1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
mul_fp(int32_t x,int32_t y)58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
div_fp(s64 x,s64 y)63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
ceiling_fp(int32_t x)68 static inline int ceiling_fp(int32_t x)
69 {
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77 }
78
mul_ext_fp(u64 x,u64 y)79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81 return (x * y) >> EXT_FRAC_BITS;
82 }
83
div_ext_fp(u64 x,u64 y)84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86 return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88
89 /**
90 * struct sample - Store performance sample
91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
92 * performance during last sample period
93 * @busy_scaled: Scaled busy value which is used to calculate next
94 * P state. This can be different than core_avg_perf
95 * to account for cpu idle period
96 * @aperf: Difference of actual performance frequency clock count
97 * read from APERF MSR between last and current sample
98 * @mperf: Difference of maximum performance frequency clock count
99 * read from MPERF MSR between last and current sample
100 * @tsc: Difference of time stamp counter between last and
101 * current sample
102 * @time: Current time from scheduler
103 *
104 * This structure is used in the cpudata structure to store performance sample
105 * data for choosing next P State.
106 */
107 struct sample {
108 int32_t core_avg_perf;
109 int32_t busy_scaled;
110 u64 aperf;
111 u64 mperf;
112 u64 tsc;
113 u64 time;
114 };
115
116 /**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
125 * @scaling: Scaling factor between performance and frequency
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 * @min_freq: @min_pstate frequency in cpufreq units
128 * @max_freq: @max_pstate frequency in cpufreq units
129 * @turbo_freq: @turbo_pstate frequency in cpufreq units
130 *
131 * Stores the per cpu model P state limits and current P state.
132 */
133 struct pstate_data {
134 int current_pstate;
135 int min_pstate;
136 int max_pstate;
137 int max_pstate_physical;
138 int perf_ctl_scaling;
139 int scaling;
140 int turbo_pstate;
141 unsigned int min_freq;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct global_params - Global parameters, mostly tunable via sysfs.
168 * @no_turbo: Whether or not to use turbo P-states.
169 * @turbo_disabled: Whether or not turbo P-states are available at all,
170 * based on the MSR_IA32_MISC_ENABLE value and whether or
171 * not the maximum reported turbo P-state is different from
172 * the maximum reported non-turbo one.
173 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
174 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
175 * P-state capacity.
176 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
177 * P-state capacity.
178 */
179 struct global_params {
180 bool no_turbo;
181 bool turbo_disabled;
182 bool turbo_disabled_mf;
183 int max_perf_pct;
184 int min_perf_pct;
185 };
186
187 /**
188 * struct cpudata - Per CPU instance data storage
189 * @cpu: CPU number for this instance data
190 * @policy: CPUFreq policy value
191 * @update_util: CPUFreq utility callback information
192 * @update_util_set: CPUFreq utility callback is set
193 * @iowait_boost: iowait-related boost fraction
194 * @last_update: Time of the last update.
195 * @pstate: Stores P state limits for this CPU
196 * @vid: Stores VID limits for this CPU
197 * @last_sample_time: Last Sample time
198 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
199 * @prev_aperf: Last APERF value read from APERF MSR
200 * @prev_mperf: Last MPERF value read from MPERF MSR
201 * @prev_tsc: Last timestamp counter (TSC) value
202 * @prev_cummulative_iowait: IO Wait time difference from last and
203 * current sample
204 * @sample: Storage for storing last Sample data
205 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
206 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
207 * @acpi_perf_data: Stores ACPI perf information read from _PSS
208 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
209 * @epp_powersave: Last saved HWP energy performance preference
210 * (EPP) or energy performance bias (EPB),
211 * when policy switched to performance
212 * @epp_policy: Last saved policy used to set EPP/EPB
213 * @epp_default: Power on default HWP energy performance
214 * preference/bias
215 * @epp_cached Cached HWP energy-performance preference value
216 * @hwp_req_cached: Cached value of the last HWP Request MSR
217 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
218 * @last_io_update: Last time when IO wake flag was set
219 * @sched_flags: Store scheduler flags for possible cross CPU update
220 * @hwp_boost_min: Last HWP boosted min performance
221 * @suspended: Whether or not the driver has been suspended.
222 *
223 * This structure stores per CPU instance data for all CPUs.
224 */
225 struct cpudata {
226 int cpu;
227
228 unsigned int policy;
229 struct update_util_data update_util;
230 bool update_util_set;
231
232 struct pstate_data pstate;
233 struct vid_data vid;
234
235 u64 last_update;
236 u64 last_sample_time;
237 u64 aperf_mperf_shift;
238 u64 prev_aperf;
239 u64 prev_mperf;
240 u64 prev_tsc;
241 u64 prev_cummulative_iowait;
242 struct sample sample;
243 int32_t min_perf_ratio;
244 int32_t max_perf_ratio;
245 #ifdef CONFIG_ACPI
246 struct acpi_processor_performance acpi_perf_data;
247 bool valid_pss_table;
248 #endif
249 unsigned int iowait_boost;
250 s16 epp_powersave;
251 s16 epp_policy;
252 s16 epp_default;
253 s16 epp_cached;
254 u64 hwp_req_cached;
255 u64 hwp_cap_cached;
256 u64 last_io_update;
257 unsigned int sched_flags;
258 u32 hwp_boost_min;
259 bool suspended;
260 };
261
262 static struct cpudata **all_cpu_data;
263
264 /**
265 * struct pstate_funcs - Per CPU model specific callbacks
266 * @get_max: Callback to get maximum non turbo effective P state
267 * @get_max_physical: Callback to get maximum non turbo physical P state
268 * @get_min: Callback to get minimum P state
269 * @get_turbo: Callback to get turbo P state
270 * @get_scaling: Callback to get frequency scaling factor
271 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
272 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
273 * @get_val: Callback to convert P state to actual MSR write value
274 * @get_vid: Callback to get VID data for Atom platforms
275 *
276 * Core and Atom CPU models have different way to get P State limits. This
277 * structure is used to store those callbacks.
278 */
279 struct pstate_funcs {
280 int (*get_max)(void);
281 int (*get_max_physical)(void);
282 int (*get_min)(void);
283 int (*get_turbo)(void);
284 int (*get_scaling)(void);
285 int (*get_cpu_scaling)(int cpu);
286 int (*get_aperf_mperf_shift)(void);
287 u64 (*get_val)(struct cpudata*, int pstate);
288 void (*get_vid)(struct cpudata *);
289 };
290
291 static struct pstate_funcs pstate_funcs __read_mostly;
292
293 static int hwp_active __read_mostly;
294 static int hwp_mode_bdw __read_mostly;
295 static bool per_cpu_limits __read_mostly;
296 static bool hwp_boost __read_mostly;
297
298 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
299
300 #ifdef CONFIG_ACPI
301 static bool acpi_ppc;
302 #endif
303
304 static struct global_params global;
305
306 static DEFINE_MUTEX(intel_pstate_driver_lock);
307 static DEFINE_MUTEX(intel_pstate_limits_lock);
308
309 #ifdef CONFIG_ACPI
310
intel_pstate_acpi_pm_profile_server(void)311 static bool intel_pstate_acpi_pm_profile_server(void)
312 {
313 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
314 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
315 return true;
316
317 return false;
318 }
319
intel_pstate_get_ppc_enable_status(void)320 static bool intel_pstate_get_ppc_enable_status(void)
321 {
322 if (intel_pstate_acpi_pm_profile_server())
323 return true;
324
325 return acpi_ppc;
326 }
327
328 #ifdef CONFIG_ACPI_CPPC_LIB
329
330 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)331 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
332 {
333 sched_set_itmt_support();
334 }
335
336 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
337
intel_pstate_set_itmt_prio(int cpu)338 static void intel_pstate_set_itmt_prio(int cpu)
339 {
340 struct cppc_perf_caps cppc_perf;
341 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
342 int ret;
343
344 ret = cppc_get_perf_caps(cpu, &cppc_perf);
345 if (ret)
346 return;
347
348 /*
349 * The priorities can be set regardless of whether or not
350 * sched_set_itmt_support(true) has been called and it is valid to
351 * update them at any time after it has been called.
352 */
353 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
354
355 if (max_highest_perf <= min_highest_perf) {
356 if (cppc_perf.highest_perf > max_highest_perf)
357 max_highest_perf = cppc_perf.highest_perf;
358
359 if (cppc_perf.highest_perf < min_highest_perf)
360 min_highest_perf = cppc_perf.highest_perf;
361
362 if (max_highest_perf > min_highest_perf) {
363 /*
364 * This code can be run during CPU online under the
365 * CPU hotplug locks, so sched_set_itmt_support()
366 * cannot be called from here. Queue up a work item
367 * to invoke it.
368 */
369 schedule_work(&sched_itmt_work);
370 }
371 }
372 }
373
intel_pstate_get_cppc_guaranteed(int cpu)374 static int intel_pstate_get_cppc_guaranteed(int cpu)
375 {
376 struct cppc_perf_caps cppc_perf;
377 int ret;
378
379 ret = cppc_get_perf_caps(cpu, &cppc_perf);
380 if (ret)
381 return ret;
382
383 if (cppc_perf.guaranteed_perf)
384 return cppc_perf.guaranteed_perf;
385
386 return cppc_perf.nominal_perf;
387 }
388
intel_pstate_cppc_nominal(int cpu)389 static u32 intel_pstate_cppc_nominal(int cpu)
390 {
391 u64 nominal_perf;
392
393 if (cppc_get_nominal_perf(cpu, &nominal_perf))
394 return 0;
395
396 return nominal_perf;
397 }
398 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)399 static inline void intel_pstate_set_itmt_prio(int cpu)
400 {
401 }
402 #endif /* CONFIG_ACPI_CPPC_LIB */
403
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)404 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
405 {
406 struct cpudata *cpu;
407 int ret;
408 int i;
409
410 if (hwp_active) {
411 intel_pstate_set_itmt_prio(policy->cpu);
412 return;
413 }
414
415 if (!intel_pstate_get_ppc_enable_status())
416 return;
417
418 cpu = all_cpu_data[policy->cpu];
419
420 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
421 policy->cpu);
422 if (ret)
423 return;
424
425 /*
426 * Check if the control value in _PSS is for PERF_CTL MSR, which should
427 * guarantee that the states returned by it map to the states in our
428 * list directly.
429 */
430 if (cpu->acpi_perf_data.control_register.space_id !=
431 ACPI_ADR_SPACE_FIXED_HARDWARE)
432 goto err;
433
434 /*
435 * If there is only one entry _PSS, simply ignore _PSS and continue as
436 * usual without taking _PSS into account
437 */
438 if (cpu->acpi_perf_data.state_count < 2)
439 goto err;
440
441 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
442 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
443 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
444 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
445 (u32) cpu->acpi_perf_data.states[i].core_frequency,
446 (u32) cpu->acpi_perf_data.states[i].power,
447 (u32) cpu->acpi_perf_data.states[i].control);
448 }
449
450 /*
451 * The _PSS table doesn't contain whole turbo frequency range.
452 * This just contains +1 MHZ above the max non turbo frequency,
453 * with control value corresponding to max turbo ratio. But
454 * when cpufreq set policy is called, it will call with this
455 * max frequency, which will cause a reduced performance as
456 * this driver uses real max turbo frequency as the max
457 * frequency. So correct this frequency in _PSS table to
458 * correct max turbo frequency based on the turbo state.
459 * Also need to convert to MHz as _PSS freq is in MHz.
460 */
461 if (!global.turbo_disabled)
462 cpu->acpi_perf_data.states[0].core_frequency =
463 policy->cpuinfo.max_freq / 1000;
464 cpu->valid_pss_table = true;
465 pr_debug("_PPC limits will be enforced\n");
466
467 return;
468
469 err:
470 cpu->valid_pss_table = false;
471 acpi_processor_unregister_performance(policy->cpu);
472 }
473
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)474 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
475 {
476 struct cpudata *cpu;
477
478 cpu = all_cpu_data[policy->cpu];
479 if (!cpu->valid_pss_table)
480 return;
481
482 acpi_processor_unregister_performance(policy->cpu);
483 }
484 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)485 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)489 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
490 {
491 }
492
intel_pstate_acpi_pm_profile_server(void)493 static inline bool intel_pstate_acpi_pm_profile_server(void)
494 {
495 return false;
496 }
497 #endif /* CONFIG_ACPI */
498
499 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)500 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
501 {
502 return -ENOTSUPP;
503 }
504 #endif /* CONFIG_ACPI_CPPC_LIB */
505
506 /**
507 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
508 * @cpu: Target CPU.
509 *
510 * On hybrid processors, HWP may expose more performance levels than there are
511 * P-states accessible through the PERF_CTL interface. If that happens, the
512 * scaling factor between HWP performance levels and CPU frequency will be less
513 * than the scaling factor between P-state values and CPU frequency.
514 *
515 * In that case, adjust the CPU parameters used in computations accordingly.
516 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)517 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
518 {
519 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
520 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
521 int perf_ctl_turbo = pstate_funcs.get_turbo();
522 int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
523 int scaling = cpu->pstate.scaling;
524
525 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
526 pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
527 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
528 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
529 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
530 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
531 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
532
533 /*
534 * If the product of the HWP performance scaling factor and the HWP_CAP
535 * highest performance is greater than the maximum turbo frequency
536 * corresponding to the pstate_funcs.get_turbo() return value, the
537 * scaling factor is too high, so recompute it to make the HWP_CAP
538 * highest performance correspond to the maximum turbo frequency.
539 */
540 if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
541 cpu->pstate.turbo_freq = turbo_freq;
542 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
543 cpu->pstate.scaling = scaling;
544
545 pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
546 cpu->cpu, scaling);
547 }
548
549 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
550 perf_ctl_scaling);
551
552 cpu->pstate.max_pstate_physical =
553 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
554 scaling);
555
556 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
557 /*
558 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
559 * the effective range of HWP performance levels.
560 */
561 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
562 }
563
update_turbo_state(void)564 static inline void update_turbo_state(void)
565 {
566 u64 misc_en;
567 struct cpudata *cpu;
568
569 cpu = all_cpu_data[0];
570 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
571 global.turbo_disabled =
572 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
573 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
574 }
575
min_perf_pct_min(void)576 static int min_perf_pct_min(void)
577 {
578 struct cpudata *cpu = all_cpu_data[0];
579 int turbo_pstate = cpu->pstate.turbo_pstate;
580
581 return turbo_pstate ?
582 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
583 }
584
intel_pstate_get_epb(struct cpudata * cpu_data)585 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
586 {
587 u64 epb;
588 int ret;
589
590 if (!boot_cpu_has(X86_FEATURE_EPB))
591 return -ENXIO;
592
593 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
594 if (ret)
595 return (s16)ret;
596
597 return (s16)(epb & 0x0f);
598 }
599
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)600 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
601 {
602 s16 epp;
603
604 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
605 /*
606 * When hwp_req_data is 0, means that caller didn't read
607 * MSR_HWP_REQUEST, so need to read and get EPP.
608 */
609 if (!hwp_req_data) {
610 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
611 &hwp_req_data);
612 if (epp)
613 return epp;
614 }
615 epp = (hwp_req_data >> 24) & 0xff;
616 } else {
617 /* When there is no EPP present, HWP uses EPB settings */
618 epp = intel_pstate_get_epb(cpu_data);
619 }
620
621 return epp;
622 }
623
intel_pstate_set_epb(int cpu,s16 pref)624 static int intel_pstate_set_epb(int cpu, s16 pref)
625 {
626 u64 epb;
627 int ret;
628
629 if (!boot_cpu_has(X86_FEATURE_EPB))
630 return -ENXIO;
631
632 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 if (ret)
634 return ret;
635
636 epb = (epb & ~0x0f) | pref;
637 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
638
639 return 0;
640 }
641
642 /*
643 * EPP/EPB display strings corresponding to EPP index in the
644 * energy_perf_strings[]
645 * index String
646 *-------------------------------------
647 * 0 default
648 * 1 performance
649 * 2 balance_performance
650 * 3 balance_power
651 * 4 power
652 */
653 static const char * const energy_perf_strings[] = {
654 "default",
655 "performance",
656 "balance_performance",
657 "balance_power",
658 "power",
659 NULL
660 };
661 static const unsigned int epp_values[] = {
662 HWP_EPP_PERFORMANCE,
663 HWP_EPP_BALANCE_PERFORMANCE,
664 HWP_EPP_BALANCE_POWERSAVE,
665 HWP_EPP_POWERSAVE
666 };
667
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)668 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
669 {
670 s16 epp;
671 int index = -EINVAL;
672
673 *raw_epp = 0;
674 epp = intel_pstate_get_epp(cpu_data, 0);
675 if (epp < 0)
676 return epp;
677
678 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
679 if (epp == HWP_EPP_PERFORMANCE)
680 return 1;
681 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
682 return 2;
683 if (epp == HWP_EPP_BALANCE_POWERSAVE)
684 return 3;
685 if (epp == HWP_EPP_POWERSAVE)
686 return 4;
687 *raw_epp = epp;
688 return 0;
689 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
690 /*
691 * Range:
692 * 0x00-0x03 : Performance
693 * 0x04-0x07 : Balance performance
694 * 0x08-0x0B : Balance power
695 * 0x0C-0x0F : Power
696 * The EPB is a 4 bit value, but our ranges restrict the
697 * value which can be set. Here only using top two bits
698 * effectively.
699 */
700 index = (epp >> 2) + 1;
701 }
702
703 return index;
704 }
705
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)706 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
707 {
708 int ret;
709
710 /*
711 * Use the cached HWP Request MSR value, because in the active mode the
712 * register itself may be updated by intel_pstate_hwp_boost_up() or
713 * intel_pstate_hwp_boost_down() at any time.
714 */
715 u64 value = READ_ONCE(cpu->hwp_req_cached);
716
717 value &= ~GENMASK_ULL(31, 24);
718 value |= (u64)epp << 24;
719 /*
720 * The only other updater of hwp_req_cached in the active mode,
721 * intel_pstate_hwp_set(), is called under the same lock as this
722 * function, so it cannot run in parallel with the update below.
723 */
724 WRITE_ONCE(cpu->hwp_req_cached, value);
725 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
726 if (!ret)
727 cpu->epp_cached = epp;
728
729 return ret;
730 }
731
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)732 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
733 int pref_index, bool use_raw,
734 u32 raw_epp)
735 {
736 int epp = -EINVAL;
737 int ret;
738
739 if (!pref_index)
740 epp = cpu_data->epp_default;
741
742 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
743 if (use_raw)
744 epp = raw_epp;
745 else if (epp == -EINVAL)
746 epp = epp_values[pref_index - 1];
747
748 /*
749 * To avoid confusion, refuse to set EPP to any values different
750 * from 0 (performance) if the current policy is "performance",
751 * because those values would be overridden.
752 */
753 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
754 return -EBUSY;
755
756 ret = intel_pstate_set_epp(cpu_data, epp);
757 } else {
758 if (epp == -EINVAL)
759 epp = (pref_index - 1) << 2;
760 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
761 }
762
763 return ret;
764 }
765
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)766 static ssize_t show_energy_performance_available_preferences(
767 struct cpufreq_policy *policy, char *buf)
768 {
769 int i = 0;
770 int ret = 0;
771
772 while (energy_perf_strings[i] != NULL)
773 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
774
775 ret += sprintf(&buf[ret], "\n");
776
777 return ret;
778 }
779
780 cpufreq_freq_attr_ro(energy_performance_available_preferences);
781
782 static struct cpufreq_driver intel_pstate;
783
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)784 static ssize_t store_energy_performance_preference(
785 struct cpufreq_policy *policy, const char *buf, size_t count)
786 {
787 struct cpudata *cpu = all_cpu_data[policy->cpu];
788 char str_preference[21];
789 bool raw = false;
790 ssize_t ret;
791 u32 epp = 0;
792
793 ret = sscanf(buf, "%20s", str_preference);
794 if (ret != 1)
795 return -EINVAL;
796
797 ret = match_string(energy_perf_strings, -1, str_preference);
798 if (ret < 0) {
799 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
800 return ret;
801
802 ret = kstrtouint(buf, 10, &epp);
803 if (ret)
804 return ret;
805
806 if (epp > 255)
807 return -EINVAL;
808
809 raw = true;
810 }
811
812 /*
813 * This function runs with the policy R/W semaphore held, which
814 * guarantees that the driver pointer will not change while it is
815 * running.
816 */
817 if (!intel_pstate_driver)
818 return -EAGAIN;
819
820 mutex_lock(&intel_pstate_limits_lock);
821
822 if (intel_pstate_driver == &intel_pstate) {
823 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
824 } else {
825 /*
826 * In the passive mode the governor needs to be stopped on the
827 * target CPU before the EPP update and restarted after it,
828 * which is super-heavy-weight, so make sure it is worth doing
829 * upfront.
830 */
831 if (!raw)
832 epp = ret ? epp_values[ret - 1] : cpu->epp_default;
833
834 if (cpu->epp_cached != epp) {
835 int err;
836
837 cpufreq_stop_governor(policy);
838 ret = intel_pstate_set_epp(cpu, epp);
839 err = cpufreq_start_governor(policy);
840 if (!ret)
841 ret = err;
842 }
843 }
844
845 mutex_unlock(&intel_pstate_limits_lock);
846
847 return ret ?: count;
848 }
849
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)850 static ssize_t show_energy_performance_preference(
851 struct cpufreq_policy *policy, char *buf)
852 {
853 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
854 int preference, raw_epp;
855
856 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
857 if (preference < 0)
858 return preference;
859
860 if (raw_epp)
861 return sprintf(buf, "%d\n", raw_epp);
862 else
863 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
864 }
865
866 cpufreq_freq_attr_rw(energy_performance_preference);
867
show_base_frequency(struct cpufreq_policy * policy,char * buf)868 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
869 {
870 struct cpudata *cpu = all_cpu_data[policy->cpu];
871 int ratio, freq;
872
873 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
874 if (ratio <= 0) {
875 u64 cap;
876
877 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
878 ratio = HWP_GUARANTEED_PERF(cap);
879 }
880
881 freq = ratio * cpu->pstate.scaling;
882 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
883 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
884
885 return sprintf(buf, "%d\n", freq);
886 }
887
888 cpufreq_freq_attr_ro(base_frequency);
889
890 static struct freq_attr *hwp_cpufreq_attrs[] = {
891 &energy_performance_preference,
892 &energy_performance_available_preferences,
893 &base_frequency,
894 NULL,
895 };
896
__intel_pstate_get_hwp_cap(struct cpudata * cpu)897 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
898 {
899 u64 cap;
900
901 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
902 WRITE_ONCE(cpu->hwp_cap_cached, cap);
903 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
904 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
905 }
906
intel_pstate_get_hwp_cap(struct cpudata * cpu)907 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
908 {
909 int scaling = cpu->pstate.scaling;
910
911 __intel_pstate_get_hwp_cap(cpu);
912
913 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
914 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
915 if (scaling != cpu->pstate.perf_ctl_scaling) {
916 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
917
918 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
919 perf_ctl_scaling);
920 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
921 perf_ctl_scaling);
922 }
923 }
924
intel_pstate_hwp_set(unsigned int cpu)925 static void intel_pstate_hwp_set(unsigned int cpu)
926 {
927 struct cpudata *cpu_data = all_cpu_data[cpu];
928 int max, min;
929 u64 value;
930 s16 epp;
931
932 max = cpu_data->max_perf_ratio;
933 min = cpu_data->min_perf_ratio;
934
935 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
936 min = max;
937
938 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
939
940 value &= ~HWP_MIN_PERF(~0L);
941 value |= HWP_MIN_PERF(min);
942
943 value &= ~HWP_MAX_PERF(~0L);
944 value |= HWP_MAX_PERF(max);
945
946 if (cpu_data->epp_policy == cpu_data->policy)
947 goto skip_epp;
948
949 cpu_data->epp_policy = cpu_data->policy;
950
951 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
952 epp = intel_pstate_get_epp(cpu_data, value);
953 cpu_data->epp_powersave = epp;
954 /* If EPP read was failed, then don't try to write */
955 if (epp < 0)
956 goto skip_epp;
957
958 epp = 0;
959 } else {
960 /* skip setting EPP, when saved value is invalid */
961 if (cpu_data->epp_powersave < 0)
962 goto skip_epp;
963
964 /*
965 * No need to restore EPP when it is not zero. This
966 * means:
967 * - Policy is not changed
968 * - user has manually changed
969 * - Error reading EPB
970 */
971 epp = intel_pstate_get_epp(cpu_data, value);
972 if (epp)
973 goto skip_epp;
974
975 epp = cpu_data->epp_powersave;
976 }
977 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
978 value &= ~GENMASK_ULL(31, 24);
979 value |= (u64)epp << 24;
980 } else {
981 intel_pstate_set_epb(cpu, epp);
982 }
983 skip_epp:
984 WRITE_ONCE(cpu_data->hwp_req_cached, value);
985 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
986 }
987
intel_pstate_hwp_offline(struct cpudata * cpu)988 static void intel_pstate_hwp_offline(struct cpudata *cpu)
989 {
990 u64 value = READ_ONCE(cpu->hwp_req_cached);
991 int min_perf;
992
993 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
994 /*
995 * In case the EPP has been set to "performance" by the
996 * active mode "performance" scaling algorithm, replace that
997 * temporary value with the cached EPP one.
998 */
999 value &= ~GENMASK_ULL(31, 24);
1000 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1001 WRITE_ONCE(cpu->hwp_req_cached, value);
1002 }
1003
1004 value &= ~GENMASK_ULL(31, 0);
1005 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1006
1007 /* Set hwp_max = hwp_min */
1008 value |= HWP_MAX_PERF(min_perf);
1009 value |= HWP_MIN_PERF(min_perf);
1010
1011 /* Set EPP to min */
1012 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1013 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1014
1015 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1016 }
1017
1018 #define POWER_CTL_EE_ENABLE 1
1019 #define POWER_CTL_EE_DISABLE 2
1020
1021 static int power_ctl_ee_state;
1022
set_power_ctl_ee_state(bool input)1023 static void set_power_ctl_ee_state(bool input)
1024 {
1025 u64 power_ctl;
1026
1027 mutex_lock(&intel_pstate_driver_lock);
1028 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1029 if (input) {
1030 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1031 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1032 } else {
1033 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1034 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1035 }
1036 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1037 mutex_unlock(&intel_pstate_driver_lock);
1038 }
1039
1040 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1041
intel_pstate_hwp_reenable(struct cpudata * cpu)1042 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1043 {
1044 intel_pstate_hwp_enable(cpu);
1045 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1046 }
1047
intel_pstate_suspend(struct cpufreq_policy * policy)1048 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1049 {
1050 struct cpudata *cpu = all_cpu_data[policy->cpu];
1051
1052 pr_debug("CPU %d suspending\n", cpu->cpu);
1053
1054 cpu->suspended = true;
1055
1056 return 0;
1057 }
1058
intel_pstate_resume(struct cpufreq_policy * policy)1059 static int intel_pstate_resume(struct cpufreq_policy *policy)
1060 {
1061 struct cpudata *cpu = all_cpu_data[policy->cpu];
1062
1063 pr_debug("CPU %d resuming\n", cpu->cpu);
1064
1065 /* Only restore if the system default is changed */
1066 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1067 set_power_ctl_ee_state(true);
1068 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1069 set_power_ctl_ee_state(false);
1070
1071 if (cpu->suspended && hwp_active) {
1072 mutex_lock(&intel_pstate_limits_lock);
1073
1074 /* Re-enable HWP, because "online" has not done that. */
1075 intel_pstate_hwp_reenable(cpu);
1076
1077 mutex_unlock(&intel_pstate_limits_lock);
1078 }
1079
1080 cpu->suspended = false;
1081
1082 return 0;
1083 }
1084
intel_pstate_update_policies(void)1085 static void intel_pstate_update_policies(void)
1086 {
1087 int cpu;
1088
1089 for_each_possible_cpu(cpu)
1090 cpufreq_update_policy(cpu);
1091 }
1092
intel_pstate_update_max_freq(unsigned int cpu)1093 static void intel_pstate_update_max_freq(unsigned int cpu)
1094 {
1095 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1096 struct cpudata *cpudata;
1097
1098 if (!policy)
1099 return;
1100
1101 cpudata = all_cpu_data[cpu];
1102 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1103 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1104
1105 refresh_frequency_limits(policy);
1106
1107 cpufreq_cpu_release(policy);
1108 }
1109
intel_pstate_update_limits(unsigned int cpu)1110 static void intel_pstate_update_limits(unsigned int cpu)
1111 {
1112 mutex_lock(&intel_pstate_driver_lock);
1113
1114 update_turbo_state();
1115 /*
1116 * If turbo has been turned on or off globally, policy limits for
1117 * all CPUs need to be updated to reflect that.
1118 */
1119 if (global.turbo_disabled_mf != global.turbo_disabled) {
1120 global.turbo_disabled_mf = global.turbo_disabled;
1121 arch_set_max_freq_ratio(global.turbo_disabled);
1122 for_each_possible_cpu(cpu)
1123 intel_pstate_update_max_freq(cpu);
1124 } else {
1125 cpufreq_update_policy(cpu);
1126 }
1127
1128 mutex_unlock(&intel_pstate_driver_lock);
1129 }
1130
1131 /************************** sysfs begin ************************/
1132 #define show_one(file_name, object) \
1133 static ssize_t show_##file_name \
1134 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1135 { \
1136 return sprintf(buf, "%u\n", global.object); \
1137 }
1138
1139 static ssize_t intel_pstate_show_status(char *buf);
1140 static int intel_pstate_update_status(const char *buf, size_t size);
1141
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1142 static ssize_t show_status(struct kobject *kobj,
1143 struct kobj_attribute *attr, char *buf)
1144 {
1145 ssize_t ret;
1146
1147 mutex_lock(&intel_pstate_driver_lock);
1148 ret = intel_pstate_show_status(buf);
1149 mutex_unlock(&intel_pstate_driver_lock);
1150
1151 return ret;
1152 }
1153
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1154 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1155 const char *buf, size_t count)
1156 {
1157 char *p = memchr(buf, '\n', count);
1158 int ret;
1159
1160 mutex_lock(&intel_pstate_driver_lock);
1161 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1162 mutex_unlock(&intel_pstate_driver_lock);
1163
1164 return ret < 0 ? ret : count;
1165 }
1166
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1167 static ssize_t show_turbo_pct(struct kobject *kobj,
1168 struct kobj_attribute *attr, char *buf)
1169 {
1170 struct cpudata *cpu;
1171 int total, no_turbo, turbo_pct;
1172 uint32_t turbo_fp;
1173
1174 mutex_lock(&intel_pstate_driver_lock);
1175
1176 if (!intel_pstate_driver) {
1177 mutex_unlock(&intel_pstate_driver_lock);
1178 return -EAGAIN;
1179 }
1180
1181 cpu = all_cpu_data[0];
1182
1183 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1184 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1185 turbo_fp = div_fp(no_turbo, total);
1186 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1187
1188 mutex_unlock(&intel_pstate_driver_lock);
1189
1190 return sprintf(buf, "%u\n", turbo_pct);
1191 }
1192
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1193 static ssize_t show_num_pstates(struct kobject *kobj,
1194 struct kobj_attribute *attr, char *buf)
1195 {
1196 struct cpudata *cpu;
1197 int total;
1198
1199 mutex_lock(&intel_pstate_driver_lock);
1200
1201 if (!intel_pstate_driver) {
1202 mutex_unlock(&intel_pstate_driver_lock);
1203 return -EAGAIN;
1204 }
1205
1206 cpu = all_cpu_data[0];
1207 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1208
1209 mutex_unlock(&intel_pstate_driver_lock);
1210
1211 return sprintf(buf, "%u\n", total);
1212 }
1213
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1214 static ssize_t show_no_turbo(struct kobject *kobj,
1215 struct kobj_attribute *attr, char *buf)
1216 {
1217 ssize_t ret;
1218
1219 mutex_lock(&intel_pstate_driver_lock);
1220
1221 if (!intel_pstate_driver) {
1222 mutex_unlock(&intel_pstate_driver_lock);
1223 return -EAGAIN;
1224 }
1225
1226 update_turbo_state();
1227 if (global.turbo_disabled)
1228 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1229 else
1230 ret = sprintf(buf, "%u\n", global.no_turbo);
1231
1232 mutex_unlock(&intel_pstate_driver_lock);
1233
1234 return ret;
1235 }
1236
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1237 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1238 const char *buf, size_t count)
1239 {
1240 unsigned int input;
1241 int ret;
1242
1243 ret = sscanf(buf, "%u", &input);
1244 if (ret != 1)
1245 return -EINVAL;
1246
1247 mutex_lock(&intel_pstate_driver_lock);
1248
1249 if (!intel_pstate_driver) {
1250 mutex_unlock(&intel_pstate_driver_lock);
1251 return -EAGAIN;
1252 }
1253
1254 mutex_lock(&intel_pstate_limits_lock);
1255
1256 update_turbo_state();
1257 if (global.turbo_disabled) {
1258 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1259 mutex_unlock(&intel_pstate_limits_lock);
1260 mutex_unlock(&intel_pstate_driver_lock);
1261 return -EPERM;
1262 }
1263
1264 global.no_turbo = clamp_t(int, input, 0, 1);
1265
1266 if (global.no_turbo) {
1267 struct cpudata *cpu = all_cpu_data[0];
1268 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1269
1270 /* Squash the global minimum into the permitted range. */
1271 if (global.min_perf_pct > pct)
1272 global.min_perf_pct = pct;
1273 }
1274
1275 mutex_unlock(&intel_pstate_limits_lock);
1276
1277 intel_pstate_update_policies();
1278
1279 mutex_unlock(&intel_pstate_driver_lock);
1280
1281 return count;
1282 }
1283
update_qos_request(enum freq_qos_req_type type)1284 static void update_qos_request(enum freq_qos_req_type type)
1285 {
1286 struct freq_qos_request *req;
1287 struct cpufreq_policy *policy;
1288 int i;
1289
1290 for_each_possible_cpu(i) {
1291 struct cpudata *cpu = all_cpu_data[i];
1292 unsigned int freq, perf_pct;
1293
1294 policy = cpufreq_cpu_get(i);
1295 if (!policy)
1296 continue;
1297
1298 req = policy->driver_data;
1299 cpufreq_cpu_put(policy);
1300
1301 if (!req)
1302 continue;
1303
1304 if (hwp_active)
1305 intel_pstate_get_hwp_cap(cpu);
1306
1307 if (type == FREQ_QOS_MIN) {
1308 perf_pct = global.min_perf_pct;
1309 } else {
1310 req++;
1311 perf_pct = global.max_perf_pct;
1312 }
1313
1314 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1315
1316 if (freq_qos_update_request(req, freq) < 0)
1317 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1318 }
1319 }
1320
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1321 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1322 const char *buf, size_t count)
1323 {
1324 unsigned int input;
1325 int ret;
1326
1327 ret = sscanf(buf, "%u", &input);
1328 if (ret != 1)
1329 return -EINVAL;
1330
1331 mutex_lock(&intel_pstate_driver_lock);
1332
1333 if (!intel_pstate_driver) {
1334 mutex_unlock(&intel_pstate_driver_lock);
1335 return -EAGAIN;
1336 }
1337
1338 mutex_lock(&intel_pstate_limits_lock);
1339
1340 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1341
1342 mutex_unlock(&intel_pstate_limits_lock);
1343
1344 if (intel_pstate_driver == &intel_pstate)
1345 intel_pstate_update_policies();
1346 else
1347 update_qos_request(FREQ_QOS_MAX);
1348
1349 mutex_unlock(&intel_pstate_driver_lock);
1350
1351 return count;
1352 }
1353
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1354 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1355 const char *buf, size_t count)
1356 {
1357 unsigned int input;
1358 int ret;
1359
1360 ret = sscanf(buf, "%u", &input);
1361 if (ret != 1)
1362 return -EINVAL;
1363
1364 mutex_lock(&intel_pstate_driver_lock);
1365
1366 if (!intel_pstate_driver) {
1367 mutex_unlock(&intel_pstate_driver_lock);
1368 return -EAGAIN;
1369 }
1370
1371 mutex_lock(&intel_pstate_limits_lock);
1372
1373 global.min_perf_pct = clamp_t(int, input,
1374 min_perf_pct_min(), global.max_perf_pct);
1375
1376 mutex_unlock(&intel_pstate_limits_lock);
1377
1378 if (intel_pstate_driver == &intel_pstate)
1379 intel_pstate_update_policies();
1380 else
1381 update_qos_request(FREQ_QOS_MIN);
1382
1383 mutex_unlock(&intel_pstate_driver_lock);
1384
1385 return count;
1386 }
1387
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1388 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1389 struct kobj_attribute *attr, char *buf)
1390 {
1391 return sprintf(buf, "%u\n", hwp_boost);
1392 }
1393
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1394 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1395 struct kobj_attribute *b,
1396 const char *buf, size_t count)
1397 {
1398 unsigned int input;
1399 int ret;
1400
1401 ret = kstrtouint(buf, 10, &input);
1402 if (ret)
1403 return ret;
1404
1405 mutex_lock(&intel_pstate_driver_lock);
1406 hwp_boost = !!input;
1407 intel_pstate_update_policies();
1408 mutex_unlock(&intel_pstate_driver_lock);
1409
1410 return count;
1411 }
1412
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1413 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1414 char *buf)
1415 {
1416 u64 power_ctl;
1417 int enable;
1418
1419 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1420 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1421 return sprintf(buf, "%d\n", !enable);
1422 }
1423
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1424 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1425 const char *buf, size_t count)
1426 {
1427 bool input;
1428 int ret;
1429
1430 ret = kstrtobool(buf, &input);
1431 if (ret)
1432 return ret;
1433
1434 set_power_ctl_ee_state(input);
1435
1436 return count;
1437 }
1438
1439 show_one(max_perf_pct, max_perf_pct);
1440 show_one(min_perf_pct, min_perf_pct);
1441
1442 define_one_global_rw(status);
1443 define_one_global_rw(no_turbo);
1444 define_one_global_rw(max_perf_pct);
1445 define_one_global_rw(min_perf_pct);
1446 define_one_global_ro(turbo_pct);
1447 define_one_global_ro(num_pstates);
1448 define_one_global_rw(hwp_dynamic_boost);
1449 define_one_global_rw(energy_efficiency);
1450
1451 static struct attribute *intel_pstate_attributes[] = {
1452 &status.attr,
1453 &no_turbo.attr,
1454 NULL
1455 };
1456
1457 static const struct attribute_group intel_pstate_attr_group = {
1458 .attrs = intel_pstate_attributes,
1459 };
1460
1461 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1462
1463 static struct kobject *intel_pstate_kobject;
1464
intel_pstate_sysfs_expose_params(void)1465 static void __init intel_pstate_sysfs_expose_params(void)
1466 {
1467 int rc;
1468
1469 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1470 &cpu_subsys.dev_root->kobj);
1471 if (WARN_ON(!intel_pstate_kobject))
1472 return;
1473
1474 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1475 if (WARN_ON(rc))
1476 return;
1477
1478 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1479 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1480 WARN_ON(rc);
1481
1482 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1483 WARN_ON(rc);
1484 }
1485
1486 /*
1487 * If per cpu limits are enforced there are no global limits, so
1488 * return without creating max/min_perf_pct attributes
1489 */
1490 if (per_cpu_limits)
1491 return;
1492
1493 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1494 WARN_ON(rc);
1495
1496 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1497 WARN_ON(rc);
1498
1499 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1500 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1501 WARN_ON(rc);
1502 }
1503 }
1504
intel_pstate_sysfs_remove(void)1505 static void __init intel_pstate_sysfs_remove(void)
1506 {
1507 if (!intel_pstate_kobject)
1508 return;
1509
1510 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1511
1512 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1513 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1514 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1515 }
1516
1517 if (!per_cpu_limits) {
1518 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1519 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1520
1521 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1522 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1523 }
1524
1525 kobject_put(intel_pstate_kobject);
1526 }
1527
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1528 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1529 {
1530 int rc;
1531
1532 if (!hwp_active)
1533 return;
1534
1535 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1536 WARN_ON_ONCE(rc);
1537 }
1538
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1539 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1540 {
1541 if (!hwp_active)
1542 return;
1543
1544 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1545 }
1546
1547 /************************** sysfs end ************************/
1548
intel_pstate_hwp_enable(struct cpudata * cpudata)1549 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1550 {
1551 /* First disable HWP notification interrupt as we don't process them */
1552 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1553 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1554
1555 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1556 if (cpudata->epp_default == -EINVAL)
1557 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1558 }
1559
atom_get_min_pstate(void)1560 static int atom_get_min_pstate(void)
1561 {
1562 u64 value;
1563
1564 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1565 return (value >> 8) & 0x7F;
1566 }
1567
atom_get_max_pstate(void)1568 static int atom_get_max_pstate(void)
1569 {
1570 u64 value;
1571
1572 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1573 return (value >> 16) & 0x7F;
1574 }
1575
atom_get_turbo_pstate(void)1576 static int atom_get_turbo_pstate(void)
1577 {
1578 u64 value;
1579
1580 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1581 return value & 0x7F;
1582 }
1583
atom_get_val(struct cpudata * cpudata,int pstate)1584 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1585 {
1586 u64 val;
1587 int32_t vid_fp;
1588 u32 vid;
1589
1590 val = (u64)pstate << 8;
1591 if (global.no_turbo && !global.turbo_disabled)
1592 val |= (u64)1 << 32;
1593
1594 vid_fp = cpudata->vid.min + mul_fp(
1595 int_tofp(pstate - cpudata->pstate.min_pstate),
1596 cpudata->vid.ratio);
1597
1598 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1599 vid = ceiling_fp(vid_fp);
1600
1601 if (pstate > cpudata->pstate.max_pstate)
1602 vid = cpudata->vid.turbo;
1603
1604 return val | vid;
1605 }
1606
silvermont_get_scaling(void)1607 static int silvermont_get_scaling(void)
1608 {
1609 u64 value;
1610 int i;
1611 /* Defined in Table 35-6 from SDM (Sept 2015) */
1612 static int silvermont_freq_table[] = {
1613 83300, 100000, 133300, 116700, 80000};
1614
1615 rdmsrl(MSR_FSB_FREQ, value);
1616 i = value & 0x7;
1617 WARN_ON(i > 4);
1618
1619 return silvermont_freq_table[i];
1620 }
1621
airmont_get_scaling(void)1622 static int airmont_get_scaling(void)
1623 {
1624 u64 value;
1625 int i;
1626 /* Defined in Table 35-10 from SDM (Sept 2015) */
1627 static int airmont_freq_table[] = {
1628 83300, 100000, 133300, 116700, 80000,
1629 93300, 90000, 88900, 87500};
1630
1631 rdmsrl(MSR_FSB_FREQ, value);
1632 i = value & 0xF;
1633 WARN_ON(i > 8);
1634
1635 return airmont_freq_table[i];
1636 }
1637
atom_get_vid(struct cpudata * cpudata)1638 static void atom_get_vid(struct cpudata *cpudata)
1639 {
1640 u64 value;
1641
1642 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1643 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1644 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1645 cpudata->vid.ratio = div_fp(
1646 cpudata->vid.max - cpudata->vid.min,
1647 int_tofp(cpudata->pstate.max_pstate -
1648 cpudata->pstate.min_pstate));
1649
1650 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1651 cpudata->vid.turbo = value & 0x7f;
1652 }
1653
core_get_min_pstate(void)1654 static int core_get_min_pstate(void)
1655 {
1656 u64 value;
1657
1658 rdmsrl(MSR_PLATFORM_INFO, value);
1659 return (value >> 40) & 0xFF;
1660 }
1661
core_get_max_pstate_physical(void)1662 static int core_get_max_pstate_physical(void)
1663 {
1664 u64 value;
1665
1666 rdmsrl(MSR_PLATFORM_INFO, value);
1667 return (value >> 8) & 0xFF;
1668 }
1669
core_get_tdp_ratio(u64 plat_info)1670 static int core_get_tdp_ratio(u64 plat_info)
1671 {
1672 /* Check how many TDP levels present */
1673 if (plat_info & 0x600000000) {
1674 u64 tdp_ctrl;
1675 u64 tdp_ratio;
1676 int tdp_msr;
1677 int err;
1678
1679 /* Get the TDP level (0, 1, 2) to get ratios */
1680 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1681 if (err)
1682 return err;
1683
1684 /* TDP MSR are continuous starting at 0x648 */
1685 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1686 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1687 if (err)
1688 return err;
1689
1690 /* For level 1 and 2, bits[23:16] contain the ratio */
1691 if (tdp_ctrl & 0x03)
1692 tdp_ratio >>= 16;
1693
1694 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1695 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1696
1697 return (int)tdp_ratio;
1698 }
1699
1700 return -ENXIO;
1701 }
1702
core_get_max_pstate(void)1703 static int core_get_max_pstate(void)
1704 {
1705 u64 tar;
1706 u64 plat_info;
1707 int max_pstate;
1708 int tdp_ratio;
1709 int err;
1710
1711 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1712 max_pstate = (plat_info >> 8) & 0xFF;
1713
1714 tdp_ratio = core_get_tdp_ratio(plat_info);
1715 if (tdp_ratio <= 0)
1716 return max_pstate;
1717
1718 if (hwp_active) {
1719 /* Turbo activation ratio is not used on HWP platforms */
1720 return tdp_ratio;
1721 }
1722
1723 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1724 if (!err) {
1725 int tar_levels;
1726
1727 /* Do some sanity checking for safety */
1728 tar_levels = tar & 0xff;
1729 if (tdp_ratio - 1 == tar_levels) {
1730 max_pstate = tar_levels;
1731 pr_debug("max_pstate=TAC %x\n", max_pstate);
1732 }
1733 }
1734
1735 return max_pstate;
1736 }
1737
core_get_turbo_pstate(void)1738 static int core_get_turbo_pstate(void)
1739 {
1740 u64 value;
1741 int nont, ret;
1742
1743 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1744 nont = core_get_max_pstate();
1745 ret = (value) & 255;
1746 if (ret <= nont)
1747 ret = nont;
1748 return ret;
1749 }
1750
core_get_scaling(void)1751 static inline int core_get_scaling(void)
1752 {
1753 return 100000;
1754 }
1755
core_get_val(struct cpudata * cpudata,int pstate)1756 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1757 {
1758 u64 val;
1759
1760 val = (u64)pstate << 8;
1761 if (global.no_turbo && !global.turbo_disabled)
1762 val |= (u64)1 << 32;
1763
1764 return val;
1765 }
1766
knl_get_aperf_mperf_shift(void)1767 static int knl_get_aperf_mperf_shift(void)
1768 {
1769 return 10;
1770 }
1771
knl_get_turbo_pstate(void)1772 static int knl_get_turbo_pstate(void)
1773 {
1774 u64 value;
1775 int nont, ret;
1776
1777 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1778 nont = core_get_max_pstate();
1779 ret = (((value) >> 8) & 0xFF);
1780 if (ret <= nont)
1781 ret = nont;
1782 return ret;
1783 }
1784
1785 #ifdef CONFIG_ACPI_CPPC_LIB
1786 static u32 hybrid_ref_perf;
1787
hybrid_get_cpu_scaling(int cpu)1788 static int hybrid_get_cpu_scaling(int cpu)
1789 {
1790 return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1791 intel_pstate_cppc_nominal(cpu));
1792 }
1793
intel_pstate_cppc_set_cpu_scaling(void)1794 static void intel_pstate_cppc_set_cpu_scaling(void)
1795 {
1796 u32 min_nominal_perf = U32_MAX;
1797 int cpu;
1798
1799 for_each_present_cpu(cpu) {
1800 u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1801
1802 if (nominal_perf && nominal_perf < min_nominal_perf)
1803 min_nominal_perf = nominal_perf;
1804 }
1805
1806 if (min_nominal_perf < U32_MAX) {
1807 hybrid_ref_perf = min_nominal_perf;
1808 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1809 }
1810 }
1811 #else
intel_pstate_cppc_set_cpu_scaling(void)1812 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1813 {
1814 }
1815 #endif /* CONFIG_ACPI_CPPC_LIB */
1816
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1817 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1818 {
1819 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1820 cpu->pstate.current_pstate = pstate;
1821 /*
1822 * Generally, there is no guarantee that this code will always run on
1823 * the CPU being updated, so force the register update to run on the
1824 * right CPU.
1825 */
1826 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1827 pstate_funcs.get_val(cpu, pstate));
1828 }
1829
intel_pstate_set_min_pstate(struct cpudata * cpu)1830 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1831 {
1832 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1833 }
1834
intel_pstate_max_within_limits(struct cpudata * cpu)1835 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1836 {
1837 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1838
1839 update_turbo_state();
1840 intel_pstate_set_pstate(cpu, pstate);
1841 }
1842
intel_pstate_get_cpu_pstates(struct cpudata * cpu)1843 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1844 {
1845 int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1846 int perf_ctl_scaling = pstate_funcs.get_scaling();
1847
1848 cpu->pstate.min_pstate = pstate_funcs.get_min();
1849 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1850 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1851
1852 if (hwp_active && !hwp_mode_bdw) {
1853 __intel_pstate_get_hwp_cap(cpu);
1854
1855 if (pstate_funcs.get_cpu_scaling) {
1856 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1857 if (cpu->pstate.scaling != perf_ctl_scaling)
1858 intel_pstate_hybrid_hwp_adjust(cpu);
1859 } else {
1860 cpu->pstate.scaling = perf_ctl_scaling;
1861 }
1862 } else {
1863 cpu->pstate.scaling = perf_ctl_scaling;
1864 cpu->pstate.max_pstate = pstate_funcs.get_max();
1865 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1866 }
1867
1868 if (cpu->pstate.scaling == perf_ctl_scaling) {
1869 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1870 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1871 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1872 }
1873
1874 if (pstate_funcs.get_aperf_mperf_shift)
1875 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1876
1877 if (pstate_funcs.get_vid)
1878 pstate_funcs.get_vid(cpu);
1879
1880 intel_pstate_set_min_pstate(cpu);
1881 }
1882
1883 /*
1884 * Long hold time will keep high perf limits for long time,
1885 * which negatively impacts perf/watt for some workloads,
1886 * like specpower. 3ms is based on experiements on some
1887 * workoads.
1888 */
1889 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1890
intel_pstate_hwp_boost_up(struct cpudata * cpu)1891 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1892 {
1893 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1894 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1895 u32 max_limit = (hwp_req & 0xff00) >> 8;
1896 u32 min_limit = (hwp_req & 0xff);
1897 u32 boost_level1;
1898
1899 /*
1900 * Cases to consider (User changes via sysfs or boot time):
1901 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1902 * No boost, return.
1903 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1904 * Should result in one level boost only for P0.
1905 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1906 * Should result in two level boost:
1907 * (min + p1)/2 and P1.
1908 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1909 * Should result in three level boost:
1910 * (min + p1)/2, P1 and P0.
1911 */
1912
1913 /* If max and min are equal or already at max, nothing to boost */
1914 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1915 return;
1916
1917 if (!cpu->hwp_boost_min)
1918 cpu->hwp_boost_min = min_limit;
1919
1920 /* level at half way mark between min and guranteed */
1921 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1922
1923 if (cpu->hwp_boost_min < boost_level1)
1924 cpu->hwp_boost_min = boost_level1;
1925 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1926 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1927 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1928 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1929 cpu->hwp_boost_min = max_limit;
1930 else
1931 return;
1932
1933 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1934 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1935 cpu->last_update = cpu->sample.time;
1936 }
1937
intel_pstate_hwp_boost_down(struct cpudata * cpu)1938 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1939 {
1940 if (cpu->hwp_boost_min) {
1941 bool expired;
1942
1943 /* Check if we are idle for hold time to boost down */
1944 expired = time_after64(cpu->sample.time, cpu->last_update +
1945 hwp_boost_hold_time_ns);
1946 if (expired) {
1947 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1948 cpu->hwp_boost_min = 0;
1949 }
1950 }
1951 cpu->last_update = cpu->sample.time;
1952 }
1953
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)1954 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1955 u64 time)
1956 {
1957 cpu->sample.time = time;
1958
1959 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1960 bool do_io = false;
1961
1962 cpu->sched_flags = 0;
1963 /*
1964 * Set iowait_boost flag and update time. Since IO WAIT flag
1965 * is set all the time, we can't just conclude that there is
1966 * some IO bound activity is scheduled on this CPU with just
1967 * one occurrence. If we receive at least two in two
1968 * consecutive ticks, then we treat as boost candidate.
1969 */
1970 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1971 do_io = true;
1972
1973 cpu->last_io_update = time;
1974
1975 if (do_io)
1976 intel_pstate_hwp_boost_up(cpu);
1977
1978 } else {
1979 intel_pstate_hwp_boost_down(cpu);
1980 }
1981 }
1982
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)1983 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1984 u64 time, unsigned int flags)
1985 {
1986 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1987
1988 cpu->sched_flags |= flags;
1989
1990 if (smp_processor_id() == cpu->cpu)
1991 intel_pstate_update_util_hwp_local(cpu, time);
1992 }
1993
intel_pstate_calc_avg_perf(struct cpudata * cpu)1994 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1995 {
1996 struct sample *sample = &cpu->sample;
1997
1998 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1999 }
2000
intel_pstate_sample(struct cpudata * cpu,u64 time)2001 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2002 {
2003 u64 aperf, mperf;
2004 unsigned long flags;
2005 u64 tsc;
2006
2007 local_irq_save(flags);
2008 rdmsrl(MSR_IA32_APERF, aperf);
2009 rdmsrl(MSR_IA32_MPERF, mperf);
2010 tsc = rdtsc();
2011 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2012 local_irq_restore(flags);
2013 return false;
2014 }
2015 local_irq_restore(flags);
2016
2017 cpu->last_sample_time = cpu->sample.time;
2018 cpu->sample.time = time;
2019 cpu->sample.aperf = aperf;
2020 cpu->sample.mperf = mperf;
2021 cpu->sample.tsc = tsc;
2022 cpu->sample.aperf -= cpu->prev_aperf;
2023 cpu->sample.mperf -= cpu->prev_mperf;
2024 cpu->sample.tsc -= cpu->prev_tsc;
2025
2026 cpu->prev_aperf = aperf;
2027 cpu->prev_mperf = mperf;
2028 cpu->prev_tsc = tsc;
2029 /*
2030 * First time this function is invoked in a given cycle, all of the
2031 * previous sample data fields are equal to zero or stale and they must
2032 * be populated with meaningful numbers for things to work, so assume
2033 * that sample.time will always be reset before setting the utilization
2034 * update hook and make the caller skip the sample then.
2035 */
2036 if (cpu->last_sample_time) {
2037 intel_pstate_calc_avg_perf(cpu);
2038 return true;
2039 }
2040 return false;
2041 }
2042
get_avg_frequency(struct cpudata * cpu)2043 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2044 {
2045 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2046 }
2047
get_avg_pstate(struct cpudata * cpu)2048 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2049 {
2050 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2051 cpu->sample.core_avg_perf);
2052 }
2053
get_target_pstate(struct cpudata * cpu)2054 static inline int32_t get_target_pstate(struct cpudata *cpu)
2055 {
2056 struct sample *sample = &cpu->sample;
2057 int32_t busy_frac;
2058 int target, avg_pstate;
2059
2060 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2061 sample->tsc);
2062
2063 if (busy_frac < cpu->iowait_boost)
2064 busy_frac = cpu->iowait_boost;
2065
2066 sample->busy_scaled = busy_frac * 100;
2067
2068 target = global.no_turbo || global.turbo_disabled ?
2069 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2070 target += target >> 2;
2071 target = mul_fp(target, busy_frac);
2072 if (target < cpu->pstate.min_pstate)
2073 target = cpu->pstate.min_pstate;
2074
2075 /*
2076 * If the average P-state during the previous cycle was higher than the
2077 * current target, add 50% of the difference to the target to reduce
2078 * possible performance oscillations and offset possible performance
2079 * loss related to moving the workload from one CPU to another within
2080 * a package/module.
2081 */
2082 avg_pstate = get_avg_pstate(cpu);
2083 if (avg_pstate > target)
2084 target += (avg_pstate - target) >> 1;
2085
2086 return target;
2087 }
2088
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2089 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2090 {
2091 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2092 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2093
2094 return clamp_t(int, pstate, min_pstate, max_pstate);
2095 }
2096
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2097 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2098 {
2099 if (pstate == cpu->pstate.current_pstate)
2100 return;
2101
2102 cpu->pstate.current_pstate = pstate;
2103 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2104 }
2105
intel_pstate_adjust_pstate(struct cpudata * cpu)2106 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2107 {
2108 int from = cpu->pstate.current_pstate;
2109 struct sample *sample;
2110 int target_pstate;
2111
2112 update_turbo_state();
2113
2114 target_pstate = get_target_pstate(cpu);
2115 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2116 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2117 intel_pstate_update_pstate(cpu, target_pstate);
2118
2119 sample = &cpu->sample;
2120 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2121 fp_toint(sample->busy_scaled),
2122 from,
2123 cpu->pstate.current_pstate,
2124 sample->mperf,
2125 sample->aperf,
2126 sample->tsc,
2127 get_avg_frequency(cpu),
2128 fp_toint(cpu->iowait_boost * 100));
2129 }
2130
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2131 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2132 unsigned int flags)
2133 {
2134 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2135 u64 delta_ns;
2136
2137 /* Don't allow remote callbacks */
2138 if (smp_processor_id() != cpu->cpu)
2139 return;
2140
2141 delta_ns = time - cpu->last_update;
2142 if (flags & SCHED_CPUFREQ_IOWAIT) {
2143 /* Start over if the CPU may have been idle. */
2144 if (delta_ns > TICK_NSEC) {
2145 cpu->iowait_boost = ONE_EIGHTH_FP;
2146 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2147 cpu->iowait_boost <<= 1;
2148 if (cpu->iowait_boost > int_tofp(1))
2149 cpu->iowait_boost = int_tofp(1);
2150 } else {
2151 cpu->iowait_boost = ONE_EIGHTH_FP;
2152 }
2153 } else if (cpu->iowait_boost) {
2154 /* Clear iowait_boost if the CPU may have been idle. */
2155 if (delta_ns > TICK_NSEC)
2156 cpu->iowait_boost = 0;
2157 else
2158 cpu->iowait_boost >>= 1;
2159 }
2160 cpu->last_update = time;
2161 delta_ns = time - cpu->sample.time;
2162 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2163 return;
2164
2165 if (intel_pstate_sample(cpu, time))
2166 intel_pstate_adjust_pstate(cpu);
2167 }
2168
2169 static struct pstate_funcs core_funcs = {
2170 .get_max = core_get_max_pstate,
2171 .get_max_physical = core_get_max_pstate_physical,
2172 .get_min = core_get_min_pstate,
2173 .get_turbo = core_get_turbo_pstate,
2174 .get_scaling = core_get_scaling,
2175 .get_val = core_get_val,
2176 };
2177
2178 static const struct pstate_funcs silvermont_funcs = {
2179 .get_max = atom_get_max_pstate,
2180 .get_max_physical = atom_get_max_pstate,
2181 .get_min = atom_get_min_pstate,
2182 .get_turbo = atom_get_turbo_pstate,
2183 .get_val = atom_get_val,
2184 .get_scaling = silvermont_get_scaling,
2185 .get_vid = atom_get_vid,
2186 };
2187
2188 static const struct pstate_funcs airmont_funcs = {
2189 .get_max = atom_get_max_pstate,
2190 .get_max_physical = atom_get_max_pstate,
2191 .get_min = atom_get_min_pstate,
2192 .get_turbo = atom_get_turbo_pstate,
2193 .get_val = atom_get_val,
2194 .get_scaling = airmont_get_scaling,
2195 .get_vid = atom_get_vid,
2196 };
2197
2198 static const struct pstate_funcs knl_funcs = {
2199 .get_max = core_get_max_pstate,
2200 .get_max_physical = core_get_max_pstate_physical,
2201 .get_min = core_get_min_pstate,
2202 .get_turbo = knl_get_turbo_pstate,
2203 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2204 .get_scaling = core_get_scaling,
2205 .get_val = core_get_val,
2206 };
2207
2208 #define X86_MATCH(model, policy) \
2209 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2210 X86_FEATURE_APERFMPERF, &policy)
2211
2212 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2213 X86_MATCH(SANDYBRIDGE, core_funcs),
2214 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2215 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2216 X86_MATCH(IVYBRIDGE, core_funcs),
2217 X86_MATCH(HASWELL, core_funcs),
2218 X86_MATCH(BROADWELL, core_funcs),
2219 X86_MATCH(IVYBRIDGE_X, core_funcs),
2220 X86_MATCH(HASWELL_X, core_funcs),
2221 X86_MATCH(HASWELL_L, core_funcs),
2222 X86_MATCH(HASWELL_G, core_funcs),
2223 X86_MATCH(BROADWELL_G, core_funcs),
2224 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2225 X86_MATCH(SKYLAKE_L, core_funcs),
2226 X86_MATCH(BROADWELL_X, core_funcs),
2227 X86_MATCH(SKYLAKE, core_funcs),
2228 X86_MATCH(BROADWELL_D, core_funcs),
2229 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2230 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2231 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2232 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2233 X86_MATCH(SKYLAKE_X, core_funcs),
2234 X86_MATCH(COMETLAKE, core_funcs),
2235 X86_MATCH(ICELAKE_X, core_funcs),
2236 {}
2237 };
2238 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2239
2240 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2241 X86_MATCH(BROADWELL_D, core_funcs),
2242 X86_MATCH(BROADWELL_X, core_funcs),
2243 X86_MATCH(SKYLAKE_X, core_funcs),
2244 {}
2245 };
2246
2247 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2248 X86_MATCH(KABYLAKE, core_funcs),
2249 {}
2250 };
2251
2252 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2253 X86_MATCH(SKYLAKE_X, core_funcs),
2254 X86_MATCH(SKYLAKE, core_funcs),
2255 {}
2256 };
2257
intel_pstate_init_cpu(unsigned int cpunum)2258 static int intel_pstate_init_cpu(unsigned int cpunum)
2259 {
2260 struct cpudata *cpu;
2261
2262 cpu = all_cpu_data[cpunum];
2263
2264 if (!cpu) {
2265 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2266 if (!cpu)
2267 return -ENOMEM;
2268
2269 all_cpu_data[cpunum] = cpu;
2270
2271 cpu->cpu = cpunum;
2272
2273 cpu->epp_default = -EINVAL;
2274
2275 if (hwp_active) {
2276 const struct x86_cpu_id *id;
2277
2278 intel_pstate_hwp_enable(cpu);
2279
2280 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2281 if (id && intel_pstate_acpi_pm_profile_server())
2282 hwp_boost = true;
2283 }
2284 } else if (hwp_active) {
2285 /*
2286 * Re-enable HWP in case this happens after a resume from ACPI
2287 * S3 if the CPU was offline during the whole system/resume
2288 * cycle.
2289 */
2290 intel_pstate_hwp_reenable(cpu);
2291 }
2292
2293 cpu->epp_powersave = -EINVAL;
2294 cpu->epp_policy = 0;
2295
2296 intel_pstate_get_cpu_pstates(cpu);
2297
2298 pr_debug("controlling: cpu %d\n", cpunum);
2299
2300 return 0;
2301 }
2302
intel_pstate_set_update_util_hook(unsigned int cpu_num)2303 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2304 {
2305 struct cpudata *cpu = all_cpu_data[cpu_num];
2306
2307 if (hwp_active && !hwp_boost)
2308 return;
2309
2310 if (cpu->update_util_set)
2311 return;
2312
2313 /* Prevent intel_pstate_update_util() from using stale data. */
2314 cpu->sample.time = 0;
2315 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2316 (hwp_active ?
2317 intel_pstate_update_util_hwp :
2318 intel_pstate_update_util));
2319 cpu->update_util_set = true;
2320 }
2321
intel_pstate_clear_update_util_hook(unsigned int cpu)2322 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2323 {
2324 struct cpudata *cpu_data = all_cpu_data[cpu];
2325
2326 if (!cpu_data->update_util_set)
2327 return;
2328
2329 cpufreq_remove_update_util_hook(cpu);
2330 cpu_data->update_util_set = false;
2331 synchronize_rcu();
2332 }
2333
intel_pstate_get_max_freq(struct cpudata * cpu)2334 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2335 {
2336 return global.turbo_disabled || global.no_turbo ?
2337 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2338 }
2339
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2340 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2341 unsigned int policy_min,
2342 unsigned int policy_max)
2343 {
2344 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2345 int32_t max_policy_perf, min_policy_perf;
2346
2347 max_policy_perf = policy_max / perf_ctl_scaling;
2348 if (policy_max == policy_min) {
2349 min_policy_perf = max_policy_perf;
2350 } else {
2351 min_policy_perf = policy_min / perf_ctl_scaling;
2352 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2353 0, max_policy_perf);
2354 }
2355
2356 /*
2357 * HWP needs some special consideration, because HWP_REQUEST uses
2358 * abstract values to represent performance rather than pure ratios.
2359 */
2360 if (hwp_active) {
2361 intel_pstate_get_hwp_cap(cpu);
2362
2363 if (cpu->pstate.scaling != perf_ctl_scaling) {
2364 int scaling = cpu->pstate.scaling;
2365 int freq;
2366
2367 freq = max_policy_perf * perf_ctl_scaling;
2368 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2369 freq = min_policy_perf * perf_ctl_scaling;
2370 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2371 }
2372 }
2373
2374 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2375 cpu->cpu, min_policy_perf, max_policy_perf);
2376
2377 /* Normalize user input to [min_perf, max_perf] */
2378 if (per_cpu_limits) {
2379 cpu->min_perf_ratio = min_policy_perf;
2380 cpu->max_perf_ratio = max_policy_perf;
2381 } else {
2382 int turbo_max = cpu->pstate.turbo_pstate;
2383 int32_t global_min, global_max;
2384
2385 /* Global limits are in percent of the maximum turbo P-state. */
2386 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2387 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2388 global_min = clamp_t(int32_t, global_min, 0, global_max);
2389
2390 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2391 global_min, global_max);
2392
2393 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2394 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2395 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2396 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2397
2398 /* Make sure min_perf <= max_perf */
2399 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2400 cpu->max_perf_ratio);
2401
2402 }
2403 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2404 cpu->max_perf_ratio,
2405 cpu->min_perf_ratio);
2406 }
2407
intel_pstate_set_policy(struct cpufreq_policy * policy)2408 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2409 {
2410 struct cpudata *cpu;
2411
2412 if (!policy->cpuinfo.max_freq)
2413 return -ENODEV;
2414
2415 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2416 policy->cpuinfo.max_freq, policy->max);
2417
2418 cpu = all_cpu_data[policy->cpu];
2419 cpu->policy = policy->policy;
2420
2421 mutex_lock(&intel_pstate_limits_lock);
2422
2423 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2424
2425 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2426 /*
2427 * NOHZ_FULL CPUs need this as the governor callback may not
2428 * be invoked on them.
2429 */
2430 intel_pstate_clear_update_util_hook(policy->cpu);
2431 intel_pstate_max_within_limits(cpu);
2432 } else {
2433 intel_pstate_set_update_util_hook(policy->cpu);
2434 }
2435
2436 if (hwp_active) {
2437 /*
2438 * When hwp_boost was active before and dynamically it
2439 * was turned off, in that case we need to clear the
2440 * update util hook.
2441 */
2442 if (!hwp_boost)
2443 intel_pstate_clear_update_util_hook(policy->cpu);
2444 intel_pstate_hwp_set(policy->cpu);
2445 }
2446
2447 mutex_unlock(&intel_pstate_limits_lock);
2448
2449 return 0;
2450 }
2451
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2452 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2453 struct cpufreq_policy_data *policy)
2454 {
2455 if (!hwp_active &&
2456 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2457 policy->max < policy->cpuinfo.max_freq &&
2458 policy->max > cpu->pstate.max_freq) {
2459 pr_debug("policy->max > max non turbo frequency\n");
2460 policy->max = policy->cpuinfo.max_freq;
2461 }
2462 }
2463
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2464 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2465 struct cpufreq_policy_data *policy)
2466 {
2467 int max_freq;
2468
2469 update_turbo_state();
2470 if (hwp_active) {
2471 intel_pstate_get_hwp_cap(cpu);
2472 max_freq = global.no_turbo || global.turbo_disabled ?
2473 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2474 } else {
2475 max_freq = intel_pstate_get_max_freq(cpu);
2476 }
2477 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2478
2479 intel_pstate_adjust_policy_max(cpu, policy);
2480 }
2481
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2482 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2483 {
2484 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2485
2486 return 0;
2487 }
2488
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)2489 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2490 {
2491 struct cpudata *cpu = all_cpu_data[policy->cpu];
2492
2493 pr_debug("CPU %d going offline\n", cpu->cpu);
2494
2495 if (cpu->suspended)
2496 return 0;
2497
2498 /*
2499 * If the CPU is an SMT thread and it goes offline with the performance
2500 * settings different from the minimum, it will prevent its sibling
2501 * from getting to lower performance levels, so force the minimum
2502 * performance on CPU offline to prevent that from happening.
2503 */
2504 if (hwp_active)
2505 intel_pstate_hwp_offline(cpu);
2506 else
2507 intel_pstate_set_min_pstate(cpu);
2508
2509 intel_pstate_exit_perf_limits(policy);
2510
2511 return 0;
2512 }
2513
intel_pstate_cpu_online(struct cpufreq_policy * policy)2514 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2515 {
2516 struct cpudata *cpu = all_cpu_data[policy->cpu];
2517
2518 pr_debug("CPU %d going online\n", cpu->cpu);
2519
2520 intel_pstate_init_acpi_perf_limits(policy);
2521
2522 if (hwp_active) {
2523 /*
2524 * Re-enable HWP and clear the "suspended" flag to let "resume"
2525 * know that it need not do that.
2526 */
2527 intel_pstate_hwp_reenable(cpu);
2528 cpu->suspended = false;
2529 }
2530
2531 return 0;
2532 }
2533
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2534 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2535 {
2536 intel_pstate_clear_update_util_hook(policy->cpu);
2537
2538 return intel_cpufreq_cpu_offline(policy);
2539 }
2540
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2541 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2542 {
2543 pr_debug("CPU %d exiting\n", policy->cpu);
2544
2545 policy->fast_switch_possible = false;
2546
2547 return 0;
2548 }
2549
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2550 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2551 {
2552 struct cpudata *cpu;
2553 int rc;
2554
2555 rc = intel_pstate_init_cpu(policy->cpu);
2556 if (rc)
2557 return rc;
2558
2559 cpu = all_cpu_data[policy->cpu];
2560
2561 cpu->max_perf_ratio = 0xFF;
2562 cpu->min_perf_ratio = 0;
2563
2564 /* cpuinfo and default policy values */
2565 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2566 update_turbo_state();
2567 global.turbo_disabled_mf = global.turbo_disabled;
2568 policy->cpuinfo.max_freq = global.turbo_disabled ?
2569 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2570
2571 policy->min = policy->cpuinfo.min_freq;
2572 policy->max = policy->cpuinfo.max_freq;
2573
2574 intel_pstate_init_acpi_perf_limits(policy);
2575
2576 policy->fast_switch_possible = true;
2577
2578 return 0;
2579 }
2580
intel_pstate_cpu_init(struct cpufreq_policy * policy)2581 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2582 {
2583 int ret = __intel_pstate_cpu_init(policy);
2584
2585 if (ret)
2586 return ret;
2587
2588 /*
2589 * Set the policy to powersave to provide a valid fallback value in case
2590 * the default cpufreq governor is neither powersave nor performance.
2591 */
2592 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2593
2594 if (hwp_active) {
2595 struct cpudata *cpu = all_cpu_data[policy->cpu];
2596
2597 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2598 }
2599
2600 return 0;
2601 }
2602
2603 static struct cpufreq_driver intel_pstate = {
2604 .flags = CPUFREQ_CONST_LOOPS,
2605 .verify = intel_pstate_verify_policy,
2606 .setpolicy = intel_pstate_set_policy,
2607 .suspend = intel_pstate_suspend,
2608 .resume = intel_pstate_resume,
2609 .init = intel_pstate_cpu_init,
2610 .exit = intel_pstate_cpu_exit,
2611 .offline = intel_pstate_cpu_offline,
2612 .online = intel_pstate_cpu_online,
2613 .update_limits = intel_pstate_update_limits,
2614 .name = "intel_pstate",
2615 };
2616
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)2617 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2618 {
2619 struct cpudata *cpu = all_cpu_data[policy->cpu];
2620
2621 intel_pstate_verify_cpu_policy(cpu, policy);
2622 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2623
2624 return 0;
2625 }
2626
2627 /* Use of trace in passive mode:
2628 *
2629 * In passive mode the trace core_busy field (also known as the
2630 * performance field, and lablelled as such on the graphs; also known as
2631 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2632 * driver call was via the normal or fast switch path. Various graphs
2633 * output from the intel_pstate_tracer.py utility that include core_busy
2634 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2635 * so we use 10 to indicate the normal path through the driver, and
2636 * 90 to indicate the fast switch path through the driver.
2637 * The scaled_busy field is not used, and is set to 0.
2638 */
2639
2640 #define INTEL_PSTATE_TRACE_TARGET 10
2641 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2642
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2643 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2644 {
2645 struct sample *sample;
2646
2647 if (!trace_pstate_sample_enabled())
2648 return;
2649
2650 if (!intel_pstate_sample(cpu, ktime_get()))
2651 return;
2652
2653 sample = &cpu->sample;
2654 trace_pstate_sample(trace_type,
2655 0,
2656 old_pstate,
2657 cpu->pstate.current_pstate,
2658 sample->mperf,
2659 sample->aperf,
2660 sample->tsc,
2661 get_avg_frequency(cpu),
2662 fp_toint(cpu->iowait_boost * 100));
2663 }
2664
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)2665 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2666 u32 desired, bool fast_switch)
2667 {
2668 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2669
2670 value &= ~HWP_MIN_PERF(~0L);
2671 value |= HWP_MIN_PERF(min);
2672
2673 value &= ~HWP_MAX_PERF(~0L);
2674 value |= HWP_MAX_PERF(max);
2675
2676 value &= ~HWP_DESIRED_PERF(~0L);
2677 value |= HWP_DESIRED_PERF(desired);
2678
2679 if (value == prev)
2680 return;
2681
2682 WRITE_ONCE(cpu->hwp_req_cached, value);
2683 if (fast_switch)
2684 wrmsrl(MSR_HWP_REQUEST, value);
2685 else
2686 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2687 }
2688
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)2689 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2690 u32 target_pstate, bool fast_switch)
2691 {
2692 if (fast_switch)
2693 wrmsrl(MSR_IA32_PERF_CTL,
2694 pstate_funcs.get_val(cpu, target_pstate));
2695 else
2696 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2697 pstate_funcs.get_val(cpu, target_pstate));
2698 }
2699
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)2700 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2701 int target_pstate, bool fast_switch)
2702 {
2703 struct cpudata *cpu = all_cpu_data[policy->cpu];
2704 int old_pstate = cpu->pstate.current_pstate;
2705
2706 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2707 if (hwp_active) {
2708 int max_pstate = policy->strict_target ?
2709 target_pstate : cpu->max_perf_ratio;
2710
2711 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2712 fast_switch);
2713 } else if (target_pstate != old_pstate) {
2714 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2715 }
2716
2717 cpu->pstate.current_pstate = target_pstate;
2718
2719 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2720 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2721
2722 return target_pstate;
2723 }
2724
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2725 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2726 unsigned int target_freq,
2727 unsigned int relation)
2728 {
2729 struct cpudata *cpu = all_cpu_data[policy->cpu];
2730 struct cpufreq_freqs freqs;
2731 int target_pstate;
2732
2733 update_turbo_state();
2734
2735 freqs.old = policy->cur;
2736 freqs.new = target_freq;
2737
2738 cpufreq_freq_transition_begin(policy, &freqs);
2739
2740 switch (relation) {
2741 case CPUFREQ_RELATION_L:
2742 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2743 break;
2744 case CPUFREQ_RELATION_H:
2745 target_pstate = freqs.new / cpu->pstate.scaling;
2746 break;
2747 default:
2748 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2749 break;
2750 }
2751
2752 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2753
2754 freqs.new = target_pstate * cpu->pstate.scaling;
2755
2756 cpufreq_freq_transition_end(policy, &freqs, false);
2757
2758 return 0;
2759 }
2760
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2761 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2762 unsigned int target_freq)
2763 {
2764 struct cpudata *cpu = all_cpu_data[policy->cpu];
2765 int target_pstate;
2766
2767 update_turbo_state();
2768
2769 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2770
2771 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2772
2773 return target_pstate * cpu->pstate.scaling;
2774 }
2775
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2776 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2777 unsigned long min_perf,
2778 unsigned long target_perf,
2779 unsigned long capacity)
2780 {
2781 struct cpudata *cpu = all_cpu_data[cpunum];
2782 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2783 int old_pstate = cpu->pstate.current_pstate;
2784 int cap_pstate, min_pstate, max_pstate, target_pstate;
2785
2786 update_turbo_state();
2787 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2788 HWP_HIGHEST_PERF(hwp_cap);
2789
2790 /* Optimization: Avoid unnecessary divisions. */
2791
2792 target_pstate = cap_pstate;
2793 if (target_perf < capacity)
2794 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2795
2796 min_pstate = cap_pstate;
2797 if (min_perf < capacity)
2798 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2799
2800 if (min_pstate < cpu->pstate.min_pstate)
2801 min_pstate = cpu->pstate.min_pstate;
2802
2803 if (min_pstate < cpu->min_perf_ratio)
2804 min_pstate = cpu->min_perf_ratio;
2805
2806 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2807 if (max_pstate < min_pstate)
2808 max_pstate = min_pstate;
2809
2810 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2811
2812 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2813
2814 cpu->pstate.current_pstate = target_pstate;
2815 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2816 }
2817
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2818 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2819 {
2820 struct freq_qos_request *req;
2821 struct cpudata *cpu;
2822 struct device *dev;
2823 int ret, freq;
2824
2825 dev = get_cpu_device(policy->cpu);
2826 if (!dev)
2827 return -ENODEV;
2828
2829 ret = __intel_pstate_cpu_init(policy);
2830 if (ret)
2831 return ret;
2832
2833 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2834 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2835 policy->cur = policy->cpuinfo.min_freq;
2836
2837 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2838 if (!req) {
2839 ret = -ENOMEM;
2840 goto pstate_exit;
2841 }
2842
2843 cpu = all_cpu_data[policy->cpu];
2844
2845 if (hwp_active) {
2846 u64 value;
2847
2848 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2849
2850 intel_pstate_get_hwp_cap(cpu);
2851
2852 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2853 WRITE_ONCE(cpu->hwp_req_cached, value);
2854
2855 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2856 } else {
2857 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2858 }
2859
2860 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2861
2862 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2863 freq);
2864 if (ret < 0) {
2865 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2866 goto free_req;
2867 }
2868
2869 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2870
2871 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2872 freq);
2873 if (ret < 0) {
2874 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2875 goto remove_min_req;
2876 }
2877
2878 policy->driver_data = req;
2879
2880 return 0;
2881
2882 remove_min_req:
2883 freq_qos_remove_request(req);
2884 free_req:
2885 kfree(req);
2886 pstate_exit:
2887 intel_pstate_exit_perf_limits(policy);
2888
2889 return ret;
2890 }
2891
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)2892 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2893 {
2894 struct freq_qos_request *req;
2895
2896 req = policy->driver_data;
2897
2898 freq_qos_remove_request(req + 1);
2899 freq_qos_remove_request(req);
2900 kfree(req);
2901
2902 return intel_pstate_cpu_exit(policy);
2903 }
2904
2905 static struct cpufreq_driver intel_cpufreq = {
2906 .flags = CPUFREQ_CONST_LOOPS,
2907 .verify = intel_cpufreq_verify_policy,
2908 .target = intel_cpufreq_target,
2909 .fast_switch = intel_cpufreq_fast_switch,
2910 .init = intel_cpufreq_cpu_init,
2911 .exit = intel_cpufreq_cpu_exit,
2912 .offline = intel_cpufreq_cpu_offline,
2913 .online = intel_pstate_cpu_online,
2914 .suspend = intel_pstate_suspend,
2915 .resume = intel_pstate_resume,
2916 .update_limits = intel_pstate_update_limits,
2917 .name = "intel_cpufreq",
2918 };
2919
2920 static struct cpufreq_driver *default_driver;
2921
intel_pstate_driver_cleanup(void)2922 static void intel_pstate_driver_cleanup(void)
2923 {
2924 unsigned int cpu;
2925
2926 cpus_read_lock();
2927 for_each_online_cpu(cpu) {
2928 if (all_cpu_data[cpu]) {
2929 if (intel_pstate_driver == &intel_pstate)
2930 intel_pstate_clear_update_util_hook(cpu);
2931
2932 kfree(all_cpu_data[cpu]);
2933 all_cpu_data[cpu] = NULL;
2934 }
2935 }
2936 cpus_read_unlock();
2937
2938 intel_pstate_driver = NULL;
2939 }
2940
intel_pstate_register_driver(struct cpufreq_driver * driver)2941 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2942 {
2943 int ret;
2944
2945 if (driver == &intel_pstate)
2946 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2947
2948 memset(&global, 0, sizeof(global));
2949 global.max_perf_pct = 100;
2950
2951 intel_pstate_driver = driver;
2952 ret = cpufreq_register_driver(intel_pstate_driver);
2953 if (ret) {
2954 intel_pstate_driver_cleanup();
2955 return ret;
2956 }
2957
2958 global.min_perf_pct = min_perf_pct_min();
2959
2960 return 0;
2961 }
2962
intel_pstate_show_status(char * buf)2963 static ssize_t intel_pstate_show_status(char *buf)
2964 {
2965 if (!intel_pstate_driver)
2966 return sprintf(buf, "off\n");
2967
2968 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2969 "active" : "passive");
2970 }
2971
intel_pstate_update_status(const char * buf,size_t size)2972 static int intel_pstate_update_status(const char *buf, size_t size)
2973 {
2974 if (size == 3 && !strncmp(buf, "off", size)) {
2975 if (!intel_pstate_driver)
2976 return -EINVAL;
2977
2978 if (hwp_active)
2979 return -EBUSY;
2980
2981 cpufreq_unregister_driver(intel_pstate_driver);
2982 intel_pstate_driver_cleanup();
2983 return 0;
2984 }
2985
2986 if (size == 6 && !strncmp(buf, "active", size)) {
2987 if (intel_pstate_driver) {
2988 if (intel_pstate_driver == &intel_pstate)
2989 return 0;
2990
2991 cpufreq_unregister_driver(intel_pstate_driver);
2992 }
2993
2994 return intel_pstate_register_driver(&intel_pstate);
2995 }
2996
2997 if (size == 7 && !strncmp(buf, "passive", size)) {
2998 if (intel_pstate_driver) {
2999 if (intel_pstate_driver == &intel_cpufreq)
3000 return 0;
3001
3002 cpufreq_unregister_driver(intel_pstate_driver);
3003 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3004 }
3005
3006 return intel_pstate_register_driver(&intel_cpufreq);
3007 }
3008
3009 return -EINVAL;
3010 }
3011
3012 static int no_load __initdata;
3013 static int no_hwp __initdata;
3014 static int hwp_only __initdata;
3015 static unsigned int force_load __initdata;
3016
intel_pstate_msrs_not_valid(void)3017 static int __init intel_pstate_msrs_not_valid(void)
3018 {
3019 if (!pstate_funcs.get_max() ||
3020 !pstate_funcs.get_min() ||
3021 !pstate_funcs.get_turbo())
3022 return -ENODEV;
3023
3024 return 0;
3025 }
3026
copy_cpu_funcs(struct pstate_funcs * funcs)3027 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3028 {
3029 pstate_funcs.get_max = funcs->get_max;
3030 pstate_funcs.get_max_physical = funcs->get_max_physical;
3031 pstate_funcs.get_min = funcs->get_min;
3032 pstate_funcs.get_turbo = funcs->get_turbo;
3033 pstate_funcs.get_scaling = funcs->get_scaling;
3034 pstate_funcs.get_val = funcs->get_val;
3035 pstate_funcs.get_vid = funcs->get_vid;
3036 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3037 }
3038
3039 #ifdef CONFIG_ACPI
3040
intel_pstate_no_acpi_pss(void)3041 static bool __init intel_pstate_no_acpi_pss(void)
3042 {
3043 int i;
3044
3045 for_each_possible_cpu(i) {
3046 acpi_status status;
3047 union acpi_object *pss;
3048 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3049 struct acpi_processor *pr = per_cpu(processors, i);
3050
3051 if (!pr)
3052 continue;
3053
3054 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3055 if (ACPI_FAILURE(status))
3056 continue;
3057
3058 pss = buffer.pointer;
3059 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3060 kfree(pss);
3061 return false;
3062 }
3063
3064 kfree(pss);
3065 }
3066
3067 pr_debug("ACPI _PSS not found\n");
3068 return true;
3069 }
3070
intel_pstate_no_acpi_pcch(void)3071 static bool __init intel_pstate_no_acpi_pcch(void)
3072 {
3073 acpi_status status;
3074 acpi_handle handle;
3075
3076 status = acpi_get_handle(NULL, "\\_SB", &handle);
3077 if (ACPI_FAILURE(status))
3078 goto not_found;
3079
3080 if (acpi_has_method(handle, "PCCH"))
3081 return false;
3082
3083 not_found:
3084 pr_debug("ACPI PCCH not found\n");
3085 return true;
3086 }
3087
intel_pstate_has_acpi_ppc(void)3088 static bool __init intel_pstate_has_acpi_ppc(void)
3089 {
3090 int i;
3091
3092 for_each_possible_cpu(i) {
3093 struct acpi_processor *pr = per_cpu(processors, i);
3094
3095 if (!pr)
3096 continue;
3097 if (acpi_has_method(pr->handle, "_PPC"))
3098 return true;
3099 }
3100 pr_debug("ACPI _PPC not found\n");
3101 return false;
3102 }
3103
3104 enum {
3105 PSS,
3106 PPC,
3107 };
3108
3109 /* Hardware vendor-specific info that has its own power management modes */
3110 static struct acpi_platform_list plat_info[] __initdata = {
3111 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3112 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3113 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3114 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3115 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3116 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3117 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3118 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3119 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3120 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3121 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3122 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3123 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3124 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3125 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3126 { } /* End */
3127 };
3128
3129 #define BITMASK_OOB (BIT(8) | BIT(18))
3130
intel_pstate_platform_pwr_mgmt_exists(void)3131 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3132 {
3133 const struct x86_cpu_id *id;
3134 u64 misc_pwr;
3135 int idx;
3136
3137 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3138 if (id) {
3139 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3140 if (misc_pwr & BITMASK_OOB) {
3141 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3142 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3143 return true;
3144 }
3145 }
3146
3147 idx = acpi_match_platform_list(plat_info);
3148 if (idx < 0)
3149 return false;
3150
3151 switch (plat_info[idx].data) {
3152 case PSS:
3153 if (!intel_pstate_no_acpi_pss())
3154 return false;
3155
3156 return intel_pstate_no_acpi_pcch();
3157 case PPC:
3158 return intel_pstate_has_acpi_ppc() && !force_load;
3159 }
3160
3161 return false;
3162 }
3163
intel_pstate_request_control_from_smm(void)3164 static void intel_pstate_request_control_from_smm(void)
3165 {
3166 /*
3167 * It may be unsafe to request P-states control from SMM if _PPC support
3168 * has not been enabled.
3169 */
3170 if (acpi_ppc)
3171 acpi_processor_pstate_control();
3172 }
3173 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3174 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3175 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3176 static inline void intel_pstate_request_control_from_smm(void) {}
3177 #endif /* CONFIG_ACPI */
3178
3179 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3180
3181 #define X86_MATCH_HWP(model, hwp_mode) \
3182 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3183 X86_FEATURE_HWP, hwp_mode)
3184
3185 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3186 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3187 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3188 X86_MATCH_HWP(ANY, 0),
3189 {}
3190 };
3191
intel_pstate_hwp_is_enabled(void)3192 static bool intel_pstate_hwp_is_enabled(void)
3193 {
3194 u64 value;
3195
3196 rdmsrl(MSR_PM_ENABLE, value);
3197 return !!(value & 0x1);
3198 }
3199
intel_pstate_init(void)3200 static int __init intel_pstate_init(void)
3201 {
3202 const struct x86_cpu_id *id;
3203 int rc;
3204
3205 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3206 return -ENODEV;
3207
3208 id = x86_match_cpu(hwp_support_ids);
3209 if (id) {
3210 bool hwp_forced = intel_pstate_hwp_is_enabled();
3211
3212 if (hwp_forced)
3213 pr_info("HWP enabled by BIOS\n");
3214 else if (no_load)
3215 return -ENODEV;
3216
3217 copy_cpu_funcs(&core_funcs);
3218 /*
3219 * Avoid enabling HWP for processors without EPP support,
3220 * because that means incomplete HWP implementation which is a
3221 * corner case and supporting it is generally problematic.
3222 *
3223 * If HWP is enabled already, though, there is no choice but to
3224 * deal with it.
3225 */
3226 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3227 hwp_active++;
3228 hwp_mode_bdw = id->driver_data;
3229 intel_pstate.attr = hwp_cpufreq_attrs;
3230 intel_cpufreq.attr = hwp_cpufreq_attrs;
3231 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3232 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3233 if (!default_driver)
3234 default_driver = &intel_pstate;
3235
3236 if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3237 intel_pstate_cppc_set_cpu_scaling();
3238
3239 goto hwp_cpu_matched;
3240 }
3241 pr_info("HWP not enabled\n");
3242 } else {
3243 if (no_load)
3244 return -ENODEV;
3245
3246 id = x86_match_cpu(intel_pstate_cpu_ids);
3247 if (!id) {
3248 pr_info("CPU model not supported\n");
3249 return -ENODEV;
3250 }
3251
3252 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3253 }
3254
3255 if (intel_pstate_msrs_not_valid()) {
3256 pr_info("Invalid MSRs\n");
3257 return -ENODEV;
3258 }
3259 /* Without HWP start in the passive mode. */
3260 if (!default_driver)
3261 default_driver = &intel_cpufreq;
3262
3263 hwp_cpu_matched:
3264 /*
3265 * The Intel pstate driver will be ignored if the platform
3266 * firmware has its own power management modes.
3267 */
3268 if (intel_pstate_platform_pwr_mgmt_exists()) {
3269 pr_info("P-states controlled by the platform\n");
3270 return -ENODEV;
3271 }
3272
3273 if (!hwp_active && hwp_only)
3274 return -ENOTSUPP;
3275
3276 pr_info("Intel P-state driver initializing\n");
3277
3278 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3279 if (!all_cpu_data)
3280 return -ENOMEM;
3281
3282 intel_pstate_request_control_from_smm();
3283
3284 intel_pstate_sysfs_expose_params();
3285
3286 mutex_lock(&intel_pstate_driver_lock);
3287 rc = intel_pstate_register_driver(default_driver);
3288 mutex_unlock(&intel_pstate_driver_lock);
3289 if (rc) {
3290 intel_pstate_sysfs_remove();
3291 return rc;
3292 }
3293
3294 if (hwp_active) {
3295 const struct x86_cpu_id *id;
3296
3297 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3298 if (id) {
3299 set_power_ctl_ee_state(false);
3300 pr_info("Disabling energy efficiency optimization\n");
3301 }
3302
3303 pr_info("HWP enabled\n");
3304 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3305 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3306 }
3307
3308 return 0;
3309 }
3310 device_initcall(intel_pstate_init);
3311
intel_pstate_setup(char * str)3312 static int __init intel_pstate_setup(char *str)
3313 {
3314 if (!str)
3315 return -EINVAL;
3316
3317 if (!strcmp(str, "disable"))
3318 no_load = 1;
3319 else if (!strcmp(str, "active"))
3320 default_driver = &intel_pstate;
3321 else if (!strcmp(str, "passive"))
3322 default_driver = &intel_cpufreq;
3323
3324 if (!strcmp(str, "no_hwp"))
3325 no_hwp = 1;
3326
3327 if (!strcmp(str, "force"))
3328 force_load = 1;
3329 if (!strcmp(str, "hwp_only"))
3330 hwp_only = 1;
3331 if (!strcmp(str, "per_cpu_perf_limits"))
3332 per_cpu_limits = true;
3333
3334 #ifdef CONFIG_ACPI
3335 if (!strcmp(str, "support_acpi_ppc"))
3336 acpi_ppc = true;
3337 #endif
3338
3339 return 0;
3340 }
3341 early_param("intel_pstate", intel_pstate_setup);
3342
3343 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3344 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3345 MODULE_LICENSE("GPL");
3346