1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60 #define SEC_SQE_LEN_RATE_MASK 0x3
61
62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR 128
64 #define SEC_CIPHER_AUTH 0xfe
65 #define SEC_AUTH_CIPHER 0x1
66 #define SEC_MAX_MAC_LEN 64
67 #define SEC_MAX_AAD_LEN 65535
68 #define SEC_MAX_CCM_AAD_LEN 65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71 #define SEC_PBUF_SZ 512
72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
75 SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
81 SEC_PBUF_LEFT_SZ(depth))
82
83 #define SEC_SQE_LEN_RATE 4
84 #define SEC_SQE_CFLAG 2
85 #define SEC_SQE_AEAD_FLAG 3
86 #define SEC_SQE_DONE 0x1
87 #define SEC_ICV_ERR 0x2
88 #define MIN_MAC_LEN 4
89 #define MAC_LEN_MASK 0x1U
90 #define MAX_INPUT_DATA_LEN 0xFFFE00
91 #define BITS_MASK 0xFF
92 #define BYTE_BITS 0x8
93 #define SEC_XTS_NAME_SZ 0x3
94 #define IV_CM_CAL_NUM 2
95 #define IV_CL_MASK 0x7
96 #define IV_CL_MIN 2
97 #define IV_CL_MID 4
98 #define IV_CL_MAX 8
99 #define IV_FLAGS_OFFSET 0x6
100 #define IV_CM_OFFSET 0x3
101 #define IV_LAST_BYTE1 1
102 #define IV_LAST_BYTE2 2
103 #define IV_LAST_BYTE_MASK 0xFF
104 #define IV_CTR_INIT 0x1
105 #define IV_BYTE_OFFSET 0x8
106
107 struct sec_skcipher {
108 u64 alg_msk;
109 struct skcipher_alg alg;
110 };
111
112 struct sec_aead {
113 u64 alg_msk;
114 struct aead_alg alg;
115 };
116
117 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)118 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 {
120 if (req->c_req.encrypt)
121 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
122 ctx->hlf_q_num;
123
124 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
125 ctx->hlf_q_num;
126 }
127
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)128 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
129 {
130 if (req->c_req.encrypt)
131 atomic_dec(&ctx->enc_qcyclic);
132 else
133 atomic_dec(&ctx->dec_qcyclic);
134 }
135
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)136 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
137 {
138 int req_id;
139
140 spin_lock_bh(&qp_ctx->req_lock);
141 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
142 spin_unlock_bh(&qp_ctx->req_lock);
143 if (unlikely(req_id < 0)) {
144 dev_err(req->ctx->dev, "alloc req id fail!\n");
145 return req_id;
146 }
147
148 req->qp_ctx = qp_ctx;
149 qp_ctx->req_list[req_id] = req;
150
151 return req_id;
152 }
153
sec_free_req_id(struct sec_req * req)154 static void sec_free_req_id(struct sec_req *req)
155 {
156 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
157 int req_id = req->req_id;
158
159 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
160 dev_err(req->ctx->dev, "free request id invalid!\n");
161 return;
162 }
163
164 qp_ctx->req_list[req_id] = NULL;
165 req->qp_ctx = NULL;
166
167 spin_lock_bh(&qp_ctx->req_lock);
168 idr_remove(&qp_ctx->req_idr, req_id);
169 spin_unlock_bh(&qp_ctx->req_lock);
170 }
171
pre_parse_finished_bd(struct bd_status * status,void * resp)172 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
173 {
174 struct sec_sqe *bd = resp;
175
176 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
177 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
178 status->flag = (le16_to_cpu(bd->type2.done_flag) &
179 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
180 status->tag = le16_to_cpu(bd->type2.tag);
181 status->err_type = bd->type2.error_type;
182
183 return bd->type_cipher_auth & SEC_TYPE_MASK;
184 }
185
pre_parse_finished_bd3(struct bd_status * status,void * resp)186 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
187 {
188 struct sec_sqe3 *bd3 = resp;
189
190 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
191 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
192 status->flag = (le16_to_cpu(bd3->done_flag) &
193 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
194 status->tag = le64_to_cpu(bd3->tag);
195 status->err_type = bd3->error_type;
196
197 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
198 }
199
sec_cb_status_check(struct sec_req * req,struct bd_status * status)200 static int sec_cb_status_check(struct sec_req *req,
201 struct bd_status *status)
202 {
203 struct sec_ctx *ctx = req->ctx;
204
205 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
206 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
207 req->err_type, status->done);
208 return -EIO;
209 }
210
211 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
212 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
213 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
214 status->flag);
215 return -EIO;
216 }
217 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
218 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
219 status->icv == SEC_ICV_ERR)) {
220 dev_err_ratelimited(ctx->dev,
221 "flag[%u], icv[%u]\n",
222 status->flag, status->icv);
223 return -EBADMSG;
224 }
225 }
226
227 return 0;
228 }
229
sec_req_cb(struct hisi_qp * qp,void * resp)230 static void sec_req_cb(struct hisi_qp *qp, void *resp)
231 {
232 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
233 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
234 u8 type_supported = qp_ctx->ctx->type_supported;
235 struct bd_status status;
236 struct sec_ctx *ctx;
237 struct sec_req *req;
238 int err;
239 u8 type;
240
241 if (type_supported == SEC_BD_TYPE2) {
242 type = pre_parse_finished_bd(&status, resp);
243 req = qp_ctx->req_list[status.tag];
244 } else {
245 type = pre_parse_finished_bd3(&status, resp);
246 req = (void *)(uintptr_t)status.tag;
247 }
248
249 if (unlikely(type != type_supported)) {
250 atomic64_inc(&dfx->err_bd_cnt);
251 pr_err("err bd type [%u]\n", type);
252 return;
253 }
254
255 if (unlikely(!req)) {
256 atomic64_inc(&dfx->invalid_req_cnt);
257 atomic_inc(&qp->qp_status.used);
258 return;
259 }
260
261 req->err_type = status.err_type;
262 ctx = req->ctx;
263 err = sec_cb_status_check(req, &status);
264 if (err)
265 atomic64_inc(&dfx->done_flag_cnt);
266
267 atomic64_inc(&dfx->recv_cnt);
268
269 ctx->req_op->buf_unmap(ctx, req);
270
271 ctx->req_op->callback(ctx, req, err);
272 }
273
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)274 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
275 {
276 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
277 int ret;
278
279 if (ctx->fake_req_limit <=
280 atomic_read(&qp_ctx->qp->qp_status.used) &&
281 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
282 return -EBUSY;
283
284 spin_lock_bh(&qp_ctx->req_lock);
285 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
286
287 if (ctx->fake_req_limit <=
288 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
289 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
290 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
291 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
292 spin_unlock_bh(&qp_ctx->req_lock);
293 return -EBUSY;
294 }
295 spin_unlock_bh(&qp_ctx->req_lock);
296
297 if (unlikely(ret == -EBUSY))
298 return -ENOBUFS;
299
300 if (likely(!ret)) {
301 ret = -EINPROGRESS;
302 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
303 }
304
305 return ret;
306 }
307
308 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)309 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
310 {
311 u16 q_depth = res->depth;
312 int i;
313
314 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
315 &res->c_ivin_dma, GFP_KERNEL);
316 if (!res->c_ivin)
317 return -ENOMEM;
318
319 for (i = 1; i < q_depth; i++) {
320 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
321 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
322 }
323
324 return 0;
325 }
326
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)327 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
328 {
329 if (res->c_ivin)
330 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
331 res->c_ivin, res->c_ivin_dma);
332 }
333
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)334 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
335 {
336 u16 q_depth = res->depth;
337 int i;
338
339 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
340 &res->a_ivin_dma, GFP_KERNEL);
341 if (!res->a_ivin)
342 return -ENOMEM;
343
344 for (i = 1; i < q_depth; i++) {
345 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
346 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
347 }
348
349 return 0;
350 }
351
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)352 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
353 {
354 if (res->a_ivin)
355 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
356 res->a_ivin, res->a_ivin_dma);
357 }
358
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)359 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
360 {
361 u16 q_depth = res->depth;
362 int i;
363
364 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
365 &res->out_mac_dma, GFP_KERNEL);
366 if (!res->out_mac)
367 return -ENOMEM;
368
369 for (i = 1; i < q_depth; i++) {
370 res[i].out_mac_dma = res->out_mac_dma +
371 i * (SEC_MAX_MAC_LEN << 1);
372 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
373 }
374
375 return 0;
376 }
377
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)378 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
379 {
380 if (res->out_mac)
381 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
382 res->out_mac, res->out_mac_dma);
383 }
384
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)385 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
386 {
387 if (res->pbuf)
388 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
389 res->pbuf, res->pbuf_dma);
390 }
391
392 /*
393 * To improve performance, pbuffer is used for
394 * small packets (< 512Bytes) as IOMMU translation using.
395 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)396 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
397 {
398 u16 q_depth = res->depth;
399 int size = SEC_PBUF_PAGE_NUM(q_depth);
400 int pbuf_page_offset;
401 int i, j, k;
402
403 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
404 &res->pbuf_dma, GFP_KERNEL);
405 if (!res->pbuf)
406 return -ENOMEM;
407
408 /*
409 * SEC_PBUF_PKG contains data pbuf, iv and
410 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
411 * Every PAGE contains six SEC_PBUF_PKG
412 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
413 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
414 * for the SEC_TOTAL_PBUF_SZ
415 */
416 for (i = 0; i <= size; i++) {
417 pbuf_page_offset = PAGE_SIZE * i;
418 for (j = 0; j < SEC_PBUF_NUM; j++) {
419 k = i * SEC_PBUF_NUM + j;
420 if (k == q_depth)
421 break;
422 res[k].pbuf = res->pbuf +
423 j * SEC_PBUF_PKG + pbuf_page_offset;
424 res[k].pbuf_dma = res->pbuf_dma +
425 j * SEC_PBUF_PKG + pbuf_page_offset;
426 }
427 }
428
429 return 0;
430 }
431
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)432 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
433 struct sec_qp_ctx *qp_ctx)
434 {
435 struct sec_alg_res *res = qp_ctx->res;
436 struct device *dev = ctx->dev;
437 int ret;
438
439 ret = sec_alloc_civ_resource(dev, res);
440 if (ret)
441 return ret;
442
443 if (ctx->alg_type == SEC_AEAD) {
444 ret = sec_alloc_aiv_resource(dev, res);
445 if (ret)
446 goto alloc_aiv_fail;
447
448 ret = sec_alloc_mac_resource(dev, res);
449 if (ret)
450 goto alloc_mac_fail;
451 }
452 if (ctx->pbuf_supported) {
453 ret = sec_alloc_pbuf_resource(dev, res);
454 if (ret) {
455 dev_err(dev, "fail to alloc pbuf dma resource!\n");
456 goto alloc_pbuf_fail;
457 }
458 }
459
460 return 0;
461
462 alloc_pbuf_fail:
463 if (ctx->alg_type == SEC_AEAD)
464 sec_free_mac_resource(dev, qp_ctx->res);
465 alloc_mac_fail:
466 if (ctx->alg_type == SEC_AEAD)
467 sec_free_aiv_resource(dev, res);
468 alloc_aiv_fail:
469 sec_free_civ_resource(dev, res);
470 return ret;
471 }
472
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)473 static void sec_alg_resource_free(struct sec_ctx *ctx,
474 struct sec_qp_ctx *qp_ctx)
475 {
476 struct device *dev = ctx->dev;
477
478 sec_free_civ_resource(dev, qp_ctx->res);
479
480 if (ctx->pbuf_supported)
481 sec_free_pbuf_resource(dev, qp_ctx->res);
482 if (ctx->alg_type == SEC_AEAD)
483 sec_free_mac_resource(dev, qp_ctx->res);
484 }
485
sec_alloc_qp_ctx_resource(struct hisi_qm * qm,struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)486 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
487 struct sec_qp_ctx *qp_ctx)
488 {
489 u16 q_depth = qp_ctx->qp->sq_depth;
490 struct device *dev = ctx->dev;
491 int ret = -ENOMEM;
492
493 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
494 if (!qp_ctx->req_list)
495 return ret;
496
497 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
498 if (!qp_ctx->res)
499 goto err_free_req_list;
500 qp_ctx->res->depth = q_depth;
501
502 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
503 if (IS_ERR(qp_ctx->c_in_pool)) {
504 dev_err(dev, "fail to create sgl pool for input!\n");
505 goto err_free_res;
506 }
507
508 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
509 if (IS_ERR(qp_ctx->c_out_pool)) {
510 dev_err(dev, "fail to create sgl pool for output!\n");
511 goto err_free_c_in_pool;
512 }
513
514 ret = sec_alg_resource_alloc(ctx, qp_ctx);
515 if (ret)
516 goto err_free_c_out_pool;
517
518 return 0;
519
520 err_free_c_out_pool:
521 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
522 err_free_c_in_pool:
523 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
524 err_free_res:
525 kfree(qp_ctx->res);
526 err_free_req_list:
527 kfree(qp_ctx->req_list);
528 return ret;
529 }
530
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)531 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
532 {
533 struct device *dev = ctx->dev;
534
535 sec_alg_resource_free(ctx, qp_ctx);
536 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
537 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
538 kfree(qp_ctx->res);
539 kfree(qp_ctx->req_list);
540 }
541
sec_create_qp_ctx(struct hisi_qm * qm,struct sec_ctx * ctx,int qp_ctx_id,int alg_type)542 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
543 int qp_ctx_id, int alg_type)
544 {
545 struct sec_qp_ctx *qp_ctx;
546 struct hisi_qp *qp;
547 int ret;
548
549 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
550 qp = ctx->qps[qp_ctx_id];
551 qp->req_type = 0;
552 qp->qp_ctx = qp_ctx;
553 qp_ctx->qp = qp;
554 qp_ctx->ctx = ctx;
555
556 qp->req_cb = sec_req_cb;
557
558 spin_lock_init(&qp_ctx->req_lock);
559 idr_init(&qp_ctx->req_idr);
560 INIT_LIST_HEAD(&qp_ctx->backlog);
561
562 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
563 if (ret)
564 goto err_destroy_idr;
565
566 ret = hisi_qm_start_qp(qp, 0);
567 if (ret < 0)
568 goto err_resource_free;
569
570 return 0;
571
572 err_resource_free:
573 sec_free_qp_ctx_resource(ctx, qp_ctx);
574 err_destroy_idr:
575 idr_destroy(&qp_ctx->req_idr);
576 return ret;
577 }
578
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)579 static void sec_release_qp_ctx(struct sec_ctx *ctx,
580 struct sec_qp_ctx *qp_ctx)
581 {
582 hisi_qm_stop_qp(qp_ctx->qp);
583 sec_free_qp_ctx_resource(ctx, qp_ctx);
584 idr_destroy(&qp_ctx->req_idr);
585 }
586
sec_ctx_base_init(struct sec_ctx * ctx)587 static int sec_ctx_base_init(struct sec_ctx *ctx)
588 {
589 struct sec_dev *sec;
590 int i, ret;
591
592 ctx->qps = sec_create_qps();
593 if (!ctx->qps) {
594 pr_err("Can not create sec qps!\n");
595 return -ENODEV;
596 }
597
598 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
599 ctx->sec = sec;
600 ctx->dev = &sec->qm.pdev->dev;
601 ctx->hlf_q_num = sec->ctx_q_num >> 1;
602
603 ctx->pbuf_supported = ctx->sec->iommu_used;
604
605 /* Half of queue depth is taken as fake requests limit in the queue. */
606 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
607 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
608 GFP_KERNEL);
609 if (!ctx->qp_ctx) {
610 ret = -ENOMEM;
611 goto err_destroy_qps;
612 }
613
614 for (i = 0; i < sec->ctx_q_num; i++) {
615 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
616 if (ret)
617 goto err_sec_release_qp_ctx;
618 }
619
620 return 0;
621
622 err_sec_release_qp_ctx:
623 for (i = i - 1; i >= 0; i--)
624 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
625 kfree(ctx->qp_ctx);
626 err_destroy_qps:
627 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
628 return ret;
629 }
630
sec_ctx_base_uninit(struct sec_ctx * ctx)631 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
632 {
633 int i;
634
635 for (i = 0; i < ctx->sec->ctx_q_num; i++)
636 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
637
638 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
639 kfree(ctx->qp_ctx);
640 }
641
sec_cipher_init(struct sec_ctx * ctx)642 static int sec_cipher_init(struct sec_ctx *ctx)
643 {
644 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
645
646 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
647 &c_ctx->c_key_dma, GFP_KERNEL);
648 if (!c_ctx->c_key)
649 return -ENOMEM;
650
651 return 0;
652 }
653
sec_cipher_uninit(struct sec_ctx * ctx)654 static void sec_cipher_uninit(struct sec_ctx *ctx)
655 {
656 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
657
658 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
659 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
660 c_ctx->c_key, c_ctx->c_key_dma);
661 }
662
sec_auth_init(struct sec_ctx * ctx)663 static int sec_auth_init(struct sec_ctx *ctx)
664 {
665 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
666
667 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
668 &a_ctx->a_key_dma, GFP_KERNEL);
669 if (!a_ctx->a_key)
670 return -ENOMEM;
671
672 return 0;
673 }
674
sec_auth_uninit(struct sec_ctx * ctx)675 static void sec_auth_uninit(struct sec_ctx *ctx)
676 {
677 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
678
679 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
680 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
681 a_ctx->a_key, a_ctx->a_key_dma);
682 }
683
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)684 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
685 {
686 const char *alg = crypto_tfm_alg_name(&tfm->base);
687 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
688 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
689
690 c_ctx->fallback = false;
691
692 /* Currently, only XTS mode need fallback tfm when using 192bit key */
693 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
694 return 0;
695
696 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
697 CRYPTO_ALG_NEED_FALLBACK);
698 if (IS_ERR(c_ctx->fbtfm)) {
699 pr_err("failed to alloc xts mode fallback tfm!\n");
700 return PTR_ERR(c_ctx->fbtfm);
701 }
702
703 return 0;
704 }
705
sec_skcipher_init(struct crypto_skcipher * tfm)706 static int sec_skcipher_init(struct crypto_skcipher *tfm)
707 {
708 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
709 int ret;
710
711 ctx->alg_type = SEC_SKCIPHER;
712 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
713 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
714 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
715 pr_err("get error skcipher iv size!\n");
716 return -EINVAL;
717 }
718
719 ret = sec_ctx_base_init(ctx);
720 if (ret)
721 return ret;
722
723 ret = sec_cipher_init(ctx);
724 if (ret)
725 goto err_cipher_init;
726
727 ret = sec_skcipher_fbtfm_init(tfm);
728 if (ret)
729 goto err_fbtfm_init;
730
731 return 0;
732
733 err_fbtfm_init:
734 sec_cipher_uninit(ctx);
735 err_cipher_init:
736 sec_ctx_base_uninit(ctx);
737 return ret;
738 }
739
sec_skcipher_uninit(struct crypto_skcipher * tfm)740 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
741 {
742 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
743
744 if (ctx->c_ctx.fbtfm)
745 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
746
747 sec_cipher_uninit(ctx);
748 sec_ctx_base_uninit(ctx);
749 }
750
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_cmode c_mode)751 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
752 const u32 keylen,
753 const enum sec_cmode c_mode)
754 {
755 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
756 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
757 int ret;
758
759 ret = verify_skcipher_des3_key(tfm, key);
760 if (ret)
761 return ret;
762
763 switch (keylen) {
764 case SEC_DES3_2KEY_SIZE:
765 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
766 break;
767 case SEC_DES3_3KEY_SIZE:
768 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
769 break;
770 default:
771 return -EINVAL;
772 }
773
774 return 0;
775 }
776
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)777 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
778 const u32 keylen,
779 const enum sec_cmode c_mode)
780 {
781 if (c_mode == SEC_CMODE_XTS) {
782 switch (keylen) {
783 case SEC_XTS_MIN_KEY_SIZE:
784 c_ctx->c_key_len = SEC_CKEY_128BIT;
785 break;
786 case SEC_XTS_MID_KEY_SIZE:
787 c_ctx->fallback = true;
788 break;
789 case SEC_XTS_MAX_KEY_SIZE:
790 c_ctx->c_key_len = SEC_CKEY_256BIT;
791 break;
792 default:
793 pr_err("hisi_sec2: xts mode key error!\n");
794 return -EINVAL;
795 }
796 } else {
797 if (c_ctx->c_alg == SEC_CALG_SM4 &&
798 keylen != AES_KEYSIZE_128) {
799 pr_err("hisi_sec2: sm4 key error!\n");
800 return -EINVAL;
801 } else {
802 switch (keylen) {
803 case AES_KEYSIZE_128:
804 c_ctx->c_key_len = SEC_CKEY_128BIT;
805 break;
806 case AES_KEYSIZE_192:
807 c_ctx->c_key_len = SEC_CKEY_192BIT;
808 break;
809 case AES_KEYSIZE_256:
810 c_ctx->c_key_len = SEC_CKEY_256BIT;
811 break;
812 default:
813 pr_err("hisi_sec2: aes key error!\n");
814 return -EINVAL;
815 }
816 }
817 }
818
819 return 0;
820 }
821
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)822 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
823 const u32 keylen, const enum sec_calg c_alg,
824 const enum sec_cmode c_mode)
825 {
826 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
827 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
828 struct device *dev = ctx->dev;
829 int ret;
830
831 if (c_mode == SEC_CMODE_XTS) {
832 ret = xts_verify_key(tfm, key, keylen);
833 if (ret) {
834 dev_err(dev, "xts mode key err!\n");
835 return ret;
836 }
837 }
838
839 c_ctx->c_alg = c_alg;
840 c_ctx->c_mode = c_mode;
841
842 switch (c_alg) {
843 case SEC_CALG_3DES:
844 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
845 break;
846 case SEC_CALG_AES:
847 case SEC_CALG_SM4:
848 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
849 break;
850 default:
851 return -EINVAL;
852 }
853
854 if (ret) {
855 dev_err(dev, "set sec key err!\n");
856 return ret;
857 }
858
859 memcpy(c_ctx->c_key, key, keylen);
860 if (c_ctx->fallback && c_ctx->fbtfm) {
861 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
862 if (ret) {
863 dev_err(dev, "failed to set fallback skcipher key!\n");
864 return ret;
865 }
866 }
867 return 0;
868 }
869
870 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
871 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
872 u32 keylen) \
873 { \
874 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
875 }
876
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)877 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
878 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
879 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
880 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
881 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
882 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
883 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
884 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
885 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
886 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
887 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
888 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
889 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
890
891 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
892 struct scatterlist *src)
893 {
894 struct sec_aead_req *a_req = &req->aead_req;
895 struct aead_request *aead_req = a_req->aead_req;
896 struct sec_cipher_req *c_req = &req->c_req;
897 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
898 struct device *dev = ctx->dev;
899 int copy_size, pbuf_length;
900 int req_id = req->req_id;
901 struct crypto_aead *tfm;
902 size_t authsize;
903 u8 *mac_offset;
904
905 if (ctx->alg_type == SEC_AEAD)
906 copy_size = aead_req->cryptlen + aead_req->assoclen;
907 else
908 copy_size = c_req->c_len;
909
910 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
911 qp_ctx->res[req_id].pbuf, copy_size);
912 if (unlikely(pbuf_length != copy_size)) {
913 dev_err(dev, "copy src data to pbuf error!\n");
914 return -EINVAL;
915 }
916 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
917 tfm = crypto_aead_reqtfm(aead_req);
918 authsize = crypto_aead_authsize(tfm);
919 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
920 memcpy(a_req->out_mac, mac_offset, authsize);
921 }
922
923 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
924 c_req->c_out_dma = req->in_dma;
925
926 return 0;
927 }
928
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)929 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
930 struct scatterlist *dst)
931 {
932 struct aead_request *aead_req = req->aead_req.aead_req;
933 struct sec_cipher_req *c_req = &req->c_req;
934 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
935 int copy_size, pbuf_length;
936 int req_id = req->req_id;
937
938 if (ctx->alg_type == SEC_AEAD)
939 copy_size = c_req->c_len + aead_req->assoclen;
940 else
941 copy_size = c_req->c_len;
942
943 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
944 qp_ctx->res[req_id].pbuf, copy_size);
945 if (unlikely(pbuf_length != copy_size))
946 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
947 }
948
sec_aead_mac_init(struct sec_aead_req * req)949 static int sec_aead_mac_init(struct sec_aead_req *req)
950 {
951 struct aead_request *aead_req = req->aead_req;
952 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
953 size_t authsize = crypto_aead_authsize(tfm);
954 u8 *mac_out = req->out_mac;
955 struct scatterlist *sgl = aead_req->src;
956 size_t copy_size;
957 off_t skip_size;
958
959 /* Copy input mac */
960 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
961 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
962 authsize, skip_size);
963 if (unlikely(copy_size != authsize))
964 return -EINVAL;
965
966 return 0;
967 }
968
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)969 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
970 struct scatterlist *src, struct scatterlist *dst)
971 {
972 struct sec_cipher_req *c_req = &req->c_req;
973 struct sec_aead_req *a_req = &req->aead_req;
974 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
975 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
976 struct device *dev = ctx->dev;
977 int ret;
978
979 if (req->use_pbuf) {
980 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
981 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
982 if (ctx->alg_type == SEC_AEAD) {
983 a_req->a_ivin = res->a_ivin;
984 a_req->a_ivin_dma = res->a_ivin_dma;
985 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
986 a_req->out_mac_dma = res->pbuf_dma +
987 SEC_PBUF_MAC_OFFSET;
988 }
989 ret = sec_cipher_pbuf_map(ctx, req, src);
990
991 return ret;
992 }
993 c_req->c_ivin = res->c_ivin;
994 c_req->c_ivin_dma = res->c_ivin_dma;
995 if (ctx->alg_type == SEC_AEAD) {
996 a_req->a_ivin = res->a_ivin;
997 a_req->a_ivin_dma = res->a_ivin_dma;
998 a_req->out_mac = res->out_mac;
999 a_req->out_mac_dma = res->out_mac_dma;
1000 }
1001
1002 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1003 qp_ctx->c_in_pool,
1004 req->req_id,
1005 &req->in_dma);
1006 if (IS_ERR(req->in)) {
1007 dev_err(dev, "fail to dma map input sgl buffers!\n");
1008 return PTR_ERR(req->in);
1009 }
1010
1011 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1012 ret = sec_aead_mac_init(a_req);
1013 if (unlikely(ret)) {
1014 dev_err(dev, "fail to init mac data for ICV!\n");
1015 return ret;
1016 }
1017 }
1018
1019 if (dst == src) {
1020 c_req->c_out = req->in;
1021 c_req->c_out_dma = req->in_dma;
1022 } else {
1023 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1024 qp_ctx->c_out_pool,
1025 req->req_id,
1026 &c_req->c_out_dma);
1027
1028 if (IS_ERR(c_req->c_out)) {
1029 dev_err(dev, "fail to dma map output sgl buffers!\n");
1030 hisi_acc_sg_buf_unmap(dev, src, req->in);
1031 return PTR_ERR(c_req->c_out);
1032 }
1033 }
1034
1035 return 0;
1036 }
1037
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1038 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1039 struct scatterlist *src, struct scatterlist *dst)
1040 {
1041 struct sec_cipher_req *c_req = &req->c_req;
1042 struct device *dev = ctx->dev;
1043
1044 if (req->use_pbuf) {
1045 sec_cipher_pbuf_unmap(ctx, req, dst);
1046 } else {
1047 if (dst != src)
1048 hisi_acc_sg_buf_unmap(dev, src, req->in);
1049
1050 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1051 }
1052 }
1053
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1054 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1055 {
1056 struct skcipher_request *sq = req->c_req.sk_req;
1057
1058 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1059 }
1060
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1061 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1062 {
1063 struct skcipher_request *sq = req->c_req.sk_req;
1064
1065 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1066 }
1067
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1068 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1069 struct crypto_authenc_keys *keys)
1070 {
1071 switch (keys->enckeylen) {
1072 case AES_KEYSIZE_128:
1073 c_ctx->c_key_len = SEC_CKEY_128BIT;
1074 break;
1075 case AES_KEYSIZE_192:
1076 c_ctx->c_key_len = SEC_CKEY_192BIT;
1077 break;
1078 case AES_KEYSIZE_256:
1079 c_ctx->c_key_len = SEC_CKEY_256BIT;
1080 break;
1081 default:
1082 pr_err("hisi_sec2: aead aes key error!\n");
1083 return -EINVAL;
1084 }
1085 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1086
1087 return 0;
1088 }
1089
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1090 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1091 struct crypto_authenc_keys *keys)
1092 {
1093 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1094 int blocksize, digestsize, ret;
1095
1096 if (!keys->authkeylen) {
1097 pr_err("hisi_sec2: aead auth key error!\n");
1098 return -EINVAL;
1099 }
1100
1101 blocksize = crypto_shash_blocksize(hash_tfm);
1102 digestsize = crypto_shash_digestsize(hash_tfm);
1103 if (keys->authkeylen > blocksize) {
1104 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1105 keys->authkeylen, ctx->a_key);
1106 if (ret) {
1107 pr_err("hisi_sec2: aead auth digest error!\n");
1108 return -EINVAL;
1109 }
1110 ctx->a_key_len = digestsize;
1111 } else {
1112 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1113 ctx->a_key_len = keys->authkeylen;
1114 }
1115
1116 return 0;
1117 }
1118
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1119 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1120 {
1121 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1122 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1123 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1124
1125 if (unlikely(a_ctx->fallback_aead_tfm))
1126 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1127
1128 return 0;
1129 }
1130
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1131 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1132 struct crypto_aead *tfm, const u8 *key,
1133 unsigned int keylen)
1134 {
1135 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1136 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1137 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1138 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1139 }
1140
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_mac_len mac_len,const enum sec_cmode c_mode)1141 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1142 const u32 keylen, const enum sec_hash_alg a_alg,
1143 const enum sec_calg c_alg,
1144 const enum sec_mac_len mac_len,
1145 const enum sec_cmode c_mode)
1146 {
1147 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1148 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1149 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1150 struct device *dev = ctx->dev;
1151 struct crypto_authenc_keys keys;
1152 int ret;
1153
1154 ctx->a_ctx.a_alg = a_alg;
1155 ctx->c_ctx.c_alg = c_alg;
1156 ctx->a_ctx.mac_len = mac_len;
1157 c_ctx->c_mode = c_mode;
1158
1159 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1160 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1161 if (ret) {
1162 dev_err(dev, "set sec aes ccm cipher key err!\n");
1163 return ret;
1164 }
1165 memcpy(c_ctx->c_key, key, keylen);
1166
1167 if (unlikely(a_ctx->fallback_aead_tfm)) {
1168 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1169 if (ret)
1170 return ret;
1171 }
1172
1173 return 0;
1174 }
1175
1176 if (crypto_authenc_extractkeys(&keys, key, keylen))
1177 goto bad_key;
1178
1179 ret = sec_aead_aes_set_key(c_ctx, &keys);
1180 if (ret) {
1181 dev_err(dev, "set sec cipher key err!\n");
1182 goto bad_key;
1183 }
1184
1185 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1186 if (ret) {
1187 dev_err(dev, "set sec auth key err!\n");
1188 goto bad_key;
1189 }
1190
1191 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
1192 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1193 dev_err(dev, "MAC or AUTH key length error!\n");
1194 goto bad_key;
1195 }
1196
1197 return 0;
1198
1199 bad_key:
1200 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1201 return -EINVAL;
1202 }
1203
1204
1205 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
1206 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
1207 u32 keylen) \
1208 { \
1209 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1210 }
1211
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_HMAC_SHA1_MAC,SEC_CMODE_CBC)1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1213 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1215 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1217 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1219 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1221 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1222 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1223 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1225 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1226
1227 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1228 {
1229 struct aead_request *aq = req->aead_req.aead_req;
1230
1231 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1232 }
1233
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1234 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1235 {
1236 struct aead_request *aq = req->aead_req.aead_req;
1237
1238 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1239 }
1240
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1241 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1242 {
1243 int ret;
1244
1245 ret = ctx->req_op->buf_map(ctx, req);
1246 if (unlikely(ret))
1247 return ret;
1248
1249 ctx->req_op->do_transfer(ctx, req);
1250
1251 ret = ctx->req_op->bd_fill(ctx, req);
1252 if (unlikely(ret))
1253 goto unmap_req_buf;
1254
1255 return ret;
1256
1257 unmap_req_buf:
1258 ctx->req_op->buf_unmap(ctx, req);
1259 return ret;
1260 }
1261
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1262 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1263 {
1264 ctx->req_op->buf_unmap(ctx, req);
1265 }
1266
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1267 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1268 {
1269 struct skcipher_request *sk_req = req->c_req.sk_req;
1270 struct sec_cipher_req *c_req = &req->c_req;
1271
1272 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1273 }
1274
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1275 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1276 {
1277 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1278 struct sec_cipher_req *c_req = &req->c_req;
1279 struct sec_sqe *sec_sqe = &req->sec_sqe;
1280 u8 scene, sa_type, da_type;
1281 u8 bd_type, cipher;
1282 u8 de = 0;
1283
1284 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1285
1286 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1287 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1288 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1289 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1290
1291 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1292 SEC_CMODE_OFFSET);
1293 sec_sqe->type2.c_alg = c_ctx->c_alg;
1294 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1295 SEC_CKEY_OFFSET);
1296
1297 bd_type = SEC_BD_TYPE2;
1298 if (c_req->encrypt)
1299 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1300 else
1301 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1302 sec_sqe->type_cipher_auth = bd_type | cipher;
1303
1304 /* Set destination and source address type */
1305 if (req->use_pbuf) {
1306 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1307 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1308 } else {
1309 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1310 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1311 }
1312
1313 sec_sqe->sdm_addr_type |= da_type;
1314 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1315 if (req->in_dma != c_req->c_out_dma)
1316 de = 0x1 << SEC_DE_OFFSET;
1317
1318 sec_sqe->sds_sa_type = (de | scene | sa_type);
1319
1320 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1321 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1322
1323 return 0;
1324 }
1325
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1326 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1327 {
1328 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1329 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1330 struct sec_cipher_req *c_req = &req->c_req;
1331 u32 bd_param = 0;
1332 u16 cipher;
1333
1334 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1335
1336 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1337 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1338 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1339 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1340
1341 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1342 c_ctx->c_mode;
1343 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1344 SEC_CKEY_OFFSET_V3);
1345
1346 if (c_req->encrypt)
1347 cipher = SEC_CIPHER_ENC;
1348 else
1349 cipher = SEC_CIPHER_DEC;
1350 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1351
1352 /* Set the CTR counter mode is 128bit rollover */
1353 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1354 SEC_CTR_CNT_OFFSET);
1355
1356 if (req->use_pbuf) {
1357 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1358 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1359 } else {
1360 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1361 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1362 }
1363
1364 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1365 if (req->in_dma != c_req->c_out_dma)
1366 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1367
1368 bd_param |= SEC_BD_TYPE3;
1369 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1370
1371 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1372 sec_sqe3->tag = cpu_to_le64(req);
1373
1374 return 0;
1375 }
1376
1377 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1378 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1379 {
1380 do {
1381 --bits;
1382 nums += counter[bits];
1383 counter[bits] = nums & BITS_MASK;
1384 nums >>= BYTE_BITS;
1385 } while (bits && nums);
1386 }
1387
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1388 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1389 {
1390 struct aead_request *aead_req = req->aead_req.aead_req;
1391 struct skcipher_request *sk_req = req->c_req.sk_req;
1392 u32 iv_size = req->ctx->c_ctx.ivsize;
1393 struct scatterlist *sgl;
1394 unsigned int cryptlen;
1395 size_t sz;
1396 u8 *iv;
1397
1398 if (req->c_req.encrypt)
1399 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1400 else
1401 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1402
1403 if (alg_type == SEC_SKCIPHER) {
1404 iv = sk_req->iv;
1405 cryptlen = sk_req->cryptlen;
1406 } else {
1407 iv = aead_req->iv;
1408 cryptlen = aead_req->cryptlen;
1409 }
1410
1411 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1412 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1413 cryptlen - iv_size);
1414 if (unlikely(sz != iv_size))
1415 dev_err(req->ctx->dev, "copy output iv error!\n");
1416 } else {
1417 sz = cryptlen / iv_size;
1418 if (cryptlen % iv_size)
1419 sz += 1;
1420 ctr_iv_inc(iv, iv_size, sz);
1421 }
1422 }
1423
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1424 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1425 struct sec_qp_ctx *qp_ctx)
1426 {
1427 struct sec_req *backlog_req = NULL;
1428
1429 spin_lock_bh(&qp_ctx->req_lock);
1430 if (ctx->fake_req_limit >=
1431 atomic_read(&qp_ctx->qp->qp_status.used) &&
1432 !list_empty(&qp_ctx->backlog)) {
1433 backlog_req = list_first_entry(&qp_ctx->backlog,
1434 typeof(*backlog_req), backlog_head);
1435 list_del(&backlog_req->backlog_head);
1436 }
1437 spin_unlock_bh(&qp_ctx->req_lock);
1438
1439 return backlog_req;
1440 }
1441
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1442 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1443 int err)
1444 {
1445 struct skcipher_request *sk_req = req->c_req.sk_req;
1446 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1447 struct skcipher_request *backlog_sk_req;
1448 struct sec_req *backlog_req;
1449
1450 sec_free_req_id(req);
1451
1452 /* IV output at encrypto of CBC/CTR mode */
1453 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1454 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1455 sec_update_iv(req, SEC_SKCIPHER);
1456
1457 while (1) {
1458 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1459 if (!backlog_req)
1460 break;
1461
1462 backlog_sk_req = backlog_req->c_req.sk_req;
1463 backlog_sk_req->base.complete(&backlog_sk_req->base,
1464 -EINPROGRESS);
1465 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1466 }
1467
1468 sk_req->base.complete(&sk_req->base, err);
1469 }
1470
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1471 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1472 {
1473 struct aead_request *aead_req = req->aead_req.aead_req;
1474 struct sec_cipher_req *c_req = &req->c_req;
1475 struct sec_aead_req *a_req = &req->aead_req;
1476 size_t authsize = ctx->a_ctx.mac_len;
1477 u32 data_size = aead_req->cryptlen;
1478 u8 flage = 0;
1479 u8 cm, cl;
1480
1481 /* the specification has been checked in aead_iv_demension_check() */
1482 cl = c_req->c_ivin[0] + 1;
1483 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1484 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1485 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1486
1487 /* the last 3bit is L' */
1488 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1489
1490 /* the M' is bit3~bit5, the Flags is bit6 */
1491 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1492 flage |= cm << IV_CM_OFFSET;
1493 if (aead_req->assoclen)
1494 flage |= 0x01 << IV_FLAGS_OFFSET;
1495
1496 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1497 a_req->a_ivin[0] = flage;
1498
1499 /*
1500 * the last 32bit is counter's initial number,
1501 * but the nonce uses the first 16bit
1502 * the tail 16bit fill with the cipher length
1503 */
1504 if (!c_req->encrypt)
1505 data_size = aead_req->cryptlen - authsize;
1506
1507 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1508 data_size & IV_LAST_BYTE_MASK;
1509 data_size >>= IV_BYTE_OFFSET;
1510 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1511 data_size & IV_LAST_BYTE_MASK;
1512 }
1513
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1514 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1515 {
1516 struct aead_request *aead_req = req->aead_req.aead_req;
1517 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1518 size_t authsize = crypto_aead_authsize(tfm);
1519 struct sec_cipher_req *c_req = &req->c_req;
1520 struct sec_aead_req *a_req = &req->aead_req;
1521
1522 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1523
1524 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1525 /*
1526 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1527 * the counter must set to 0x01
1528 */
1529 ctx->a_ctx.mac_len = authsize;
1530 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1531 set_aead_auth_iv(ctx, req);
1532 }
1533
1534 /* GCM 12Byte Cipher_IV == Auth_IV */
1535 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1536 ctx->a_ctx.mac_len = authsize;
1537 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1538 }
1539 }
1540
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1541 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1542 struct sec_req *req, struct sec_sqe *sec_sqe)
1543 {
1544 struct sec_aead_req *a_req = &req->aead_req;
1545 struct aead_request *aq = a_req->aead_req;
1546
1547 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1548 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1549
1550 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1551 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1552 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1553 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1554
1555 if (dir)
1556 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1557 else
1558 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1559
1560 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1561 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1562 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1563
1564 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1565 }
1566
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1567 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1568 struct sec_req *req, struct sec_sqe3 *sqe3)
1569 {
1570 struct sec_aead_req *a_req = &req->aead_req;
1571 struct aead_request *aq = a_req->aead_req;
1572
1573 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1574 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1575
1576 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1577 sqe3->a_key_addr = sqe3->c_key_addr;
1578 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1579 sqe3->auth_mac_key |= SEC_NO_AUTH;
1580
1581 if (dir)
1582 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1583 else
1584 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1585
1586 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1587 sqe3->auth_src_offset = cpu_to_le16(0x0);
1588 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1589 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1590 }
1591
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1592 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1593 struct sec_req *req, struct sec_sqe *sec_sqe)
1594 {
1595 struct sec_aead_req *a_req = &req->aead_req;
1596 struct sec_cipher_req *c_req = &req->c_req;
1597 struct aead_request *aq = a_req->aead_req;
1598
1599 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1600
1601 sec_sqe->type2.mac_key_alg =
1602 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1603
1604 sec_sqe->type2.mac_key_alg |=
1605 cpu_to_le32((u32)((ctx->a_key_len) /
1606 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1607
1608 sec_sqe->type2.mac_key_alg |=
1609 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1610
1611 if (dir) {
1612 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1613 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1614 } else {
1615 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1616 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1617 }
1618 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1619
1620 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1621
1622 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1623 }
1624
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1625 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1626 {
1627 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1628 struct sec_sqe *sec_sqe = &req->sec_sqe;
1629 int ret;
1630
1631 ret = sec_skcipher_bd_fill(ctx, req);
1632 if (unlikely(ret)) {
1633 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1634 return ret;
1635 }
1636
1637 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1638 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1639 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1640 else
1641 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1642
1643 return 0;
1644 }
1645
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1646 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1647 struct sec_req *req, struct sec_sqe3 *sqe3)
1648 {
1649 struct sec_aead_req *a_req = &req->aead_req;
1650 struct sec_cipher_req *c_req = &req->c_req;
1651 struct aead_request *aq = a_req->aead_req;
1652
1653 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1654
1655 sqe3->auth_mac_key |=
1656 cpu_to_le32((u32)(ctx->mac_len /
1657 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1658
1659 sqe3->auth_mac_key |=
1660 cpu_to_le32((u32)(ctx->a_key_len /
1661 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1662
1663 sqe3->auth_mac_key |=
1664 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1665
1666 if (dir) {
1667 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1668 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1669 } else {
1670 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1671 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1672 }
1673 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1674
1675 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1676
1677 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1678 }
1679
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1680 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1681 {
1682 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1683 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1684 int ret;
1685
1686 ret = sec_skcipher_bd_fill_v3(ctx, req);
1687 if (unlikely(ret)) {
1688 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1689 return ret;
1690 }
1691
1692 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1693 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1694 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1695 req, sec_sqe3);
1696 else
1697 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1698 req, sec_sqe3);
1699
1700 return 0;
1701 }
1702
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1703 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1704 {
1705 struct aead_request *a_req = req->aead_req.aead_req;
1706 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1707 struct sec_aead_req *aead_req = &req->aead_req;
1708 struct sec_cipher_req *c_req = &req->c_req;
1709 size_t authsize = crypto_aead_authsize(tfm);
1710 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1711 struct aead_request *backlog_aead_req;
1712 struct sec_req *backlog_req;
1713 size_t sz;
1714
1715 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1716 sec_update_iv(req, SEC_AEAD);
1717
1718 /* Copy output mac */
1719 if (!err && c_req->encrypt) {
1720 struct scatterlist *sgl = a_req->dst;
1721
1722 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1723 aead_req->out_mac,
1724 authsize, a_req->cryptlen +
1725 a_req->assoclen);
1726 if (unlikely(sz != authsize)) {
1727 dev_err(c->dev, "copy out mac err!\n");
1728 err = -EINVAL;
1729 }
1730 }
1731
1732 sec_free_req_id(req);
1733
1734 while (1) {
1735 backlog_req = sec_back_req_clear(c, qp_ctx);
1736 if (!backlog_req)
1737 break;
1738
1739 backlog_aead_req = backlog_req->aead_req.aead_req;
1740 backlog_aead_req->base.complete(&backlog_aead_req->base,
1741 -EINPROGRESS);
1742 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1743 }
1744
1745 a_req->base.complete(&a_req->base, err);
1746 }
1747
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1748 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1749 {
1750 sec_free_req_id(req);
1751 sec_free_queue_id(ctx, req);
1752 }
1753
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1754 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1755 {
1756 struct sec_qp_ctx *qp_ctx;
1757 int queue_id;
1758
1759 /* To load balance */
1760 queue_id = sec_alloc_queue_id(ctx, req);
1761 qp_ctx = &ctx->qp_ctx[queue_id];
1762
1763 req->req_id = sec_alloc_req_id(req, qp_ctx);
1764 if (unlikely(req->req_id < 0)) {
1765 sec_free_queue_id(ctx, req);
1766 return req->req_id;
1767 }
1768
1769 return 0;
1770 }
1771
sec_process(struct sec_ctx * ctx,struct sec_req * req)1772 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1773 {
1774 struct sec_cipher_req *c_req = &req->c_req;
1775 int ret;
1776
1777 ret = sec_request_init(ctx, req);
1778 if (unlikely(ret))
1779 return ret;
1780
1781 ret = sec_request_transfer(ctx, req);
1782 if (unlikely(ret))
1783 goto err_uninit_req;
1784
1785 /* Output IV as decrypto */
1786 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1787 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1788 sec_update_iv(req, ctx->alg_type);
1789
1790 ret = ctx->req_op->bd_send(ctx, req);
1791 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1792 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1793 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1794 goto err_send_req;
1795 }
1796
1797 return ret;
1798
1799 err_send_req:
1800 /* As failing, restore the IV from user */
1801 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1802 if (ctx->alg_type == SEC_SKCIPHER)
1803 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1804 ctx->c_ctx.ivsize);
1805 else
1806 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1807 ctx->c_ctx.ivsize);
1808 }
1809
1810 sec_request_untransfer(ctx, req);
1811 err_uninit_req:
1812 sec_request_uninit(ctx, req);
1813 return ret;
1814 }
1815
1816 static const struct sec_req_op sec_skcipher_req_ops = {
1817 .buf_map = sec_skcipher_sgl_map,
1818 .buf_unmap = sec_skcipher_sgl_unmap,
1819 .do_transfer = sec_skcipher_copy_iv,
1820 .bd_fill = sec_skcipher_bd_fill,
1821 .bd_send = sec_bd_send,
1822 .callback = sec_skcipher_callback,
1823 .process = sec_process,
1824 };
1825
1826 static const struct sec_req_op sec_aead_req_ops = {
1827 .buf_map = sec_aead_sgl_map,
1828 .buf_unmap = sec_aead_sgl_unmap,
1829 .do_transfer = sec_aead_set_iv,
1830 .bd_fill = sec_aead_bd_fill,
1831 .bd_send = sec_bd_send,
1832 .callback = sec_aead_callback,
1833 .process = sec_process,
1834 };
1835
1836 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1837 .buf_map = sec_skcipher_sgl_map,
1838 .buf_unmap = sec_skcipher_sgl_unmap,
1839 .do_transfer = sec_skcipher_copy_iv,
1840 .bd_fill = sec_skcipher_bd_fill_v3,
1841 .bd_send = sec_bd_send,
1842 .callback = sec_skcipher_callback,
1843 .process = sec_process,
1844 };
1845
1846 static const struct sec_req_op sec_aead_req_ops_v3 = {
1847 .buf_map = sec_aead_sgl_map,
1848 .buf_unmap = sec_aead_sgl_unmap,
1849 .do_transfer = sec_aead_set_iv,
1850 .bd_fill = sec_aead_bd_fill_v3,
1851 .bd_send = sec_bd_send,
1852 .callback = sec_aead_callback,
1853 .process = sec_process,
1854 };
1855
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1856 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1857 {
1858 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1859 int ret;
1860
1861 ret = sec_skcipher_init(tfm);
1862 if (ret)
1863 return ret;
1864
1865 if (ctx->sec->qm.ver < QM_HW_V3) {
1866 ctx->type_supported = SEC_BD_TYPE2;
1867 ctx->req_op = &sec_skcipher_req_ops;
1868 } else {
1869 ctx->type_supported = SEC_BD_TYPE3;
1870 ctx->req_op = &sec_skcipher_req_ops_v3;
1871 }
1872
1873 return ret;
1874 }
1875
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1876 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1877 {
1878 sec_skcipher_uninit(tfm);
1879 }
1880
sec_aead_init(struct crypto_aead * tfm)1881 static int sec_aead_init(struct crypto_aead *tfm)
1882 {
1883 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1884 int ret;
1885
1886 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1887 ctx->alg_type = SEC_AEAD;
1888 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1889 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1890 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1891 pr_err("get error aead iv size!\n");
1892 return -EINVAL;
1893 }
1894
1895 ret = sec_ctx_base_init(ctx);
1896 if (ret)
1897 return ret;
1898 if (ctx->sec->qm.ver < QM_HW_V3) {
1899 ctx->type_supported = SEC_BD_TYPE2;
1900 ctx->req_op = &sec_aead_req_ops;
1901 } else {
1902 ctx->type_supported = SEC_BD_TYPE3;
1903 ctx->req_op = &sec_aead_req_ops_v3;
1904 }
1905
1906 ret = sec_auth_init(ctx);
1907 if (ret)
1908 goto err_auth_init;
1909
1910 ret = sec_cipher_init(ctx);
1911 if (ret)
1912 goto err_cipher_init;
1913
1914 return ret;
1915
1916 err_cipher_init:
1917 sec_auth_uninit(ctx);
1918 err_auth_init:
1919 sec_ctx_base_uninit(ctx);
1920 return ret;
1921 }
1922
sec_aead_exit(struct crypto_aead * tfm)1923 static void sec_aead_exit(struct crypto_aead *tfm)
1924 {
1925 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1926
1927 sec_cipher_uninit(ctx);
1928 sec_auth_uninit(ctx);
1929 sec_ctx_base_uninit(ctx);
1930 }
1931
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1932 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1933 {
1934 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1935 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1936 int ret;
1937
1938 ret = sec_aead_init(tfm);
1939 if (ret) {
1940 pr_err("hisi_sec2: aead init error!\n");
1941 return ret;
1942 }
1943
1944 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1945 if (IS_ERR(auth_ctx->hash_tfm)) {
1946 dev_err(ctx->dev, "aead alloc shash error!\n");
1947 sec_aead_exit(tfm);
1948 return PTR_ERR(auth_ctx->hash_tfm);
1949 }
1950
1951 return 0;
1952 }
1953
sec_aead_ctx_exit(struct crypto_aead * tfm)1954 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1955 {
1956 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1957
1958 crypto_free_shash(ctx->a_ctx.hash_tfm);
1959 sec_aead_exit(tfm);
1960 }
1961
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1962 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1963 {
1964 struct aead_alg *alg = crypto_aead_alg(tfm);
1965 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1966 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1967 const char *aead_name = alg->base.cra_name;
1968 int ret;
1969
1970 ret = sec_aead_init(tfm);
1971 if (ret) {
1972 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1973 return ret;
1974 }
1975
1976 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1977 CRYPTO_ALG_NEED_FALLBACK |
1978 CRYPTO_ALG_ASYNC);
1979 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1980 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1981 sec_aead_exit(tfm);
1982 return PTR_ERR(a_ctx->fallback_aead_tfm);
1983 }
1984 a_ctx->fallback = false;
1985
1986 return 0;
1987 }
1988
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1989 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1990 {
1991 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1992
1993 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1994 sec_aead_exit(tfm);
1995 }
1996
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1997 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1998 {
1999 return sec_aead_ctx_init(tfm, "sha1");
2000 }
2001
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)2002 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2003 {
2004 return sec_aead_ctx_init(tfm, "sha256");
2005 }
2006
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)2007 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2008 {
2009 return sec_aead_ctx_init(tfm, "sha512");
2010 }
2011
sec_skcipher_cryptlen_ckeck(struct sec_ctx * ctx,struct sec_req * sreq)2012 static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
2013 struct sec_req *sreq)
2014 {
2015 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2016 struct device *dev = ctx->dev;
2017 u8 c_mode = ctx->c_ctx.c_mode;
2018 int ret = 0;
2019
2020 switch (c_mode) {
2021 case SEC_CMODE_XTS:
2022 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2023 dev_err(dev, "skcipher XTS mode input length error!\n");
2024 ret = -EINVAL;
2025 }
2026 break;
2027 case SEC_CMODE_ECB:
2028 case SEC_CMODE_CBC:
2029 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2030 dev_err(dev, "skcipher AES input length error!\n");
2031 ret = -EINVAL;
2032 }
2033 break;
2034 case SEC_CMODE_CFB:
2035 case SEC_CMODE_OFB:
2036 case SEC_CMODE_CTR:
2037 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2038 dev_err(dev, "skcipher HW version error!\n");
2039 ret = -EINVAL;
2040 }
2041 break;
2042 default:
2043 ret = -EINVAL;
2044 }
2045
2046 return ret;
2047 }
2048
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2049 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2050 {
2051 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2052 struct device *dev = ctx->dev;
2053 u8 c_alg = ctx->c_ctx.c_alg;
2054
2055 if (unlikely(!sk_req->src || !sk_req->dst ||
2056 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2057 dev_err(dev, "skcipher input param error!\n");
2058 return -EINVAL;
2059 }
2060 sreq->c_req.c_len = sk_req->cryptlen;
2061
2062 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2063 sreq->use_pbuf = true;
2064 else
2065 sreq->use_pbuf = false;
2066
2067 if (c_alg == SEC_CALG_3DES) {
2068 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2069 dev_err(dev, "skcipher 3des input length error!\n");
2070 return -EINVAL;
2071 }
2072 return 0;
2073 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2074 return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2075 }
2076
2077 dev_err(dev, "skcipher algorithm error!\n");
2078
2079 return -EINVAL;
2080 }
2081
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2082 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2083 struct skcipher_request *sreq, bool encrypt)
2084 {
2085 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2086 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2087 struct device *dev = ctx->dev;
2088 int ret;
2089
2090 if (!c_ctx->fbtfm) {
2091 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2092 return -EINVAL;
2093 }
2094
2095 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2096
2097 /* software need sync mode to do crypto */
2098 skcipher_request_set_callback(subreq, sreq->base.flags,
2099 NULL, NULL);
2100 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2101 sreq->cryptlen, sreq->iv);
2102 if (encrypt)
2103 ret = crypto_skcipher_encrypt(subreq);
2104 else
2105 ret = crypto_skcipher_decrypt(subreq);
2106
2107 skcipher_request_zero(subreq);
2108
2109 return ret;
2110 }
2111
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2112 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2113 {
2114 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2115 struct sec_req *req = skcipher_request_ctx(sk_req);
2116 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2117 int ret;
2118
2119 if (!sk_req->cryptlen) {
2120 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2121 return -EINVAL;
2122 return 0;
2123 }
2124
2125 req->flag = sk_req->base.flags;
2126 req->c_req.sk_req = sk_req;
2127 req->c_req.encrypt = encrypt;
2128 req->ctx = ctx;
2129
2130 ret = sec_skcipher_param_check(ctx, req);
2131 if (unlikely(ret))
2132 return -EINVAL;
2133
2134 if (unlikely(ctx->c_ctx.fallback))
2135 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2136
2137 return ctx->req_op->process(ctx, req);
2138 }
2139
sec_skcipher_encrypt(struct skcipher_request * sk_req)2140 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2141 {
2142 return sec_skcipher_crypto(sk_req, true);
2143 }
2144
sec_skcipher_decrypt(struct skcipher_request * sk_req)2145 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2146 {
2147 return sec_skcipher_crypto(sk_req, false);
2148 }
2149
2150 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2151 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2152 {\
2153 .base = {\
2154 .cra_name = sec_cra_name,\
2155 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2156 .cra_priority = SEC_PRIORITY,\
2157 .cra_flags = CRYPTO_ALG_ASYNC |\
2158 CRYPTO_ALG_NEED_FALLBACK,\
2159 .cra_blocksize = blk_size,\
2160 .cra_ctxsize = sizeof(struct sec_ctx),\
2161 .cra_module = THIS_MODULE,\
2162 },\
2163 .init = ctx_init,\
2164 .exit = ctx_exit,\
2165 .setkey = sec_set_key,\
2166 .decrypt = sec_skcipher_decrypt,\
2167 .encrypt = sec_skcipher_encrypt,\
2168 .min_keysize = sec_min_key_size,\
2169 .max_keysize = sec_max_key_size,\
2170 .ivsize = iv_size,\
2171 }
2172
2173 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2174 max_key_size, blk_size, iv_size) \
2175 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2176 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2177
2178 static struct sec_skcipher sec_skciphers[] = {
2179 {
2180 .alg_msk = BIT(0),
2181 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2182 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2183 },
2184 {
2185 .alg_msk = BIT(1),
2186 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2187 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2188 },
2189 {
2190 .alg_msk = BIT(2),
2191 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2192 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2193 },
2194 {
2195 .alg_msk = BIT(3),
2196 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2197 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2198 },
2199 {
2200 .alg_msk = BIT(4),
2201 .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
2202 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2203 },
2204 {
2205 .alg_msk = BIT(5),
2206 .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
2207 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2208 },
2209 {
2210 .alg_msk = BIT(12),
2211 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2212 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2213 },
2214 {
2215 .alg_msk = BIT(13),
2216 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2217 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2218 },
2219 {
2220 .alg_msk = BIT(14),
2221 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2222 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2223 },
2224 {
2225 .alg_msk = BIT(15),
2226 .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
2227 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2228 },
2229 {
2230 .alg_msk = BIT(16),
2231 .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
2232 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2233 },
2234 {
2235 .alg_msk = BIT(23),
2236 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2237 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2238 },
2239 {
2240 .alg_msk = BIT(24),
2241 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2242 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2243 DES3_EDE_BLOCK_SIZE),
2244 },
2245 };
2246
aead_iv_demension_check(struct aead_request * aead_req)2247 static int aead_iv_demension_check(struct aead_request *aead_req)
2248 {
2249 u8 cl;
2250
2251 cl = aead_req->iv[0] + 1;
2252 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2253 return -EINVAL;
2254
2255 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2256 return -EOVERFLOW;
2257
2258 return 0;
2259 }
2260
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2261 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2262 {
2263 struct aead_request *req = sreq->aead_req.aead_req;
2264 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2265 size_t authsize = crypto_aead_authsize(tfm);
2266 u8 c_mode = ctx->c_ctx.c_mode;
2267 struct device *dev = ctx->dev;
2268 int ret;
2269
2270 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2271 req->assoclen > SEC_MAX_AAD_LEN)) {
2272 dev_err(dev, "aead input spec error!\n");
2273 return -EINVAL;
2274 }
2275
2276 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2277 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2278 authsize & MAC_LEN_MASK)))) {
2279 dev_err(dev, "aead input mac length error!\n");
2280 return -EINVAL;
2281 }
2282
2283 if (c_mode == SEC_CMODE_CCM) {
2284 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2285 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2286 return -EINVAL;
2287 }
2288 ret = aead_iv_demension_check(req);
2289 if (ret) {
2290 dev_err(dev, "aead input iv param error!\n");
2291 return ret;
2292 }
2293 }
2294
2295 if (sreq->c_req.encrypt)
2296 sreq->c_req.c_len = req->cryptlen;
2297 else
2298 sreq->c_req.c_len = req->cryptlen - authsize;
2299 if (c_mode == SEC_CMODE_CBC) {
2300 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2301 dev_err(dev, "aead crypto length error!\n");
2302 return -EINVAL;
2303 }
2304 }
2305
2306 return 0;
2307 }
2308
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2309 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2310 {
2311 struct aead_request *req = sreq->aead_req.aead_req;
2312 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2313 size_t authsize = crypto_aead_authsize(tfm);
2314 struct device *dev = ctx->dev;
2315 u8 c_alg = ctx->c_ctx.c_alg;
2316
2317 if (unlikely(!req->src || !req->dst)) {
2318 dev_err(dev, "aead input param error!\n");
2319 return -EINVAL;
2320 }
2321
2322 if (ctx->sec->qm.ver == QM_HW_V2) {
2323 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2324 req->cryptlen <= authsize))) {
2325 ctx->a_ctx.fallback = true;
2326 return -EINVAL;
2327 }
2328 }
2329
2330 /* Support AES or SM4 */
2331 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2332 dev_err(dev, "aead crypto alg error!\n");
2333 return -EINVAL;
2334 }
2335
2336 if (unlikely(sec_aead_spec_check(ctx, sreq)))
2337 return -EINVAL;
2338
2339 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2340 SEC_PBUF_SZ)
2341 sreq->use_pbuf = true;
2342 else
2343 sreq->use_pbuf = false;
2344
2345 return 0;
2346 }
2347
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2348 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2349 struct aead_request *aead_req,
2350 bool encrypt)
2351 {
2352 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2353 struct device *dev = ctx->dev;
2354 struct aead_request *subreq;
2355 int ret;
2356
2357 /* Kunpeng920 aead mode not support input 0 size */
2358 if (!a_ctx->fallback_aead_tfm) {
2359 dev_err(dev, "aead fallback tfm is NULL!\n");
2360 return -EINVAL;
2361 }
2362
2363 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2364 if (!subreq)
2365 return -ENOMEM;
2366
2367 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2368 aead_request_set_callback(subreq, aead_req->base.flags,
2369 aead_req->base.complete, aead_req->base.data);
2370 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2371 aead_req->cryptlen, aead_req->iv);
2372 aead_request_set_ad(subreq, aead_req->assoclen);
2373
2374 if (encrypt)
2375 ret = crypto_aead_encrypt(subreq);
2376 else
2377 ret = crypto_aead_decrypt(subreq);
2378 aead_request_free(subreq);
2379
2380 return ret;
2381 }
2382
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2383 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2384 {
2385 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2386 struct sec_req *req = aead_request_ctx(a_req);
2387 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2388 int ret;
2389
2390 req->flag = a_req->base.flags;
2391 req->aead_req.aead_req = a_req;
2392 req->c_req.encrypt = encrypt;
2393 req->ctx = ctx;
2394
2395 ret = sec_aead_param_check(ctx, req);
2396 if (unlikely(ret)) {
2397 if (ctx->a_ctx.fallback)
2398 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2399 return -EINVAL;
2400 }
2401
2402 return ctx->req_op->process(ctx, req);
2403 }
2404
sec_aead_encrypt(struct aead_request * a_req)2405 static int sec_aead_encrypt(struct aead_request *a_req)
2406 {
2407 return sec_aead_crypto(a_req, true);
2408 }
2409
sec_aead_decrypt(struct aead_request * a_req)2410 static int sec_aead_decrypt(struct aead_request *a_req)
2411 {
2412 return sec_aead_crypto(a_req, false);
2413 }
2414
2415 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2416 ctx_exit, blk_size, iv_size, max_authsize)\
2417 {\
2418 .base = {\
2419 .cra_name = sec_cra_name,\
2420 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2421 .cra_priority = SEC_PRIORITY,\
2422 .cra_flags = CRYPTO_ALG_ASYNC |\
2423 CRYPTO_ALG_NEED_FALLBACK,\
2424 .cra_blocksize = blk_size,\
2425 .cra_ctxsize = sizeof(struct sec_ctx),\
2426 .cra_module = THIS_MODULE,\
2427 },\
2428 .init = ctx_init,\
2429 .exit = ctx_exit,\
2430 .setkey = sec_set_key,\
2431 .setauthsize = sec_aead_setauthsize,\
2432 .decrypt = sec_aead_decrypt,\
2433 .encrypt = sec_aead_encrypt,\
2434 .ivsize = iv_size,\
2435 .maxauthsize = max_authsize,\
2436 }
2437
2438 static struct sec_aead sec_aeads[] = {
2439 {
2440 .alg_msk = BIT(6),
2441 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2442 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2443 AES_BLOCK_SIZE),
2444 },
2445 {
2446 .alg_msk = BIT(7),
2447 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2448 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2449 AES_BLOCK_SIZE),
2450 },
2451 {
2452 .alg_msk = BIT(17),
2453 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2454 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2455 AES_BLOCK_SIZE),
2456 },
2457 {
2458 .alg_msk = BIT(18),
2459 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2460 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2461 AES_BLOCK_SIZE),
2462 },
2463 {
2464 .alg_msk = BIT(43),
2465 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2466 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2467 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2468 },
2469 {
2470 .alg_msk = BIT(44),
2471 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2472 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2473 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2474 },
2475 {
2476 .alg_msk = BIT(45),
2477 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2478 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2479 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2480 },
2481 };
2482
sec_unregister_skcipher(u64 alg_mask,int end)2483 static void sec_unregister_skcipher(u64 alg_mask, int end)
2484 {
2485 int i;
2486
2487 for (i = 0; i < end; i++)
2488 if (sec_skciphers[i].alg_msk & alg_mask)
2489 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2490 }
2491
sec_register_skcipher(u64 alg_mask)2492 static int sec_register_skcipher(u64 alg_mask)
2493 {
2494 int i, ret, count;
2495
2496 count = ARRAY_SIZE(sec_skciphers);
2497
2498 for (i = 0; i < count; i++) {
2499 if (!(sec_skciphers[i].alg_msk & alg_mask))
2500 continue;
2501
2502 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2503 if (ret)
2504 goto err;
2505 }
2506
2507 return 0;
2508
2509 err:
2510 sec_unregister_skcipher(alg_mask, i);
2511
2512 return ret;
2513 }
2514
sec_unregister_aead(u64 alg_mask,int end)2515 static void sec_unregister_aead(u64 alg_mask, int end)
2516 {
2517 int i;
2518
2519 for (i = 0; i < end; i++)
2520 if (sec_aeads[i].alg_msk & alg_mask)
2521 crypto_unregister_aead(&sec_aeads[i].alg);
2522 }
2523
sec_register_aead(u64 alg_mask)2524 static int sec_register_aead(u64 alg_mask)
2525 {
2526 int i, ret, count;
2527
2528 count = ARRAY_SIZE(sec_aeads);
2529
2530 for (i = 0; i < count; i++) {
2531 if (!(sec_aeads[i].alg_msk & alg_mask))
2532 continue;
2533
2534 ret = crypto_register_aead(&sec_aeads[i].alg);
2535 if (ret)
2536 goto err;
2537 }
2538
2539 return 0;
2540
2541 err:
2542 sec_unregister_aead(alg_mask, i);
2543
2544 return ret;
2545 }
2546
sec_register_to_crypto(struct hisi_qm * qm)2547 int sec_register_to_crypto(struct hisi_qm *qm)
2548 {
2549 u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW);
2550 int ret;
2551
2552 ret = sec_register_skcipher(alg_mask);
2553 if (ret)
2554 return ret;
2555
2556 ret = sec_register_aead(alg_mask);
2557 if (ret)
2558 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2559
2560 return ret;
2561 }
2562
sec_unregister_from_crypto(struct hisi_qm * qm)2563 void sec_unregister_from_crypto(struct hisi_qm *qm)
2564 {
2565 u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW);
2566
2567 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2568 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2569 }
2570