1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
mul_fp(int32_t x,int32_t y)58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
div_fp(s64 x,s64 y)63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
ceiling_fp(int32_t x)68 static inline int ceiling_fp(int32_t x)
69 {
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77 }
78
percent_fp(int percent)79 static inline int32_t percent_fp(int percent)
80 {
81 return div_fp(percent, 100);
82 }
83
mul_ext_fp(u64 x,u64 y)84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 return (x * y) >> EXT_FRAC_BITS;
87 }
88
div_ext_fp(u64 x,u64 y)89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
percent_ext_fp(int percent)94 static inline int32_t percent_ext_fp(int percent)
95 {
96 return div_ext_fp(percent, 100);
97 }
98
99 /**
100 * struct sample - Store performance sample
101 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
102 * performance during last sample period
103 * @busy_scaled: Scaled busy value which is used to calculate next
104 * P state. This can be different than core_avg_perf
105 * to account for cpu idle period
106 * @aperf: Difference of actual performance frequency clock count
107 * read from APERF MSR between last and current sample
108 * @mperf: Difference of maximum performance frequency clock count
109 * read from MPERF MSR between last and current sample
110 * @tsc: Difference of time stamp counter between last and
111 * current sample
112 * @time: Current time from scheduler
113 *
114 * This structure is used in the cpudata structure to store performance sample
115 * data for choosing next P State.
116 */
117 struct sample {
118 int32_t core_avg_perf;
119 int32_t busy_scaled;
120 u64 aperf;
121 u64 mperf;
122 u64 tsc;
123 u64 time;
124 };
125
126 /**
127 * struct pstate_data - Store P state data
128 * @current_pstate: Current requested P state
129 * @min_pstate: Min P state possible for this platform
130 * @max_pstate: Max P state possible for this platform
131 * @max_pstate_physical:This is physical Max P state for a processor
132 * This can be higher than the max_pstate which can
133 * be limited by platform thermal design power limits
134 * @scaling: Scaling factor to convert frequency to cpufreq
135 * frequency units
136 * @turbo_pstate: Max Turbo P state possible for this platform
137 * @max_freq: @max_pstate frequency in cpufreq units
138 * @turbo_freq: @turbo_pstate frequency in cpufreq units
139 *
140 * Stores the per cpu model P state limits and current P state.
141 */
142 struct pstate_data {
143 int current_pstate;
144 int min_pstate;
145 int max_pstate;
146 int max_pstate_physical;
147 int scaling;
148 int turbo_pstate;
149 unsigned int max_freq;
150 unsigned int turbo_freq;
151 };
152
153 /**
154 * struct vid_data - Stores voltage information data
155 * @min: VID data for this platform corresponding to
156 * the lowest P state
157 * @max: VID data corresponding to the highest P State.
158 * @turbo: VID data for turbo P state
159 * @ratio: Ratio of (vid max - vid min) /
160 * (max P state - Min P State)
161 *
162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163 * This data is used in Atom platforms, where in addition to target P state,
164 * the voltage data needs to be specified to select next P State.
165 */
166 struct vid_data {
167 int min;
168 int max;
169 int turbo;
170 int32_t ratio;
171 };
172
173 /**
174 * struct global_params - Global parameters, mostly tunable via sysfs.
175 * @no_turbo: Whether or not to use turbo P-states.
176 * @turbo_disabled: Whethet or not turbo P-states are available at all,
177 * based on the MSR_IA32_MISC_ENABLE value and whether or
178 * not the maximum reported turbo P-state is different from
179 * the maximum reported non-turbo one.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 */
185 struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 int max_perf_pct;
189 int min_perf_pct;
190 };
191
192 /**
193 * struct cpudata - Per CPU instance data storage
194 * @cpu: CPU number for this instance data
195 * @policy: CPUFreq policy value
196 * @update_util: CPUFreq utility callback information
197 * @update_util_set: CPUFreq utility callback is set
198 * @iowait_boost: iowait-related boost fraction
199 * @last_update: Time of the last update.
200 * @pstate: Stores P state limits for this CPU
201 * @vid: Stores VID limits for this CPU
202 * @last_sample_time: Last Sample time
203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
204 * This shift is a multiplier to mperf delta to
205 * calculate CPU busy.
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
210 * current sample
211 * @sample: Storage for storing last Sample data
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
219 * @epp_policy: Last saved policy used to set EPP/EPB
220 * @epp_default: Power on default HWP energy performance
221 * preference/bias
222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
223 * operation
224 * @hwp_req_cached: Cached value of the last HWP Request MSR
225 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
226 * @last_io_update: Last time when IO wake flag was set
227 * @sched_flags: Store scheduler flags for possible cross CPU update
228 * @hwp_boost_min: Last HWP boosted min performance
229 *
230 * This structure stores per CPU instance data for all CPUs.
231 */
232 struct cpudata {
233 int cpu;
234
235 unsigned int policy;
236 struct update_util_data update_util;
237 bool update_util_set;
238
239 struct pstate_data pstate;
240 struct vid_data vid;
241
242 u64 last_update;
243 u64 last_sample_time;
244 u64 aperf_mperf_shift;
245 u64 prev_aperf;
246 u64 prev_mperf;
247 u64 prev_tsc;
248 u64 prev_cummulative_iowait;
249 struct sample sample;
250 int32_t min_perf_ratio;
251 int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 struct acpi_processor_performance acpi_perf_data;
254 bool valid_pss_table;
255 #endif
256 unsigned int iowait_boost;
257 s16 epp_powersave;
258 s16 epp_policy;
259 s16 epp_default;
260 s16 epp_saved;
261 u64 hwp_req_cached;
262 u64 hwp_cap_cached;
263 u64 last_io_update;
264 unsigned int sched_flags;
265 u32 hwp_boost_min;
266 };
267
268 static struct cpudata **all_cpu_data;
269
270 /**
271 * struct pstate_funcs - Per CPU model specific callbacks
272 * @get_max: Callback to get maximum non turbo effective P state
273 * @get_max_physical: Callback to get maximum non turbo physical P state
274 * @get_min: Callback to get minimum P state
275 * @get_turbo: Callback to get turbo P state
276 * @get_scaling: Callback to get frequency scaling factor
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283 struct pstate_funcs {
284 int (*get_max)(void);
285 int (*get_max_physical)(void);
286 int (*get_min)(void);
287 int (*get_turbo)(void);
288 int (*get_scaling)(void);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
intel_pstate_acpi_pm_profile_server(void)314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 return true;
319
320 return false;
321 }
322
intel_pstate_get_ppc_enable_status(void)323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 if (intel_pstate_acpi_pm_profile_server())
326 return true;
327
328 return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
intel_pstate_set_itmt_prio(int cpu)341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 struct cppc_perf_caps cppc_perf;
344 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 int ret;
346
347 ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 if (ret)
349 return;
350
351 /*
352 * The priorities can be set regardless of whether or not
353 * sched_set_itmt_support(true) has been called and it is valid to
354 * update them at any time after it has been called.
355 */
356 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358 if (max_highest_perf <= min_highest_perf) {
359 if (cppc_perf.highest_perf > max_highest_perf)
360 max_highest_perf = cppc_perf.highest_perf;
361
362 if (cppc_perf.highest_perf < min_highest_perf)
363 min_highest_perf = cppc_perf.highest_perf;
364
365 if (max_highest_perf > min_highest_perf) {
366 /*
367 * This code can be run during CPU online under the
368 * CPU hotplug locks, so sched_set_itmt_support()
369 * cannot be called from here. Queue up a work item
370 * to invoke it.
371 */
372 schedule_work(&sched_itmt_work);
373 }
374 }
375 }
376 #else
intel_pstate_set_itmt_prio(int cpu)377 static void intel_pstate_set_itmt_prio(int cpu)
378 {
379 }
380 #endif
381
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)382 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
383 {
384 struct cpudata *cpu;
385 int ret;
386 int i;
387
388 if (hwp_active) {
389 intel_pstate_set_itmt_prio(policy->cpu);
390 return;
391 }
392
393 if (!intel_pstate_get_ppc_enable_status())
394 return;
395
396 cpu = all_cpu_data[policy->cpu];
397
398 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
399 policy->cpu);
400 if (ret)
401 return;
402
403 /*
404 * Check if the control value in _PSS is for PERF_CTL MSR, which should
405 * guarantee that the states returned by it map to the states in our
406 * list directly.
407 */
408 if (cpu->acpi_perf_data.control_register.space_id !=
409 ACPI_ADR_SPACE_FIXED_HARDWARE)
410 goto err;
411
412 /*
413 * If there is only one entry _PSS, simply ignore _PSS and continue as
414 * usual without taking _PSS into account
415 */
416 if (cpu->acpi_perf_data.state_count < 2)
417 goto err;
418
419 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
420 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
421 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
422 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
423 (u32) cpu->acpi_perf_data.states[i].core_frequency,
424 (u32) cpu->acpi_perf_data.states[i].power,
425 (u32) cpu->acpi_perf_data.states[i].control);
426 }
427
428 /*
429 * The _PSS table doesn't contain whole turbo frequency range.
430 * This just contains +1 MHZ above the max non turbo frequency,
431 * with control value corresponding to max turbo ratio. But
432 * when cpufreq set policy is called, it will call with this
433 * max frequency, which will cause a reduced performance as
434 * this driver uses real max turbo frequency as the max
435 * frequency. So correct this frequency in _PSS table to
436 * correct max turbo frequency based on the turbo state.
437 * Also need to convert to MHz as _PSS freq is in MHz.
438 */
439 if (!global.turbo_disabled)
440 cpu->acpi_perf_data.states[0].core_frequency =
441 policy->cpuinfo.max_freq / 1000;
442 cpu->valid_pss_table = true;
443 pr_debug("_PPC limits will be enforced\n");
444
445 return;
446
447 err:
448 cpu->valid_pss_table = false;
449 acpi_processor_unregister_performance(policy->cpu);
450 }
451
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)452 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
453 {
454 struct cpudata *cpu;
455
456 cpu = all_cpu_data[policy->cpu];
457 if (!cpu->valid_pss_table)
458 return;
459
460 acpi_processor_unregister_performance(policy->cpu);
461 }
462 #else
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)463 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 {
465 }
466
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)467 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470
intel_pstate_acpi_pm_profile_server(void)471 static inline bool intel_pstate_acpi_pm_profile_server(void)
472 {
473 return false;
474 }
475 #endif
476
update_turbo_state(void)477 static inline void update_turbo_state(void)
478 {
479 u64 misc_en;
480 struct cpudata *cpu;
481
482 cpu = all_cpu_data[0];
483 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484 global.turbo_disabled =
485 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
486 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
487 }
488
min_perf_pct_min(void)489 static int min_perf_pct_min(void)
490 {
491 struct cpudata *cpu = all_cpu_data[0];
492 int turbo_pstate = cpu->pstate.turbo_pstate;
493
494 return turbo_pstate ?
495 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 }
497
intel_pstate_get_epb(struct cpudata * cpu_data)498 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
499 {
500 u64 epb;
501 int ret;
502
503 if (!static_cpu_has(X86_FEATURE_EPB))
504 return -ENXIO;
505
506 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
507 if (ret)
508 return (s16)ret;
509
510 return (s16)(epb & 0x0f);
511 }
512
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)513 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
514 {
515 s16 epp;
516
517 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
518 /*
519 * When hwp_req_data is 0, means that caller didn't read
520 * MSR_HWP_REQUEST, so need to read and get EPP.
521 */
522 if (!hwp_req_data) {
523 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
524 &hwp_req_data);
525 if (epp)
526 return epp;
527 }
528 epp = (hwp_req_data >> 24) & 0xff;
529 } else {
530 /* When there is no EPP present, HWP uses EPB settings */
531 epp = intel_pstate_get_epb(cpu_data);
532 }
533
534 return epp;
535 }
536
intel_pstate_set_epb(int cpu,s16 pref)537 static int intel_pstate_set_epb(int cpu, s16 pref)
538 {
539 u64 epb;
540 int ret;
541
542 if (!static_cpu_has(X86_FEATURE_EPB))
543 return -ENXIO;
544
545 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
546 if (ret)
547 return ret;
548
549 epb = (epb & ~0x0f) | pref;
550 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551
552 return 0;
553 }
554
555 /*
556 * EPP/EPB display strings corresponding to EPP index in the
557 * energy_perf_strings[]
558 * index String
559 *-------------------------------------
560 * 0 default
561 * 1 performance
562 * 2 balance_performance
563 * 3 balance_power
564 * 4 power
565 */
566 static const char * const energy_perf_strings[] = {
567 "default",
568 "performance",
569 "balance_performance",
570 "balance_power",
571 "power",
572 NULL
573 };
574 static const unsigned int epp_values[] = {
575 HWP_EPP_PERFORMANCE,
576 HWP_EPP_BALANCE_PERFORMANCE,
577 HWP_EPP_BALANCE_POWERSAVE,
578 HWP_EPP_POWERSAVE
579 };
580
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data)581 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
582 {
583 s16 epp;
584 int index = -EINVAL;
585
586 epp = intel_pstate_get_epp(cpu_data, 0);
587 if (epp < 0)
588 return epp;
589
590 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591 if (epp == HWP_EPP_PERFORMANCE)
592 return 1;
593 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
594 return 2;
595 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
596 return 3;
597 else
598 return 4;
599 } else if (static_cpu_has(X86_FEATURE_EPB)) {
600 /*
601 * Range:
602 * 0x00-0x03 : Performance
603 * 0x04-0x07 : Balance performance
604 * 0x08-0x0B : Balance power
605 * 0x0C-0x0F : Power
606 * The EPB is a 4 bit value, but our ranges restrict the
607 * value which can be set. Here only using top two bits
608 * effectively.
609 */
610 index = (epp >> 2) + 1;
611 }
612
613 return index;
614 }
615
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index)616 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
617 int pref_index)
618 {
619 int epp = -EINVAL;
620 int ret;
621
622 if (!pref_index)
623 epp = cpu_data->epp_default;
624
625 mutex_lock(&intel_pstate_limits_lock);
626
627 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
628 u64 value;
629
630 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
631 if (ret)
632 goto return_pref;
633
634 value &= ~GENMASK_ULL(31, 24);
635
636 if (epp == -EINVAL)
637 epp = epp_values[pref_index - 1];
638
639 value |= (u64)epp << 24;
640 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
641 } else {
642 if (epp == -EINVAL)
643 epp = (pref_index - 1) << 2;
644 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
645 }
646 return_pref:
647 mutex_unlock(&intel_pstate_limits_lock);
648
649 return ret;
650 }
651
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)652 static ssize_t show_energy_performance_available_preferences(
653 struct cpufreq_policy *policy, char *buf)
654 {
655 int i = 0;
656 int ret = 0;
657
658 while (energy_perf_strings[i] != NULL)
659 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
660
661 ret += sprintf(&buf[ret], "\n");
662
663 return ret;
664 }
665
666 cpufreq_freq_attr_ro(energy_performance_available_preferences);
667
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)668 static ssize_t store_energy_performance_preference(
669 struct cpufreq_policy *policy, const char *buf, size_t count)
670 {
671 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
672 char str_preference[21];
673 int ret;
674
675 ret = sscanf(buf, "%20s", str_preference);
676 if (ret != 1)
677 return -EINVAL;
678
679 ret = match_string(energy_perf_strings, -1, str_preference);
680 if (ret < 0)
681 return ret;
682
683 intel_pstate_set_energy_pref_index(cpu_data, ret);
684 return count;
685 }
686
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)687 static ssize_t show_energy_performance_preference(
688 struct cpufreq_policy *policy, char *buf)
689 {
690 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
691 int preference;
692
693 preference = intel_pstate_get_energy_pref_index(cpu_data);
694 if (preference < 0)
695 return preference;
696
697 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
698 }
699
700 cpufreq_freq_attr_rw(energy_performance_preference);
701
702 static struct freq_attr *hwp_cpufreq_attrs[] = {
703 &energy_performance_preference,
704 &energy_performance_available_preferences,
705 NULL,
706 };
707
intel_pstate_get_hwp_max(unsigned int cpu,int * phy_max,int * current_max)708 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
709 int *current_max)
710 {
711 u64 cap;
712
713 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
714 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
715 if (global.no_turbo)
716 *current_max = HWP_GUARANTEED_PERF(cap);
717 else
718 *current_max = HWP_HIGHEST_PERF(cap);
719
720 *phy_max = HWP_HIGHEST_PERF(cap);
721 }
722
intel_pstate_hwp_set(unsigned int cpu)723 static void intel_pstate_hwp_set(unsigned int cpu)
724 {
725 struct cpudata *cpu_data = all_cpu_data[cpu];
726 int max, min;
727 u64 value;
728 s16 epp;
729
730 max = cpu_data->max_perf_ratio;
731 min = cpu_data->min_perf_ratio;
732
733 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
734 min = max;
735
736 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
737
738 value &= ~HWP_MIN_PERF(~0L);
739 value |= HWP_MIN_PERF(min);
740
741 value &= ~HWP_MAX_PERF(~0L);
742 value |= HWP_MAX_PERF(max);
743
744 if (cpu_data->epp_policy == cpu_data->policy)
745 goto skip_epp;
746
747 cpu_data->epp_policy = cpu_data->policy;
748
749 if (cpu_data->epp_saved >= 0) {
750 epp = cpu_data->epp_saved;
751 cpu_data->epp_saved = -EINVAL;
752 goto update_epp;
753 }
754
755 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
756 epp = intel_pstate_get_epp(cpu_data, value);
757 cpu_data->epp_powersave = epp;
758 /* If EPP read was failed, then don't try to write */
759 if (epp < 0)
760 goto skip_epp;
761
762 epp = 0;
763 } else {
764 /* skip setting EPP, when saved value is invalid */
765 if (cpu_data->epp_powersave < 0)
766 goto skip_epp;
767
768 /*
769 * No need to restore EPP when it is not zero. This
770 * means:
771 * - Policy is not changed
772 * - user has manually changed
773 * - Error reading EPB
774 */
775 epp = intel_pstate_get_epp(cpu_data, value);
776 if (epp)
777 goto skip_epp;
778
779 epp = cpu_data->epp_powersave;
780 }
781 update_epp:
782 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
783 value &= ~GENMASK_ULL(31, 24);
784 value |= (u64)epp << 24;
785 } else {
786 intel_pstate_set_epb(cpu, epp);
787 }
788 skip_epp:
789 WRITE_ONCE(cpu_data->hwp_req_cached, value);
790 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
791 }
792
intel_pstate_hwp_save_state(struct cpufreq_policy * policy)793 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
794 {
795 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
796
797 if (!hwp_active)
798 return 0;
799
800 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
801
802 return 0;
803 }
804
805 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
806
intel_pstate_resume(struct cpufreq_policy * policy)807 static int intel_pstate_resume(struct cpufreq_policy *policy)
808 {
809 if (!hwp_active)
810 return 0;
811
812 mutex_lock(&intel_pstate_limits_lock);
813
814 if (policy->cpu == 0)
815 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
816
817 all_cpu_data[policy->cpu]->epp_policy = 0;
818 intel_pstate_hwp_set(policy->cpu);
819
820 mutex_unlock(&intel_pstate_limits_lock);
821
822 return 0;
823 }
824
intel_pstate_update_policies(void)825 static void intel_pstate_update_policies(void)
826 {
827 int cpu;
828
829 for_each_possible_cpu(cpu)
830 cpufreq_update_policy(cpu);
831 }
832
833 /************************** sysfs begin ************************/
834 #define show_one(file_name, object) \
835 static ssize_t show_##file_name \
836 (struct kobject *kobj, struct attribute *attr, char *buf) \
837 { \
838 return sprintf(buf, "%u\n", global.object); \
839 }
840
841 static ssize_t intel_pstate_show_status(char *buf);
842 static int intel_pstate_update_status(const char *buf, size_t size);
843
show_status(struct kobject * kobj,struct attribute * attr,char * buf)844 static ssize_t show_status(struct kobject *kobj,
845 struct attribute *attr, char *buf)
846 {
847 ssize_t ret;
848
849 mutex_lock(&intel_pstate_driver_lock);
850 ret = intel_pstate_show_status(buf);
851 mutex_unlock(&intel_pstate_driver_lock);
852
853 return ret;
854 }
855
store_status(struct kobject * a,struct attribute * b,const char * buf,size_t count)856 static ssize_t store_status(struct kobject *a, struct attribute *b,
857 const char *buf, size_t count)
858 {
859 char *p = memchr(buf, '\n', count);
860 int ret;
861
862 mutex_lock(&intel_pstate_driver_lock);
863 ret = intel_pstate_update_status(buf, p ? p - buf : count);
864 mutex_unlock(&intel_pstate_driver_lock);
865
866 return ret < 0 ? ret : count;
867 }
868
show_turbo_pct(struct kobject * kobj,struct attribute * attr,char * buf)869 static ssize_t show_turbo_pct(struct kobject *kobj,
870 struct attribute *attr, char *buf)
871 {
872 struct cpudata *cpu;
873 int total, no_turbo, turbo_pct;
874 uint32_t turbo_fp;
875
876 mutex_lock(&intel_pstate_driver_lock);
877
878 if (!intel_pstate_driver) {
879 mutex_unlock(&intel_pstate_driver_lock);
880 return -EAGAIN;
881 }
882
883 cpu = all_cpu_data[0];
884
885 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
886 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
887 turbo_fp = div_fp(no_turbo, total);
888 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
889
890 mutex_unlock(&intel_pstate_driver_lock);
891
892 return sprintf(buf, "%u\n", turbo_pct);
893 }
894
show_num_pstates(struct kobject * kobj,struct attribute * attr,char * buf)895 static ssize_t show_num_pstates(struct kobject *kobj,
896 struct attribute *attr, char *buf)
897 {
898 struct cpudata *cpu;
899 int total;
900
901 mutex_lock(&intel_pstate_driver_lock);
902
903 if (!intel_pstate_driver) {
904 mutex_unlock(&intel_pstate_driver_lock);
905 return -EAGAIN;
906 }
907
908 cpu = all_cpu_data[0];
909 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
910
911 mutex_unlock(&intel_pstate_driver_lock);
912
913 return sprintf(buf, "%u\n", total);
914 }
915
show_no_turbo(struct kobject * kobj,struct attribute * attr,char * buf)916 static ssize_t show_no_turbo(struct kobject *kobj,
917 struct attribute *attr, char *buf)
918 {
919 ssize_t ret;
920
921 mutex_lock(&intel_pstate_driver_lock);
922
923 if (!intel_pstate_driver) {
924 mutex_unlock(&intel_pstate_driver_lock);
925 return -EAGAIN;
926 }
927
928 update_turbo_state();
929 if (global.turbo_disabled)
930 ret = sprintf(buf, "%u\n", global.turbo_disabled);
931 else
932 ret = sprintf(buf, "%u\n", global.no_turbo);
933
934 mutex_unlock(&intel_pstate_driver_lock);
935
936 return ret;
937 }
938
store_no_turbo(struct kobject * a,struct attribute * b,const char * buf,size_t count)939 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
940 const char *buf, size_t count)
941 {
942 unsigned int input;
943 int ret;
944
945 ret = sscanf(buf, "%u", &input);
946 if (ret != 1)
947 return -EINVAL;
948
949 mutex_lock(&intel_pstate_driver_lock);
950
951 if (!intel_pstate_driver) {
952 mutex_unlock(&intel_pstate_driver_lock);
953 return -EAGAIN;
954 }
955
956 mutex_lock(&intel_pstate_limits_lock);
957
958 update_turbo_state();
959 if (global.turbo_disabled) {
960 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
961 mutex_unlock(&intel_pstate_limits_lock);
962 mutex_unlock(&intel_pstate_driver_lock);
963 return -EPERM;
964 }
965
966 global.no_turbo = clamp_t(int, input, 0, 1);
967
968 if (global.no_turbo) {
969 struct cpudata *cpu = all_cpu_data[0];
970 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
971
972 /* Squash the global minimum into the permitted range. */
973 if (global.min_perf_pct > pct)
974 global.min_perf_pct = pct;
975 }
976
977 mutex_unlock(&intel_pstate_limits_lock);
978
979 intel_pstate_update_policies();
980
981 mutex_unlock(&intel_pstate_driver_lock);
982
983 return count;
984 }
985
store_max_perf_pct(struct kobject * a,struct attribute * b,const char * buf,size_t count)986 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
987 const char *buf, size_t count)
988 {
989 unsigned int input;
990 int ret;
991
992 ret = sscanf(buf, "%u", &input);
993 if (ret != 1)
994 return -EINVAL;
995
996 mutex_lock(&intel_pstate_driver_lock);
997
998 if (!intel_pstate_driver) {
999 mutex_unlock(&intel_pstate_driver_lock);
1000 return -EAGAIN;
1001 }
1002
1003 mutex_lock(&intel_pstate_limits_lock);
1004
1005 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1006
1007 mutex_unlock(&intel_pstate_limits_lock);
1008
1009 intel_pstate_update_policies();
1010
1011 mutex_unlock(&intel_pstate_driver_lock);
1012
1013 return count;
1014 }
1015
store_min_perf_pct(struct kobject * a,struct attribute * b,const char * buf,size_t count)1016 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1017 const char *buf, size_t count)
1018 {
1019 unsigned int input;
1020 int ret;
1021
1022 ret = sscanf(buf, "%u", &input);
1023 if (ret != 1)
1024 return -EINVAL;
1025
1026 mutex_lock(&intel_pstate_driver_lock);
1027
1028 if (!intel_pstate_driver) {
1029 mutex_unlock(&intel_pstate_driver_lock);
1030 return -EAGAIN;
1031 }
1032
1033 mutex_lock(&intel_pstate_limits_lock);
1034
1035 global.min_perf_pct = clamp_t(int, input,
1036 min_perf_pct_min(), global.max_perf_pct);
1037
1038 mutex_unlock(&intel_pstate_limits_lock);
1039
1040 intel_pstate_update_policies();
1041
1042 mutex_unlock(&intel_pstate_driver_lock);
1043
1044 return count;
1045 }
1046
show_hwp_dynamic_boost(struct kobject * kobj,struct attribute * attr,char * buf)1047 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1048 struct attribute *attr, char *buf)
1049 {
1050 return sprintf(buf, "%u\n", hwp_boost);
1051 }
1052
store_hwp_dynamic_boost(struct kobject * a,struct attribute * b,const char * buf,size_t count)1053 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1054 const char *buf, size_t count)
1055 {
1056 unsigned int input;
1057 int ret;
1058
1059 ret = kstrtouint(buf, 10, &input);
1060 if (ret)
1061 return ret;
1062
1063 mutex_lock(&intel_pstate_driver_lock);
1064 hwp_boost = !!input;
1065 intel_pstate_update_policies();
1066 mutex_unlock(&intel_pstate_driver_lock);
1067
1068 return count;
1069 }
1070
1071 show_one(max_perf_pct, max_perf_pct);
1072 show_one(min_perf_pct, min_perf_pct);
1073
1074 define_one_global_rw(status);
1075 define_one_global_rw(no_turbo);
1076 define_one_global_rw(max_perf_pct);
1077 define_one_global_rw(min_perf_pct);
1078 define_one_global_ro(turbo_pct);
1079 define_one_global_ro(num_pstates);
1080 define_one_global_rw(hwp_dynamic_boost);
1081
1082 static struct attribute *intel_pstate_attributes[] = {
1083 &status.attr,
1084 &no_turbo.attr,
1085 &turbo_pct.attr,
1086 &num_pstates.attr,
1087 NULL
1088 };
1089
1090 static const struct attribute_group intel_pstate_attr_group = {
1091 .attrs = intel_pstate_attributes,
1092 };
1093
intel_pstate_sysfs_expose_params(void)1094 static void __init intel_pstate_sysfs_expose_params(void)
1095 {
1096 struct kobject *intel_pstate_kobject;
1097 int rc;
1098
1099 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1100 &cpu_subsys.dev_root->kobj);
1101 if (WARN_ON(!intel_pstate_kobject))
1102 return;
1103
1104 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1105 if (WARN_ON(rc))
1106 return;
1107
1108 /*
1109 * If per cpu limits are enforced there are no global limits, so
1110 * return without creating max/min_perf_pct attributes
1111 */
1112 if (per_cpu_limits)
1113 return;
1114
1115 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1116 WARN_ON(rc);
1117
1118 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1119 WARN_ON(rc);
1120
1121 if (hwp_active) {
1122 rc = sysfs_create_file(intel_pstate_kobject,
1123 &hwp_dynamic_boost.attr);
1124 WARN_ON(rc);
1125 }
1126 }
1127 /************************** sysfs end ************************/
1128
intel_pstate_hwp_enable(struct cpudata * cpudata)1129 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1130 {
1131 /* First disable HWP notification interrupt as we don't process them */
1132 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1133 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1134
1135 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1136 cpudata->epp_policy = 0;
1137 if (cpudata->epp_default == -EINVAL)
1138 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1139 }
1140
1141 #define MSR_IA32_POWER_CTL_BIT_EE 19
1142
1143 /* Disable energy efficiency optimization */
intel_pstate_disable_ee(int cpu)1144 static void intel_pstate_disable_ee(int cpu)
1145 {
1146 u64 power_ctl;
1147 int ret;
1148
1149 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1150 if (ret)
1151 return;
1152
1153 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1154 pr_info("Disabling energy efficiency optimization\n");
1155 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1156 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1157 }
1158 }
1159
atom_get_min_pstate(void)1160 static int atom_get_min_pstate(void)
1161 {
1162 u64 value;
1163
1164 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1165 return (value >> 8) & 0x7F;
1166 }
1167
atom_get_max_pstate(void)1168 static int atom_get_max_pstate(void)
1169 {
1170 u64 value;
1171
1172 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1173 return (value >> 16) & 0x7F;
1174 }
1175
atom_get_turbo_pstate(void)1176 static int atom_get_turbo_pstate(void)
1177 {
1178 u64 value;
1179
1180 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1181 return value & 0x7F;
1182 }
1183
atom_get_val(struct cpudata * cpudata,int pstate)1184 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1185 {
1186 u64 val;
1187 int32_t vid_fp;
1188 u32 vid;
1189
1190 val = (u64)pstate << 8;
1191 if (global.no_turbo && !global.turbo_disabled)
1192 val |= (u64)1 << 32;
1193
1194 vid_fp = cpudata->vid.min + mul_fp(
1195 int_tofp(pstate - cpudata->pstate.min_pstate),
1196 cpudata->vid.ratio);
1197
1198 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1199 vid = ceiling_fp(vid_fp);
1200
1201 if (pstate > cpudata->pstate.max_pstate)
1202 vid = cpudata->vid.turbo;
1203
1204 return val | vid;
1205 }
1206
silvermont_get_scaling(void)1207 static int silvermont_get_scaling(void)
1208 {
1209 u64 value;
1210 int i;
1211 /* Defined in Table 35-6 from SDM (Sept 2015) */
1212 static int silvermont_freq_table[] = {
1213 83300, 100000, 133300, 116700, 80000};
1214
1215 rdmsrl(MSR_FSB_FREQ, value);
1216 i = value & 0x7;
1217 WARN_ON(i > 4);
1218
1219 return silvermont_freq_table[i];
1220 }
1221
airmont_get_scaling(void)1222 static int airmont_get_scaling(void)
1223 {
1224 u64 value;
1225 int i;
1226 /* Defined in Table 35-10 from SDM (Sept 2015) */
1227 static int airmont_freq_table[] = {
1228 83300, 100000, 133300, 116700, 80000,
1229 93300, 90000, 88900, 87500};
1230
1231 rdmsrl(MSR_FSB_FREQ, value);
1232 i = value & 0xF;
1233 WARN_ON(i > 8);
1234
1235 return airmont_freq_table[i];
1236 }
1237
atom_get_vid(struct cpudata * cpudata)1238 static void atom_get_vid(struct cpudata *cpudata)
1239 {
1240 u64 value;
1241
1242 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1243 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1244 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1245 cpudata->vid.ratio = div_fp(
1246 cpudata->vid.max - cpudata->vid.min,
1247 int_tofp(cpudata->pstate.max_pstate -
1248 cpudata->pstate.min_pstate));
1249
1250 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1251 cpudata->vid.turbo = value & 0x7f;
1252 }
1253
core_get_min_pstate(void)1254 static int core_get_min_pstate(void)
1255 {
1256 u64 value;
1257
1258 rdmsrl(MSR_PLATFORM_INFO, value);
1259 return (value >> 40) & 0xFF;
1260 }
1261
core_get_max_pstate_physical(void)1262 static int core_get_max_pstate_physical(void)
1263 {
1264 u64 value;
1265
1266 rdmsrl(MSR_PLATFORM_INFO, value);
1267 return (value >> 8) & 0xFF;
1268 }
1269
core_get_tdp_ratio(u64 plat_info)1270 static int core_get_tdp_ratio(u64 plat_info)
1271 {
1272 /* Check how many TDP levels present */
1273 if (plat_info & 0x600000000) {
1274 u64 tdp_ctrl;
1275 u64 tdp_ratio;
1276 int tdp_msr;
1277 int err;
1278
1279 /* Get the TDP level (0, 1, 2) to get ratios */
1280 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1281 if (err)
1282 return err;
1283
1284 /* TDP MSR are continuous starting at 0x648 */
1285 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1286 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1287 if (err)
1288 return err;
1289
1290 /* For level 1 and 2, bits[23:16] contain the ratio */
1291 if (tdp_ctrl & 0x03)
1292 tdp_ratio >>= 16;
1293
1294 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1295 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1296
1297 return (int)tdp_ratio;
1298 }
1299
1300 return -ENXIO;
1301 }
1302
core_get_max_pstate(void)1303 static int core_get_max_pstate(void)
1304 {
1305 u64 tar;
1306 u64 plat_info;
1307 int max_pstate;
1308 int tdp_ratio;
1309 int err;
1310
1311 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1312 max_pstate = (plat_info >> 8) & 0xFF;
1313
1314 tdp_ratio = core_get_tdp_ratio(plat_info);
1315 if (tdp_ratio <= 0)
1316 return max_pstate;
1317
1318 if (hwp_active) {
1319 /* Turbo activation ratio is not used on HWP platforms */
1320 return tdp_ratio;
1321 }
1322
1323 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1324 if (!err) {
1325 int tar_levels;
1326
1327 /* Do some sanity checking for safety */
1328 tar_levels = tar & 0xff;
1329 if (tdp_ratio - 1 == tar_levels) {
1330 max_pstate = tar_levels;
1331 pr_debug("max_pstate=TAC %x\n", max_pstate);
1332 }
1333 }
1334
1335 return max_pstate;
1336 }
1337
core_get_turbo_pstate(void)1338 static int core_get_turbo_pstate(void)
1339 {
1340 u64 value;
1341 int nont, ret;
1342
1343 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1344 nont = core_get_max_pstate();
1345 ret = (value) & 255;
1346 if (ret <= nont)
1347 ret = nont;
1348 return ret;
1349 }
1350
core_get_scaling(void)1351 static inline int core_get_scaling(void)
1352 {
1353 return 100000;
1354 }
1355
core_get_val(struct cpudata * cpudata,int pstate)1356 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1357 {
1358 u64 val;
1359
1360 val = (u64)pstate << 8;
1361 if (global.no_turbo && !global.turbo_disabled)
1362 val |= (u64)1 << 32;
1363
1364 return val;
1365 }
1366
knl_get_aperf_mperf_shift(void)1367 static int knl_get_aperf_mperf_shift(void)
1368 {
1369 return 10;
1370 }
1371
knl_get_turbo_pstate(void)1372 static int knl_get_turbo_pstate(void)
1373 {
1374 u64 value;
1375 int nont, ret;
1376
1377 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1378 nont = core_get_max_pstate();
1379 ret = (((value) >> 8) & 0xFF);
1380 if (ret <= nont)
1381 ret = nont;
1382 return ret;
1383 }
1384
intel_pstate_get_base_pstate(struct cpudata * cpu)1385 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1386 {
1387 return global.no_turbo || global.turbo_disabled ?
1388 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1389 }
1390
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1391 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1392 {
1393 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1394 cpu->pstate.current_pstate = pstate;
1395 /*
1396 * Generally, there is no guarantee that this code will always run on
1397 * the CPU being updated, so force the register update to run on the
1398 * right CPU.
1399 */
1400 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1401 pstate_funcs.get_val(cpu, pstate));
1402 }
1403
intel_pstate_set_min_pstate(struct cpudata * cpu)1404 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1405 {
1406 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1407 }
1408
intel_pstate_max_within_limits(struct cpudata * cpu)1409 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1410 {
1411 int pstate;
1412
1413 update_turbo_state();
1414 pstate = intel_pstate_get_base_pstate(cpu);
1415 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1416 intel_pstate_set_pstate(cpu, pstate);
1417 }
1418
intel_pstate_get_cpu_pstates(struct cpudata * cpu)1419 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1420 {
1421 cpu->pstate.min_pstate = pstate_funcs.get_min();
1422 cpu->pstate.max_pstate = pstate_funcs.get_max();
1423 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1424 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1425 cpu->pstate.scaling = pstate_funcs.get_scaling();
1426 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1427
1428 if (hwp_active && !hwp_mode_bdw) {
1429 unsigned int phy_max, current_max;
1430
1431 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1432 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1433 } else {
1434 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1435 }
1436
1437 if (pstate_funcs.get_aperf_mperf_shift)
1438 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1439
1440 if (pstate_funcs.get_vid)
1441 pstate_funcs.get_vid(cpu);
1442
1443 intel_pstate_set_min_pstate(cpu);
1444 }
1445
1446 /*
1447 * Long hold time will keep high perf limits for long time,
1448 * which negatively impacts perf/watt for some workloads,
1449 * like specpower. 3ms is based on experiements on some
1450 * workoads.
1451 */
1452 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1453
intel_pstate_hwp_boost_up(struct cpudata * cpu)1454 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1455 {
1456 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1457 u32 max_limit = (hwp_req & 0xff00) >> 8;
1458 u32 min_limit = (hwp_req & 0xff);
1459 u32 boost_level1;
1460
1461 /*
1462 * Cases to consider (User changes via sysfs or boot time):
1463 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1464 * No boost, return.
1465 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1466 * Should result in one level boost only for P0.
1467 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1468 * Should result in two level boost:
1469 * (min + p1)/2 and P1.
1470 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1471 * Should result in three level boost:
1472 * (min + p1)/2, P1 and P0.
1473 */
1474
1475 /* If max and min are equal or already at max, nothing to boost */
1476 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1477 return;
1478
1479 if (!cpu->hwp_boost_min)
1480 cpu->hwp_boost_min = min_limit;
1481
1482 /* level at half way mark between min and guranteed */
1483 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1484
1485 if (cpu->hwp_boost_min < boost_level1)
1486 cpu->hwp_boost_min = boost_level1;
1487 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1488 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1489 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1490 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1491 cpu->hwp_boost_min = max_limit;
1492 else
1493 return;
1494
1495 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1496 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1497 cpu->last_update = cpu->sample.time;
1498 }
1499
intel_pstate_hwp_boost_down(struct cpudata * cpu)1500 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1501 {
1502 if (cpu->hwp_boost_min) {
1503 bool expired;
1504
1505 /* Check if we are idle for hold time to boost down */
1506 expired = time_after64(cpu->sample.time, cpu->last_update +
1507 hwp_boost_hold_time_ns);
1508 if (expired) {
1509 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1510 cpu->hwp_boost_min = 0;
1511 }
1512 }
1513 cpu->last_update = cpu->sample.time;
1514 }
1515
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)1516 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1517 u64 time)
1518 {
1519 cpu->sample.time = time;
1520
1521 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1522 bool do_io = false;
1523
1524 cpu->sched_flags = 0;
1525 /*
1526 * Set iowait_boost flag and update time. Since IO WAIT flag
1527 * is set all the time, we can't just conclude that there is
1528 * some IO bound activity is scheduled on this CPU with just
1529 * one occurrence. If we receive at least two in two
1530 * consecutive ticks, then we treat as boost candidate.
1531 */
1532 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1533 do_io = true;
1534
1535 cpu->last_io_update = time;
1536
1537 if (do_io)
1538 intel_pstate_hwp_boost_up(cpu);
1539
1540 } else {
1541 intel_pstate_hwp_boost_down(cpu);
1542 }
1543 }
1544
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)1545 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1546 u64 time, unsigned int flags)
1547 {
1548 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1549
1550 cpu->sched_flags |= flags;
1551
1552 if (smp_processor_id() == cpu->cpu)
1553 intel_pstate_update_util_hwp_local(cpu, time);
1554 }
1555
intel_pstate_calc_avg_perf(struct cpudata * cpu)1556 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1557 {
1558 struct sample *sample = &cpu->sample;
1559
1560 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1561 }
1562
intel_pstate_sample(struct cpudata * cpu,u64 time)1563 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1564 {
1565 u64 aperf, mperf;
1566 unsigned long flags;
1567 u64 tsc;
1568
1569 local_irq_save(flags);
1570 rdmsrl(MSR_IA32_APERF, aperf);
1571 rdmsrl(MSR_IA32_MPERF, mperf);
1572 tsc = rdtsc();
1573 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1574 local_irq_restore(flags);
1575 return false;
1576 }
1577 local_irq_restore(flags);
1578
1579 cpu->last_sample_time = cpu->sample.time;
1580 cpu->sample.time = time;
1581 cpu->sample.aperf = aperf;
1582 cpu->sample.mperf = mperf;
1583 cpu->sample.tsc = tsc;
1584 cpu->sample.aperf -= cpu->prev_aperf;
1585 cpu->sample.mperf -= cpu->prev_mperf;
1586 cpu->sample.tsc -= cpu->prev_tsc;
1587
1588 cpu->prev_aperf = aperf;
1589 cpu->prev_mperf = mperf;
1590 cpu->prev_tsc = tsc;
1591 /*
1592 * First time this function is invoked in a given cycle, all of the
1593 * previous sample data fields are equal to zero or stale and they must
1594 * be populated with meaningful numbers for things to work, so assume
1595 * that sample.time will always be reset before setting the utilization
1596 * update hook and make the caller skip the sample then.
1597 */
1598 if (cpu->last_sample_time) {
1599 intel_pstate_calc_avg_perf(cpu);
1600 return true;
1601 }
1602 return false;
1603 }
1604
get_avg_frequency(struct cpudata * cpu)1605 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1606 {
1607 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1608 }
1609
get_avg_pstate(struct cpudata * cpu)1610 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1611 {
1612 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1613 cpu->sample.core_avg_perf);
1614 }
1615
get_target_pstate(struct cpudata * cpu)1616 static inline int32_t get_target_pstate(struct cpudata *cpu)
1617 {
1618 struct sample *sample = &cpu->sample;
1619 int32_t busy_frac, boost;
1620 int target, avg_pstate;
1621
1622 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1623 sample->tsc);
1624
1625 boost = cpu->iowait_boost;
1626 cpu->iowait_boost >>= 1;
1627
1628 if (busy_frac < boost)
1629 busy_frac = boost;
1630
1631 sample->busy_scaled = busy_frac * 100;
1632
1633 target = global.no_turbo || global.turbo_disabled ?
1634 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1635 target += target >> 2;
1636 target = mul_fp(target, busy_frac);
1637 if (target < cpu->pstate.min_pstate)
1638 target = cpu->pstate.min_pstate;
1639
1640 /*
1641 * If the average P-state during the previous cycle was higher than the
1642 * current target, add 50% of the difference to the target to reduce
1643 * possible performance oscillations and offset possible performance
1644 * loss related to moving the workload from one CPU to another within
1645 * a package/module.
1646 */
1647 avg_pstate = get_avg_pstate(cpu);
1648 if (avg_pstate > target)
1649 target += (avg_pstate - target) >> 1;
1650
1651 return target;
1652 }
1653
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)1654 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1655 {
1656 int max_pstate = intel_pstate_get_base_pstate(cpu);
1657 int min_pstate;
1658
1659 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1660 max_pstate = max(min_pstate, cpu->max_perf_ratio);
1661 return clamp_t(int, pstate, min_pstate, max_pstate);
1662 }
1663
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)1664 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1665 {
1666 if (pstate == cpu->pstate.current_pstate)
1667 return;
1668
1669 cpu->pstate.current_pstate = pstate;
1670 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1671 }
1672
intel_pstate_adjust_pstate(struct cpudata * cpu)1673 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1674 {
1675 int from = cpu->pstate.current_pstate;
1676 struct sample *sample;
1677 int target_pstate;
1678
1679 update_turbo_state();
1680
1681 target_pstate = get_target_pstate(cpu);
1682 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1683 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1684 intel_pstate_update_pstate(cpu, target_pstate);
1685
1686 sample = &cpu->sample;
1687 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1688 fp_toint(sample->busy_scaled),
1689 from,
1690 cpu->pstate.current_pstate,
1691 sample->mperf,
1692 sample->aperf,
1693 sample->tsc,
1694 get_avg_frequency(cpu),
1695 fp_toint(cpu->iowait_boost * 100));
1696 }
1697
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)1698 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1699 unsigned int flags)
1700 {
1701 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1702 u64 delta_ns;
1703
1704 /* Don't allow remote callbacks */
1705 if (smp_processor_id() != cpu->cpu)
1706 return;
1707
1708 if (flags & SCHED_CPUFREQ_IOWAIT) {
1709 cpu->iowait_boost = int_tofp(1);
1710 cpu->last_update = time;
1711 /*
1712 * The last time the busy was 100% so P-state was max anyway
1713 * so avoid overhead of computation.
1714 */
1715 if (fp_toint(cpu->sample.busy_scaled) == 100)
1716 return;
1717
1718 goto set_pstate;
1719 } else if (cpu->iowait_boost) {
1720 /* Clear iowait_boost if the CPU may have been idle. */
1721 delta_ns = time - cpu->last_update;
1722 if (delta_ns > TICK_NSEC)
1723 cpu->iowait_boost = 0;
1724 }
1725 cpu->last_update = time;
1726 delta_ns = time - cpu->sample.time;
1727 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1728 return;
1729
1730 set_pstate:
1731 if (intel_pstate_sample(cpu, time))
1732 intel_pstate_adjust_pstate(cpu);
1733 }
1734
1735 static struct pstate_funcs core_funcs = {
1736 .get_max = core_get_max_pstate,
1737 .get_max_physical = core_get_max_pstate_physical,
1738 .get_min = core_get_min_pstate,
1739 .get_turbo = core_get_turbo_pstate,
1740 .get_scaling = core_get_scaling,
1741 .get_val = core_get_val,
1742 };
1743
1744 static const struct pstate_funcs silvermont_funcs = {
1745 .get_max = atom_get_max_pstate,
1746 .get_max_physical = atom_get_max_pstate,
1747 .get_min = atom_get_min_pstate,
1748 .get_turbo = atom_get_turbo_pstate,
1749 .get_val = atom_get_val,
1750 .get_scaling = silvermont_get_scaling,
1751 .get_vid = atom_get_vid,
1752 };
1753
1754 static const struct pstate_funcs airmont_funcs = {
1755 .get_max = atom_get_max_pstate,
1756 .get_max_physical = atom_get_max_pstate,
1757 .get_min = atom_get_min_pstate,
1758 .get_turbo = atom_get_turbo_pstate,
1759 .get_val = atom_get_val,
1760 .get_scaling = airmont_get_scaling,
1761 .get_vid = atom_get_vid,
1762 };
1763
1764 static const struct pstate_funcs knl_funcs = {
1765 .get_max = core_get_max_pstate,
1766 .get_max_physical = core_get_max_pstate_physical,
1767 .get_min = core_get_min_pstate,
1768 .get_turbo = knl_get_turbo_pstate,
1769 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1770 .get_scaling = core_get_scaling,
1771 .get_val = core_get_val,
1772 };
1773
1774 #define ICPU(model, policy) \
1775 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1776 (unsigned long)&policy }
1777
1778 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1779 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1780 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1781 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1782 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1783 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1784 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1785 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1786 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1787 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1788 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1789 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1790 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1791 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1792 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1793 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1794 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1795 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1796 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1797 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1798 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, core_funcs),
1799 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1800 {}
1801 };
1802 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1803
1804 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1805 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1806 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1807 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1808 {}
1809 };
1810
1811 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1812 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1813 {}
1814 };
1815
1816 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1817 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1818 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1819 {}
1820 };
1821
intel_pstate_init_cpu(unsigned int cpunum)1822 static int intel_pstate_init_cpu(unsigned int cpunum)
1823 {
1824 struct cpudata *cpu;
1825
1826 cpu = all_cpu_data[cpunum];
1827
1828 if (!cpu) {
1829 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1830 if (!cpu)
1831 return -ENOMEM;
1832
1833 all_cpu_data[cpunum] = cpu;
1834
1835 cpu->epp_default = -EINVAL;
1836 cpu->epp_powersave = -EINVAL;
1837 cpu->epp_saved = -EINVAL;
1838 }
1839
1840 cpu = all_cpu_data[cpunum];
1841
1842 cpu->cpu = cpunum;
1843
1844 if (hwp_active) {
1845 const struct x86_cpu_id *id;
1846
1847 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1848 if (id)
1849 intel_pstate_disable_ee(cpunum);
1850
1851 intel_pstate_hwp_enable(cpu);
1852
1853 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1854 if (id && intel_pstate_acpi_pm_profile_server())
1855 hwp_boost = true;
1856 }
1857
1858 intel_pstate_get_cpu_pstates(cpu);
1859
1860 pr_debug("controlling: cpu %d\n", cpunum);
1861
1862 return 0;
1863 }
1864
intel_pstate_set_update_util_hook(unsigned int cpu_num)1865 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1866 {
1867 struct cpudata *cpu = all_cpu_data[cpu_num];
1868
1869 if (hwp_active && !hwp_boost)
1870 return;
1871
1872 if (cpu->update_util_set)
1873 return;
1874
1875 /* Prevent intel_pstate_update_util() from using stale data. */
1876 cpu->sample.time = 0;
1877 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1878 (hwp_active ?
1879 intel_pstate_update_util_hwp :
1880 intel_pstate_update_util));
1881 cpu->update_util_set = true;
1882 }
1883
intel_pstate_clear_update_util_hook(unsigned int cpu)1884 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1885 {
1886 struct cpudata *cpu_data = all_cpu_data[cpu];
1887
1888 if (!cpu_data->update_util_set)
1889 return;
1890
1891 cpufreq_remove_update_util_hook(cpu);
1892 cpu_data->update_util_set = false;
1893 synchronize_sched();
1894 }
1895
intel_pstate_get_max_freq(struct cpudata * cpu)1896 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1897 {
1898 return global.turbo_disabled || global.no_turbo ?
1899 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1900 }
1901
intel_pstate_update_perf_limits(struct cpufreq_policy * policy,struct cpudata * cpu)1902 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1903 struct cpudata *cpu)
1904 {
1905 int max_freq = intel_pstate_get_max_freq(cpu);
1906 int32_t max_policy_perf, min_policy_perf;
1907 int max_state, turbo_max;
1908
1909 /*
1910 * HWP needs some special consideration, because on BDX the
1911 * HWP_REQUEST uses abstract value to represent performance
1912 * rather than pure ratios.
1913 */
1914 if (hwp_active) {
1915 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1916 } else {
1917 max_state = intel_pstate_get_base_pstate(cpu);
1918 turbo_max = cpu->pstate.turbo_pstate;
1919 }
1920
1921 max_policy_perf = max_state * policy->max / max_freq;
1922 if (policy->max == policy->min) {
1923 min_policy_perf = max_policy_perf;
1924 } else {
1925 min_policy_perf = max_state * policy->min / max_freq;
1926 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1927 0, max_policy_perf);
1928 }
1929
1930 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1931 policy->cpu, max_state,
1932 min_policy_perf, max_policy_perf);
1933
1934 /* Normalize user input to [min_perf, max_perf] */
1935 if (per_cpu_limits) {
1936 cpu->min_perf_ratio = min_policy_perf;
1937 cpu->max_perf_ratio = max_policy_perf;
1938 } else {
1939 int32_t global_min, global_max;
1940
1941 /* Global limits are in percent of the maximum turbo P-state. */
1942 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1943 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1944 global_min = clamp_t(int32_t, global_min, 0, global_max);
1945
1946 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1947 global_min, global_max);
1948
1949 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1950 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1951 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1952 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1953
1954 /* Make sure min_perf <= max_perf */
1955 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1956 cpu->max_perf_ratio);
1957
1958 }
1959 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1960 cpu->max_perf_ratio,
1961 cpu->min_perf_ratio);
1962 }
1963
intel_pstate_set_policy(struct cpufreq_policy * policy)1964 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1965 {
1966 struct cpudata *cpu;
1967
1968 if (!policy->cpuinfo.max_freq)
1969 return -ENODEV;
1970
1971 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1972 policy->cpuinfo.max_freq, policy->max);
1973
1974 cpu = all_cpu_data[policy->cpu];
1975 cpu->policy = policy->policy;
1976
1977 mutex_lock(&intel_pstate_limits_lock);
1978
1979 intel_pstate_update_perf_limits(policy, cpu);
1980
1981 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1982 /*
1983 * NOHZ_FULL CPUs need this as the governor callback may not
1984 * be invoked on them.
1985 */
1986 intel_pstate_clear_update_util_hook(policy->cpu);
1987 intel_pstate_max_within_limits(cpu);
1988 } else {
1989 intel_pstate_set_update_util_hook(policy->cpu);
1990 }
1991
1992 if (hwp_active) {
1993 /*
1994 * When hwp_boost was active before and dynamically it
1995 * was turned off, in that case we need to clear the
1996 * update util hook.
1997 */
1998 if (!hwp_boost)
1999 intel_pstate_clear_update_util_hook(policy->cpu);
2000 intel_pstate_hwp_set(policy->cpu);
2001 }
2002
2003 mutex_unlock(&intel_pstate_limits_lock);
2004
2005 return 0;
2006 }
2007
intel_pstate_adjust_policy_max(struct cpufreq_policy * policy,struct cpudata * cpu)2008 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2009 struct cpudata *cpu)
2010 {
2011 if (!hwp_active &&
2012 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2013 policy->max < policy->cpuinfo.max_freq &&
2014 policy->max > cpu->pstate.max_freq) {
2015 pr_debug("policy->max > max non turbo frequency\n");
2016 policy->max = policy->cpuinfo.max_freq;
2017 }
2018 }
2019
intel_pstate_verify_policy(struct cpufreq_policy * policy)2020 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2021 {
2022 struct cpudata *cpu = all_cpu_data[policy->cpu];
2023
2024 update_turbo_state();
2025 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2026 intel_pstate_get_max_freq(cpu));
2027
2028 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2029 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2030 return -EINVAL;
2031
2032 intel_pstate_adjust_policy_max(policy, cpu);
2033
2034 return 0;
2035 }
2036
intel_cpufreq_stop_cpu(struct cpufreq_policy * policy)2037 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2038 {
2039 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2040 }
2041
intel_pstate_stop_cpu(struct cpufreq_policy * policy)2042 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2043 {
2044 pr_debug("CPU %d exiting\n", policy->cpu);
2045
2046 intel_pstate_clear_update_util_hook(policy->cpu);
2047 if (hwp_active)
2048 intel_pstate_hwp_save_state(policy);
2049 else
2050 intel_cpufreq_stop_cpu(policy);
2051 }
2052
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2053 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2054 {
2055 intel_pstate_exit_perf_limits(policy);
2056
2057 policy->fast_switch_possible = false;
2058
2059 return 0;
2060 }
2061
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2062 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2063 {
2064 struct cpudata *cpu;
2065 int rc;
2066
2067 rc = intel_pstate_init_cpu(policy->cpu);
2068 if (rc)
2069 return rc;
2070
2071 cpu = all_cpu_data[policy->cpu];
2072
2073 cpu->max_perf_ratio = 0xFF;
2074 cpu->min_perf_ratio = 0;
2075
2076 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2077 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2078
2079 /* cpuinfo and default policy values */
2080 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2081 update_turbo_state();
2082 policy->cpuinfo.max_freq = global.turbo_disabled ?
2083 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2084 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2085
2086 if (hwp_active) {
2087 unsigned int max_freq;
2088
2089 max_freq = global.turbo_disabled ?
2090 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2091 if (max_freq < policy->cpuinfo.max_freq)
2092 policy->cpuinfo.max_freq = max_freq;
2093 }
2094
2095 intel_pstate_init_acpi_perf_limits(policy);
2096
2097 policy->fast_switch_possible = true;
2098
2099 return 0;
2100 }
2101
intel_pstate_cpu_init(struct cpufreq_policy * policy)2102 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 {
2104 int ret = __intel_pstate_cpu_init(policy);
2105
2106 if (ret)
2107 return ret;
2108
2109 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2110 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2111 else
2112 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2113
2114 return 0;
2115 }
2116
2117 static struct cpufreq_driver intel_pstate = {
2118 .flags = CPUFREQ_CONST_LOOPS,
2119 .verify = intel_pstate_verify_policy,
2120 .setpolicy = intel_pstate_set_policy,
2121 .suspend = intel_pstate_hwp_save_state,
2122 .resume = intel_pstate_resume,
2123 .init = intel_pstate_cpu_init,
2124 .exit = intel_pstate_cpu_exit,
2125 .stop_cpu = intel_pstate_stop_cpu,
2126 .name = "intel_pstate",
2127 };
2128
intel_cpufreq_verify_policy(struct cpufreq_policy * policy)2129 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2130 {
2131 struct cpudata *cpu = all_cpu_data[policy->cpu];
2132
2133 update_turbo_state();
2134 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2135 intel_pstate_get_max_freq(cpu));
2136
2137 intel_pstate_adjust_policy_max(policy, cpu);
2138
2139 intel_pstate_update_perf_limits(policy, cpu);
2140
2141 return 0;
2142 }
2143
2144 /* Use of trace in passive mode:
2145 *
2146 * In passive mode the trace core_busy field (also known as the
2147 * performance field, and lablelled as such on the graphs; also known as
2148 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2149 * driver call was via the normal or fast switch path. Various graphs
2150 * output from the intel_pstate_tracer.py utility that include core_busy
2151 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2152 * so we use 10 to indicate the the normal path through the driver, and
2153 * 90 to indicate the fast switch path through the driver.
2154 * The scaled_busy field is not used, and is set to 0.
2155 */
2156
2157 #define INTEL_PSTATE_TRACE_TARGET 10
2158 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2159
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2160 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2161 {
2162 struct sample *sample;
2163
2164 if (!trace_pstate_sample_enabled())
2165 return;
2166
2167 if (!intel_pstate_sample(cpu, ktime_get()))
2168 return;
2169
2170 sample = &cpu->sample;
2171 trace_pstate_sample(trace_type,
2172 0,
2173 old_pstate,
2174 cpu->pstate.current_pstate,
2175 sample->mperf,
2176 sample->aperf,
2177 sample->tsc,
2178 get_avg_frequency(cpu),
2179 fp_toint(cpu->iowait_boost * 100));
2180 }
2181
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2182 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183 unsigned int target_freq,
2184 unsigned int relation)
2185 {
2186 struct cpudata *cpu = all_cpu_data[policy->cpu];
2187 struct cpufreq_freqs freqs;
2188 int target_pstate, old_pstate;
2189
2190 update_turbo_state();
2191
2192 freqs.old = policy->cur;
2193 freqs.new = target_freq;
2194
2195 cpufreq_freq_transition_begin(policy, &freqs);
2196 switch (relation) {
2197 case CPUFREQ_RELATION_L:
2198 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199 break;
2200 case CPUFREQ_RELATION_H:
2201 target_pstate = freqs.new / cpu->pstate.scaling;
2202 break;
2203 default:
2204 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205 break;
2206 }
2207 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208 old_pstate = cpu->pstate.current_pstate;
2209 if (target_pstate != cpu->pstate.current_pstate) {
2210 cpu->pstate.current_pstate = target_pstate;
2211 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2212 pstate_funcs.get_val(cpu, target_pstate));
2213 }
2214 freqs.new = target_pstate * cpu->pstate.scaling;
2215 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2216 cpufreq_freq_transition_end(policy, &freqs, false);
2217
2218 return 0;
2219 }
2220
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2221 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2222 unsigned int target_freq)
2223 {
2224 struct cpudata *cpu = all_cpu_data[policy->cpu];
2225 int target_pstate, old_pstate;
2226
2227 update_turbo_state();
2228
2229 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2230 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2231 old_pstate = cpu->pstate.current_pstate;
2232 intel_pstate_update_pstate(cpu, target_pstate);
2233 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2234 return target_pstate * cpu->pstate.scaling;
2235 }
2236
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2237 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2238 {
2239 int ret = __intel_pstate_cpu_init(policy);
2240
2241 if (ret)
2242 return ret;
2243
2244 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2245 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2246 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2247 policy->cur = policy->cpuinfo.min_freq;
2248
2249 return 0;
2250 }
2251
2252 static struct cpufreq_driver intel_cpufreq = {
2253 .flags = CPUFREQ_CONST_LOOPS,
2254 .verify = intel_cpufreq_verify_policy,
2255 .target = intel_cpufreq_target,
2256 .fast_switch = intel_cpufreq_fast_switch,
2257 .init = intel_cpufreq_cpu_init,
2258 .exit = intel_pstate_cpu_exit,
2259 .stop_cpu = intel_cpufreq_stop_cpu,
2260 .name = "intel_cpufreq",
2261 };
2262
2263 static struct cpufreq_driver *default_driver = &intel_pstate;
2264
intel_pstate_driver_cleanup(void)2265 static void intel_pstate_driver_cleanup(void)
2266 {
2267 unsigned int cpu;
2268
2269 get_online_cpus();
2270 for_each_online_cpu(cpu) {
2271 if (all_cpu_data[cpu]) {
2272 if (intel_pstate_driver == &intel_pstate)
2273 intel_pstate_clear_update_util_hook(cpu);
2274
2275 kfree(all_cpu_data[cpu]);
2276 all_cpu_data[cpu] = NULL;
2277 }
2278 }
2279 put_online_cpus();
2280 intel_pstate_driver = NULL;
2281 }
2282
intel_pstate_register_driver(struct cpufreq_driver * driver)2283 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2284 {
2285 int ret;
2286
2287 memset(&global, 0, sizeof(global));
2288 global.max_perf_pct = 100;
2289
2290 intel_pstate_driver = driver;
2291 ret = cpufreq_register_driver(intel_pstate_driver);
2292 if (ret) {
2293 intel_pstate_driver_cleanup();
2294 return ret;
2295 }
2296
2297 global.min_perf_pct = min_perf_pct_min();
2298
2299 return 0;
2300 }
2301
intel_pstate_unregister_driver(void)2302 static int intel_pstate_unregister_driver(void)
2303 {
2304 if (hwp_active)
2305 return -EBUSY;
2306
2307 cpufreq_unregister_driver(intel_pstate_driver);
2308 intel_pstate_driver_cleanup();
2309
2310 return 0;
2311 }
2312
intel_pstate_show_status(char * buf)2313 static ssize_t intel_pstate_show_status(char *buf)
2314 {
2315 if (!intel_pstate_driver)
2316 return sprintf(buf, "off\n");
2317
2318 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2319 "active" : "passive");
2320 }
2321
intel_pstate_update_status(const char * buf,size_t size)2322 static int intel_pstate_update_status(const char *buf, size_t size)
2323 {
2324 int ret;
2325
2326 if (size == 3 && !strncmp(buf, "off", size))
2327 return intel_pstate_driver ?
2328 intel_pstate_unregister_driver() : -EINVAL;
2329
2330 if (size == 6 && !strncmp(buf, "active", size)) {
2331 if (intel_pstate_driver) {
2332 if (intel_pstate_driver == &intel_pstate)
2333 return 0;
2334
2335 ret = intel_pstate_unregister_driver();
2336 if (ret)
2337 return ret;
2338 }
2339
2340 return intel_pstate_register_driver(&intel_pstate);
2341 }
2342
2343 if (size == 7 && !strncmp(buf, "passive", size)) {
2344 if (intel_pstate_driver) {
2345 if (intel_pstate_driver == &intel_cpufreq)
2346 return 0;
2347
2348 ret = intel_pstate_unregister_driver();
2349 if (ret)
2350 return ret;
2351 }
2352
2353 return intel_pstate_register_driver(&intel_cpufreq);
2354 }
2355
2356 return -EINVAL;
2357 }
2358
2359 static int no_load __initdata;
2360 static int no_hwp __initdata;
2361 static int hwp_only __initdata;
2362 static unsigned int force_load __initdata;
2363
intel_pstate_msrs_not_valid(void)2364 static int __init intel_pstate_msrs_not_valid(void)
2365 {
2366 if (!pstate_funcs.get_max() ||
2367 !pstate_funcs.get_min() ||
2368 !pstate_funcs.get_turbo())
2369 return -ENODEV;
2370
2371 return 0;
2372 }
2373
copy_cpu_funcs(struct pstate_funcs * funcs)2374 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2375 {
2376 pstate_funcs.get_max = funcs->get_max;
2377 pstate_funcs.get_max_physical = funcs->get_max_physical;
2378 pstate_funcs.get_min = funcs->get_min;
2379 pstate_funcs.get_turbo = funcs->get_turbo;
2380 pstate_funcs.get_scaling = funcs->get_scaling;
2381 pstate_funcs.get_val = funcs->get_val;
2382 pstate_funcs.get_vid = funcs->get_vid;
2383 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2384 }
2385
2386 #ifdef CONFIG_ACPI
2387
intel_pstate_no_acpi_pss(void)2388 static bool __init intel_pstate_no_acpi_pss(void)
2389 {
2390 int i;
2391
2392 for_each_possible_cpu(i) {
2393 acpi_status status;
2394 union acpi_object *pss;
2395 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2396 struct acpi_processor *pr = per_cpu(processors, i);
2397
2398 if (!pr)
2399 continue;
2400
2401 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2402 if (ACPI_FAILURE(status))
2403 continue;
2404
2405 pss = buffer.pointer;
2406 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2407 kfree(pss);
2408 return false;
2409 }
2410
2411 kfree(pss);
2412 }
2413
2414 return true;
2415 }
2416
intel_pstate_no_acpi_pcch(void)2417 static bool __init intel_pstate_no_acpi_pcch(void)
2418 {
2419 acpi_status status;
2420 acpi_handle handle;
2421
2422 status = acpi_get_handle(NULL, "\\_SB", &handle);
2423 if (ACPI_FAILURE(status))
2424 return true;
2425
2426 return !acpi_has_method(handle, "PCCH");
2427 }
2428
intel_pstate_has_acpi_ppc(void)2429 static bool __init intel_pstate_has_acpi_ppc(void)
2430 {
2431 int i;
2432
2433 for_each_possible_cpu(i) {
2434 struct acpi_processor *pr = per_cpu(processors, i);
2435
2436 if (!pr)
2437 continue;
2438 if (acpi_has_method(pr->handle, "_PPC"))
2439 return true;
2440 }
2441 return false;
2442 }
2443
2444 enum {
2445 PSS,
2446 PPC,
2447 };
2448
2449 /* Hardware vendor-specific info that has its own power management modes */
2450 static struct acpi_platform_list plat_info[] __initdata = {
2451 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2452 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2453 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2454 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2455 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2456 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2457 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2458 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2459 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2460 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2461 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2462 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2463 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2464 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2465 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2466 { } /* End */
2467 };
2468
intel_pstate_platform_pwr_mgmt_exists(void)2469 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2470 {
2471 const struct x86_cpu_id *id;
2472 u64 misc_pwr;
2473 int idx;
2474
2475 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2476 if (id) {
2477 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2478 if ( misc_pwr & (1 << 8))
2479 return true;
2480 }
2481
2482 idx = acpi_match_platform_list(plat_info);
2483 if (idx < 0)
2484 return false;
2485
2486 switch (plat_info[idx].data) {
2487 case PSS:
2488 if (!intel_pstate_no_acpi_pss())
2489 return false;
2490
2491 return intel_pstate_no_acpi_pcch();
2492 case PPC:
2493 return intel_pstate_has_acpi_ppc() && !force_load;
2494 }
2495
2496 return false;
2497 }
2498
intel_pstate_request_control_from_smm(void)2499 static void intel_pstate_request_control_from_smm(void)
2500 {
2501 /*
2502 * It may be unsafe to request P-states control from SMM if _PPC support
2503 * has not been enabled.
2504 */
2505 if (acpi_ppc)
2506 acpi_processor_pstate_control();
2507 }
2508 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)2509 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)2510 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)2511 static inline void intel_pstate_request_control_from_smm(void) {}
2512 #endif /* CONFIG_ACPI */
2513
2514 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2515
2516 #define ICPU_HWP(model, hwp_mode) \
2517 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2518
2519 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2520 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2521 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2522 ICPU_HWP(X86_MODEL_ANY, 0),
2523 {}
2524 };
2525
intel_pstate_init(void)2526 static int __init intel_pstate_init(void)
2527 {
2528 const struct x86_cpu_id *id;
2529 int rc;
2530
2531 if (no_load)
2532 return -ENODEV;
2533
2534 id = x86_match_cpu(hwp_support_ids);
2535 if (id) {
2536 copy_cpu_funcs(&core_funcs);
2537 if (!no_hwp) {
2538 hwp_active++;
2539 hwp_mode_bdw = id->driver_data;
2540 intel_pstate.attr = hwp_cpufreq_attrs;
2541 goto hwp_cpu_matched;
2542 }
2543 } else {
2544 id = x86_match_cpu(intel_pstate_cpu_ids);
2545 if (!id)
2546 return -ENODEV;
2547
2548 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2549 }
2550
2551 if (intel_pstate_msrs_not_valid())
2552 return -ENODEV;
2553
2554 hwp_cpu_matched:
2555 /*
2556 * The Intel pstate driver will be ignored if the platform
2557 * firmware has its own power management modes.
2558 */
2559 if (intel_pstate_platform_pwr_mgmt_exists())
2560 return -ENODEV;
2561
2562 if (!hwp_active && hwp_only)
2563 return -ENOTSUPP;
2564
2565 pr_info("Intel P-state driver initializing\n");
2566
2567 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2568 if (!all_cpu_data)
2569 return -ENOMEM;
2570
2571 intel_pstate_request_control_from_smm();
2572
2573 intel_pstate_sysfs_expose_params();
2574
2575 mutex_lock(&intel_pstate_driver_lock);
2576 rc = intel_pstate_register_driver(default_driver);
2577 mutex_unlock(&intel_pstate_driver_lock);
2578 if (rc)
2579 return rc;
2580
2581 if (hwp_active)
2582 pr_info("HWP enabled\n");
2583
2584 return 0;
2585 }
2586 device_initcall(intel_pstate_init);
2587
intel_pstate_setup(char * str)2588 static int __init intel_pstate_setup(char *str)
2589 {
2590 if (!str)
2591 return -EINVAL;
2592
2593 if (!strcmp(str, "disable")) {
2594 no_load = 1;
2595 } else if (!strcmp(str, "passive")) {
2596 pr_info("Passive mode enabled\n");
2597 default_driver = &intel_cpufreq;
2598 no_hwp = 1;
2599 }
2600 if (!strcmp(str, "no_hwp")) {
2601 pr_info("HWP disabled\n");
2602 no_hwp = 1;
2603 }
2604 if (!strcmp(str, "force"))
2605 force_load = 1;
2606 if (!strcmp(str, "hwp_only"))
2607 hwp_only = 1;
2608 if (!strcmp(str, "per_cpu_perf_limits"))
2609 per_cpu_limits = true;
2610
2611 #ifdef CONFIG_ACPI
2612 if (!strcmp(str, "support_acpi_ppc"))
2613 acpi_ppc = true;
2614 #endif
2615
2616 return 0;
2617 }
2618 early_param("intel_pstate", intel_pstate_setup);
2619
2620 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2621 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2622 MODULE_LICENSE("GPL");
2623