1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
6 #include <linux/irq.h>
7
8 #include <linux/clk.h>
9 #include <linux/err.h>
10 #include <linux/ioport.h>
11 #include <linux/io.h>
12 #include <linux/platform_device.h>
13 #include <linux/syscore_ops.h>
14 #include <linux/atmel_tc.h>
15
16
17 /*
18 * We're configured to use a specific TC block, one that's not hooked
19 * up to external hardware, to provide a time solution:
20 *
21 * - Two channels combine to create a free-running 32 bit counter
22 * with a base rate of 5+ MHz, packaged as a clocksource (with
23 * resolution better than 200 nsec).
24 * - Some chips support 32 bit counter. A single channel is used for
25 * this 32 bit free-running counter. the second channel is not used.
26 *
27 * - The third channel may be used to provide a 16-bit clockevent
28 * source, used in either periodic or oneshot mode. This runs
29 * at 32 KiHZ, and can handle delays of up to two seconds.
30 *
31 * A boot clocksource and clockevent source are also currently needed,
32 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
33 * this code can be used when init_timers() is called, well before most
34 * devices are set up. (Some low end AT91 parts, which can run uClinux,
35 * have only the timers in one TC block... they currently don't support
36 * the tclib code, because of that initialization issue.)
37 *
38 * REVISIT behavior during system suspend states... we should disable
39 * all clocks and save the power. Easily done for clockevent devices,
40 * but clocksources won't necessarily get the needed notifications.
41 * For deeper system sleep states, this will be mandatory...
42 */
43
44 static void __iomem *tcaddr;
45 static struct
46 {
47 u32 cmr;
48 u32 imr;
49 u32 rc;
50 bool clken;
51 } tcb_cache[3];
52 static u32 bmr_cache;
53
tc_get_cycles(struct clocksource * cs)54 static u64 tc_get_cycles(struct clocksource *cs)
55 {
56 unsigned long flags;
57 u32 lower, upper;
58
59 raw_local_irq_save(flags);
60 do {
61 upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
62 lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
63 } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
64
65 raw_local_irq_restore(flags);
66 return (upper << 16) | lower;
67 }
68
tc_get_cycles32(struct clocksource * cs)69 static u64 tc_get_cycles32(struct clocksource *cs)
70 {
71 return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
72 }
73
tc_clksrc_suspend(struct clocksource * cs)74 void tc_clksrc_suspend(struct clocksource *cs)
75 {
76 int i;
77
78 for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
79 tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
80 tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
81 tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
82 tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
83 ATMEL_TC_CLKSTA);
84 }
85
86 bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
87 }
88
tc_clksrc_resume(struct clocksource * cs)89 void tc_clksrc_resume(struct clocksource *cs)
90 {
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
94 /* Restore registers for the channel, RA and RB are not used */
95 writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
96 writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
97 writel(0, tcaddr + ATMEL_TC_REG(i, RA));
98 writel(0, tcaddr + ATMEL_TC_REG(i, RB));
99 /* Disable all the interrupts */
100 writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
101 /* Reenable interrupts that were enabled before suspending */
102 writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
103 /* Start the clock if it was used */
104 if (tcb_cache[i].clken)
105 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
106 }
107
108 /* Dual channel, chain channels */
109 writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
110 /* Finally, trigger all the channels*/
111 writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
112 }
113
114 static struct clocksource clksrc = {
115 .name = "tcb_clksrc",
116 .rating = 200,
117 .read = tc_get_cycles,
118 .mask = CLOCKSOURCE_MASK(32),
119 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
120 .suspend = tc_clksrc_suspend,
121 .resume = tc_clksrc_resume,
122 };
123
124 #ifdef CONFIG_GENERIC_CLOCKEVENTS
125
126 struct tc_clkevt_device {
127 struct clock_event_device clkevt;
128 struct clk *clk;
129 void __iomem *regs;
130 };
131
to_tc_clkevt(struct clock_event_device * clkevt)132 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
133 {
134 return container_of(clkevt, struct tc_clkevt_device, clkevt);
135 }
136
137 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
138 * because using one of the divided clocks would usually mean the
139 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
140 *
141 * A divided clock could be good for high resolution timers, since
142 * 30.5 usec resolution can seem "low".
143 */
144 static u32 timer_clock;
145
tc_shutdown(struct clock_event_device * d)146 static int tc_shutdown(struct clock_event_device *d)
147 {
148 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
149 void __iomem *regs = tcd->regs;
150
151 writel(0xff, regs + ATMEL_TC_REG(2, IDR));
152 writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
153 if (!clockevent_state_detached(d))
154 clk_disable(tcd->clk);
155
156 return 0;
157 }
158
tc_set_oneshot(struct clock_event_device * d)159 static int tc_set_oneshot(struct clock_event_device *d)
160 {
161 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
162 void __iomem *regs = tcd->regs;
163
164 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
165 tc_shutdown(d);
166
167 clk_enable(tcd->clk);
168
169 /* slow clock, count up to RC, then irq and stop */
170 writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
171 ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
172 writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
173
174 /* set_next_event() configures and starts the timer */
175 return 0;
176 }
177
tc_set_periodic(struct clock_event_device * d)178 static int tc_set_periodic(struct clock_event_device *d)
179 {
180 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
181 void __iomem *regs = tcd->regs;
182
183 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
184 tc_shutdown(d);
185
186 /* By not making the gentime core emulate periodic mode on top
187 * of oneshot, we get lower overhead and improved accuracy.
188 */
189 clk_enable(tcd->clk);
190
191 /* slow clock, count up to RC, then irq and restart */
192 writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
193 regs + ATMEL_TC_REG(2, CMR));
194 writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
195
196 /* Enable clock and interrupts on RC compare */
197 writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
198
199 /* go go gadget! */
200 writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
201 ATMEL_TC_REG(2, CCR));
202 return 0;
203 }
204
tc_next_event(unsigned long delta,struct clock_event_device * d)205 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
206 {
207 writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
208
209 /* go go gadget! */
210 writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
211 tcaddr + ATMEL_TC_REG(2, CCR));
212 return 0;
213 }
214
215 static struct tc_clkevt_device clkevt = {
216 .clkevt = {
217 .name = "tc_clkevt",
218 .features = CLOCK_EVT_FEAT_PERIODIC |
219 CLOCK_EVT_FEAT_ONESHOT,
220 /* Should be lower than at91rm9200's system timer */
221 .rating = 125,
222 .set_next_event = tc_next_event,
223 .set_state_shutdown = tc_shutdown,
224 .set_state_periodic = tc_set_periodic,
225 .set_state_oneshot = tc_set_oneshot,
226 },
227 };
228
ch2_irq(int irq,void * handle)229 static irqreturn_t ch2_irq(int irq, void *handle)
230 {
231 struct tc_clkevt_device *dev = handle;
232 unsigned int sr;
233
234 sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
235 if (sr & ATMEL_TC_CPCS) {
236 dev->clkevt.event_handler(&dev->clkevt);
237 return IRQ_HANDLED;
238 }
239
240 return IRQ_NONE;
241 }
242
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)243 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
244 {
245 int ret;
246 struct clk *t2_clk = tc->clk[2];
247 int irq = tc->irq[2];
248
249 ret = clk_prepare_enable(tc->slow_clk);
250 if (ret)
251 return ret;
252
253 /* try to enable t2 clk to avoid future errors in mode change */
254 ret = clk_prepare_enable(t2_clk);
255 if (ret) {
256 clk_disable_unprepare(tc->slow_clk);
257 return ret;
258 }
259
260 clk_disable(t2_clk);
261
262 clkevt.regs = tc->regs;
263 clkevt.clk = t2_clk;
264
265 timer_clock = clk32k_divisor_idx;
266
267 clkevt.clkevt.cpumask = cpumask_of(0);
268
269 ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
270 if (ret) {
271 clk_unprepare(t2_clk);
272 clk_disable_unprepare(tc->slow_clk);
273 return ret;
274 }
275
276 clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
277
278 return ret;
279 }
280
281 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
282
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)283 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
284 {
285 /* NOTHING */
286 return 0;
287 }
288
289 #endif
290
tcb_setup_dual_chan(struct atmel_tc * tc,int mck_divisor_idx)291 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
292 {
293 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
294 writel(mck_divisor_idx /* likely divide-by-8 */
295 | ATMEL_TC_WAVE
296 | ATMEL_TC_WAVESEL_UP /* free-run */
297 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
298 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
299 tcaddr + ATMEL_TC_REG(0, CMR));
300 writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
301 writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
302 writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
303 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
304
305 /* channel 1: waveform mode, input TIOA0 */
306 writel(ATMEL_TC_XC1 /* input: TIOA0 */
307 | ATMEL_TC_WAVE
308 | ATMEL_TC_WAVESEL_UP, /* free-run */
309 tcaddr + ATMEL_TC_REG(1, CMR));
310 writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
311 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
312
313 /* chain channel 0 to channel 1*/
314 writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
315 /* then reset all the timers */
316 writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
317 }
318
tcb_setup_single_chan(struct atmel_tc * tc,int mck_divisor_idx)319 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
320 {
321 /* channel 0: waveform mode, input mclk/8 */
322 writel(mck_divisor_idx /* likely divide-by-8 */
323 | ATMEL_TC_WAVE
324 | ATMEL_TC_WAVESEL_UP, /* free-run */
325 tcaddr + ATMEL_TC_REG(0, CMR));
326 writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
327 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
328
329 /* then reset all the timers */
330 writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
331 }
332
tcb_clksrc_init(void)333 static int __init tcb_clksrc_init(void)
334 {
335 static char bootinfo[] __initdata
336 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
337
338 struct platform_device *pdev;
339 struct atmel_tc *tc;
340 struct clk *t0_clk;
341 u32 rate, divided_rate = 0;
342 int best_divisor_idx = -1;
343 int clk32k_divisor_idx = -1;
344 int i;
345 int ret;
346
347 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
348 if (!tc) {
349 pr_debug("can't alloc TC for clocksource\n");
350 return -ENODEV;
351 }
352 tcaddr = tc->regs;
353 pdev = tc->pdev;
354
355 t0_clk = tc->clk[0];
356 ret = clk_prepare_enable(t0_clk);
357 if (ret) {
358 pr_debug("can't enable T0 clk\n");
359 goto err_free_tc;
360 }
361
362 /* How fast will we be counting? Pick something over 5 MHz. */
363 rate = (u32) clk_get_rate(t0_clk);
364 for (i = 0; i < 5; i++) {
365 unsigned divisor = atmel_tc_divisors[i];
366 unsigned tmp;
367
368 /* remember 32 KiHz clock for later */
369 if (!divisor) {
370 clk32k_divisor_idx = i;
371 continue;
372 }
373
374 tmp = rate / divisor;
375 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
376 if (best_divisor_idx > 0) {
377 if (tmp < 5 * 1000 * 1000)
378 continue;
379 }
380 divided_rate = tmp;
381 best_divisor_idx = i;
382 }
383
384
385 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
386 divided_rate / 1000000,
387 ((divided_rate % 1000000) + 500) / 1000);
388
389 if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
390 /* use apropriate function to read 32 bit counter */
391 clksrc.read = tc_get_cycles32;
392 /* setup ony channel 0 */
393 tcb_setup_single_chan(tc, best_divisor_idx);
394 } else {
395 /* tclib will give us three clocks no matter what the
396 * underlying platform supports.
397 */
398 ret = clk_prepare_enable(tc->clk[1]);
399 if (ret) {
400 pr_debug("can't enable T1 clk\n");
401 goto err_disable_t0;
402 }
403 /* setup both channel 0 & 1 */
404 tcb_setup_dual_chan(tc, best_divisor_idx);
405 }
406
407 /* and away we go! */
408 ret = clocksource_register_hz(&clksrc, divided_rate);
409 if (ret)
410 goto err_disable_t1;
411
412 /* channel 2: periodic and oneshot timer support */
413 ret = setup_clkevents(tc, clk32k_divisor_idx);
414 if (ret)
415 goto err_unregister_clksrc;
416
417 return 0;
418
419 err_unregister_clksrc:
420 clocksource_unregister(&clksrc);
421
422 err_disable_t1:
423 if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
424 clk_disable_unprepare(tc->clk[1]);
425
426 err_disable_t0:
427 clk_disable_unprepare(t0_clk);
428
429 err_free_tc:
430 atmel_tc_free(tc);
431 return ret;
432 }
433 arch_initcall(tcb_clksrc_init);
434