1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel IXP4xx NPE-C crypto driver
4 *
5 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19
20 #include <crypto/ctr.h>
21 #include <crypto/internal/des.h>
22 #include <crypto/aes.h>
23 #include <crypto/hmac.h>
24 #include <crypto/sha1.h>
25 #include <crypto/algapi.h>
26 #include <crypto/internal/aead.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <linux/soc/ixp4xx/npe.h>
32 #include <linux/soc/ixp4xx/qmgr.h>
33
34 /* Intermittent includes, delete this after v5.14-rc1 */
35 #include <linux/soc/ixp4xx/cpu.h>
36
37 #define MAX_KEYLEN 32
38
39 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
40 #define NPE_CTX_LEN 80
41 #define AES_BLOCK128 16
42
43 #define NPE_OP_HASH_VERIFY 0x01
44 #define NPE_OP_CCM_ENABLE 0x04
45 #define NPE_OP_CRYPT_ENABLE 0x08
46 #define NPE_OP_HASH_ENABLE 0x10
47 #define NPE_OP_NOT_IN_PLACE 0x20
48 #define NPE_OP_HMAC_DISABLE 0x40
49 #define NPE_OP_CRYPT_ENCRYPT 0x80
50
51 #define NPE_OP_CCM_GEN_MIC 0xcc
52 #define NPE_OP_HASH_GEN_ICV 0x50
53 #define NPE_OP_ENC_GEN_KEY 0xc9
54
55 #define MOD_ECB 0x0000
56 #define MOD_CTR 0x1000
57 #define MOD_CBC_ENC 0x2000
58 #define MOD_CBC_DEC 0x3000
59 #define MOD_CCM_ENC 0x4000
60 #define MOD_CCM_DEC 0x5000
61
62 #define KEYLEN_128 4
63 #define KEYLEN_192 6
64 #define KEYLEN_256 8
65
66 #define CIPH_DECR 0x0000
67 #define CIPH_ENCR 0x0400
68
69 #define MOD_DES 0x0000
70 #define MOD_TDEA2 0x0100
71 #define MOD_3DES 0x0200
72 #define MOD_AES 0x0800
73 #define MOD_AES128 (0x0800 | KEYLEN_128)
74 #define MOD_AES192 (0x0900 | KEYLEN_192)
75 #define MOD_AES256 (0x0a00 | KEYLEN_256)
76
77 #define MAX_IVLEN 16
78 #define NPE_QLEN 16
79 /* Space for registering when the first
80 * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82
83 #define CTL_FLAG_UNUSED 0x0000
84 #define CTL_FLAG_USED 0x1000
85 #define CTL_FLAG_PERFORM_ABLK 0x0001
86 #define CTL_FLAG_GEN_ICV 0x0002
87 #define CTL_FLAG_GEN_REVAES 0x0004
88 #define CTL_FLAG_PERFORM_AEAD 0x0008
89 #define CTL_FLAG_MASK 0x000f
90
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92
93 #define MD5_DIGEST_SIZE 16
94
95 struct buffer_desc {
96 u32 phys_next;
97 #ifdef __ARMEB__
98 u16 buf_len;
99 u16 pkt_len;
100 #else
101 u16 pkt_len;
102 u16 buf_len;
103 #endif
104 dma_addr_t phys_addr;
105 u32 __reserved[4];
106 struct buffer_desc *next;
107 enum dma_data_direction dir;
108 };
109
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112 u8 mode; /* NPE_OP_* operation mode */
113 u8 init_len;
114 u16 reserved;
115 #else
116 u16 reserved;
117 u8 init_len;
118 u8 mode; /* NPE_OP_* operation mode */
119 #endif
120 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
121 dma_addr_t icv_rev_aes; /* icv or rev aes */
122 dma_addr_t src_buf;
123 dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125 u16 auth_offs; /* Authentication start offset */
126 u16 auth_len; /* Authentication data length */
127 u16 crypt_offs; /* Cryption start offset */
128 u16 crypt_len; /* Cryption data length */
129 #else
130 u16 auth_len; /* Authentication data length */
131 u16 auth_offs; /* Authentication start offset */
132 u16 crypt_len; /* Cryption data length */
133 u16 crypt_offs; /* Cryption start offset */
134 #endif
135 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
136 u32 crypto_ctx; /* NPE Crypto Param structure address */
137
138 /* Used by Host: 4*4 bytes*/
139 unsigned int ctl_flags;
140 union {
141 struct skcipher_request *ablk_req;
142 struct aead_request *aead_req;
143 struct crypto_tfm *tfm;
144 } data;
145 struct buffer_desc *regist_buf;
146 u8 *regist_ptr;
147 };
148
149 struct ablk_ctx {
150 struct buffer_desc *src;
151 struct buffer_desc *dst;
152 u8 iv[MAX_IVLEN];
153 bool encrypt;
154 struct skcipher_request fallback_req; // keep at the end
155 };
156
157 struct aead_ctx {
158 struct buffer_desc *src;
159 struct buffer_desc *dst;
160 struct scatterlist ivlist;
161 /* used when the hmac is not on one sg entry */
162 u8 *hmac_virt;
163 int encrypt;
164 };
165
166 struct ix_hash_algo {
167 u32 cfgword;
168 unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172 unsigned char *npe_ctx;
173 dma_addr_t npe_ctx_phys;
174 int npe_ctx_idx;
175 u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179 struct ix_sa_dir encrypt;
180 struct ix_sa_dir decrypt;
181 int authkey_len;
182 u8 authkey[MAX_KEYLEN];
183 int enckey_len;
184 u8 enckey[MAX_KEYLEN];
185 u8 salt[MAX_IVLEN];
186 u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 unsigned int salted;
188 atomic_t configuring;
189 struct completion completion;
190 struct crypto_skcipher *fallback_tfm;
191 };
192
193 struct ixp_alg {
194 struct skcipher_alg crypto;
195 const struct ix_hash_algo *hash;
196 u32 cfg_enc;
197 u32 cfg_dec;
198
199 int registered;
200 };
201
202 struct ixp_aead_alg {
203 struct aead_alg crypto;
204 const struct ix_hash_algo *hash;
205 u32 cfg_enc;
206 u32 cfg_dec;
207
208 int registered;
209 };
210
211 static const struct ix_hash_algo hash_alg_md5 = {
212 .cfgword = 0xAA010004,
213 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216
217 static const struct ix_hash_algo hash_alg_sha1 = {
218 .cfgword = 0x00000005,
219 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
220 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
221 };
222
223 static struct npe *npe_c;
224
225 static unsigned int send_qid;
226 static unsigned int recv_qid;
227 static struct dma_pool *buffer_pool;
228 static struct dma_pool *ctx_pool;
229
230 static struct crypt_ctl *crypt_virt;
231 static dma_addr_t crypt_phys;
232
233 static int support_aes = 1;
234
235 static struct platform_device *pdev;
236
crypt_virt2phys(struct crypt_ctl * virt)237 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
238 {
239 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
240 }
241
crypt_phys2virt(dma_addr_t phys)242 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
243 {
244 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
245 }
246
cipher_cfg_enc(struct crypto_tfm * tfm)247 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
248 {
249 return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
250 }
251
cipher_cfg_dec(struct crypto_tfm * tfm)252 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
253 {
254 return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
255 }
256
ix_hash(struct crypto_tfm * tfm)257 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
258 {
259 return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
260 }
261
setup_crypt_desc(void)262 static int setup_crypt_desc(void)
263 {
264 struct device *dev = &pdev->dev;
265
266 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
267 crypt_virt = dma_alloc_coherent(dev,
268 NPE_QLEN * sizeof(struct crypt_ctl),
269 &crypt_phys, GFP_ATOMIC);
270 if (!crypt_virt)
271 return -ENOMEM;
272 return 0;
273 }
274
275 static DEFINE_SPINLOCK(desc_lock);
get_crypt_desc(void)276 static struct crypt_ctl *get_crypt_desc(void)
277 {
278 int i;
279 static int idx;
280 unsigned long flags;
281
282 spin_lock_irqsave(&desc_lock, flags);
283
284 if (unlikely(!crypt_virt))
285 setup_crypt_desc();
286 if (unlikely(!crypt_virt)) {
287 spin_unlock_irqrestore(&desc_lock, flags);
288 return NULL;
289 }
290 i = idx;
291 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
292 if (++idx >= NPE_QLEN)
293 idx = 0;
294 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
295 spin_unlock_irqrestore(&desc_lock, flags);
296 return crypt_virt + i;
297 } else {
298 spin_unlock_irqrestore(&desc_lock, flags);
299 return NULL;
300 }
301 }
302
303 static DEFINE_SPINLOCK(emerg_lock);
get_crypt_desc_emerg(void)304 static struct crypt_ctl *get_crypt_desc_emerg(void)
305 {
306 int i;
307 static int idx = NPE_QLEN;
308 struct crypt_ctl *desc;
309 unsigned long flags;
310
311 desc = get_crypt_desc();
312 if (desc)
313 return desc;
314 if (unlikely(!crypt_virt))
315 return NULL;
316
317 spin_lock_irqsave(&emerg_lock, flags);
318 i = idx;
319 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
320 if (++idx >= NPE_QLEN_TOTAL)
321 idx = NPE_QLEN;
322 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
323 spin_unlock_irqrestore(&emerg_lock, flags);
324 return crypt_virt + i;
325 } else {
326 spin_unlock_irqrestore(&emerg_lock, flags);
327 return NULL;
328 }
329 }
330
free_buf_chain(struct device * dev,struct buffer_desc * buf,dma_addr_t phys)331 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
332 dma_addr_t phys)
333 {
334 while (buf) {
335 struct buffer_desc *buf1;
336 u32 phys1;
337
338 buf1 = buf->next;
339 phys1 = buf->phys_next;
340 dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
341 dma_pool_free(buffer_pool, buf, phys);
342 buf = buf1;
343 phys = phys1;
344 }
345 }
346
347 static struct tasklet_struct crypto_done_tasklet;
348
finish_scattered_hmac(struct crypt_ctl * crypt)349 static void finish_scattered_hmac(struct crypt_ctl *crypt)
350 {
351 struct aead_request *req = crypt->data.aead_req;
352 struct aead_ctx *req_ctx = aead_request_ctx(req);
353 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
354 int authsize = crypto_aead_authsize(tfm);
355 int decryptlen = req->assoclen + req->cryptlen - authsize;
356
357 if (req_ctx->encrypt) {
358 scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
359 decryptlen, authsize, 1);
360 }
361 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
362 }
363
one_packet(dma_addr_t phys)364 static void one_packet(dma_addr_t phys)
365 {
366 struct device *dev = &pdev->dev;
367 struct crypt_ctl *crypt;
368 struct ixp_ctx *ctx;
369 int failed;
370
371 failed = phys & 0x1 ? -EBADMSG : 0;
372 phys &= ~0x3;
373 crypt = crypt_phys2virt(phys);
374
375 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
376 case CTL_FLAG_PERFORM_AEAD: {
377 struct aead_request *req = crypt->data.aead_req;
378 struct aead_ctx *req_ctx = aead_request_ctx(req);
379
380 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
381 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
382 if (req_ctx->hmac_virt)
383 finish_scattered_hmac(crypt);
384
385 req->base.complete(&req->base, failed);
386 break;
387 }
388 case CTL_FLAG_PERFORM_ABLK: {
389 struct skcipher_request *req = crypt->data.ablk_req;
390 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
391 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
392 unsigned int ivsize = crypto_skcipher_ivsize(tfm);
393 unsigned int offset;
394
395 if (ivsize > 0) {
396 offset = req->cryptlen - ivsize;
397 if (req_ctx->encrypt) {
398 scatterwalk_map_and_copy(req->iv, req->dst,
399 offset, ivsize, 0);
400 } else {
401 memcpy(req->iv, req_ctx->iv, ivsize);
402 memzero_explicit(req_ctx->iv, ivsize);
403 }
404 }
405
406 if (req_ctx->dst)
407 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
408
409 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
410 req->base.complete(&req->base, failed);
411 break;
412 }
413 case CTL_FLAG_GEN_ICV:
414 ctx = crypto_tfm_ctx(crypt->data.tfm);
415 dma_pool_free(ctx_pool, crypt->regist_ptr,
416 crypt->regist_buf->phys_addr);
417 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
418 if (atomic_dec_and_test(&ctx->configuring))
419 complete(&ctx->completion);
420 break;
421 case CTL_FLAG_GEN_REVAES:
422 ctx = crypto_tfm_ctx(crypt->data.tfm);
423 *(u32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
424 if (atomic_dec_and_test(&ctx->configuring))
425 complete(&ctx->completion);
426 break;
427 default:
428 BUG();
429 }
430 crypt->ctl_flags = CTL_FLAG_UNUSED;
431 }
432
irqhandler(void * _unused)433 static void irqhandler(void *_unused)
434 {
435 tasklet_schedule(&crypto_done_tasklet);
436 }
437
crypto_done_action(unsigned long arg)438 static void crypto_done_action(unsigned long arg)
439 {
440 int i;
441
442 for (i = 0; i < 4; i++) {
443 dma_addr_t phys = qmgr_get_entry(recv_qid);
444 if (!phys)
445 return;
446 one_packet(phys);
447 }
448 tasklet_schedule(&crypto_done_tasklet);
449 }
450
init_ixp_crypto(struct device * dev)451 static int init_ixp_crypto(struct device *dev)
452 {
453 struct device_node *np = dev->of_node;
454 u32 msg[2] = { 0, 0 };
455 int ret = -ENODEV;
456 u32 npe_id;
457
458 dev_info(dev, "probing...\n");
459
460 /* Locate the NPE and queue manager to use from device tree */
461 if (IS_ENABLED(CONFIG_OF) && np) {
462 struct of_phandle_args queue_spec;
463 struct of_phandle_args npe_spec;
464
465 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
466 1, 0, &npe_spec);
467 if (ret) {
468 dev_err(dev, "no NPE engine specified\n");
469 return -ENODEV;
470 }
471 npe_id = npe_spec.args[0];
472
473 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
474 &queue_spec);
475 if (ret) {
476 dev_err(dev, "no rx queue phandle\n");
477 return -ENODEV;
478 }
479 recv_qid = queue_spec.args[0];
480
481 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
482 &queue_spec);
483 if (ret) {
484 dev_err(dev, "no txready queue phandle\n");
485 return -ENODEV;
486 }
487 send_qid = queue_spec.args[0];
488 } else {
489 /*
490 * Hardcoded engine when using platform data, this goes away
491 * when we switch to using DT only.
492 */
493 npe_id = 2;
494 send_qid = 29;
495 recv_qid = 30;
496 }
497
498 npe_c = npe_request(npe_id);
499 if (!npe_c)
500 return ret;
501
502 if (!npe_running(npe_c)) {
503 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
504 if (ret)
505 goto npe_release;
506 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
507 goto npe_error;
508 } else {
509 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
510 goto npe_error;
511
512 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
513 goto npe_error;
514 }
515
516 switch ((msg[1] >> 16) & 0xff) {
517 case 3:
518 dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
519 support_aes = 0;
520 break;
521 case 4:
522 case 5:
523 support_aes = 1;
524 break;
525 default:
526 dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
527 ret = -ENODEV;
528 goto npe_release;
529 }
530 /* buffer_pool will also be used to sometimes store the hmac,
531 * so assure it is large enough
532 */
533 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
534 buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
535 32, 0);
536 ret = -ENOMEM;
537 if (!buffer_pool)
538 goto err;
539
540 ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
541 if (!ctx_pool)
542 goto err;
543
544 ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
545 "ixp_crypto:out", NULL);
546 if (ret)
547 goto err;
548 ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
549 "ixp_crypto:in", NULL);
550 if (ret) {
551 qmgr_release_queue(send_qid);
552 goto err;
553 }
554 qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
555 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
556
557 qmgr_enable_irq(recv_qid);
558 return 0;
559
560 npe_error:
561 dev_err(dev, "%s not responding\n", npe_name(npe_c));
562 ret = -EIO;
563 err:
564 dma_pool_destroy(ctx_pool);
565 dma_pool_destroy(buffer_pool);
566 npe_release:
567 npe_release(npe_c);
568 return ret;
569 }
570
release_ixp_crypto(struct device * dev)571 static void release_ixp_crypto(struct device *dev)
572 {
573 qmgr_disable_irq(recv_qid);
574 tasklet_kill(&crypto_done_tasklet);
575
576 qmgr_release_queue(send_qid);
577 qmgr_release_queue(recv_qid);
578
579 dma_pool_destroy(ctx_pool);
580 dma_pool_destroy(buffer_pool);
581
582 npe_release(npe_c);
583
584 if (crypt_virt)
585 dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
586 crypt_virt, crypt_phys);
587 }
588
reset_sa_dir(struct ix_sa_dir * dir)589 static void reset_sa_dir(struct ix_sa_dir *dir)
590 {
591 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
592 dir->npe_ctx_idx = 0;
593 dir->npe_mode = 0;
594 }
595
init_sa_dir(struct ix_sa_dir * dir)596 static int init_sa_dir(struct ix_sa_dir *dir)
597 {
598 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
599 if (!dir->npe_ctx)
600 return -ENOMEM;
601
602 reset_sa_dir(dir);
603 return 0;
604 }
605
free_sa_dir(struct ix_sa_dir * dir)606 static void free_sa_dir(struct ix_sa_dir *dir)
607 {
608 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
609 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
610 }
611
init_tfm(struct crypto_tfm * tfm)612 static int init_tfm(struct crypto_tfm *tfm)
613 {
614 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
615 int ret;
616
617 atomic_set(&ctx->configuring, 0);
618 ret = init_sa_dir(&ctx->encrypt);
619 if (ret)
620 return ret;
621 ret = init_sa_dir(&ctx->decrypt);
622 if (ret)
623 free_sa_dir(&ctx->encrypt);
624
625 return ret;
626 }
627
init_tfm_ablk(struct crypto_skcipher * tfm)628 static int init_tfm_ablk(struct crypto_skcipher *tfm)
629 {
630 struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
631 struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
632 const char *name = crypto_tfm_alg_name(ctfm);
633
634 ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
635 if (IS_ERR(ctx->fallback_tfm)) {
636 pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
637 name, PTR_ERR(ctx->fallback_tfm));
638 return PTR_ERR(ctx->fallback_tfm);
639 }
640
641 pr_info("Fallback for %s is %s\n",
642 crypto_tfm_alg_driver_name(&tfm->base),
643 crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
644 );
645
646 crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
647 return init_tfm(crypto_skcipher_tfm(tfm));
648 }
649
init_tfm_aead(struct crypto_aead * tfm)650 static int init_tfm_aead(struct crypto_aead *tfm)
651 {
652 crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
653 return init_tfm(crypto_aead_tfm(tfm));
654 }
655
exit_tfm(struct crypto_tfm * tfm)656 static void exit_tfm(struct crypto_tfm *tfm)
657 {
658 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
659
660 free_sa_dir(&ctx->encrypt);
661 free_sa_dir(&ctx->decrypt);
662 }
663
exit_tfm_ablk(struct crypto_skcipher * tfm)664 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
665 {
666 struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
667 struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
668
669 crypto_free_skcipher(ctx->fallback_tfm);
670 exit_tfm(crypto_skcipher_tfm(tfm));
671 }
672
exit_tfm_aead(struct crypto_aead * tfm)673 static void exit_tfm_aead(struct crypto_aead *tfm)
674 {
675 exit_tfm(crypto_aead_tfm(tfm));
676 }
677
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)678 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
679 int init_len, u32 ctx_addr, const u8 *key,
680 int key_len)
681 {
682 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
683 struct crypt_ctl *crypt;
684 struct buffer_desc *buf;
685 int i;
686 u8 *pad;
687 dma_addr_t pad_phys, buf_phys;
688
689 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
690 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
691 if (!pad)
692 return -ENOMEM;
693 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
694 if (!buf) {
695 dma_pool_free(ctx_pool, pad, pad_phys);
696 return -ENOMEM;
697 }
698 crypt = get_crypt_desc_emerg();
699 if (!crypt) {
700 dma_pool_free(ctx_pool, pad, pad_phys);
701 dma_pool_free(buffer_pool, buf, buf_phys);
702 return -EAGAIN;
703 }
704
705 memcpy(pad, key, key_len);
706 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
707 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
708 pad[i] ^= xpad;
709
710 crypt->data.tfm = tfm;
711 crypt->regist_ptr = pad;
712 crypt->regist_buf = buf;
713
714 crypt->auth_offs = 0;
715 crypt->auth_len = HMAC_PAD_BLOCKLEN;
716 crypt->crypto_ctx = ctx_addr;
717 crypt->src_buf = buf_phys;
718 crypt->icv_rev_aes = target;
719 crypt->mode = NPE_OP_HASH_GEN_ICV;
720 crypt->init_len = init_len;
721 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
722
723 buf->next = 0;
724 buf->buf_len = HMAC_PAD_BLOCKLEN;
725 buf->pkt_len = 0;
726 buf->phys_addr = pad_phys;
727
728 atomic_inc(&ctx->configuring);
729 qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
730 BUG_ON(qmgr_stat_overflow(send_qid));
731 return 0;
732 }
733
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned int authsize,const u8 * key,int key_len,unsigned int digest_len)734 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
735 const u8 *key, int key_len, unsigned int digest_len)
736 {
737 u32 itarget, otarget, npe_ctx_addr;
738 unsigned char *cinfo;
739 int init_len, ret = 0;
740 u32 cfgword;
741 struct ix_sa_dir *dir;
742 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743 const struct ix_hash_algo *algo;
744
745 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
747 algo = ix_hash(tfm);
748
749 /* write cfg word to cryptinfo */
750 cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
751 #ifndef __ARMEB__
752 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
753 #endif
754 *(u32 *)cinfo = cpu_to_be32(cfgword);
755 cinfo += sizeof(cfgword);
756
757 /* write ICV to cryptinfo */
758 memcpy(cinfo, algo->icv, digest_len);
759 cinfo += digest_len;
760
761 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
762 + sizeof(algo->cfgword);
763 otarget = itarget + digest_len;
764 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
765 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
766
767 dir->npe_ctx_idx += init_len;
768 dir->npe_mode |= NPE_OP_HASH_ENABLE;
769
770 if (!encrypt)
771 dir->npe_mode |= NPE_OP_HASH_VERIFY;
772
773 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
774 init_len, npe_ctx_addr, key, key_len);
775 if (ret)
776 return ret;
777 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
778 init_len, npe_ctx_addr, key, key_len);
779 }
780
gen_rev_aes_key(struct crypto_tfm * tfm)781 static int gen_rev_aes_key(struct crypto_tfm *tfm)
782 {
783 struct crypt_ctl *crypt;
784 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
785 struct ix_sa_dir *dir = &ctx->decrypt;
786
787 crypt = get_crypt_desc_emerg();
788 if (!crypt)
789 return -EAGAIN;
790
791 *(u32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
792
793 crypt->data.tfm = tfm;
794 crypt->crypt_offs = 0;
795 crypt->crypt_len = AES_BLOCK128;
796 crypt->src_buf = 0;
797 crypt->crypto_ctx = dir->npe_ctx_phys;
798 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
799 crypt->mode = NPE_OP_ENC_GEN_KEY;
800 crypt->init_len = dir->npe_ctx_idx;
801 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
802
803 atomic_inc(&ctx->configuring);
804 qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
805 BUG_ON(qmgr_stat_overflow(send_qid));
806 return 0;
807 }
808
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)809 static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
810 int key_len)
811 {
812 u8 *cinfo;
813 u32 cipher_cfg;
814 u32 keylen_cfg = 0;
815 struct ix_sa_dir *dir;
816 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
817 int err;
818
819 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
820 cinfo = dir->npe_ctx;
821
822 if (encrypt) {
823 cipher_cfg = cipher_cfg_enc(tfm);
824 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
825 } else {
826 cipher_cfg = cipher_cfg_dec(tfm);
827 }
828 if (cipher_cfg & MOD_AES) {
829 switch (key_len) {
830 case 16:
831 keylen_cfg = MOD_AES128;
832 break;
833 case 24:
834 keylen_cfg = MOD_AES192;
835 break;
836 case 32:
837 keylen_cfg = MOD_AES256;
838 break;
839 default:
840 return -EINVAL;
841 }
842 cipher_cfg |= keylen_cfg;
843 } else {
844 err = crypto_des_verify_key(tfm, key);
845 if (err)
846 return err;
847 }
848 /* write cfg word to cryptinfo */
849 *(u32 *)cinfo = cpu_to_be32(cipher_cfg);
850 cinfo += sizeof(cipher_cfg);
851
852 /* write cipher key to cryptinfo */
853 memcpy(cinfo, key, key_len);
854 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
855 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
856 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
857 key_len = DES3_EDE_KEY_SIZE;
858 }
859 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
860 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
861 if ((cipher_cfg & MOD_AES) && !encrypt)
862 return gen_rev_aes_key(tfm);
863
864 return 0;
865 }
866
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned int nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)867 static struct buffer_desc *chainup_buffers(struct device *dev,
868 struct scatterlist *sg, unsigned int nbytes,
869 struct buffer_desc *buf, gfp_t flags,
870 enum dma_data_direction dir)
871 {
872 for (; nbytes > 0; sg = sg_next(sg)) {
873 unsigned int len = min(nbytes, sg->length);
874 struct buffer_desc *next_buf;
875 dma_addr_t next_buf_phys;
876 void *ptr;
877
878 nbytes -= len;
879 ptr = sg_virt(sg);
880 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
881 if (!next_buf) {
882 buf = NULL;
883 break;
884 }
885 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
886 buf->next = next_buf;
887 buf->phys_next = next_buf_phys;
888 buf = next_buf;
889
890 buf->phys_addr = sg_dma_address(sg);
891 buf->buf_len = len;
892 buf->dir = dir;
893 }
894 buf->next = NULL;
895 buf->phys_next = 0;
896 return buf;
897 }
898
ablk_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)899 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
900 unsigned int key_len)
901 {
902 struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
903 int ret;
904
905 init_completion(&ctx->completion);
906 atomic_inc(&ctx->configuring);
907
908 reset_sa_dir(&ctx->encrypt);
909 reset_sa_dir(&ctx->decrypt);
910
911 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
912 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
913
914 ret = setup_cipher(&tfm->base, 0, key, key_len);
915 if (ret)
916 goto out;
917 ret = setup_cipher(&tfm->base, 1, key, key_len);
918 out:
919 if (!atomic_dec_and_test(&ctx->configuring))
920 wait_for_completion(&ctx->completion);
921 if (ret)
922 return ret;
923 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
924 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
925
926 return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
927 }
928
ablk_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)929 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
930 unsigned int key_len)
931 {
932 return verify_skcipher_des3_key(tfm, key) ?:
933 ablk_setkey(tfm, key, key_len);
934 }
935
ablk_rfc3686_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)936 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
937 unsigned int key_len)
938 {
939 struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
940
941 /* the nonce is stored in bytes at end of key */
942 if (key_len < CTR_RFC3686_NONCE_SIZE)
943 return -EINVAL;
944
945 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
946 CTR_RFC3686_NONCE_SIZE);
947
948 key_len -= CTR_RFC3686_NONCE_SIZE;
949 return ablk_setkey(tfm, key, key_len);
950 }
951
ixp4xx_cipher_fallback(struct skcipher_request * areq,int encrypt)952 static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
953 {
954 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
955 struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
956 struct ablk_ctx *rctx = skcipher_request_ctx(areq);
957 int err;
958
959 skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
960 skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
961 areq->base.complete, areq->base.data);
962 skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
963 areq->cryptlen, areq->iv);
964 if (encrypt)
965 err = crypto_skcipher_encrypt(&rctx->fallback_req);
966 else
967 err = crypto_skcipher_decrypt(&rctx->fallback_req);
968 return err;
969 }
970
ablk_perform(struct skcipher_request * req,int encrypt)971 static int ablk_perform(struct skcipher_request *req, int encrypt)
972 {
973 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
974 struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
975 unsigned int ivsize = crypto_skcipher_ivsize(tfm);
976 struct ix_sa_dir *dir;
977 struct crypt_ctl *crypt;
978 unsigned int nbytes = req->cryptlen;
979 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
980 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
981 struct buffer_desc src_hook;
982 struct device *dev = &pdev->dev;
983 unsigned int offset;
984 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
985 GFP_KERNEL : GFP_ATOMIC;
986
987 if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
988 return ixp4xx_cipher_fallback(req, encrypt);
989
990 if (qmgr_stat_full(send_qid))
991 return -EAGAIN;
992 if (atomic_read(&ctx->configuring))
993 return -EAGAIN;
994
995 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
996 req_ctx->encrypt = encrypt;
997
998 crypt = get_crypt_desc();
999 if (!crypt)
1000 return -ENOMEM;
1001
1002 crypt->data.ablk_req = req;
1003 crypt->crypto_ctx = dir->npe_ctx_phys;
1004 crypt->mode = dir->npe_mode;
1005 crypt->init_len = dir->npe_ctx_idx;
1006
1007 crypt->crypt_offs = 0;
1008 crypt->crypt_len = nbytes;
1009
1010 BUG_ON(ivsize && !req->iv);
1011 memcpy(crypt->iv, req->iv, ivsize);
1012 if (ivsize > 0 && !encrypt) {
1013 offset = req->cryptlen - ivsize;
1014 scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1015 }
1016 if (req->src != req->dst) {
1017 struct buffer_desc dst_hook;
1018
1019 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1020 /* This was never tested by Intel
1021 * for more than one dst buffer, I think. */
1022 req_ctx->dst = NULL;
1023 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1024 flags, DMA_FROM_DEVICE))
1025 goto free_buf_dest;
1026 src_direction = DMA_TO_DEVICE;
1027 req_ctx->dst = dst_hook.next;
1028 crypt->dst_buf = dst_hook.phys_next;
1029 } else {
1030 req_ctx->dst = NULL;
1031 }
1032 req_ctx->src = NULL;
1033 if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1034 src_direction))
1035 goto free_buf_src;
1036
1037 req_ctx->src = src_hook.next;
1038 crypt->src_buf = src_hook.phys_next;
1039 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1040 qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1041 BUG_ON(qmgr_stat_overflow(send_qid));
1042 return -EINPROGRESS;
1043
1044 free_buf_src:
1045 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1046 free_buf_dest:
1047 if (req->src != req->dst)
1048 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1049
1050 crypt->ctl_flags = CTL_FLAG_UNUSED;
1051 return -ENOMEM;
1052 }
1053
ablk_encrypt(struct skcipher_request * req)1054 static int ablk_encrypt(struct skcipher_request *req)
1055 {
1056 return ablk_perform(req, 1);
1057 }
1058
ablk_decrypt(struct skcipher_request * req)1059 static int ablk_decrypt(struct skcipher_request *req)
1060 {
1061 return ablk_perform(req, 0);
1062 }
1063
ablk_rfc3686_crypt(struct skcipher_request * req)1064 static int ablk_rfc3686_crypt(struct skcipher_request *req)
1065 {
1066 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1067 struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1068 u8 iv[CTR_RFC3686_BLOCK_SIZE];
1069 u8 *info = req->iv;
1070 int ret;
1071
1072 /* set up counter block */
1073 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1074 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1075
1076 /* initialize counter portion of counter block */
1077 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1078 cpu_to_be32(1);
1079
1080 req->iv = iv;
1081 ret = ablk_perform(req, 1);
1082 req->iv = info;
1083 return ret;
1084 }
1085
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)1086 static int aead_perform(struct aead_request *req, int encrypt,
1087 int cryptoffset, int eff_cryptlen, u8 *iv)
1088 {
1089 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1090 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1091 unsigned int ivsize = crypto_aead_ivsize(tfm);
1092 unsigned int authsize = crypto_aead_authsize(tfm);
1093 struct ix_sa_dir *dir;
1094 struct crypt_ctl *crypt;
1095 unsigned int cryptlen;
1096 struct buffer_desc *buf, src_hook;
1097 struct aead_ctx *req_ctx = aead_request_ctx(req);
1098 struct device *dev = &pdev->dev;
1099 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1100 GFP_KERNEL : GFP_ATOMIC;
1101 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1102 unsigned int lastlen;
1103
1104 if (qmgr_stat_full(send_qid))
1105 return -EAGAIN;
1106 if (atomic_read(&ctx->configuring))
1107 return -EAGAIN;
1108
1109 if (encrypt) {
1110 dir = &ctx->encrypt;
1111 cryptlen = req->cryptlen;
1112 } else {
1113 dir = &ctx->decrypt;
1114 /* req->cryptlen includes the authsize when decrypting */
1115 cryptlen = req->cryptlen - authsize;
1116 eff_cryptlen -= authsize;
1117 }
1118 crypt = get_crypt_desc();
1119 if (!crypt)
1120 return -ENOMEM;
1121
1122 crypt->data.aead_req = req;
1123 crypt->crypto_ctx = dir->npe_ctx_phys;
1124 crypt->mode = dir->npe_mode;
1125 crypt->init_len = dir->npe_ctx_idx;
1126
1127 crypt->crypt_offs = cryptoffset;
1128 crypt->crypt_len = eff_cryptlen;
1129
1130 crypt->auth_offs = 0;
1131 crypt->auth_len = req->assoclen + cryptlen;
1132 BUG_ON(ivsize && !req->iv);
1133 memcpy(crypt->iv, req->iv, ivsize);
1134
1135 buf = chainup_buffers(dev, req->src, crypt->auth_len,
1136 &src_hook, flags, src_direction);
1137 req_ctx->src = src_hook.next;
1138 crypt->src_buf = src_hook.phys_next;
1139 if (!buf)
1140 goto free_buf_src;
1141
1142 lastlen = buf->buf_len;
1143 if (lastlen >= authsize)
1144 crypt->icv_rev_aes = buf->phys_addr +
1145 buf->buf_len - authsize;
1146
1147 req_ctx->dst = NULL;
1148
1149 if (req->src != req->dst) {
1150 struct buffer_desc dst_hook;
1151
1152 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1153 src_direction = DMA_TO_DEVICE;
1154
1155 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1156 &dst_hook, flags, DMA_FROM_DEVICE);
1157 req_ctx->dst = dst_hook.next;
1158 crypt->dst_buf = dst_hook.phys_next;
1159
1160 if (!buf)
1161 goto free_buf_dst;
1162
1163 if (encrypt) {
1164 lastlen = buf->buf_len;
1165 if (lastlen >= authsize)
1166 crypt->icv_rev_aes = buf->phys_addr +
1167 buf->buf_len - authsize;
1168 }
1169 }
1170
1171 if (unlikely(lastlen < authsize)) {
1172 /* The 12 hmac bytes are scattered,
1173 * we need to copy them into a safe buffer */
1174 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1175 &crypt->icv_rev_aes);
1176 if (unlikely(!req_ctx->hmac_virt))
1177 goto free_buf_dst;
1178 if (!encrypt) {
1179 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1180 req->src, cryptlen, authsize, 0);
1181 }
1182 req_ctx->encrypt = encrypt;
1183 } else {
1184 req_ctx->hmac_virt = NULL;
1185 }
1186
1187 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1188 qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1189 BUG_ON(qmgr_stat_overflow(send_qid));
1190 return -EINPROGRESS;
1191
1192 free_buf_dst:
1193 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1194 free_buf_src:
1195 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1196 crypt->ctl_flags = CTL_FLAG_UNUSED;
1197 return -ENOMEM;
1198 }
1199
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1200 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1201 {
1202 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1203 unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1204 int ret;
1205
1206 if (!ctx->enckey_len && !ctx->authkey_len)
1207 return 0;
1208 init_completion(&ctx->completion);
1209 atomic_inc(&ctx->configuring);
1210
1211 reset_sa_dir(&ctx->encrypt);
1212 reset_sa_dir(&ctx->decrypt);
1213
1214 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1215 if (ret)
1216 goto out;
1217 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1218 if (ret)
1219 goto out;
1220 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1221 ctx->authkey_len, digest_len);
1222 if (ret)
1223 goto out;
1224 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1225 ctx->authkey_len, digest_len);
1226 out:
1227 if (!atomic_dec_and_test(&ctx->configuring))
1228 wait_for_completion(&ctx->completion);
1229 return ret;
1230 }
1231
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1232 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1233 {
1234 int max = crypto_aead_maxauthsize(tfm) >> 2;
1235
1236 if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1237 return -EINVAL;
1238 return aead_setup(tfm, authsize);
1239 }
1240
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1241 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1242 unsigned int keylen)
1243 {
1244 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1245 struct crypto_authenc_keys keys;
1246
1247 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1248 goto badkey;
1249
1250 if (keys.authkeylen > sizeof(ctx->authkey))
1251 goto badkey;
1252
1253 if (keys.enckeylen > sizeof(ctx->enckey))
1254 goto badkey;
1255
1256 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1257 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1258 ctx->authkey_len = keys.authkeylen;
1259 ctx->enckey_len = keys.enckeylen;
1260
1261 memzero_explicit(&keys, sizeof(keys));
1262 return aead_setup(tfm, crypto_aead_authsize(tfm));
1263 badkey:
1264 memzero_explicit(&keys, sizeof(keys));
1265 return -EINVAL;
1266 }
1267
des3_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1268 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1269 unsigned int keylen)
1270 {
1271 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1272 struct crypto_authenc_keys keys;
1273 int err;
1274
1275 err = crypto_authenc_extractkeys(&keys, key, keylen);
1276 if (unlikely(err))
1277 goto badkey;
1278
1279 err = -EINVAL;
1280 if (keys.authkeylen > sizeof(ctx->authkey))
1281 goto badkey;
1282
1283 err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1284 if (err)
1285 goto badkey;
1286
1287 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1288 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1289 ctx->authkey_len = keys.authkeylen;
1290 ctx->enckey_len = keys.enckeylen;
1291
1292 memzero_explicit(&keys, sizeof(keys));
1293 return aead_setup(tfm, crypto_aead_authsize(tfm));
1294 badkey:
1295 memzero_explicit(&keys, sizeof(keys));
1296 return err;
1297 }
1298
aead_encrypt(struct aead_request * req)1299 static int aead_encrypt(struct aead_request *req)
1300 {
1301 return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1302 }
1303
aead_decrypt(struct aead_request * req)1304 static int aead_decrypt(struct aead_request *req)
1305 {
1306 return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1307 }
1308
1309 static struct ixp_alg ixp4xx_algos[] = {
1310 {
1311 .crypto = {
1312 .base.cra_name = "cbc(des)",
1313 .base.cra_blocksize = DES_BLOCK_SIZE,
1314
1315 .min_keysize = DES_KEY_SIZE,
1316 .max_keysize = DES_KEY_SIZE,
1317 .ivsize = DES_BLOCK_SIZE,
1318 },
1319 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1320 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1321
1322 }, {
1323 .crypto = {
1324 .base.cra_name = "ecb(des)",
1325 .base.cra_blocksize = DES_BLOCK_SIZE,
1326 .min_keysize = DES_KEY_SIZE,
1327 .max_keysize = DES_KEY_SIZE,
1328 },
1329 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1330 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1331 }, {
1332 .crypto = {
1333 .base.cra_name = "cbc(des3_ede)",
1334 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1335
1336 .min_keysize = DES3_EDE_KEY_SIZE,
1337 .max_keysize = DES3_EDE_KEY_SIZE,
1338 .ivsize = DES3_EDE_BLOCK_SIZE,
1339 .setkey = ablk_des3_setkey,
1340 },
1341 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1342 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1343 }, {
1344 .crypto = {
1345 .base.cra_name = "ecb(des3_ede)",
1346 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1347
1348 .min_keysize = DES3_EDE_KEY_SIZE,
1349 .max_keysize = DES3_EDE_KEY_SIZE,
1350 .setkey = ablk_des3_setkey,
1351 },
1352 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1353 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1354 }, {
1355 .crypto = {
1356 .base.cra_name = "cbc(aes)",
1357 .base.cra_blocksize = AES_BLOCK_SIZE,
1358
1359 .min_keysize = AES_MIN_KEY_SIZE,
1360 .max_keysize = AES_MAX_KEY_SIZE,
1361 .ivsize = AES_BLOCK_SIZE,
1362 },
1363 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1364 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1365 }, {
1366 .crypto = {
1367 .base.cra_name = "ecb(aes)",
1368 .base.cra_blocksize = AES_BLOCK_SIZE,
1369
1370 .min_keysize = AES_MIN_KEY_SIZE,
1371 .max_keysize = AES_MAX_KEY_SIZE,
1372 },
1373 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1374 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1375 }, {
1376 .crypto = {
1377 .base.cra_name = "ctr(aes)",
1378 .base.cra_blocksize = 1,
1379
1380 .min_keysize = AES_MIN_KEY_SIZE,
1381 .max_keysize = AES_MAX_KEY_SIZE,
1382 .ivsize = AES_BLOCK_SIZE,
1383 },
1384 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1385 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1386 }, {
1387 .crypto = {
1388 .base.cra_name = "rfc3686(ctr(aes))",
1389 .base.cra_blocksize = 1,
1390
1391 .min_keysize = AES_MIN_KEY_SIZE,
1392 .max_keysize = AES_MAX_KEY_SIZE,
1393 .ivsize = AES_BLOCK_SIZE,
1394 .setkey = ablk_rfc3686_setkey,
1395 .encrypt = ablk_rfc3686_crypt,
1396 .decrypt = ablk_rfc3686_crypt,
1397 },
1398 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1399 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1400 } };
1401
1402 static struct ixp_aead_alg ixp4xx_aeads[] = {
1403 {
1404 .crypto = {
1405 .base = {
1406 .cra_name = "authenc(hmac(md5),cbc(des))",
1407 .cra_blocksize = DES_BLOCK_SIZE,
1408 },
1409 .ivsize = DES_BLOCK_SIZE,
1410 .maxauthsize = MD5_DIGEST_SIZE,
1411 },
1412 .hash = &hash_alg_md5,
1413 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1414 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1415 }, {
1416 .crypto = {
1417 .base = {
1418 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1419 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1420 },
1421 .ivsize = DES3_EDE_BLOCK_SIZE,
1422 .maxauthsize = MD5_DIGEST_SIZE,
1423 .setkey = des3_aead_setkey,
1424 },
1425 .hash = &hash_alg_md5,
1426 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1427 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1428 }, {
1429 .crypto = {
1430 .base = {
1431 .cra_name = "authenc(hmac(sha1),cbc(des))",
1432 .cra_blocksize = DES_BLOCK_SIZE,
1433 },
1434 .ivsize = DES_BLOCK_SIZE,
1435 .maxauthsize = SHA1_DIGEST_SIZE,
1436 },
1437 .hash = &hash_alg_sha1,
1438 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1439 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1440 }, {
1441 .crypto = {
1442 .base = {
1443 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1444 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1445 },
1446 .ivsize = DES3_EDE_BLOCK_SIZE,
1447 .maxauthsize = SHA1_DIGEST_SIZE,
1448 .setkey = des3_aead_setkey,
1449 },
1450 .hash = &hash_alg_sha1,
1451 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1452 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1453 }, {
1454 .crypto = {
1455 .base = {
1456 .cra_name = "authenc(hmac(md5),cbc(aes))",
1457 .cra_blocksize = AES_BLOCK_SIZE,
1458 },
1459 .ivsize = AES_BLOCK_SIZE,
1460 .maxauthsize = MD5_DIGEST_SIZE,
1461 },
1462 .hash = &hash_alg_md5,
1463 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1464 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1465 }, {
1466 .crypto = {
1467 .base = {
1468 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1469 .cra_blocksize = AES_BLOCK_SIZE,
1470 },
1471 .ivsize = AES_BLOCK_SIZE,
1472 .maxauthsize = SHA1_DIGEST_SIZE,
1473 },
1474 .hash = &hash_alg_sha1,
1475 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1476 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1477 } };
1478
1479 #define IXP_POSTFIX "-ixp4xx"
1480
ixp_crypto_probe(struct platform_device * _pdev)1481 static int ixp_crypto_probe(struct platform_device *_pdev)
1482 {
1483 struct device *dev = &_pdev->dev;
1484 int num = ARRAY_SIZE(ixp4xx_algos);
1485 int i, err;
1486
1487 pdev = _pdev;
1488
1489 err = init_ixp_crypto(dev);
1490 if (err)
1491 return err;
1492
1493 for (i = 0; i < num; i++) {
1494 struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1495
1496 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1497 "%s"IXP_POSTFIX, cra->base.cra_name) >=
1498 CRYPTO_MAX_ALG_NAME)
1499 continue;
1500 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1501 continue;
1502
1503 /* block ciphers */
1504 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1505 CRYPTO_ALG_ASYNC |
1506 CRYPTO_ALG_ALLOCATES_MEMORY |
1507 CRYPTO_ALG_NEED_FALLBACK;
1508 if (!cra->setkey)
1509 cra->setkey = ablk_setkey;
1510 if (!cra->encrypt)
1511 cra->encrypt = ablk_encrypt;
1512 if (!cra->decrypt)
1513 cra->decrypt = ablk_decrypt;
1514 cra->init = init_tfm_ablk;
1515 cra->exit = exit_tfm_ablk;
1516
1517 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1518 cra->base.cra_module = THIS_MODULE;
1519 cra->base.cra_alignmask = 3;
1520 cra->base.cra_priority = 300;
1521 if (crypto_register_skcipher(cra))
1522 dev_err(&pdev->dev, "Failed to register '%s'\n",
1523 cra->base.cra_name);
1524 else
1525 ixp4xx_algos[i].registered = 1;
1526 }
1527
1528 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1529 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1530
1531 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1532 "%s"IXP_POSTFIX, cra->base.cra_name) >=
1533 CRYPTO_MAX_ALG_NAME)
1534 continue;
1535 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1536 continue;
1537
1538 /* authenc */
1539 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1540 CRYPTO_ALG_ASYNC |
1541 CRYPTO_ALG_ALLOCATES_MEMORY;
1542 cra->setkey = cra->setkey ?: aead_setkey;
1543 cra->setauthsize = aead_setauthsize;
1544 cra->encrypt = aead_encrypt;
1545 cra->decrypt = aead_decrypt;
1546 cra->init = init_tfm_aead;
1547 cra->exit = exit_tfm_aead;
1548
1549 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1550 cra->base.cra_module = THIS_MODULE;
1551 cra->base.cra_alignmask = 3;
1552 cra->base.cra_priority = 300;
1553
1554 if (crypto_register_aead(cra))
1555 dev_err(&pdev->dev, "Failed to register '%s'\n",
1556 cra->base.cra_driver_name);
1557 else
1558 ixp4xx_aeads[i].registered = 1;
1559 }
1560 return 0;
1561 }
1562
ixp_crypto_remove(struct platform_device * pdev)1563 static int ixp_crypto_remove(struct platform_device *pdev)
1564 {
1565 int num = ARRAY_SIZE(ixp4xx_algos);
1566 int i;
1567
1568 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1569 if (ixp4xx_aeads[i].registered)
1570 crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1571 }
1572
1573 for (i = 0; i < num; i++) {
1574 if (ixp4xx_algos[i].registered)
1575 crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1576 }
1577 release_ixp_crypto(&pdev->dev);
1578
1579 return 0;
1580 }
1581 static const struct of_device_id ixp4xx_crypto_of_match[] = {
1582 {
1583 .compatible = "intel,ixp4xx-crypto",
1584 },
1585 {},
1586 };
1587
1588 static struct platform_driver ixp_crypto_driver = {
1589 .probe = ixp_crypto_probe,
1590 .remove = ixp_crypto_remove,
1591 .driver = {
1592 .name = "ixp4xx_crypto",
1593 .of_match_table = ixp4xx_crypto_of_match,
1594 },
1595 };
1596 module_platform_driver(ixp_crypto_driver);
1597
1598 MODULE_LICENSE("GPL");
1599 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1600 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1601
1602