1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
6 #include <linux/irq.h>
7 
8 #include <linux/clk.h>
9 #include <linux/err.h>
10 #include <linux/ioport.h>
11 #include <linux/io.h>
12 #include <linux/platform_device.h>
13 #include <linux/syscore_ops.h>
14 #include <linux/atmel_tc.h>
15 
16 
17 /*
18  * We're configured to use a specific TC block, one that's not hooked
19  * up to external hardware, to provide a time solution:
20  *
21  *   - Two channels combine to create a free-running 32 bit counter
22  *     with a base rate of 5+ MHz, packaged as a clocksource (with
23  *     resolution better than 200 nsec).
24  *   - Some chips support 32 bit counter. A single channel is used for
25  *     this 32 bit free-running counter. the second channel is not used.
26  *
27  *   - The third channel may be used to provide a 16-bit clockevent
28  *     source, used in either periodic or oneshot mode.  This runs
29  *     at 32 KiHZ, and can handle delays of up to two seconds.
30  *
31  * A boot clocksource and clockevent source are also currently needed,
32  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
33  * this code can be used when init_timers() is called, well before most
34  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
35  * have only the timers in one TC block... they currently don't support
36  * the tclib code, because of that initialization issue.)
37  *
38  * REVISIT behavior during system suspend states... we should disable
39  * all clocks and save the power.  Easily done for clockevent devices,
40  * but clocksources won't necessarily get the needed notifications.
41  * For deeper system sleep states, this will be mandatory...
42  */
43 
44 static void __iomem *tcaddr;
45 static struct
46 {
47 	u32 cmr;
48 	u32 imr;
49 	u32 rc;
50 	bool clken;
51 } tcb_cache[3];
52 static u32 bmr_cache;
53 
tc_get_cycles(struct clocksource * cs)54 static u64 tc_get_cycles(struct clocksource *cs)
55 {
56 	unsigned long	flags;
57 	u32		lower, upper;
58 
59 	raw_local_irq_save(flags);
60 	do {
61 		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
62 		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
63 	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
64 
65 	raw_local_irq_restore(flags);
66 	return (upper << 16) | lower;
67 }
68 
tc_get_cycles32(struct clocksource * cs)69 static u64 tc_get_cycles32(struct clocksource *cs)
70 {
71 	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
72 }
73 
tc_clksrc_suspend(struct clocksource * cs)74 void tc_clksrc_suspend(struct clocksource *cs)
75 {
76 	int i;
77 
78 	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
79 		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
80 		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
81 		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
82 		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
83 					ATMEL_TC_CLKSTA);
84 	}
85 
86 	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
87 }
88 
tc_clksrc_resume(struct clocksource * cs)89 void tc_clksrc_resume(struct clocksource *cs)
90 {
91 	int i;
92 
93 	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
94 		/* Restore registers for the channel, RA and RB are not used  */
95 		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
96 		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
97 		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
98 		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
99 		/* Disable all the interrupts */
100 		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
101 		/* Reenable interrupts that were enabled before suspending */
102 		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
103 		/* Start the clock if it was used */
104 		if (tcb_cache[i].clken)
105 			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
106 	}
107 
108 	/* Dual channel, chain channels */
109 	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
110 	/* Finally, trigger all the channels*/
111 	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
112 }
113 
114 static struct clocksource clksrc = {
115 	.name           = "tcb_clksrc",
116 	.rating         = 200,
117 	.read           = tc_get_cycles,
118 	.mask           = CLOCKSOURCE_MASK(32),
119 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
120 	.suspend	= tc_clksrc_suspend,
121 	.resume		= tc_clksrc_resume,
122 };
123 
124 #ifdef CONFIG_GENERIC_CLOCKEVENTS
125 
126 struct tc_clkevt_device {
127 	struct clock_event_device	clkevt;
128 	struct clk			*clk;
129 	void __iomem			*regs;
130 };
131 
to_tc_clkevt(struct clock_event_device * clkevt)132 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
133 {
134 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
135 }
136 
137 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
138  * because using one of the divided clocks would usually mean the
139  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
140  *
141  * A divided clock could be good for high resolution timers, since
142  * 30.5 usec resolution can seem "low".
143  */
144 static u32 timer_clock;
145 
tc_shutdown(struct clock_event_device * d)146 static int tc_shutdown(struct clock_event_device *d)
147 {
148 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
149 	void __iomem		*regs = tcd->regs;
150 
151 	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
152 	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
153 	if (!clockevent_state_detached(d))
154 		clk_disable(tcd->clk);
155 
156 	return 0;
157 }
158 
tc_set_oneshot(struct clock_event_device * d)159 static int tc_set_oneshot(struct clock_event_device *d)
160 {
161 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
162 	void __iomem		*regs = tcd->regs;
163 
164 	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
165 		tc_shutdown(d);
166 
167 	clk_enable(tcd->clk);
168 
169 	/* slow clock, count up to RC, then irq and stop */
170 	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
171 		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
172 	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
173 
174 	/* set_next_event() configures and starts the timer */
175 	return 0;
176 }
177 
tc_set_periodic(struct clock_event_device * d)178 static int tc_set_periodic(struct clock_event_device *d)
179 {
180 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
181 	void __iomem		*regs = tcd->regs;
182 
183 	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
184 		tc_shutdown(d);
185 
186 	/* By not making the gentime core emulate periodic mode on top
187 	 * of oneshot, we get lower overhead and improved accuracy.
188 	 */
189 	clk_enable(tcd->clk);
190 
191 	/* slow clock, count up to RC, then irq and restart */
192 	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
193 		     regs + ATMEL_TC_REG(2, CMR));
194 	writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
195 
196 	/* Enable clock and interrupts on RC compare */
197 	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
198 
199 	/* go go gadget! */
200 	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
201 		     ATMEL_TC_REG(2, CCR));
202 	return 0;
203 }
204 
tc_next_event(unsigned long delta,struct clock_event_device * d)205 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
206 {
207 	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
208 
209 	/* go go gadget! */
210 	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
211 			tcaddr + ATMEL_TC_REG(2, CCR));
212 	return 0;
213 }
214 
215 static struct tc_clkevt_device clkevt = {
216 	.clkevt	= {
217 		.name			= "tc_clkevt",
218 		.features		= CLOCK_EVT_FEAT_PERIODIC |
219 					  CLOCK_EVT_FEAT_ONESHOT,
220 		/* Should be lower than at91rm9200's system timer */
221 		.rating			= 125,
222 		.set_next_event		= tc_next_event,
223 		.set_state_shutdown	= tc_shutdown,
224 		.set_state_periodic	= tc_set_periodic,
225 		.set_state_oneshot	= tc_set_oneshot,
226 	},
227 };
228 
ch2_irq(int irq,void * handle)229 static irqreturn_t ch2_irq(int irq, void *handle)
230 {
231 	struct tc_clkevt_device	*dev = handle;
232 	unsigned int		sr;
233 
234 	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
235 	if (sr & ATMEL_TC_CPCS) {
236 		dev->clkevt.event_handler(&dev->clkevt);
237 		return IRQ_HANDLED;
238 	}
239 
240 	return IRQ_NONE;
241 }
242 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)243 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
244 {
245 	int ret;
246 	struct clk *t2_clk = tc->clk[2];
247 	int irq = tc->irq[2];
248 
249 	ret = clk_prepare_enable(tc->slow_clk);
250 	if (ret)
251 		return ret;
252 
253 	/* try to enable t2 clk to avoid future errors in mode change */
254 	ret = clk_prepare_enable(t2_clk);
255 	if (ret) {
256 		clk_disable_unprepare(tc->slow_clk);
257 		return ret;
258 	}
259 
260 	clk_disable(t2_clk);
261 
262 	clkevt.regs = tc->regs;
263 	clkevt.clk = t2_clk;
264 
265 	timer_clock = clk32k_divisor_idx;
266 
267 	clkevt.clkevt.cpumask = cpumask_of(0);
268 
269 	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
270 	if (ret) {
271 		clk_unprepare(t2_clk);
272 		clk_disable_unprepare(tc->slow_clk);
273 		return ret;
274 	}
275 
276 	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
277 
278 	return ret;
279 }
280 
281 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
282 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)283 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
284 {
285 	/* NOTHING */
286 	return 0;
287 }
288 
289 #endif
290 
tcb_setup_dual_chan(struct atmel_tc * tc,int mck_divisor_idx)291 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
292 {
293 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
294 	writel(mck_divisor_idx			/* likely divide-by-8 */
295 			| ATMEL_TC_WAVE
296 			| ATMEL_TC_WAVESEL_UP		/* free-run */
297 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
298 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
299 			tcaddr + ATMEL_TC_REG(0, CMR));
300 	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
301 	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
302 	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
303 	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
304 
305 	/* channel 1:  waveform mode, input TIOA0 */
306 	writel(ATMEL_TC_XC1			/* input: TIOA0 */
307 			| ATMEL_TC_WAVE
308 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
309 			tcaddr + ATMEL_TC_REG(1, CMR));
310 	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
311 	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
312 
313 	/* chain channel 0 to channel 1*/
314 	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
315 	/* then reset all the timers */
316 	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
317 }
318 
tcb_setup_single_chan(struct atmel_tc * tc,int mck_divisor_idx)319 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
320 {
321 	/* channel 0:  waveform mode, input mclk/8 */
322 	writel(mck_divisor_idx			/* likely divide-by-8 */
323 			| ATMEL_TC_WAVE
324 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
325 			tcaddr + ATMEL_TC_REG(0, CMR));
326 	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
327 	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
328 
329 	/* then reset all the timers */
330 	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
331 }
332 
tcb_clksrc_init(void)333 static int __init tcb_clksrc_init(void)
334 {
335 	static char bootinfo[] __initdata
336 		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
337 
338 	struct platform_device *pdev;
339 	struct atmel_tc *tc;
340 	struct clk *t0_clk;
341 	u32 rate, divided_rate = 0;
342 	int best_divisor_idx = -1;
343 	int clk32k_divisor_idx = -1;
344 	int i;
345 	int ret;
346 
347 	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
348 	if (!tc) {
349 		pr_debug("can't alloc TC for clocksource\n");
350 		return -ENODEV;
351 	}
352 	tcaddr = tc->regs;
353 	pdev = tc->pdev;
354 
355 	t0_clk = tc->clk[0];
356 	ret = clk_prepare_enable(t0_clk);
357 	if (ret) {
358 		pr_debug("can't enable T0 clk\n");
359 		goto err_free_tc;
360 	}
361 
362 	/* How fast will we be counting?  Pick something over 5 MHz.  */
363 	rate = (u32) clk_get_rate(t0_clk);
364 	for (i = 0; i < 5; i++) {
365 		unsigned divisor = atmel_tc_divisors[i];
366 		unsigned tmp;
367 
368 		/* remember 32 KiHz clock for later */
369 		if (!divisor) {
370 			clk32k_divisor_idx = i;
371 			continue;
372 		}
373 
374 		tmp = rate / divisor;
375 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
376 		if (best_divisor_idx > 0) {
377 			if (tmp < 5 * 1000 * 1000)
378 				continue;
379 		}
380 		divided_rate = tmp;
381 		best_divisor_idx = i;
382 	}
383 
384 
385 	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
386 			divided_rate / 1000000,
387 			((divided_rate % 1000000) + 500) / 1000);
388 
389 	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
390 		/* use apropriate function to read 32 bit counter */
391 		clksrc.read = tc_get_cycles32;
392 		/* setup ony channel 0 */
393 		tcb_setup_single_chan(tc, best_divisor_idx);
394 	} else {
395 		/* tclib will give us three clocks no matter what the
396 		 * underlying platform supports.
397 		 */
398 		ret = clk_prepare_enable(tc->clk[1]);
399 		if (ret) {
400 			pr_debug("can't enable T1 clk\n");
401 			goto err_disable_t0;
402 		}
403 		/* setup both channel 0 & 1 */
404 		tcb_setup_dual_chan(tc, best_divisor_idx);
405 	}
406 
407 	/* and away we go! */
408 	ret = clocksource_register_hz(&clksrc, divided_rate);
409 	if (ret)
410 		goto err_disable_t1;
411 
412 	/* channel 2:  periodic and oneshot timer support */
413 	ret = setup_clkevents(tc, clk32k_divisor_idx);
414 	if (ret)
415 		goto err_unregister_clksrc;
416 
417 	return 0;
418 
419 err_unregister_clksrc:
420 	clocksource_unregister(&clksrc);
421 
422 err_disable_t1:
423 	if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
424 		clk_disable_unprepare(tc->clk[1]);
425 
426 err_disable_t0:
427 	clk_disable_unprepare(t0_clk);
428 
429 err_free_tc:
430 	atmel_tc_free(tc);
431 	return ret;
432 }
433 arch_initcall(tcb_clksrc_init);
434