1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7 
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 
20 #include <crypto/ctr.h>
21 #include <crypto/internal/des.h>
22 #include <crypto/aes.h>
23 #include <crypto/hmac.h>
24 #include <crypto/sha1.h>
25 #include <crypto/algapi.h>
26 #include <crypto/internal/aead.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <linux/soc/ixp4xx/npe.h>
32 #include <linux/soc/ixp4xx/qmgr.h>
33 
34 /* Intermittent includes, delete this after v5.14-rc1 */
35 #include <linux/soc/ixp4xx/cpu.h>
36 
37 #define MAX_KEYLEN 32
38 
39 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
40 #define NPE_CTX_LEN 80
41 #define AES_BLOCK128 16
42 
43 #define NPE_OP_HASH_VERIFY   0x01
44 #define NPE_OP_CCM_ENABLE    0x04
45 #define NPE_OP_CRYPT_ENABLE  0x08
46 #define NPE_OP_HASH_ENABLE   0x10
47 #define NPE_OP_NOT_IN_PLACE  0x20
48 #define NPE_OP_HMAC_DISABLE  0x40
49 #define NPE_OP_CRYPT_ENCRYPT 0x80
50 
51 #define NPE_OP_CCM_GEN_MIC   0xcc
52 #define NPE_OP_HASH_GEN_ICV  0x50
53 #define NPE_OP_ENC_GEN_KEY   0xc9
54 
55 #define MOD_ECB     0x0000
56 #define MOD_CTR     0x1000
57 #define MOD_CBC_ENC 0x2000
58 #define MOD_CBC_DEC 0x3000
59 #define MOD_CCM_ENC 0x4000
60 #define MOD_CCM_DEC 0x5000
61 
62 #define KEYLEN_128  4
63 #define KEYLEN_192  6
64 #define KEYLEN_256  8
65 
66 #define CIPH_DECR   0x0000
67 #define CIPH_ENCR   0x0400
68 
69 #define MOD_DES     0x0000
70 #define MOD_TDEA2   0x0100
71 #define MOD_3DES   0x0200
72 #define MOD_AES     0x0800
73 #define MOD_AES128  (0x0800 | KEYLEN_128)
74 #define MOD_AES192  (0x0900 | KEYLEN_192)
75 #define MOD_AES256  (0x0a00 | KEYLEN_256)
76 
77 #define MAX_IVLEN   16
78 #define NPE_QLEN    16
79 /* Space for registering when the first
80  * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82 
83 #define CTL_FLAG_UNUSED		0x0000
84 #define CTL_FLAG_USED		0x1000
85 #define CTL_FLAG_PERFORM_ABLK	0x0001
86 #define CTL_FLAG_GEN_ICV	0x0002
87 #define CTL_FLAG_GEN_REVAES	0x0004
88 #define CTL_FLAG_PERFORM_AEAD	0x0008
89 #define CTL_FLAG_MASK		0x000f
90 
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92 
93 #define MD5_DIGEST_SIZE   16
94 
95 struct buffer_desc {
96 	u32 phys_next;
97 #ifdef __ARMEB__
98 	u16 buf_len;
99 	u16 pkt_len;
100 #else
101 	u16 pkt_len;
102 	u16 buf_len;
103 #endif
104 	dma_addr_t phys_addr;
105 	u32 __reserved[4];
106 	struct buffer_desc *next;
107 	enum dma_data_direction dir;
108 };
109 
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112 	u8 mode;		/* NPE_OP_*  operation mode */
113 	u8 init_len;
114 	u16 reserved;
115 #else
116 	u16 reserved;
117 	u8 init_len;
118 	u8 mode;		/* NPE_OP_*  operation mode */
119 #endif
120 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
121 	dma_addr_t icv_rev_aes;	/* icv or rev aes */
122 	dma_addr_t src_buf;
123 	dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125 	u16 auth_offs;		/* Authentication start offset */
126 	u16 auth_len;		/* Authentication data length */
127 	u16 crypt_offs;		/* Cryption start offset */
128 	u16 crypt_len;		/* Cryption data length */
129 #else
130 	u16 auth_len;		/* Authentication data length */
131 	u16 auth_offs;		/* Authentication start offset */
132 	u16 crypt_len;		/* Cryption data length */
133 	u16 crypt_offs;		/* Cryption start offset */
134 #endif
135 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
136 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
137 
138 	/* Used by Host: 4*4 bytes*/
139 	unsigned int ctl_flags;
140 	union {
141 		struct skcipher_request *ablk_req;
142 		struct aead_request *aead_req;
143 		struct crypto_tfm *tfm;
144 	} data;
145 	struct buffer_desc *regist_buf;
146 	u8 *regist_ptr;
147 };
148 
149 struct ablk_ctx {
150 	struct buffer_desc *src;
151 	struct buffer_desc *dst;
152 	u8 iv[MAX_IVLEN];
153 	bool encrypt;
154 	struct skcipher_request fallback_req;   // keep at the end
155 };
156 
157 struct aead_ctx {
158 	struct buffer_desc *src;
159 	struct buffer_desc *dst;
160 	struct scatterlist ivlist;
161 	/* used when the hmac is not on one sg entry */
162 	u8 *hmac_virt;
163 	int encrypt;
164 };
165 
166 struct ix_hash_algo {
167 	u32 cfgword;
168 	unsigned char *icv;
169 };
170 
171 struct ix_sa_dir {
172 	unsigned char *npe_ctx;
173 	dma_addr_t npe_ctx_phys;
174 	int npe_ctx_idx;
175 	u8 npe_mode;
176 };
177 
178 struct ixp_ctx {
179 	struct ix_sa_dir encrypt;
180 	struct ix_sa_dir decrypt;
181 	int authkey_len;
182 	u8 authkey[MAX_KEYLEN];
183 	int enckey_len;
184 	u8 enckey[MAX_KEYLEN];
185 	u8 salt[MAX_IVLEN];
186 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 	unsigned int salted;
188 	atomic_t configuring;
189 	struct completion completion;
190 	struct crypto_skcipher *fallback_tfm;
191 };
192 
193 struct ixp_alg {
194 	struct skcipher_alg crypto;
195 	const struct ix_hash_algo *hash;
196 	u32 cfg_enc;
197 	u32 cfg_dec;
198 
199 	int registered;
200 };
201 
202 struct ixp_aead_alg {
203 	struct aead_alg crypto;
204 	const struct ix_hash_algo *hash;
205 	u32 cfg_enc;
206 	u32 cfg_dec;
207 
208 	int registered;
209 };
210 
211 static const struct ix_hash_algo hash_alg_md5 = {
212 	.cfgword	= 0xAA010004,
213 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216 
217 static const struct ix_hash_algo hash_alg_sha1 = {
218 	.cfgword	= 0x00000005,
219 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
220 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
221 };
222 
223 static struct npe *npe_c;
224 
225 static unsigned int send_qid;
226 static unsigned int recv_qid;
227 static struct dma_pool *buffer_pool;
228 static struct dma_pool *ctx_pool;
229 
230 static struct crypt_ctl *crypt_virt;
231 static dma_addr_t crypt_phys;
232 
233 static int support_aes = 1;
234 
235 static struct platform_device *pdev;
236 
crypt_virt2phys(struct crypt_ctl * virt)237 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
238 {
239 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
240 }
241 
crypt_phys2virt(dma_addr_t phys)242 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
243 {
244 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
245 }
246 
cipher_cfg_enc(struct crypto_tfm * tfm)247 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
248 {
249 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
250 }
251 
cipher_cfg_dec(struct crypto_tfm * tfm)252 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
253 {
254 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
255 }
256 
ix_hash(struct crypto_tfm * tfm)257 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
258 {
259 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
260 }
261 
setup_crypt_desc(void)262 static int setup_crypt_desc(void)
263 {
264 	struct device *dev = &pdev->dev;
265 
266 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
267 	crypt_virt = dma_alloc_coherent(dev,
268 					NPE_QLEN * sizeof(struct crypt_ctl),
269 					&crypt_phys, GFP_ATOMIC);
270 	if (!crypt_virt)
271 		return -ENOMEM;
272 	return 0;
273 }
274 
275 static DEFINE_SPINLOCK(desc_lock);
get_crypt_desc(void)276 static struct crypt_ctl *get_crypt_desc(void)
277 {
278 	int i;
279 	static int idx;
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&desc_lock, flags);
283 
284 	if (unlikely(!crypt_virt))
285 		setup_crypt_desc();
286 	if (unlikely(!crypt_virt)) {
287 		spin_unlock_irqrestore(&desc_lock, flags);
288 		return NULL;
289 	}
290 	i = idx;
291 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
292 		if (++idx >= NPE_QLEN)
293 			idx = 0;
294 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
295 		spin_unlock_irqrestore(&desc_lock, flags);
296 		return crypt_virt + i;
297 	} else {
298 		spin_unlock_irqrestore(&desc_lock, flags);
299 		return NULL;
300 	}
301 }
302 
303 static DEFINE_SPINLOCK(emerg_lock);
get_crypt_desc_emerg(void)304 static struct crypt_ctl *get_crypt_desc_emerg(void)
305 {
306 	int i;
307 	static int idx = NPE_QLEN;
308 	struct crypt_ctl *desc;
309 	unsigned long flags;
310 
311 	desc = get_crypt_desc();
312 	if (desc)
313 		return desc;
314 	if (unlikely(!crypt_virt))
315 		return NULL;
316 
317 	spin_lock_irqsave(&emerg_lock, flags);
318 	i = idx;
319 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
320 		if (++idx >= NPE_QLEN_TOTAL)
321 			idx = NPE_QLEN;
322 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
323 		spin_unlock_irqrestore(&emerg_lock, flags);
324 		return crypt_virt + i;
325 	} else {
326 		spin_unlock_irqrestore(&emerg_lock, flags);
327 		return NULL;
328 	}
329 }
330 
free_buf_chain(struct device * dev,struct buffer_desc * buf,dma_addr_t phys)331 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
332 			   dma_addr_t phys)
333 {
334 	while (buf) {
335 		struct buffer_desc *buf1;
336 		u32 phys1;
337 
338 		buf1 = buf->next;
339 		phys1 = buf->phys_next;
340 		dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
341 		dma_pool_free(buffer_pool, buf, phys);
342 		buf = buf1;
343 		phys = phys1;
344 	}
345 }
346 
347 static struct tasklet_struct crypto_done_tasklet;
348 
finish_scattered_hmac(struct crypt_ctl * crypt)349 static void finish_scattered_hmac(struct crypt_ctl *crypt)
350 {
351 	struct aead_request *req = crypt->data.aead_req;
352 	struct aead_ctx *req_ctx = aead_request_ctx(req);
353 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
354 	int authsize = crypto_aead_authsize(tfm);
355 	int decryptlen = req->assoclen + req->cryptlen - authsize;
356 
357 	if (req_ctx->encrypt) {
358 		scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
359 					 decryptlen, authsize, 1);
360 	}
361 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
362 }
363 
one_packet(dma_addr_t phys)364 static void one_packet(dma_addr_t phys)
365 {
366 	struct device *dev = &pdev->dev;
367 	struct crypt_ctl *crypt;
368 	struct ixp_ctx *ctx;
369 	int failed;
370 
371 	failed = phys & 0x1 ? -EBADMSG : 0;
372 	phys &= ~0x3;
373 	crypt = crypt_phys2virt(phys);
374 
375 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
376 	case CTL_FLAG_PERFORM_AEAD: {
377 		struct aead_request *req = crypt->data.aead_req;
378 		struct aead_ctx *req_ctx = aead_request_ctx(req);
379 
380 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
381 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
382 		if (req_ctx->hmac_virt)
383 			finish_scattered_hmac(crypt);
384 
385 		req->base.complete(&req->base, failed);
386 		break;
387 	}
388 	case CTL_FLAG_PERFORM_ABLK: {
389 		struct skcipher_request *req = crypt->data.ablk_req;
390 		struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
391 		struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
392 		unsigned int ivsize = crypto_skcipher_ivsize(tfm);
393 		unsigned int offset;
394 
395 		if (ivsize > 0) {
396 			offset = req->cryptlen - ivsize;
397 			if (req_ctx->encrypt) {
398 				scatterwalk_map_and_copy(req->iv, req->dst,
399 							 offset, ivsize, 0);
400 			} else {
401 				memcpy(req->iv, req_ctx->iv, ivsize);
402 				memzero_explicit(req_ctx->iv, ivsize);
403 			}
404 		}
405 
406 		if (req_ctx->dst)
407 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
408 
409 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
410 		req->base.complete(&req->base, failed);
411 		break;
412 	}
413 	case CTL_FLAG_GEN_ICV:
414 		ctx = crypto_tfm_ctx(crypt->data.tfm);
415 		dma_pool_free(ctx_pool, crypt->regist_ptr,
416 			      crypt->regist_buf->phys_addr);
417 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
418 		if (atomic_dec_and_test(&ctx->configuring))
419 			complete(&ctx->completion);
420 		break;
421 	case CTL_FLAG_GEN_REVAES:
422 		ctx = crypto_tfm_ctx(crypt->data.tfm);
423 		*(u32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
424 		if (atomic_dec_and_test(&ctx->configuring))
425 			complete(&ctx->completion);
426 		break;
427 	default:
428 		BUG();
429 	}
430 	crypt->ctl_flags = CTL_FLAG_UNUSED;
431 }
432 
irqhandler(void * _unused)433 static void irqhandler(void *_unused)
434 {
435 	tasklet_schedule(&crypto_done_tasklet);
436 }
437 
crypto_done_action(unsigned long arg)438 static void crypto_done_action(unsigned long arg)
439 {
440 	int i;
441 
442 	for (i = 0; i < 4; i++) {
443 		dma_addr_t phys = qmgr_get_entry(recv_qid);
444 		if (!phys)
445 			return;
446 		one_packet(phys);
447 	}
448 	tasklet_schedule(&crypto_done_tasklet);
449 }
450 
init_ixp_crypto(struct device * dev)451 static int init_ixp_crypto(struct device *dev)
452 {
453 	struct device_node *np = dev->of_node;
454 	u32 msg[2] = { 0, 0 };
455 	int ret = -ENODEV;
456 	u32 npe_id;
457 
458 	dev_info(dev, "probing...\n");
459 
460 	/* Locate the NPE and queue manager to use from device tree */
461 	if (IS_ENABLED(CONFIG_OF) && np) {
462 		struct of_phandle_args queue_spec;
463 		struct of_phandle_args npe_spec;
464 
465 		ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
466 						       1, 0, &npe_spec);
467 		if (ret) {
468 			dev_err(dev, "no NPE engine specified\n");
469 			return -ENODEV;
470 		}
471 		npe_id = npe_spec.args[0];
472 
473 		ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
474 						       &queue_spec);
475 		if (ret) {
476 			dev_err(dev, "no rx queue phandle\n");
477 			return -ENODEV;
478 		}
479 		recv_qid = queue_spec.args[0];
480 
481 		ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
482 						       &queue_spec);
483 		if (ret) {
484 			dev_err(dev, "no txready queue phandle\n");
485 			return -ENODEV;
486 		}
487 		send_qid = queue_spec.args[0];
488 	} else {
489 		/*
490 		 * Hardcoded engine when using platform data, this goes away
491 		 * when we switch to using DT only.
492 		 */
493 		npe_id = 2;
494 		send_qid = 29;
495 		recv_qid = 30;
496 	}
497 
498 	npe_c = npe_request(npe_id);
499 	if (!npe_c)
500 		return ret;
501 
502 	if (!npe_running(npe_c)) {
503 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
504 		if (ret)
505 			goto npe_release;
506 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
507 			goto npe_error;
508 	} else {
509 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
510 			goto npe_error;
511 
512 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
513 			goto npe_error;
514 	}
515 
516 	switch ((msg[1] >> 16) & 0xff) {
517 	case 3:
518 		dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
519 		support_aes = 0;
520 		break;
521 	case 4:
522 	case 5:
523 		support_aes = 1;
524 		break;
525 	default:
526 		dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
527 		ret = -ENODEV;
528 		goto npe_release;
529 	}
530 	/* buffer_pool will also be used to sometimes store the hmac,
531 	 * so assure it is large enough
532 	 */
533 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
534 	buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
535 				      32, 0);
536 	ret = -ENOMEM;
537 	if (!buffer_pool)
538 		goto err;
539 
540 	ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
541 	if (!ctx_pool)
542 		goto err;
543 
544 	ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
545 				 "ixp_crypto:out", NULL);
546 	if (ret)
547 		goto err;
548 	ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
549 				 "ixp_crypto:in", NULL);
550 	if (ret) {
551 		qmgr_release_queue(send_qid);
552 		goto err;
553 	}
554 	qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
555 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
556 
557 	qmgr_enable_irq(recv_qid);
558 	return 0;
559 
560 npe_error:
561 	dev_err(dev, "%s not responding\n", npe_name(npe_c));
562 	ret = -EIO;
563 err:
564 	dma_pool_destroy(ctx_pool);
565 	dma_pool_destroy(buffer_pool);
566 npe_release:
567 	npe_release(npe_c);
568 	return ret;
569 }
570 
release_ixp_crypto(struct device * dev)571 static void release_ixp_crypto(struct device *dev)
572 {
573 	qmgr_disable_irq(recv_qid);
574 	tasklet_kill(&crypto_done_tasklet);
575 
576 	qmgr_release_queue(send_qid);
577 	qmgr_release_queue(recv_qid);
578 
579 	dma_pool_destroy(ctx_pool);
580 	dma_pool_destroy(buffer_pool);
581 
582 	npe_release(npe_c);
583 
584 	if (crypt_virt)
585 		dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
586 				  crypt_virt, crypt_phys);
587 }
588 
reset_sa_dir(struct ix_sa_dir * dir)589 static void reset_sa_dir(struct ix_sa_dir *dir)
590 {
591 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
592 	dir->npe_ctx_idx = 0;
593 	dir->npe_mode = 0;
594 }
595 
init_sa_dir(struct ix_sa_dir * dir)596 static int init_sa_dir(struct ix_sa_dir *dir)
597 {
598 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
599 	if (!dir->npe_ctx)
600 		return -ENOMEM;
601 
602 	reset_sa_dir(dir);
603 	return 0;
604 }
605 
free_sa_dir(struct ix_sa_dir * dir)606 static void free_sa_dir(struct ix_sa_dir *dir)
607 {
608 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
609 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
610 }
611 
init_tfm(struct crypto_tfm * tfm)612 static int init_tfm(struct crypto_tfm *tfm)
613 {
614 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
615 	int ret;
616 
617 	atomic_set(&ctx->configuring, 0);
618 	ret = init_sa_dir(&ctx->encrypt);
619 	if (ret)
620 		return ret;
621 	ret = init_sa_dir(&ctx->decrypt);
622 	if (ret)
623 		free_sa_dir(&ctx->encrypt);
624 
625 	return ret;
626 }
627 
init_tfm_ablk(struct crypto_skcipher * tfm)628 static int init_tfm_ablk(struct crypto_skcipher *tfm)
629 {
630 	struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
631 	struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
632 	const char *name = crypto_tfm_alg_name(ctfm);
633 
634 	ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
635 	if (IS_ERR(ctx->fallback_tfm)) {
636 		pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
637 			name, PTR_ERR(ctx->fallback_tfm));
638 		return PTR_ERR(ctx->fallback_tfm);
639 	}
640 
641 	pr_info("Fallback for %s is %s\n",
642 		 crypto_tfm_alg_driver_name(&tfm->base),
643 		 crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
644 		 );
645 
646 	crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
647 	return init_tfm(crypto_skcipher_tfm(tfm));
648 }
649 
init_tfm_aead(struct crypto_aead * tfm)650 static int init_tfm_aead(struct crypto_aead *tfm)
651 {
652 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
653 	return init_tfm(crypto_aead_tfm(tfm));
654 }
655 
exit_tfm(struct crypto_tfm * tfm)656 static void exit_tfm(struct crypto_tfm *tfm)
657 {
658 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
659 
660 	free_sa_dir(&ctx->encrypt);
661 	free_sa_dir(&ctx->decrypt);
662 }
663 
exit_tfm_ablk(struct crypto_skcipher * tfm)664 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
665 {
666 	struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
667 	struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
668 
669 	crypto_free_skcipher(ctx->fallback_tfm);
670 	exit_tfm(crypto_skcipher_tfm(tfm));
671 }
672 
exit_tfm_aead(struct crypto_aead * tfm)673 static void exit_tfm_aead(struct crypto_aead *tfm)
674 {
675 	exit_tfm(crypto_aead_tfm(tfm));
676 }
677 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)678 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
679 			      int init_len, u32 ctx_addr, const u8 *key,
680 			      int key_len)
681 {
682 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
683 	struct crypt_ctl *crypt;
684 	struct buffer_desc *buf;
685 	int i;
686 	u8 *pad;
687 	dma_addr_t pad_phys, buf_phys;
688 
689 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
690 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
691 	if (!pad)
692 		return -ENOMEM;
693 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
694 	if (!buf) {
695 		dma_pool_free(ctx_pool, pad, pad_phys);
696 		return -ENOMEM;
697 	}
698 	crypt = get_crypt_desc_emerg();
699 	if (!crypt) {
700 		dma_pool_free(ctx_pool, pad, pad_phys);
701 		dma_pool_free(buffer_pool, buf, buf_phys);
702 		return -EAGAIN;
703 	}
704 
705 	memcpy(pad, key, key_len);
706 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
707 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
708 		pad[i] ^= xpad;
709 
710 	crypt->data.tfm = tfm;
711 	crypt->regist_ptr = pad;
712 	crypt->regist_buf = buf;
713 
714 	crypt->auth_offs = 0;
715 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
716 	crypt->crypto_ctx = ctx_addr;
717 	crypt->src_buf = buf_phys;
718 	crypt->icv_rev_aes = target;
719 	crypt->mode = NPE_OP_HASH_GEN_ICV;
720 	crypt->init_len = init_len;
721 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
722 
723 	buf->next = 0;
724 	buf->buf_len = HMAC_PAD_BLOCKLEN;
725 	buf->pkt_len = 0;
726 	buf->phys_addr = pad_phys;
727 
728 	atomic_inc(&ctx->configuring);
729 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
730 	BUG_ON(qmgr_stat_overflow(send_qid));
731 	return 0;
732 }
733 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned int authsize,const u8 * key,int key_len,unsigned int digest_len)734 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
735 		      const u8 *key, int key_len, unsigned int digest_len)
736 {
737 	u32 itarget, otarget, npe_ctx_addr;
738 	unsigned char *cinfo;
739 	int init_len, ret = 0;
740 	u32 cfgword;
741 	struct ix_sa_dir *dir;
742 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743 	const struct ix_hash_algo *algo;
744 
745 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
747 	algo = ix_hash(tfm);
748 
749 	/* write cfg word to cryptinfo */
750 	cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
751 #ifndef __ARMEB__
752 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
753 #endif
754 	*(u32 *)cinfo = cpu_to_be32(cfgword);
755 	cinfo += sizeof(cfgword);
756 
757 	/* write ICV to cryptinfo */
758 	memcpy(cinfo, algo->icv, digest_len);
759 	cinfo += digest_len;
760 
761 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
762 				+ sizeof(algo->cfgword);
763 	otarget = itarget + digest_len;
764 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
765 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
766 
767 	dir->npe_ctx_idx += init_len;
768 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
769 
770 	if (!encrypt)
771 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
772 
773 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
774 				 init_len, npe_ctx_addr, key, key_len);
775 	if (ret)
776 		return ret;
777 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
778 				  init_len, npe_ctx_addr, key, key_len);
779 }
780 
gen_rev_aes_key(struct crypto_tfm * tfm)781 static int gen_rev_aes_key(struct crypto_tfm *tfm)
782 {
783 	struct crypt_ctl *crypt;
784 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
785 	struct ix_sa_dir *dir = &ctx->decrypt;
786 
787 	crypt = get_crypt_desc_emerg();
788 	if (!crypt)
789 		return -EAGAIN;
790 
791 	*(u32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
792 
793 	crypt->data.tfm = tfm;
794 	crypt->crypt_offs = 0;
795 	crypt->crypt_len = AES_BLOCK128;
796 	crypt->src_buf = 0;
797 	crypt->crypto_ctx = dir->npe_ctx_phys;
798 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
799 	crypt->mode = NPE_OP_ENC_GEN_KEY;
800 	crypt->init_len = dir->npe_ctx_idx;
801 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
802 
803 	atomic_inc(&ctx->configuring);
804 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
805 	BUG_ON(qmgr_stat_overflow(send_qid));
806 	return 0;
807 }
808 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)809 static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
810 			int key_len)
811 {
812 	u8 *cinfo;
813 	u32 cipher_cfg;
814 	u32 keylen_cfg = 0;
815 	struct ix_sa_dir *dir;
816 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
817 	int err;
818 
819 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
820 	cinfo = dir->npe_ctx;
821 
822 	if (encrypt) {
823 		cipher_cfg = cipher_cfg_enc(tfm);
824 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
825 	} else {
826 		cipher_cfg = cipher_cfg_dec(tfm);
827 	}
828 	if (cipher_cfg & MOD_AES) {
829 		switch (key_len) {
830 		case 16:
831 			keylen_cfg = MOD_AES128;
832 			break;
833 		case 24:
834 			keylen_cfg = MOD_AES192;
835 			break;
836 		case 32:
837 			keylen_cfg = MOD_AES256;
838 			break;
839 		default:
840 			return -EINVAL;
841 		}
842 		cipher_cfg |= keylen_cfg;
843 	} else {
844 		err = crypto_des_verify_key(tfm, key);
845 		if (err)
846 			return err;
847 	}
848 	/* write cfg word to cryptinfo */
849 	*(u32 *)cinfo = cpu_to_be32(cipher_cfg);
850 	cinfo += sizeof(cipher_cfg);
851 
852 	/* write cipher key to cryptinfo */
853 	memcpy(cinfo, key, key_len);
854 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
855 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
856 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
857 		key_len = DES3_EDE_KEY_SIZE;
858 	}
859 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
860 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
861 	if ((cipher_cfg & MOD_AES) && !encrypt)
862 		return gen_rev_aes_key(tfm);
863 
864 	return 0;
865 }
866 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned int nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)867 static struct buffer_desc *chainup_buffers(struct device *dev,
868 		struct scatterlist *sg,	unsigned int nbytes,
869 		struct buffer_desc *buf, gfp_t flags,
870 		enum dma_data_direction dir)
871 {
872 	for (; nbytes > 0; sg = sg_next(sg)) {
873 		unsigned int len = min(nbytes, sg->length);
874 		struct buffer_desc *next_buf;
875 		dma_addr_t next_buf_phys;
876 		void *ptr;
877 
878 		nbytes -= len;
879 		ptr = sg_virt(sg);
880 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
881 		if (!next_buf) {
882 			buf = NULL;
883 			break;
884 		}
885 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
886 		buf->next = next_buf;
887 		buf->phys_next = next_buf_phys;
888 		buf = next_buf;
889 
890 		buf->phys_addr = sg_dma_address(sg);
891 		buf->buf_len = len;
892 		buf->dir = dir;
893 	}
894 	buf->next = NULL;
895 	buf->phys_next = 0;
896 	return buf;
897 }
898 
ablk_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)899 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
900 		       unsigned int key_len)
901 {
902 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
903 	int ret;
904 
905 	init_completion(&ctx->completion);
906 	atomic_inc(&ctx->configuring);
907 
908 	reset_sa_dir(&ctx->encrypt);
909 	reset_sa_dir(&ctx->decrypt);
910 
911 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
912 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
913 
914 	ret = setup_cipher(&tfm->base, 0, key, key_len);
915 	if (ret)
916 		goto out;
917 	ret = setup_cipher(&tfm->base, 1, key, key_len);
918 out:
919 	if (!atomic_dec_and_test(&ctx->configuring))
920 		wait_for_completion(&ctx->completion);
921 	if (ret)
922 		return ret;
923 	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
924 	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
925 
926 	return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
927 }
928 
ablk_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)929 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
930 			    unsigned int key_len)
931 {
932 	return verify_skcipher_des3_key(tfm, key) ?:
933 	       ablk_setkey(tfm, key, key_len);
934 }
935 
ablk_rfc3686_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)936 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
937 			       unsigned int key_len)
938 {
939 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
940 
941 	/* the nonce is stored in bytes at end of key */
942 	if (key_len < CTR_RFC3686_NONCE_SIZE)
943 		return -EINVAL;
944 
945 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
946 	       CTR_RFC3686_NONCE_SIZE);
947 
948 	key_len -= CTR_RFC3686_NONCE_SIZE;
949 	return ablk_setkey(tfm, key, key_len);
950 }
951 
ixp4xx_cipher_fallback(struct skcipher_request * areq,int encrypt)952 static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
953 {
954 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
955 	struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
956 	struct ablk_ctx *rctx = skcipher_request_ctx(areq);
957 	int err;
958 
959 	skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
960 	skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
961 				      areq->base.complete, areq->base.data);
962 	skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
963 				   areq->cryptlen, areq->iv);
964 	if (encrypt)
965 		err = crypto_skcipher_encrypt(&rctx->fallback_req);
966 	else
967 		err = crypto_skcipher_decrypt(&rctx->fallback_req);
968 	return err;
969 }
970 
ablk_perform(struct skcipher_request * req,int encrypt)971 static int ablk_perform(struct skcipher_request *req, int encrypt)
972 {
973 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
974 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
975 	unsigned int ivsize = crypto_skcipher_ivsize(tfm);
976 	struct ix_sa_dir *dir;
977 	struct crypt_ctl *crypt;
978 	unsigned int nbytes = req->cryptlen;
979 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
980 	struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
981 	struct buffer_desc src_hook;
982 	struct device *dev = &pdev->dev;
983 	unsigned int offset;
984 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
985 				GFP_KERNEL : GFP_ATOMIC;
986 
987 	if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
988 		return ixp4xx_cipher_fallback(req, encrypt);
989 
990 	if (qmgr_stat_full(send_qid))
991 		return -EAGAIN;
992 	if (atomic_read(&ctx->configuring))
993 		return -EAGAIN;
994 
995 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
996 	req_ctx->encrypt = encrypt;
997 
998 	crypt = get_crypt_desc();
999 	if (!crypt)
1000 		return -ENOMEM;
1001 
1002 	crypt->data.ablk_req = req;
1003 	crypt->crypto_ctx = dir->npe_ctx_phys;
1004 	crypt->mode = dir->npe_mode;
1005 	crypt->init_len = dir->npe_ctx_idx;
1006 
1007 	crypt->crypt_offs = 0;
1008 	crypt->crypt_len = nbytes;
1009 
1010 	BUG_ON(ivsize && !req->iv);
1011 	memcpy(crypt->iv, req->iv, ivsize);
1012 	if (ivsize > 0 && !encrypt) {
1013 		offset = req->cryptlen - ivsize;
1014 		scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1015 	}
1016 	if (req->src != req->dst) {
1017 		struct buffer_desc dst_hook;
1018 
1019 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1020 		/* This was never tested by Intel
1021 		 * for more than one dst buffer, I think. */
1022 		req_ctx->dst = NULL;
1023 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1024 				     flags, DMA_FROM_DEVICE))
1025 			goto free_buf_dest;
1026 		src_direction = DMA_TO_DEVICE;
1027 		req_ctx->dst = dst_hook.next;
1028 		crypt->dst_buf = dst_hook.phys_next;
1029 	} else {
1030 		req_ctx->dst = NULL;
1031 	}
1032 	req_ctx->src = NULL;
1033 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1034 			     src_direction))
1035 		goto free_buf_src;
1036 
1037 	req_ctx->src = src_hook.next;
1038 	crypt->src_buf = src_hook.phys_next;
1039 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1040 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1041 	BUG_ON(qmgr_stat_overflow(send_qid));
1042 	return -EINPROGRESS;
1043 
1044 free_buf_src:
1045 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1046 free_buf_dest:
1047 	if (req->src != req->dst)
1048 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1049 
1050 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1051 	return -ENOMEM;
1052 }
1053 
ablk_encrypt(struct skcipher_request * req)1054 static int ablk_encrypt(struct skcipher_request *req)
1055 {
1056 	return ablk_perform(req, 1);
1057 }
1058 
ablk_decrypt(struct skcipher_request * req)1059 static int ablk_decrypt(struct skcipher_request *req)
1060 {
1061 	return ablk_perform(req, 0);
1062 }
1063 
ablk_rfc3686_crypt(struct skcipher_request * req)1064 static int ablk_rfc3686_crypt(struct skcipher_request *req)
1065 {
1066 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1067 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1068 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
1069 	u8 *info = req->iv;
1070 	int ret;
1071 
1072 	/* set up counter block */
1073 	memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1074 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1075 
1076 	/* initialize counter portion of counter block */
1077 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1078 		cpu_to_be32(1);
1079 
1080 	req->iv = iv;
1081 	ret = ablk_perform(req, 1);
1082 	req->iv = info;
1083 	return ret;
1084 }
1085 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)1086 static int aead_perform(struct aead_request *req, int encrypt,
1087 			int cryptoffset, int eff_cryptlen, u8 *iv)
1088 {
1089 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1090 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1091 	unsigned int ivsize = crypto_aead_ivsize(tfm);
1092 	unsigned int authsize = crypto_aead_authsize(tfm);
1093 	struct ix_sa_dir *dir;
1094 	struct crypt_ctl *crypt;
1095 	unsigned int cryptlen;
1096 	struct buffer_desc *buf, src_hook;
1097 	struct aead_ctx *req_ctx = aead_request_ctx(req);
1098 	struct device *dev = &pdev->dev;
1099 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1100 				GFP_KERNEL : GFP_ATOMIC;
1101 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1102 	unsigned int lastlen;
1103 
1104 	if (qmgr_stat_full(send_qid))
1105 		return -EAGAIN;
1106 	if (atomic_read(&ctx->configuring))
1107 		return -EAGAIN;
1108 
1109 	if (encrypt) {
1110 		dir = &ctx->encrypt;
1111 		cryptlen = req->cryptlen;
1112 	} else {
1113 		dir = &ctx->decrypt;
1114 		/* req->cryptlen includes the authsize when decrypting */
1115 		cryptlen = req->cryptlen - authsize;
1116 		eff_cryptlen -= authsize;
1117 	}
1118 	crypt = get_crypt_desc();
1119 	if (!crypt)
1120 		return -ENOMEM;
1121 
1122 	crypt->data.aead_req = req;
1123 	crypt->crypto_ctx = dir->npe_ctx_phys;
1124 	crypt->mode = dir->npe_mode;
1125 	crypt->init_len = dir->npe_ctx_idx;
1126 
1127 	crypt->crypt_offs = cryptoffset;
1128 	crypt->crypt_len = eff_cryptlen;
1129 
1130 	crypt->auth_offs = 0;
1131 	crypt->auth_len = req->assoclen + cryptlen;
1132 	BUG_ON(ivsize && !req->iv);
1133 	memcpy(crypt->iv, req->iv, ivsize);
1134 
1135 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1136 			      &src_hook, flags, src_direction);
1137 	req_ctx->src = src_hook.next;
1138 	crypt->src_buf = src_hook.phys_next;
1139 	if (!buf)
1140 		goto free_buf_src;
1141 
1142 	lastlen = buf->buf_len;
1143 	if (lastlen >= authsize)
1144 		crypt->icv_rev_aes = buf->phys_addr +
1145 				     buf->buf_len - authsize;
1146 
1147 	req_ctx->dst = NULL;
1148 
1149 	if (req->src != req->dst) {
1150 		struct buffer_desc dst_hook;
1151 
1152 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1153 		src_direction = DMA_TO_DEVICE;
1154 
1155 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1156 				      &dst_hook, flags, DMA_FROM_DEVICE);
1157 		req_ctx->dst = dst_hook.next;
1158 		crypt->dst_buf = dst_hook.phys_next;
1159 
1160 		if (!buf)
1161 			goto free_buf_dst;
1162 
1163 		if (encrypt) {
1164 			lastlen = buf->buf_len;
1165 			if (lastlen >= authsize)
1166 				crypt->icv_rev_aes = buf->phys_addr +
1167 						     buf->buf_len - authsize;
1168 		}
1169 	}
1170 
1171 	if (unlikely(lastlen < authsize)) {
1172 		/* The 12 hmac bytes are scattered,
1173 		 * we need to copy them into a safe buffer */
1174 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1175 						    &crypt->icv_rev_aes);
1176 		if (unlikely(!req_ctx->hmac_virt))
1177 			goto free_buf_dst;
1178 		if (!encrypt) {
1179 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1180 						 req->src, cryptlen, authsize, 0);
1181 		}
1182 		req_ctx->encrypt = encrypt;
1183 	} else {
1184 		req_ctx->hmac_virt = NULL;
1185 	}
1186 
1187 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1188 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1189 	BUG_ON(qmgr_stat_overflow(send_qid));
1190 	return -EINPROGRESS;
1191 
1192 free_buf_dst:
1193 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1194 free_buf_src:
1195 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1196 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1197 	return -ENOMEM;
1198 }
1199 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1200 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1201 {
1202 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1203 	unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1204 	int ret;
1205 
1206 	if (!ctx->enckey_len && !ctx->authkey_len)
1207 		return 0;
1208 	init_completion(&ctx->completion);
1209 	atomic_inc(&ctx->configuring);
1210 
1211 	reset_sa_dir(&ctx->encrypt);
1212 	reset_sa_dir(&ctx->decrypt);
1213 
1214 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1215 	if (ret)
1216 		goto out;
1217 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1218 	if (ret)
1219 		goto out;
1220 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1221 			 ctx->authkey_len, digest_len);
1222 	if (ret)
1223 		goto out;
1224 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1225 			 ctx->authkey_len, digest_len);
1226 out:
1227 	if (!atomic_dec_and_test(&ctx->configuring))
1228 		wait_for_completion(&ctx->completion);
1229 	return ret;
1230 }
1231 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1232 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1233 {
1234 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1235 
1236 	if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1237 		return -EINVAL;
1238 	return aead_setup(tfm, authsize);
1239 }
1240 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1241 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1242 		       unsigned int keylen)
1243 {
1244 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1245 	struct crypto_authenc_keys keys;
1246 
1247 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1248 		goto badkey;
1249 
1250 	if (keys.authkeylen > sizeof(ctx->authkey))
1251 		goto badkey;
1252 
1253 	if (keys.enckeylen > sizeof(ctx->enckey))
1254 		goto badkey;
1255 
1256 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1257 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1258 	ctx->authkey_len = keys.authkeylen;
1259 	ctx->enckey_len = keys.enckeylen;
1260 
1261 	memzero_explicit(&keys, sizeof(keys));
1262 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1263 badkey:
1264 	memzero_explicit(&keys, sizeof(keys));
1265 	return -EINVAL;
1266 }
1267 
des3_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1268 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1269 			    unsigned int keylen)
1270 {
1271 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1272 	struct crypto_authenc_keys keys;
1273 	int err;
1274 
1275 	err = crypto_authenc_extractkeys(&keys, key, keylen);
1276 	if (unlikely(err))
1277 		goto badkey;
1278 
1279 	err = -EINVAL;
1280 	if (keys.authkeylen > sizeof(ctx->authkey))
1281 		goto badkey;
1282 
1283 	err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1284 	if (err)
1285 		goto badkey;
1286 
1287 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1288 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1289 	ctx->authkey_len = keys.authkeylen;
1290 	ctx->enckey_len = keys.enckeylen;
1291 
1292 	memzero_explicit(&keys, sizeof(keys));
1293 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1294 badkey:
1295 	memzero_explicit(&keys, sizeof(keys));
1296 	return err;
1297 }
1298 
aead_encrypt(struct aead_request * req)1299 static int aead_encrypt(struct aead_request *req)
1300 {
1301 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1302 }
1303 
aead_decrypt(struct aead_request * req)1304 static int aead_decrypt(struct aead_request *req)
1305 {
1306 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1307 }
1308 
1309 static struct ixp_alg ixp4xx_algos[] = {
1310 {
1311 	.crypto	= {
1312 		.base.cra_name		= "cbc(des)",
1313 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1314 
1315 		.min_keysize		= DES_KEY_SIZE,
1316 		.max_keysize		= DES_KEY_SIZE,
1317 		.ivsize			= DES_BLOCK_SIZE,
1318 	},
1319 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1320 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1321 
1322 }, {
1323 	.crypto	= {
1324 		.base.cra_name		= "ecb(des)",
1325 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1326 		.min_keysize		= DES_KEY_SIZE,
1327 		.max_keysize		= DES_KEY_SIZE,
1328 	},
1329 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1330 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1331 }, {
1332 	.crypto	= {
1333 		.base.cra_name		= "cbc(des3_ede)",
1334 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1335 
1336 		.min_keysize		= DES3_EDE_KEY_SIZE,
1337 		.max_keysize		= DES3_EDE_KEY_SIZE,
1338 		.ivsize			= DES3_EDE_BLOCK_SIZE,
1339 		.setkey			= ablk_des3_setkey,
1340 	},
1341 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1342 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1343 }, {
1344 	.crypto	= {
1345 		.base.cra_name		= "ecb(des3_ede)",
1346 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1347 
1348 		.min_keysize		= DES3_EDE_KEY_SIZE,
1349 		.max_keysize		= DES3_EDE_KEY_SIZE,
1350 		.setkey			= ablk_des3_setkey,
1351 	},
1352 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1353 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1354 }, {
1355 	.crypto	= {
1356 		.base.cra_name		= "cbc(aes)",
1357 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1358 
1359 		.min_keysize		= AES_MIN_KEY_SIZE,
1360 		.max_keysize		= AES_MAX_KEY_SIZE,
1361 		.ivsize			= AES_BLOCK_SIZE,
1362 	},
1363 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1364 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1365 }, {
1366 	.crypto	= {
1367 		.base.cra_name		= "ecb(aes)",
1368 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1369 
1370 		.min_keysize		= AES_MIN_KEY_SIZE,
1371 		.max_keysize		= AES_MAX_KEY_SIZE,
1372 	},
1373 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1374 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1375 }, {
1376 	.crypto	= {
1377 		.base.cra_name		= "ctr(aes)",
1378 		.base.cra_blocksize	= 1,
1379 
1380 		.min_keysize		= AES_MIN_KEY_SIZE,
1381 		.max_keysize		= AES_MAX_KEY_SIZE,
1382 		.ivsize			= AES_BLOCK_SIZE,
1383 	},
1384 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1385 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1386 }, {
1387 	.crypto	= {
1388 		.base.cra_name		= "rfc3686(ctr(aes))",
1389 		.base.cra_blocksize	= 1,
1390 
1391 		.min_keysize		= AES_MIN_KEY_SIZE,
1392 		.max_keysize		= AES_MAX_KEY_SIZE,
1393 		.ivsize			= AES_BLOCK_SIZE,
1394 		.setkey			= ablk_rfc3686_setkey,
1395 		.encrypt		= ablk_rfc3686_crypt,
1396 		.decrypt		= ablk_rfc3686_crypt,
1397 	},
1398 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1399 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1400 } };
1401 
1402 static struct ixp_aead_alg ixp4xx_aeads[] = {
1403 {
1404 	.crypto	= {
1405 		.base = {
1406 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1407 			.cra_blocksize	= DES_BLOCK_SIZE,
1408 		},
1409 		.ivsize		= DES_BLOCK_SIZE,
1410 		.maxauthsize	= MD5_DIGEST_SIZE,
1411 	},
1412 	.hash = &hash_alg_md5,
1413 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1414 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1415 }, {
1416 	.crypto	= {
1417 		.base = {
1418 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1419 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1420 		},
1421 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1422 		.maxauthsize	= MD5_DIGEST_SIZE,
1423 		.setkey		= des3_aead_setkey,
1424 	},
1425 	.hash = &hash_alg_md5,
1426 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1427 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1428 }, {
1429 	.crypto	= {
1430 		.base = {
1431 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1432 			.cra_blocksize	= DES_BLOCK_SIZE,
1433 		},
1434 			.ivsize		= DES_BLOCK_SIZE,
1435 			.maxauthsize	= SHA1_DIGEST_SIZE,
1436 	},
1437 	.hash = &hash_alg_sha1,
1438 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1439 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1440 }, {
1441 	.crypto	= {
1442 		.base = {
1443 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1444 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1445 		},
1446 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1447 		.maxauthsize	= SHA1_DIGEST_SIZE,
1448 		.setkey		= des3_aead_setkey,
1449 	},
1450 	.hash = &hash_alg_sha1,
1451 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1452 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1453 }, {
1454 	.crypto	= {
1455 		.base = {
1456 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1457 			.cra_blocksize	= AES_BLOCK_SIZE,
1458 		},
1459 		.ivsize		= AES_BLOCK_SIZE,
1460 		.maxauthsize	= MD5_DIGEST_SIZE,
1461 	},
1462 	.hash = &hash_alg_md5,
1463 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1464 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1465 }, {
1466 	.crypto	= {
1467 		.base = {
1468 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1469 			.cra_blocksize	= AES_BLOCK_SIZE,
1470 		},
1471 		.ivsize		= AES_BLOCK_SIZE,
1472 		.maxauthsize	= SHA1_DIGEST_SIZE,
1473 	},
1474 	.hash = &hash_alg_sha1,
1475 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1476 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1477 } };
1478 
1479 #define IXP_POSTFIX "-ixp4xx"
1480 
ixp_crypto_probe(struct platform_device * _pdev)1481 static int ixp_crypto_probe(struct platform_device *_pdev)
1482 {
1483 	struct device *dev = &_pdev->dev;
1484 	int num = ARRAY_SIZE(ixp4xx_algos);
1485 	int i, err;
1486 
1487 	pdev = _pdev;
1488 
1489 	err = init_ixp_crypto(dev);
1490 	if (err)
1491 		return err;
1492 
1493 	for (i = 0; i < num; i++) {
1494 		struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1495 
1496 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1497 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1498 			     CRYPTO_MAX_ALG_NAME)
1499 			continue;
1500 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1501 			continue;
1502 
1503 		/* block ciphers */
1504 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1505 				      CRYPTO_ALG_ASYNC |
1506 				      CRYPTO_ALG_ALLOCATES_MEMORY |
1507 				      CRYPTO_ALG_NEED_FALLBACK;
1508 		if (!cra->setkey)
1509 			cra->setkey = ablk_setkey;
1510 		if (!cra->encrypt)
1511 			cra->encrypt = ablk_encrypt;
1512 		if (!cra->decrypt)
1513 			cra->decrypt = ablk_decrypt;
1514 		cra->init = init_tfm_ablk;
1515 		cra->exit = exit_tfm_ablk;
1516 
1517 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1518 		cra->base.cra_module = THIS_MODULE;
1519 		cra->base.cra_alignmask = 3;
1520 		cra->base.cra_priority = 300;
1521 		if (crypto_register_skcipher(cra))
1522 			dev_err(&pdev->dev, "Failed to register '%s'\n",
1523 				cra->base.cra_name);
1524 		else
1525 			ixp4xx_algos[i].registered = 1;
1526 	}
1527 
1528 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1529 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1530 
1531 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1532 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1533 		    CRYPTO_MAX_ALG_NAME)
1534 			continue;
1535 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1536 			continue;
1537 
1538 		/* authenc */
1539 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1540 				      CRYPTO_ALG_ASYNC |
1541 				      CRYPTO_ALG_ALLOCATES_MEMORY;
1542 		cra->setkey = cra->setkey ?: aead_setkey;
1543 		cra->setauthsize = aead_setauthsize;
1544 		cra->encrypt = aead_encrypt;
1545 		cra->decrypt = aead_decrypt;
1546 		cra->init = init_tfm_aead;
1547 		cra->exit = exit_tfm_aead;
1548 
1549 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1550 		cra->base.cra_module = THIS_MODULE;
1551 		cra->base.cra_alignmask = 3;
1552 		cra->base.cra_priority = 300;
1553 
1554 		if (crypto_register_aead(cra))
1555 			dev_err(&pdev->dev, "Failed to register '%s'\n",
1556 				cra->base.cra_driver_name);
1557 		else
1558 			ixp4xx_aeads[i].registered = 1;
1559 	}
1560 	return 0;
1561 }
1562 
ixp_crypto_remove(struct platform_device * pdev)1563 static int ixp_crypto_remove(struct platform_device *pdev)
1564 {
1565 	int num = ARRAY_SIZE(ixp4xx_algos);
1566 	int i;
1567 
1568 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1569 		if (ixp4xx_aeads[i].registered)
1570 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1571 	}
1572 
1573 	for (i = 0; i < num; i++) {
1574 		if (ixp4xx_algos[i].registered)
1575 			crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1576 	}
1577 	release_ixp_crypto(&pdev->dev);
1578 
1579 	return 0;
1580 }
1581 static const struct of_device_id ixp4xx_crypto_of_match[] = {
1582 	{
1583 		.compatible = "intel,ixp4xx-crypto",
1584 	},
1585 	{},
1586 };
1587 
1588 static struct platform_driver ixp_crypto_driver = {
1589 	.probe = ixp_crypto_probe,
1590 	.remove = ixp_crypto_remove,
1591 	.driver = {
1592 		.name = "ixp4xx_crypto",
1593 		.of_match_table = ixp4xx_crypto_of_match,
1594 	},
1595 };
1596 module_platform_driver(ixp_crypto_driver);
1597 
1598 MODULE_LICENSE("GPL");
1599 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1600 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1601 
1602