(pdev)->driver_data;
419 }
420
421 static struct s5p_aes_dev *s5p_dev;
422
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)423 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
424 const struct scatterlist *sg)
425 {
426 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
427 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
428 }
429
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)430 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
431 const struct scatterlist *sg)
432 {
433 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
434 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
435 }
436
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)437 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
438 {
439 int len;
440
441 if (!*sg)
442 return;
443
444 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
445 free_pages((unsigned long)sg_virt(*sg), get_order(len));
446
447 kfree(*sg);
448 *sg = NULL;
449 }
450
s5p_sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int nbytes,int out)451 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
452 unsigned int nbytes, int out)
453 {
454 struct scatter_walk walk;
455
456 if (!nbytes)
457 return;
458
459 scatterwalk_start(&walk, sg);
460 scatterwalk_copychunks(buf, &walk, nbytes, out);
461 scatterwalk_done(&walk, out, 0);
462 }
463
s5p_sg_done(struct s5p_aes_dev * dev)464 static void s5p_sg_done(struct s5p_aes_dev *dev)
465 {
466 if (dev->sg_dst_cpy) {
467 dev_dbg(dev->dev,
468 "Copying %d bytes of output data back to original place\n",
469 dev->req->nbytes);
470 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
471 dev->req->nbytes, 1);
472 }
473 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
474 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
475 }
476
477 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct s5p_aes_dev * dev,int err)478 static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
479 {
480 dev->req->base.complete(&dev->req->base, err);
481 }
482
s5p_unset_outdata(struct s5p_aes_dev * dev)483 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
484 {
485 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
486 }
487
s5p_unset_indata(struct s5p_aes_dev * dev)488 static void s5p_unset_indata(struct s5p_aes_dev *dev)
489 {
490 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
491 }
492
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)493 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
494 struct scatterlist **dst)
495 {
496 void *pages;
497 int len;
498
499 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
500 if (!*dst)
501 return -ENOMEM;
502
503 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
504 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
505 if (!pages) {
506 kfree(*dst);
507 *dst = NULL;
508 return -ENOMEM;
509 }
510
511 s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
512
513 sg_init_table(*dst, 1);
514 sg_set_buf(*dst, pages, len);
515
516 return 0;
517 }
518
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)519 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
520 {
521 int err;
522
523 if (!sg->length) {
524 err = -EINVAL;
525 goto exit;
526 }
527
528 err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
529 if (!err) {
530 err = -ENOMEM;
531 goto exit;
532 }
533
534 dev->sg_dst = sg;
535 err = 0;
536
537 exit:
538 return err;
539 }
540
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)541 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
542 {
543 int err;
544
545 if (!sg->length) {
546 err = -EINVAL;
547 goto exit;
548 }
549
550 err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
551 if (!err) {
552 err = -ENOMEM;
553 goto exit;
554 }
555
556 dev->sg_src = sg;
557 err = 0;
558
559 exit:
560 return err;
561 }
562
563 /*
564 * Returns -ERRNO on error (mapping of new data failed).
565 * On success returns:
566 * - 0 if there is no more data,
567 * - 1 if new transmitting (output) data is ready and its address+length
568 * have to be written to device (by calling s5p_set_dma_outdata()).
569 */
s5p_aes_tx(struct s5p_aes_dev * dev)570 static int s5p_aes_tx(struct s5p_aes_dev *dev)
571 {
572 int ret = 0;
573
574 s5p_unset_outdata(dev);
575
576 if (!sg_is_last(dev->sg_dst)) {
577 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
578 if (!ret)
579 ret = 1;
580 }
581
582 return ret;
583 }
584
585 /*
586 * Returns -ERRNO on error (mapping of new data failed).
587 * On success returns:
588 * - 0 if there is no more data,
589 * - 1 if new receiving (input) data is ready and its address+length
590 * have to be written to device (by calling s5p_set_dma_indata()).
591 */
s5p_aes_rx(struct s5p_aes_dev * dev)592 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
593 {
594 int ret = 0;
595
596 s5p_unset_indata(dev);
597
598 if (!sg_is_last(dev->sg_src)) {
599 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
600 if (!ret)
601 ret = 1;
602 }
603
604 return ret;
605 }
606
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)607 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
608 {
609 return __raw_readl(dd->io_hash_base + offset);
610 }
611
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)612 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
613 u32 offset, u32 value)
614 {
615 __raw_writel(value, dd->io_hash_base + offset);
616 }
617
618 /**
619 * s5p_set_dma_hashdata() - start DMA with sg
620 * @dev: device
621 * @sg: scatterlist ready to DMA transmit
622 */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)623 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
624 const struct scatterlist *sg)
625 {
626 dev->hash_sg_cnt--;
627 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
628 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
629 }
630
631 /**
632 * s5p_hash_rx() - get next hash_sg_iter
633 * @dev: device
634 *
635 * Return:
636 * 2 if there is no more data and it is UPDATE op
637 * 1 if new receiving (input) data is ready and can be written to device
638 * 0 if there is no more data and it is FINAL op
639 */
s5p_hash_rx(struct s5p_aes_dev * dev)640 static int s5p_hash_rx(struct s5p_aes_dev *dev)
641 {
642 if (dev->hash_sg_cnt > 0) {
643 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
644 return 1;
645 }
646
647 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
648 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
649 return 0;
650
651 return 2;
652 }
653
s5p_aes_interrupt(int irq,void * dev_id)654 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
655 {
656 struct platform_device *pdev = dev_id;
657 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
658 int err_dma_tx = 0;
659 int err_dma_rx = 0;
660 int err_dma_hx = 0;
661 bool tx_end = false;
662 bool hx_end = false;
663 unsigned long flags;
664 uint32_t status;
665 u32 st_bits;
666 int err;
667
668 spin_lock_irqsave(&dev->lock, flags);
669
670 /*
671 * Handle rx or tx interrupt. If there is still data (scatterlist did not
672 * reach end), then map next scatterlist entry.
673 * In case of such mapping error, s5p_aes_complete() should be called.
674 *
675 * If there is no more data in tx scatter list, call s5p_aes_complete()
676 * and schedule new tasklet.
677 *
678 * Handle hx interrupt. If there is still data map next entry.
679 */
680 status = SSS_READ(dev, FCINTSTAT);
681 if (status & SSS_FCINTSTAT_BRDMAINT)
682 err_dma_rx = s5p_aes_rx(dev);
683
684 if (status & SSS_FCINTSTAT_BTDMAINT) {
685 if (sg_is_last(dev->sg_dst))
686 tx_end = true;
687 err_dma_tx = s5p_aes_tx(dev);
688 }
689
690 if (status & SSS_FCINTSTAT_HRDMAINT)
691 err_dma_hx = s5p_hash_rx(dev);
692
693 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
694 SSS_FCINTSTAT_HRDMAINT);
695 /* clear DMA bits */
696 SSS_WRITE(dev, FCINTPEND, st_bits);
697
698 /* clear HASH irq bits */
699 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
700 /* cannot have both HPART and HDONE */
701 if (status & SSS_FCINTSTAT_HPARTINT)
702 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
703
704 if (status & SSS_FCINTSTAT_HDONEINT)
705 st_bits = SSS_HASH_STATUS_MSG_DONE;
706
707 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
708 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
709 hx_end = true;
710 /* when DONE or PART, do not handle HASH DMA */
711 err_dma_hx = 0;
712 }
713
714 if (err_dma_rx < 0) {
715 err = err_dma_rx;
716 goto error;
717 }
718 if (err_dma_tx < 0) {
719 err = err_dma_tx;
720 goto error;
721 }
722
723 if (tx_end) {
724 s5p_sg_done(dev);
725 if (err_dma_hx == 1)
726 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
727
728 spin_unlock_irqrestore(&dev->lock, flags);
729
730 s5p_aes_complete(dev, 0);
731 /* Device is still busy */
732 tasklet_schedule(&dev->tasklet);
733 } else {
734 /*
735 * Writing length of DMA block (either receiving or
736 * transmitting) will start the operation immediately, so this
737 * should be done at the end (even after clearing pending
738 * interrupts to not miss the interrupt).
739 */
740 if (err_dma_tx == 1)
741 s5p_set_dma_outdata(dev, dev->sg_dst);
742 if (err_dma_rx == 1)
743 s5p_set_dma_indata(dev, dev->sg_src);
744 if (err_dma_hx == 1)
745 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
746
747 spin_unlock_irqrestore(&dev->lock, flags);
748 }
749
750 goto hash_irq_end;
751
752 error:
753 s5p_sg_done(dev);
754 dev->busy = false;
755 if (err_dma_hx == 1)
756 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
757
758 spin_unlock_irqrestore(&dev->lock, flags);
759 s5p_aes_complete(dev, err);
760
761 hash_irq_end:
762 /*
763 * Note about else if:
764 * when hash_sg_iter reaches end and its UPDATE op,
765 * issue SSS_HASH_PAUSE and wait for HPART irq
766 */
767 if (hx_end)
768 tasklet_schedule(&dev->hash_tasklet);
769 else if (err_dma_hx == 2)
770 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
771 SSS_HASH_PAUSE);
772
773 return IRQ_HANDLED;
774 }
775
776 /**
777 * s5p_hash_read_msg() - read message or IV from HW
778 * @req: AHASH request
779 */
s5p_hash_read_msg(struct ahash_request * req)780 static void s5p_hash_read_msg(struct ahash_request *req)
781 {
782 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
783 struct s5p_aes_dev *dd = ctx->dd;
784 u32 *hash = (u32 *)ctx->digest;
785 unsigned int i;
786
787 for (i = 0; i < ctx->nregs; i++)
788 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
789 }
790
791 /**
792 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
793 * @dd: device
794 * @ctx: request context
795 */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)796 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
797 const struct s5p_hash_reqctx *ctx)
798 {
799 const u32 *hash = (const u32 *)ctx->digest;
800 unsigned int i;
801
802 for (i = 0; i < ctx->nregs; i++)
803 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
804 }
805
806 /**
807 * s5p_hash_write_iv() - write IV for next partial/finup op.
808 * @req: AHASH request
809 */
s5p_hash_write_iv(struct ahash_request * req)810 static void s5p_hash_write_iv(struct ahash_request *req)
811 {
812 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
813
814 s5p_hash_write_ctx_iv(ctx->dd, ctx);
815 }
816
817 /**
818 * s5p_hash_copy_result() - copy digest into req->result
819 * @req: AHASH request
820 */
s5p_hash_copy_result(struct ahash_request * req)821 static void s5p_hash_copy_result(struct ahash_request *req)
822 {
823 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
824
825 if (!req->result)
826 return;
827
828 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
829 }
830
831 /**
832 * s5p_hash_dma_flush() - flush HASH DMA
833 * @dev: secss device
834 */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)835 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
836 {
837 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
838 }
839
840 /**
841 * s5p_hash_dma_enable() - enable DMA mode for HASH
842 * @dev: secss device
843 *
844 * enable DMA mode for HASH
845 */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)846 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
847 {
848 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
849 }
850
851 /**
852 * s5p_hash_irq_disable() - disable irq HASH signals
853 * @dev: secss device
854 * @flags: bitfield with irq's to be disabled
855 */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)856 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
857 {
858 SSS_WRITE(dev, FCINTENCLR, flags);
859 }
860
861 /**
862 * s5p_hash_irq_enable() - enable irq signals
863 * @dev: secss device
864 * @flags: bitfield with irq's to be enabled
865 */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)866 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
867 {
868 SSS_WRITE(dev, FCINTENSET, flags);
869 }
870
871 /**
872 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
873 * @dev: secss device
874 * @hashflow: HASH stream flow with/without crypto AES/DES
875 */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)876 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
877 {
878 unsigned long flags;
879 u32 flow;
880
881 spin_lock_irqsave(&dev->lock, flags);
882
883 flow = SSS_READ(dev, FCFIFOCTRL);
884 flow &= ~SSS_HASHIN_MASK;
885 flow |= hashflow;
886 SSS_WRITE(dev, FCFIFOCTRL, flow);
887
888 spin_unlock_irqrestore(&dev->lock, flags);
889 }
890
891 /**
892 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
893 * @dev: secss device
894 * @hashflow: HASH stream flow with/without AES/DES
895 *
896 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
897 * enable HASH irq's HRDMA, HDONE, HPART
898 */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)899 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
900 {
901 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
902 SSS_FCINTENCLR_HDONEINTENCLR |
903 SSS_FCINTENCLR_HPARTINTENCLR);
904 s5p_hash_dma_flush(dev);
905
906 s5p_hash_dma_enable(dev);
907 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
908 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
909 SSS_FCINTENSET_HDONEINTENSET |
910 SSS_FCINTENSET_HPARTINTENSET);
911 }
912
913 /**
914 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
915 * @dd: secss device
916 * @length: length for request
917 * @final: true if final op
918 *
919 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
920 * after previous updates, fill up IV words. For final, calculate and set
921 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
922 * length as 2^63 so it will be never reached and set to zero prelow and
923 * prehigh.
924 *
925 * This function does not start DMA transfer.
926 */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)927 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
928 bool final)
929 {
930 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
931 u32 prelow, prehigh, low, high;
932 u32 configflags, swapflags;
933 u64 tmplen;
934
935 configflags = ctx->engine | SSS_HASH_INIT_BIT;
936
937 if (likely(ctx->digcnt)) {
938 s5p_hash_write_ctx_iv(dd, ctx);
939 configflags |= SSS_HASH_USER_IV_EN;
940 }
941
942 if (final) {
943 /* number of bytes for last part */
944 low = length;
945 high = 0;
946 /* total number of bits prev hashed */
947 tmplen = ctx->digcnt * 8;
948 prelow = (u32)tmplen;
949 prehigh = (u32)(tmplen >> 32);
950 } else {
951 prelow = 0;
952 prehigh = 0;
953 low = 0;
954 high = BIT(31);
955 }
956
957 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
958 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
959
960 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
961 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
962 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
963 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
964
965 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
966 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
967 }
968
969 /**
970 * s5p_hash_xmit_dma() - start DMA hash processing
971 * @dd: secss device
972 * @length: length for request
973 * @final: true if final op
974 *
975 * Update digcnt here, as it is needed for finup/final op.
976 */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)977 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
978 bool final)
979 {
980 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
981 unsigned int cnt;
982
983 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
984 if (!cnt) {
985 dev_err(dd->dev, "dma_map_sg error\n");
986 ctx->error = true;
987 return -EINVAL;
988 }
989
990 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
991 dd->hash_sg_iter = ctx->sg;
992 dd->hash_sg_cnt = cnt;
993 s5p_hash_write_ctrl(dd, length, final);
994 ctx->digcnt += length;
995 ctx->total -= length;
996
997 /* catch last interrupt */
998 if (final)
999 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1000
1001 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1002
1003 return -EINPROGRESS;
1004 }
1005
1006 /**
1007 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1008 * @ctx: request context
1009 * @sg: source scatterlist request
1010 * @new_len: number of bytes to process from sg
1011 *
1012 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1013 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1014 * with allocated buffer.
1015 *
1016 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1017 */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1018 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1019 struct scatterlist *sg, unsigned int new_len)
1020 {
1021 unsigned int pages, len;
1022 void *buf;
1023
1024 len = new_len + ctx->bufcnt;
1025 pages = get_order(len);
1026
1027 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1028 if (!buf) {
1029 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1030 ctx->error = true;
1031 return -ENOMEM;
1032 }
1033
1034 if (ctx->bufcnt)
1035 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1036
1037 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1038 new_len, 0);
1039 sg_init_table(ctx->sgl, 1);
1040 sg_set_buf(ctx->sgl, buf, len);
1041 ctx->sg = ctx->sgl;
1042 ctx->sg_len = 1;
1043 ctx->bufcnt = 0;
1044 ctx->skip = 0;
1045 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1046
1047 return 0;
1048 }
1049
1050 /**
1051 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1052 * @ctx: request context
1053 * @sg: source scatterlist request
1054 * @new_len: number of bytes to process from sg
1055 *
1056 * Allocate new scatterlist table, copy data for HASH into it. If there was
1057 * xmit_buf filled, prepare it first, then copy page, length and offset from
1058 * source sg into it, adjusting begin and/or end for skip offset and
1059 * hash_later value.
1060 *
1061 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1062 * it after irq ends processing.
1063 */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1064 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1065 struct scatterlist *sg, unsigned int new_len)
1066 {
1067 unsigned int skip = ctx->skip, n = sg_nents(sg);
1068 struct scatterlist *tmp;
1069 unsigned int len;
1070
1071 if (ctx->bufcnt)
1072 n++;
1073
1074 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1075 if (!ctx->sg) {
1076 ctx->error = true;
1077 return -ENOMEM;
1078 }
1079
1080 sg_init_table(ctx->sg, n);
1081
1082 tmp = ctx->sg;
1083
1084 ctx->sg_len = 0;
1085
1086 if (ctx->bufcnt) {
1087 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1088 tmp = sg_next(tmp);
1089 ctx->sg_len++;
1090 }
1091
1092 while (sg && skip >= sg->length) {
1093 skip -= sg->length;
1094 sg = sg_next(sg);
1095 }
1096
1097 while (sg && new_len) {
1098 len = sg->length - skip;
1099 if (new_len < len)
1100 len = new_len;
1101
1102 new_len -= len;
1103 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1104 skip = 0;
1105 if (new_len <= 0)
1106 sg_mark_end(tmp);
1107
1108 tmp = sg_next(tmp);
1109 ctx->sg_len++;
1110 sg = sg_next(sg);
1111 }
1112
1113 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1114
1115 return 0;
1116 }
1117
1118 /**
1119 * s5p_hash_prepare_sgs() - prepare sg for processing
1120 * @ctx: request context
1121 * @sg: source scatterlist request
1122 * @nbytes: number of bytes to process from sg
1123 * @final: final flag
1124 *
1125 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1126 * sg table have good aligned elements (list_ok). If one of this checks fails,
1127 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1128 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1129 * table and prepare sg elements.
1130 *
1131 * For digest or finup all conditions can be good, and we may not need any
1132 * fixes.
1133 */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1134 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1135 struct scatterlist *sg,
1136 unsigned int new_len, bool final)
1137 {
1138 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1139 bool aligned = true, list_ok = true;
1140 struct scatterlist *sg_tmp = sg;
1141
1142 if (!sg || !sg->length || !new_len)
1143 return 0;
1144
1145 if (skip || !final)
1146 list_ok = false;
1147
1148 while (nbytes > 0 && sg_tmp) {
1149 n++;
1150 if (skip >= sg_tmp->length) {
1151 skip -= sg_tmp->length;
1152 if (!sg_tmp->length) {
1153 aligned = false;
1154 break;
1155 }
1156 } else {
1157 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1158 aligned = false;
1159 break;
1160 }
1161
1162 if (nbytes < sg_tmp->length - skip) {
1163 list_ok = false;
1164 break;
1165 }
1166
1167 nbytes -= sg_tmp->length - skip;
1168 skip = 0;
1169 }
1170
1171 sg_tmp = sg_next(sg_tmp);
1172 }
1173
1174 if (!aligned)
1175 return s5p_hash_copy_sgs(ctx, sg, new_len);
1176 else if (!list_ok)
1177 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1178
1179 /*
1180 * Have aligned data from previous operation and/or current
1181 * Note: will enter here only if (digest or finup) and aligned
1182 */
1183 if (ctx->bufcnt) {
1184 ctx->sg_len = n;
1185 sg_init_table(ctx->sgl, 2);
1186 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1187 sg_chain(ctx->sgl, 2, sg);
1188 ctx->sg = ctx->sgl;
1189 ctx->sg_len++;
1190 } else {
1191 ctx->sg = sg;
1192 ctx->sg_len = n;
1193 }
1194
1195 return 0;
1196 }
1197
1198 /**
1199 * s5p_hash_prepare_request() - prepare request for processing
1200 * @req: AHASH request
1201 * @update: true if UPDATE op
1202 *
1203 * Note 1: we can have update flag _and_ final flag at the same time.
1204 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1205 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1206 * we have final op
1207 */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1208 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1209 {
1210 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1211 bool final = ctx->finup;
1212 int xmit_len, hash_later, nbytes;
1213 int ret;
1214
1215 if (update)
1216 nbytes = req->nbytes;
1217 else
1218 nbytes = 0;
1219
1220 ctx->total = nbytes + ctx->bufcnt;
1221 if (!ctx->total)
1222 return 0;
1223
1224 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1225 /* bytes left from previous request, so fill up to BUFLEN */
1226 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1227
1228 if (len > nbytes)
1229 len = nbytes;
1230
1231 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1232 0, len, 0);
1233 ctx->bufcnt += len;
1234 nbytes -= len;
1235 ctx->skip = len;
1236 } else {
1237 ctx->skip = 0;
1238 }
1239
1240 if (ctx->bufcnt)
1241 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1242
1243 xmit_len = ctx->total;
1244 if (final) {
1245 hash_later = 0;
1246 } else {
1247 if (IS_ALIGNED(xmit_len, BUFLEN))
1248 xmit_len -= BUFLEN;
1249 else
1250 xmit_len -= xmit_len & (BUFLEN - 1);
1251
1252 hash_later = ctx->total - xmit_len;
1253 /* copy hash_later bytes from end of req->src */
1254 /* previous bytes are in xmit_buf, so no overwrite */
1255 scatterwalk_map_and_copy(ctx->buffer, req->src,
1256 req->nbytes - hash_later,
1257 hash_later, 0);
1258 }
1259
1260 if (xmit_len > BUFLEN) {
1261 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1262 final);
1263 if (ret)
1264 return ret;
1265 } else {
1266 /* have buffered data only */
1267 if (unlikely(!ctx->bufcnt)) {
1268 /* first update didn't fill up buffer */
1269 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1270 0, xmit_len, 0);
1271 }
1272
1273 sg_init_table(ctx->sgl, 1);
1274 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1275
1276 ctx->sg = ctx->sgl;
1277 ctx->sg_len = 1;
1278 }
1279
1280 ctx->bufcnt = hash_later;
1281 if (!final)
1282 ctx->total = xmit_len;
1283
1284 return 0;
1285 }
1286
1287 /**
1288 * s5p_hash_update_dma_stop() - unmap DMA
1289 * @dd: secss device
1290 *
1291 * Unmap scatterlist ctx->sg.
1292 */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1293 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1294 {
1295 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1296
1297 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1298 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1299 }
1300
1301 /**
1302 * s5p_hash_finish() - copy calculated digest to crypto layer
1303 * @req: AHASH request
1304 */
s5p_hash_finish(struct ahash_request * req)1305 static void s5p_hash_finish(struct ahash_request *req)
1306 {
1307 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1308 struct s5p_aes_dev *dd = ctx->dd;
1309
1310 if (ctx->digcnt)
1311 s5p_hash_copy_result(req);
1312
1313 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1314 }
1315
1316 /**
1317 * s5p_hash_finish_req() - finish request
1318 * @req: AHASH request
1319 * @err: error
1320 */
s5p_hash_finish_req(struct ahash_request * req,int err)1321 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1322 {
1323 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1324 struct s5p_aes_dev *dd = ctx->dd;
1325 unsigned long flags;
1326
1327 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1328 free_pages((unsigned long)sg_virt(ctx->sg),
1329 get_order(ctx->sg->length));
1330
1331 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1332 kfree(ctx->sg);
1333
1334 ctx->sg = NULL;
1335 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1336 BIT(HASH_FLAGS_SGS_COPIED));
1337
1338 if (!err && !ctx->error) {
1339 s5p_hash_read_msg(req);
1340 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1341 s5p_hash_finish(req);
1342 } else {
1343 ctx->error = true;
1344 }
1345
1346 spin_lock_irqsave(&dd->hash_lock, flags);
1347 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1348 BIT(HASH_FLAGS_DMA_READY) |
1349 BIT(HASH_FLAGS_OUTPUT_READY));
1350 spin_unlock_irqrestore(&dd->hash_lock, flags);
1351
1352 if (req->base.complete)
1353 req->base.complete(&req->base, err);
1354 }
1355
1356 /**
1357 * s5p_hash_handle_queue() - handle hash queue
1358 * @dd: device s5p_aes_dev
1359 * @req: AHASH request
1360 *
1361 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1362 * device then processes the first request from the dd->queue
1363 *
1364 * Returns: see s5p_hash_final below.
1365 */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1366 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1367 struct ahash_request *req)
1368 {
1369 struct crypto_async_request *async_req, *backlog;
1370 struct s5p_hash_reqctx *ctx;
1371 unsigned long flags;
1372 int err = 0, ret = 0;
1373
1374 retry:
1375 spin_lock_irqsave(&dd->hash_lock, flags);
1376 if (req)
1377 ret = ahash_enqueue_request(&dd->hash_queue, req);
1378
1379 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1380 spin_unlock_irqrestore(&dd->hash_lock, flags);
1381 return ret;
1382 }
1383
1384 backlog = crypto_get_backlog(&dd->hash_queue);
1385 async_req = crypto_dequeue_request(&dd->hash_queue);
1386 if (async_req)
1387 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1388
1389 spin_unlock_irqrestore(&dd->hash_lock, flags);
1390
1391 if (!async_req)
1392 return ret;
1393
1394 if (backlog)
1395 backlog->complete(backlog, -EINPROGRESS);
1396
1397 req = ahash_request_cast(async_req);
1398 dd->hash_req = req;
1399 ctx = ahash_request_ctx(req);
1400
1401 err = s5p_hash_prepare_request(req, ctx->op_update);
1402 if (err || !ctx->total)
1403 goto out;
1404
1405 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1406 ctx->op_update, req->nbytes);
1407
1408 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1409 if (ctx->digcnt)
1410 s5p_hash_write_iv(req); /* restore hash IV */
1411
1412 if (ctx->op_update) { /* HASH_OP_UPDATE */
1413 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1414 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1415 /* no final() after finup() */
1416 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1417 } else { /* HASH_OP_FINAL */
1418 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1419 }
1420 out:
1421 if (err != -EINPROGRESS) {
1422 /* hash_tasklet_cb will not finish it, so do it here */
1423 s5p_hash_finish_req(req, err);
1424 req = NULL;
1425
1426 /*
1427 * Execute next request immediately if there is anything
1428 * in queue.
1429 */
1430 goto retry;
1431 }
1432
1433 return ret;
1434 }
1435
1436 /**
1437 * s5p_hash_tasklet_cb() - hash tasklet
1438 * @data: ptr to s5p_aes_dev
1439 */
s5p_hash_tasklet_cb(unsigned long data)1440 static void s5p_hash_tasklet_cb(unsigned long data)
1441 {
1442 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1443
1444 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1445 s5p_hash_handle_queue(dd, NULL);
1446 return;
1447 }
1448
1449 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1450 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1451 &dd->hash_flags)) {
1452 s5p_hash_update_dma_stop(dd);
1453 }
1454
1455 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1456 &dd->hash_flags)) {
1457 /* hash or semi-hash ready */
1458 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1459 goto finish;
1460 }
1461 }
1462
1463 return;
1464
1465 finish:
1466 /* finish curent request */
1467 s5p_hash_finish_req(dd->hash_req, 0);
1468
1469 /* If we are not busy, process next req */
1470 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1471 s5p_hash_handle_queue(dd, NULL);
1472 }
1473
1474 /**
1475 * s5p_hash_enqueue() - enqueue request
1476 * @req: AHASH request
1477 * @op: operation UPDATE (true) or FINAL (false)
1478 *
1479 * Returns: see s5p_hash_final below.
1480 */
s5p_hash_enqueue(struct ahash_request * req,bool op)1481 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1482 {
1483 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1484 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1485
1486 ctx->op_update = op;
1487
1488 return s5p_hash_handle_queue(tctx->dd, req);
1489 }
1490
1491 /**
1492 * s5p_hash_update() - process the hash input data
1493 * @req: AHASH request
1494 *
1495 * If request will fit in buffer, copy it and return immediately
1496 * else enqueue it with OP_UPDATE.
1497 *
1498 * Returns: see s5p_hash_final below.
1499 */
s5p_hash_update(struct ahash_request * req)1500 static int s5p_hash_update(struct ahash_request *req)
1501 {
1502 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1503
1504 if (!req->nbytes)
1505 return 0;
1506
1507 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1508 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1509 0, req->nbytes, 0);
1510 ctx->bufcnt += req->nbytes;
1511 return 0;
1512 }
1513
1514 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1515 }
1516
1517 /**
1518 * s5p_hash_shash_digest() - calculate shash digest
1519 * @tfm: crypto transformation
1520 * @flags: tfm flags
1521 * @data: input data
1522 * @len: length of data
1523 * @out: output buffer
1524 */
s5p_hash_shash_digest(struct crypto_shash * tfm,u32 flags,const u8 * data,unsigned int len,u8 * out)1525 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1526 const u8 *data, unsigned int len, u8 *out)
1527 {
1528 SHASH_DESC_ON_STACK(shash, tfm);
1529
1530 shash->tfm = tfm;
1531 shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1532
1533 return crypto_shash_digest(shash, data, len, out);
1534 }
1535
1536 /**
1537 * s5p_hash_final_shash() - calculate shash digest
1538 * @req: AHASH request
1539 */
s5p_hash_final_shash(struct ahash_request * req)1540 static int s5p_hash_final_shash(struct ahash_request *req)
1541 {
1542 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1543 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1544
1545 return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1546 ctx->buffer, ctx->bufcnt, req->result);
1547 }
1548
1549 /**
1550 * s5p_hash_final() - close up hash and calculate digest
1551 * @req: AHASH request
1552 *
1553 * Note: in final req->src do not have any data, and req->nbytes can be
1554 * non-zero.
1555 *
1556 * If there were no input data processed yet and the buffered hash data is
1557 * less than BUFLEN (64) then calculate the final hash immediately by using
1558 * SW algorithm fallback.
1559 *
1560 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1561 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1562 * previous update op, so there are always some buffered bytes in ctx->buffer,
1563 * which means that ctx->bufcnt!=0
1564 *
1565 * Returns:
1566 * 0 if the request has been processed immediately,
1567 * -EINPROGRESS if the operation has been queued for later execution or is set
1568 * to processing by HW,
1569 * -EBUSY if queue is full and request should be resubmitted later,
1570 * other negative values denotes an error.
1571 */
s5p_hash_final(struct ahash_request * req)1572 static int s5p_hash_final(struct ahash_request *req)
1573 {
1574 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1575
1576 ctx->finup = true;
1577 if (ctx->error)
1578 return -EINVAL; /* uncompleted hash is not needed */
1579
1580 if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1581 return s5p_hash_final_shash(req);
1582
1583 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1584 }
1585
1586 /**
1587 * s5p_hash_finup() - process last req->src and calculate digest
1588 * @req: AHASH request containing the last update data
1589 *
1590 * Return values: see s5p_hash_final above.
1591 */
s5p_hash_finup(struct ahash_request * req)1592 static int s5p_hash_finup(struct ahash_request *req)
1593 {
1594 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1595 int err1, err2;
1596
1597 ctx->finup = true;
1598
1599 err1 = s5p_hash_update(req);
1600 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1601 return err1;
1602
1603 /*
1604 * final() has to be always called to cleanup resources even if
1605 * update() failed, except EINPROGRESS or calculate digest for small
1606 * size
1607 */
1608 err2 = s5p_hash_final(req);
1609
1610 return err1 ?: err2;
1611 }
1612
1613 /**
1614 * s5p_hash_init() - initialize AHASH request contex
1615 * @req: AHASH request
1616 *
1617 * Init async hash request context.
1618 */
s5p_hash_init(struct ahash_request * req)1619 static int s5p_hash_init(struct ahash_request *req)
1620 {
1621 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1622 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1623 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1624
1625 ctx->dd = tctx->dd;
1626 ctx->error = false;
1627 ctx->finup = false;
1628 ctx->bufcnt = 0;
1629 ctx->digcnt = 0;
1630 ctx->total = 0;
1631 ctx->skip = 0;
1632
1633 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1634 crypto_ahash_digestsize(tfm));
1635
1636 switch (crypto_ahash_digestsize(tfm)) {
1637 case MD5_DIGEST_SIZE:
1638 ctx->engine = SSS_HASH_ENGINE_MD5;
1639 ctx->nregs = HASH_MD5_MAX_REG;
1640 break;
1641 case SHA1_DIGEST_SIZE:
1642 ctx->engine = SSS_HASH_ENGINE_SHA1;
1643 ctx->nregs = HASH_SHA1_MAX_REG;
1644 break;
1645 case SHA256_DIGEST_SIZE:
1646 ctx->engine = SSS_HASH_ENGINE_SHA256;
1647 ctx->nregs = HASH_SHA256_MAX_REG;
1648 break;
1649 default:
1650 ctx->error = true;
1651 return -EINVAL;
1652 }
1653
1654 return 0;
1655 }
1656
1657 /**
1658 * s5p_hash_digest - calculate digest from req->src
1659 * @req: AHASH request
1660 *
1661 * Return values: see s5p_hash_final above.
1662 */
s5p_hash_digest(struct ahash_request * req)1663 static int s5p_hash_digest(struct ahash_request *req)
1664 {
1665 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1666 }
1667
1668 /**
1669 * s5p_hash_cra_init_alg - init crypto alg transformation
1670 * @tfm: crypto transformation
1671 */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1672 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1673 {
1674 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1675 const char *alg_name = crypto_tfm_alg_name(tfm);
1676
1677 tctx->dd = s5p_dev;
1678 /* Allocate a fallback and abort if it failed. */
1679 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1680 CRYPTO_ALG_NEED_FALLBACK);
1681 if (IS_ERR(tctx->fallback)) {
1682 pr_err("fallback alloc fails for '%s'\n", alg_name);
1683 return PTR_ERR(tctx->fallback);
1684 }
1685
1686 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1687 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * s5p_hash_cra_init - init crypto tfm
1694 * @tfm: crypto transformation
1695 */
s5p_hash_cra_init(struct crypto_tfm * tfm)1696 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1697 {
1698 return s5p_hash_cra_init_alg(tfm);
1699 }
1700
1701 /**
1702 * s5p_hash_cra_exit - exit crypto tfm
1703 * @tfm: crypto transformation
1704 *
1705 * free allocated fallback
1706 */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1707 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1708 {
1709 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1710
1711 crypto_free_shash(tctx->fallback);
1712 tctx->fallback = NULL;
1713 }
1714
1715 /**
1716 * s5p_hash_export - export hash state
1717 * @req: AHASH request
1718 * @out: buffer for exported state
1719 */
s5p_hash_export(struct ahash_request * req,void * out)1720 static int s5p_hash_export(struct ahash_request *req, void *out)
1721 {
1722 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1723
1724 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1725
1726 return 0;
1727 }
1728
1729 /**
1730 * s5p_hash_import - import hash state
1731 * @req: AHASH request
1732 * @in: buffer with state to be imported from
1733 */
s5p_hash_import(struct ahash_request * req,const void * in)1734 static int s5p_hash_import(struct ahash_request *req, const void *in)
1735 {
1736 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1737 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1738 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1739 const struct s5p_hash_reqctx *ctx_in = in;
1740
1741 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1742 if (ctx_in->bufcnt > BUFLEN) {
1743 ctx->error = true;
1744 return -EINVAL;
1745 }
1746
1747 ctx->dd = tctx->dd;
1748 ctx->error = false;
1749
1750 return 0;
1751 }
1752
1753 static struct ahash_alg algs_sha1_md5_sha256[] = {
1754 {
1755 .init = s5p_hash_init,
1756 .update = s5p_hash_update,
1757 .final = s5p_hash_final,
1758 .finup = s5p_hash_finup,
1759 .digest = s5p_hash_digest,
1760 .export = s5p_hash_export,
1761 .import = s5p_hash_import,
1762 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1763 .halg.digestsize = SHA1_DIGEST_SIZE,
1764 .halg.base = {
1765 .cra_name = "sha1",
1766 .cra_driver_name = "exynos-sha1",
1767 .cra_priority = 100,
1768 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1769 CRYPTO_ALG_ASYNC |
1770 CRYPTO_ALG_NEED_FALLBACK,
1771 .cra_blocksize = HASH_BLOCK_SIZE,
1772 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1773 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1774 .cra_module = THIS_MODULE,
1775 .cra_init = s5p_hash_cra_init,
1776 .cra_exit = s5p_hash_cra_exit,
1777 }
1778 },
1779 {
1780 .init = s5p_hash_init,
1781 .update = s5p_hash_update,
1782 .final = s5p_hash_final,
1783 .finup = s5p_hash_finup,
1784 .digest = s5p_hash_digest,
1785 .export = s5p_hash_export,
1786 .import = s5p_hash_import,
1787 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1788 .halg.digestsize = MD5_DIGEST_SIZE,
1789 .halg.base = {
1790 .cra_name = "md5",
1791 .cra_driver_name = "exynos-md5",
1792 .cra_priority = 100,
1793 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1794 CRYPTO_ALG_ASYNC |
1795 CRYPTO_ALG_NEED_FALLBACK,
1796 .cra_blocksize = HASH_BLOCK_SIZE,
1797 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1798 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1799 .cra_module = THIS_MODULE,
1800 .cra_init = s5p_hash_cra_init,
1801 .cra_exit = s5p_hash_cra_exit,
1802 }
1803 },
1804 {
1805 .init = s5p_hash_init,
1806 .update = s5p_hash_update,
1807 .final = s5p_hash_final,
1808 .finup = s5p_hash_finup,
1809 .digest = s5p_hash_digest,
1810 .export = s5p_hash_export,
1811 .import = s5p_hash_import,
1812 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1813 .halg.digestsize = SHA256_DIGEST_SIZE,
1814 .halg.base = {
1815 .cra_name = "sha256",
1816 .cra_driver_name = "exynos-sha256",
1817 .cra_priority = 100,
1818 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1819 CRYPTO_ALG_ASYNC |
1820 CRYPTO_ALG_NEED_FALLBACK,
1821 .cra_blocksize = HASH_BLOCK_SIZE,
1822 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1823 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1824 .cra_module = THIS_MODULE,
1825 .cra_init = s5p_hash_cra_init,
1826 .cra_exit = s5p_hash_cra_exit,
1827 }
1828 }
1829
1830 };
1831
s5p_set_aes(struct s5p_aes_dev * dev,const uint8_t * key,const uint8_t * iv,unsigned int keylen)1832 static void s5p_set_aes(struct s5p_aes_dev *dev,
1833 const uint8_t *key, const uint8_t *iv,
1834 unsigned int keylen)
1835 {
1836 void __iomem *keystart;
1837
1838 if (iv)
1839 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
1840
1841 if (keylen == AES_KEYSIZE_256)
1842 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1843 else if (keylen == AES_KEYSIZE_192)
1844 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1845 else
1846 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1847
1848 memcpy_toio(keystart, key, keylen);
1849 }
1850
s5p_is_sg_aligned(struct scatterlist * sg)1851 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1852 {
1853 while (sg) {
1854 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1855 return false;
1856 sg = sg_next(sg);
1857 }
1858
1859 return true;
1860 }
1861
s5p_set_indata_start(struct s5p_aes_dev * dev,struct ablkcipher_request * req)1862 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1863 struct ablkcipher_request *req)
1864 {
1865 struct scatterlist *sg;
1866 int err;
1867
1868 dev->sg_src_cpy = NULL;
1869 sg = req->src;
1870 if (!s5p_is_sg_aligned(sg)) {
1871 dev_dbg(dev->dev,
1872 "At least one unaligned source scatter list, making a copy\n");
1873 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1874 if (err)
1875 return err;
1876
1877 sg = dev->sg_src_cpy;
1878 }
1879
1880 err = s5p_set_indata(dev, sg);
1881 if (err) {
1882 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1883 return err;
1884 }
1885
1886 return 0;
1887 }
1888
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct ablkcipher_request * req)1889 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1890 struct ablkcipher_request *req)
1891 {
1892 struct scatterlist *sg;
1893 int err;
1894
1895 dev->sg_dst_cpy = NULL;
1896 sg = req->dst;
1897 if (!s5p_is_sg_aligned(sg)) {
1898 dev_dbg(dev->dev,
1899 "At least one unaligned dest scatter list, making a copy\n");
1900 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1901 if (err)
1902 return err;
1903
1904 sg = dev->sg_dst_cpy;
1905 }
1906
1907 err = s5p_set_outdata(dev, sg);
1908 if (err) {
1909 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1910 return err;
1911 }
1912
1913 return 0;
1914 }
1915
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1916 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1917 {
1918 struct ablkcipher_request *req = dev->req;
1919 uint32_t aes_control;
1920 unsigned long flags;
1921 int err;
1922 u8 *iv;
1923
1924 aes_control = SSS_AES_KEY_CHANGE_MODE;
1925 if (mode & FLAGS_AES_DECRYPT)
1926 aes_control |= SSS_AES_MODE_DECRYPT;
1927
1928 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1929 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1930 iv = req->info;
1931 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1932 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1933 iv = req->info;
1934 } else {
1935 iv = NULL; /* AES_ECB */
1936 }
1937
1938 if (dev->ctx->keylen == AES_KEYSIZE_192)
1939 aes_control |= SSS_AES_KEY_SIZE_192;
1940 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1941 aes_control |= SSS_AES_KEY_SIZE_256;
1942
1943 aes_control |= SSS_AES_FIFO_MODE;
1944
1945 /* as a variant it is possible to use byte swapping on DMA side */
1946 aes_control |= SSS_AES_BYTESWAP_DI
1947 | SSS_AES_BYTESWAP_DO
1948 | SSS_AES_BYTESWAP_IV
1949 | SSS_AES_BYTESWAP_KEY
1950 | SSS_AES_BYTESWAP_CNT;
1951
1952 spin_lock_irqsave(&dev->lock, flags);
1953
1954 SSS_WRITE(dev, FCINTENCLR,
1955 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1956 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1957
1958 err = s5p_set_indata_start(dev, req);
1959 if (err)
1960 goto indata_error;
1961
1962 err = s5p_set_outdata_start(dev, req);
1963 if (err)
1964 goto outdata_error;
1965
1966 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1967 s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen);
1968
1969 s5p_set_dma_indata(dev, dev->sg_src);
1970 s5p_set_dma_outdata(dev, dev->sg_dst);
1971
1972 SSS_WRITE(dev, FCINTENSET,
1973 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1974
1975 spin_unlock_irqrestore(&dev->lock, flags);
1976
1977 return;
1978
1979 outdata_error:
1980 s5p_unset_indata(dev);
1981
1982 indata_error:
1983 s5p_sg_done(dev);
1984 dev->busy = false;
1985 spin_unlock_irqrestore(&dev->lock, flags);
1986 s5p_aes_complete(dev, err);
1987 }
1988
s5p_tasklet_cb(unsigned long data)1989 static void s5p_tasklet_cb(unsigned long data)
1990 {
1991 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1992 struct crypto_async_request *async_req, *backlog;
1993 struct s5p_aes_reqctx *reqctx;
1994 unsigned long flags;
1995
1996 spin_lock_irqsave(&dev->lock, flags);
1997 backlog = crypto_get_backlog(&dev->queue);
1998 async_req = crypto_dequeue_request(&dev->queue);
1999
2000 if (!async_req) {
2001 dev->busy = false;
2002 spin_unlock_irqrestore(&dev->lock, flags);
2003 return;
2004 }
2005 spin_unlock_irqrestore(&dev->lock, flags);
2006
2007 if (backlog)
2008 backlog->complete(backlog, -EINPROGRESS);
2009
2010 dev->req = ablkcipher_request_cast(async_req);
2011 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2012 reqctx = ablkcipher_request_ctx(dev->req);
2013
2014 s5p_aes_crypt_start(dev, reqctx->mode);
2015 }
2016
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct ablkcipher_request * req)2017 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2018 struct ablkcipher_request *req)
2019 {
2020 unsigned long flags;
2021 int err;
2022
2023 spin_lock_irqsave(&dev->lock, flags);
2024 err = ablkcipher_enqueue_request(&dev->queue, req);
2025 if (dev->busy) {
2026 spin_unlock_irqrestore(&dev->lock, flags);
2027 goto exit;
2028 }
2029 dev->busy = true;
2030
2031 spin_unlock_irqrestore(&dev->lock, flags);
2032
2033 tasklet_schedule(&dev->tasklet);
2034
2035 exit:
2036 return err;
2037 }
2038
s5p_aes_crypt(struct ablkcipher_request * req,unsigned long mode)2039 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2040 {
2041 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2042 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2043 struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2044 struct s5p_aes_dev *dev = ctx->dev;
2045
2046 if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
2047 dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2048 return -EINVAL;
2049 }
2050
2051 reqctx->mode = mode;
2052
2053 return s5p_aes_handle_req(dev, req);
2054 }
2055
s5p_aes_setkey(struct crypto_ablkcipher * cipher,const uint8_t * key,unsigned int keylen)2056 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2057 const uint8_t *key, unsigned int keylen)
2058 {
2059 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2060 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2061
2062 if (keylen != AES_KEYSIZE_128 &&
2063 keylen != AES_KEYSIZE_192 &&
2064 keylen != AES_KEYSIZE_256)
2065 return -EINVAL;
2066
2067 memcpy(ctx->aes_key, key, keylen);
2068 ctx->keylen = keylen;
2069
2070 return 0;
2071 }
2072
s5p_aes_ecb_encrypt(struct ablkcipher_request * req)2073 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2074 {
2075 return s5p_aes_crypt(req, 0);
2076 }
2077
s5p_aes_ecb_decrypt(struct ablkcipher_request * req)2078 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2079 {
2080 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2081 }
2082
s5p_aes_cbc_encrypt(struct ablkcipher_request * req)2083 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2084 {
2085 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2086 }
2087
s5p_aes_cbc_decrypt(struct ablkcipher_request * req)2088 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2089 {
2090 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2091 }
2092
s5p_aes_cra_init(struct crypto_tfm * tfm)2093 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2094 {
2095 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2096
2097 ctx->dev = s5p_dev;
2098 tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2099
2100 return 0;
2101 }
2102
2103 static struct crypto_alg algs[] = {
2104 {
2105 .cra_name = "ecb(aes)",
2106 .cra_driver_name = "ecb-aes-s5p",
2107 .cra_priority = 100,
2108 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2109 CRYPTO_ALG_ASYNC |
2110 CRYPTO_ALG_KERN_DRIVER_ONLY,
2111 .cra_blocksize = AES_BLOCK_SIZE,
2112 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2113 .cra_alignmask = 0x0f,
2114 .cra_type = &crypto_ablkcipher_type,
2115 .cra_module = THIS_MODULE,
2116 .cra_init = s5p_aes_cra_init,
2117 .cra_u.ablkcipher = {
2118 .min_keysize = AES_MIN_KEY_SIZE,
2119 .max_keysize = AES_MAX_KEY_SIZE,
2120 .setkey = s5p_aes_setkey,
2121 .encrypt = s5p_aes_ecb_encrypt,
2122 .decrypt = s5p_aes_ecb_decrypt,
2123 }
2124 },
2125 {
2126 .cra_name = "cbc(aes)",
2127 .cra_driver_name = "cbc-aes-s5p",
2128 .cra_priority = 100,
2129 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2130 CRYPTO_ALG_ASYNC |
2131 CRYPTO_ALG_KERN_DRIVER_ONLY,
2132 .cra_blocksize = AES_BLOCK_SIZE,
2133 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2134 .cra_alignmask = 0x0f,
2135 .cra_type = &crypto_ablkcipher_type,
2136 .cra_module = THIS_MODULE,
2137 .cra_init = s5p_aes_cra_init,
2138 .cra_u.ablkcipher = {
2139 .min_keysize = AES_MIN_KEY_SIZE,
2140 .max_keysize = AES_MAX_KEY_SIZE,
2141 .ivsize = AES_BLOCK_SIZE,
2142 .setkey = s5p_aes_setkey,
2143 .encrypt = s5p_aes_cbc_encrypt,
2144 .decrypt = s5p_aes_cbc_decrypt,
2145 }
2146 },
2147 };
2148
s5p_aes_probe(struct platform_device * pdev)2149 static int s5p_aes_probe(struct platform_device *pdev)
2150 {
2151 struct device *dev = &pdev->dev;
2152 int i, j, err = -ENODEV;
2153 const struct samsung_aes_variant *variant;
2154 struct s5p_aes_dev *pdata;
2155 struct resource *res;
2156 unsigned int hash_i;
2157
2158 if (s5p_dev)
2159 return -EEXIST;
2160
2161 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2162 if (!pdata)
2163 return -ENOMEM;
2164
2165 variant = find_s5p_sss_version(pdev);
2166 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2167
2168 /*
2169 * Note: HASH and PRNG uses the same registers in secss, avoid
2170 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2171 * is enabled in config. We need larger size for HASH registers in
2172 * secss, current describe only AES/DES
2173 */
2174 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2175 if (variant == &exynos_aes_data) {
2176 res->end += 0x300;
2177 pdata->use_hash = true;
2178 }
2179 }
2180
2181 pdata->res = res;
2182 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2183 if (IS_ERR(pdata->ioaddr)) {
2184 if (!pdata->use_hash)
2185 return PTR_ERR(pdata->ioaddr);
2186 /* try AES without HASH */
2187 res->end -= 0x300;
2188 pdata->use_hash = false;
2189 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2190 if (IS_ERR(pdata->ioaddr))
2191 return PTR_ERR(pdata->ioaddr);
2192 }
2193
2194 pdata->clk = devm_clk_get(dev, "secss");
2195 if (IS_ERR(pdata->clk)) {
2196 dev_err(dev, "failed to find secss clock source\n");
2197 return -ENOENT;
2198 }
2199
2200 err = clk_prepare_enable(pdata->clk);
2201 if (err < 0) {
2202 dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2203 return err;
2204 }
2205
2206 spin_lock_init(&pdata->lock);
2207 spin_lock_init(&pdata->hash_lock);
2208
2209 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2210 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2211
2212 pdata->irq_fc = platform_get_irq(pdev, 0);
2213 if (pdata->irq_fc < 0) {
2214 err = pdata->irq_fc;
2215 dev_warn(dev, "feed control interrupt is not available.\n");
2216 goto err_irq;
2217 }
2218 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2219 s5p_aes_interrupt, IRQF_ONESHOT,
2220 pdev->name, pdev);
2221 if (err < 0) {
2222 dev_warn(dev, "feed control interrupt is not available.\n");
2223 goto err_irq;
2224 }
2225
2226 pdata->busy = false;
2227 pdata->dev = dev;
2228 platform_set_drvdata(pdev, pdata);
2229 s5p_dev = pdata;
2230
2231 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2232 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2233
2234 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2235 err = crypto_register_alg(&algs[i]);
2236 if (err)
2237 goto err_algs;
2238 }
2239
2240 if (pdata->use_hash) {
2241 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2242 (unsigned long)pdata);
2243 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2244
2245 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2246 hash_i++) {
2247 struct ahash_alg *alg;
2248
2249 alg = &algs_sha1_md5_sha256[hash_i];
2250 err = crypto_register_ahash(alg);
2251 if (err) {
2252 dev_err(dev, "can't register '%s': %d\n",
2253 alg->halg.base.cra_driver_name, err);
2254 goto err_hash;
2255 }
2256 }
2257 }
2258
2259 dev_info(dev, "s5p-sss driver registered\n");
2260
2261 return 0;
2262
2263 err_hash:
2264 for (j = hash_i - 1; j >= 0; j--)
2265 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2266
2267 tasklet_kill(&pdata->hash_tasklet);
2268 res->end -= 0x300;
2269
2270 err_algs:
2271 if (i < ARRAY_SIZE(algs))
2272 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2273 err);
2274
2275 for (j = 0; j < i; j++)
2276 crypto_unregister_alg(&algs[j]);
2277
2278 tasklet_kill(&pdata->tasklet);
2279
2280 err_irq:
2281 clk_disable_unprepare(pdata->clk);
2282
2283 s5p_dev = NULL;
2284
2285 return err;
2286 }
2287
s5p_aes_remove(struct platform_device * pdev)2288 static int s5p_aes_remove(struct platform_device *pdev)
2289 {
2290 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2291 int i;
2292
2293 if (!pdata)
2294 return -ENODEV;
2295
2296 for (i = 0; i < ARRAY_SIZE(algs); i++)
2297 crypto_unregister_alg(&algs[i]);
2298
2299 tasklet_kill(&pdata->tasklet);
2300 if (pdata->use_hash) {
2301 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2302 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2303
2304 pdata->res->end -= 0x300;
2305 tasklet_kill(&pdata->hash_tasklet);
2306 pdata->use_hash = false;
2307 }
2308
2309 clk_disable_unprepare(pdata->clk);
2310 s5p_dev = NULL;
2311
2312 return 0;
2313 }
2314
2315 static struct platform_driver s5p_aes_crypto = {
2316 .probe = s5p_aes_probe,
2317 .remove = s5p_aes_remove,
2318 .driver = {
2319 .name = "s5p-secss",
2320 .of_match_table = s5p_sss_dt_match,
2321 },
2322 };
2323
2324 module_platform_driver(s5p_aes_crypto);
2325
2326 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2327 MODULE_LICENSE("GPL v2");
2328 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2329 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2330