1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34
35 #include <clocksource/arm_arch_timer.h>
36
37 #define CNTTIDR 0x08
38 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40 #define CNTACR(n) (0x40 + ((n) * 4))
41 #define CNTACR_RPCT BIT(0)
42 #define CNTACR_RVCT BIT(1)
43 #define CNTACR_RFRQ BIT(2)
44 #define CNTACR_RVOFF BIT(3)
45 #define CNTACR_RWVT BIT(4)
46 #define CNTACR_RWPT BIT(5)
47
48 #define CNTPCT_LO 0x00
49 #define CNTVCT_LO 0x08
50 #define CNTFRQ 0x10
51 #define CNTP_CVAL_LO 0x20
52 #define CNTP_CTL 0x2c
53 #define CNTV_CVAL_LO 0x30
54 #define CNTV_CTL 0x3c
55
56 /*
57 * The minimum amount of time a generic counter is guaranteed to not roll over
58 * (40 years)
59 */
60 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
61
62 static unsigned arch_timers_present __initdata;
63
64 struct arch_timer {
65 void __iomem *base;
66 struct clock_event_device evt;
67 };
68
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
78 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79 [ARCH_TIMER_VIRT_PPI] = "virt",
80 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
81 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
82 };
83
84 static struct clock_event_device __percpu *arch_timer_evt;
85
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
early_evtstrm_cfg(char * buf)99 static int __init early_evtstrm_cfg(char *buf)
100 {
101 return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105 /*
106 * Makes an educated guess at a valid counter width based on the Generic Timer
107 * specification. Of note:
108 * 1) the system counter is at least 56 bits wide
109 * 2) a roll-over time of not less than 40 years
110 *
111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112 */
arch_counter_get_width(void)113 static int arch_counter_get_width(void)
114 {
115 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117 /* guarantee the returned width is within the valid range */
118 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120
121 /*
122 * Architected system timer support.
123 */
124
125 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u64 val,struct clock_event_device * clk)126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127 struct clock_event_device *clk)
128 {
129 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 struct arch_timer *timer = to_arch_timer(clk);
131 switch (reg) {
132 case ARCH_TIMER_REG_CTRL:
133 writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 break;
135 case ARCH_TIMER_REG_CVAL:
136 /*
137 * Not guaranteed to be atomic, so the timer
138 * must be disabled at this point.
139 */
140 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141 break;
142 default:
143 BUILD_BUG();
144 }
145 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 struct arch_timer *timer = to_arch_timer(clk);
147 switch (reg) {
148 case ARCH_TIMER_REG_CTRL:
149 writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 break;
151 case ARCH_TIMER_REG_CVAL:
152 /* Same restriction as above */
153 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154 break;
155 default:
156 BUILD_BUG();
157 }
158 } else {
159 arch_timer_reg_write_cp15(access, reg, val);
160 }
161 }
162
163 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165 struct clock_event_device *clk)
166 {
167 u32 val;
168
169 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170 struct arch_timer *timer = to_arch_timer(clk);
171 switch (reg) {
172 case ARCH_TIMER_REG_CTRL:
173 val = readl_relaxed(timer->base + CNTP_CTL);
174 break;
175 default:
176 BUILD_BUG();
177 }
178 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179 struct arch_timer *timer = to_arch_timer(clk);
180 switch (reg) {
181 case ARCH_TIMER_REG_CTRL:
182 val = readl_relaxed(timer->base + CNTV_CTL);
183 break;
184 default:
185 BUILD_BUG();
186 }
187 } else {
188 val = arch_timer_reg_read_cp15(access, reg);
189 }
190
191 return val;
192 }
193
raw_counter_get_cntpct_stable(void)194 static noinstr u64 raw_counter_get_cntpct_stable(void)
195 {
196 return __arch_counter_get_cntpct_stable();
197 }
198
arch_counter_get_cntpct_stable(void)199 static notrace u64 arch_counter_get_cntpct_stable(void)
200 {
201 u64 val;
202 preempt_disable_notrace();
203 val = __arch_counter_get_cntpct_stable();
204 preempt_enable_notrace();
205 return val;
206 }
207
arch_counter_get_cntpct(void)208 static noinstr u64 arch_counter_get_cntpct(void)
209 {
210 return __arch_counter_get_cntpct();
211 }
212
raw_counter_get_cntvct_stable(void)213 static noinstr u64 raw_counter_get_cntvct_stable(void)
214 {
215 return __arch_counter_get_cntvct_stable();
216 }
217
arch_counter_get_cntvct_stable(void)218 static notrace u64 arch_counter_get_cntvct_stable(void)
219 {
220 u64 val;
221 preempt_disable_notrace();
222 val = __arch_counter_get_cntvct_stable();
223 preempt_enable_notrace();
224 return val;
225 }
226
arch_counter_get_cntvct(void)227 static noinstr u64 arch_counter_get_cntvct(void)
228 {
229 return __arch_counter_get_cntvct();
230 }
231
232 /*
233 * Default to cp15 based access because arm64 uses this function for
234 * sched_clock() before DT is probed and the cp15 method is guaranteed
235 * to exist on arm64. arm doesn't use this before DT is probed so even
236 * if we don't have the cp15 accessors we won't have a problem.
237 */
238 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
239 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
240
arch_counter_read(struct clocksource * cs)241 static u64 arch_counter_read(struct clocksource *cs)
242 {
243 return arch_timer_read_counter();
244 }
245
arch_counter_read_cc(const struct cyclecounter * cc)246 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
247 {
248 return arch_timer_read_counter();
249 }
250
251 static struct clocksource clocksource_counter = {
252 .name = "arch_sys_counter",
253 .id = CSID_ARM_ARCH_COUNTER,
254 .rating = 400,
255 .read = arch_counter_read,
256 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
257 };
258
259 static struct cyclecounter cyclecounter __ro_after_init = {
260 .read = arch_counter_read_cc,
261 };
262
263 struct ate_acpi_oem_info {
264 char oem_id[ACPI_OEM_ID_SIZE + 1];
265 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
266 u32 oem_revision;
267 };
268
269 #ifdef CONFIG_FSL_ERRATUM_A008585
270 /*
271 * The number of retries is an arbitrary value well beyond the highest number
272 * of iterations the loop has been observed to take.
273 */
274 #define __fsl_a008585_read_reg(reg) ({ \
275 u64 _old, _new; \
276 int _retries = 200; \
277 \
278 do { \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
281 _retries--; \
282 } while (unlikely(_old != _new) && _retries); \
283 \
284 WARN_ON_ONCE(!_retries); \
285 _new; \
286 })
287
fsl_a008585_read_cntpct_el0(void)288 static u64 notrace fsl_a008585_read_cntpct_el0(void)
289 {
290 return __fsl_a008585_read_reg(cntpct_el0);
291 }
292
fsl_a008585_read_cntvct_el0(void)293 static u64 notrace fsl_a008585_read_cntvct_el0(void)
294 {
295 return __fsl_a008585_read_reg(cntvct_el0);
296 }
297 #endif
298
299 #ifdef CONFIG_HISILICON_ERRATUM_161010101
300 /*
301 * Verify whether the value of the second read is larger than the first by
302 * less than 32 is the only way to confirm the value is correct, so clear the
303 * lower 5 bits to check whether the difference is greater than 32 or not.
304 * Theoretically the erratum should not occur more than twice in succession
305 * when reading the system counter, but it is possible that some interrupts
306 * may lead to more than twice read errors, triggering the warning, so setting
307 * the number of retries far beyond the number of iterations the loop has been
308 * observed to take.
309 */
310 #define __hisi_161010101_read_reg(reg) ({ \
311 u64 _old, _new; \
312 int _retries = 50; \
313 \
314 do { \
315 _old = read_sysreg(reg); \
316 _new = read_sysreg(reg); \
317 _retries--; \
318 } while (unlikely((_new - _old) >> 5) && _retries); \
319 \
320 WARN_ON_ONCE(!_retries); \
321 _new; \
322 })
323
hisi_161010101_read_cntpct_el0(void)324 static u64 notrace hisi_161010101_read_cntpct_el0(void)
325 {
326 return __hisi_161010101_read_reg(cntpct_el0);
327 }
328
hisi_161010101_read_cntvct_el0(void)329 static u64 notrace hisi_161010101_read_cntvct_el0(void)
330 {
331 return __hisi_161010101_read_reg(cntvct_el0);
332 }
333
334 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
335 /*
336 * Note that trailing spaces are required to properly match
337 * the OEM table information.
338 */
339 {
340 .oem_id = "HISI ",
341 .oem_table_id = "HIP05 ",
342 .oem_revision = 0,
343 },
344 {
345 .oem_id = "HISI ",
346 .oem_table_id = "HIP06 ",
347 .oem_revision = 0,
348 },
349 {
350 .oem_id = "HISI ",
351 .oem_table_id = "HIP07 ",
352 .oem_revision = 0,
353 },
354 { /* Sentinel indicating the end of the OEM array */ },
355 };
356 #endif
357
358 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)359 static u64 notrace arm64_858921_read_cntpct_el0(void)
360 {
361 u64 old, new;
362
363 old = read_sysreg(cntpct_el0);
364 new = read_sysreg(cntpct_el0);
365 return (((old ^ new) >> 32) & 1) ? old : new;
366 }
367
arm64_858921_read_cntvct_el0(void)368 static u64 notrace arm64_858921_read_cntvct_el0(void)
369 {
370 u64 old, new;
371
372 old = read_sysreg(cntvct_el0);
373 new = read_sysreg(cntvct_el0);
374 return (((old ^ new) >> 32) & 1) ? old : new;
375 }
376 #endif
377
378 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
379 /*
380 * The low bits of the counter registers are indeterminate while bit 10 or
381 * greater is rolling over. Since the counter value can jump both backward
382 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383 * with all ones or all zeros in the low bits. Bound the loop by the maximum
384 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
385 */
386 #define __sun50i_a64_read_reg(reg) ({ \
387 u64 _val; \
388 int _retries = 150; \
389 \
390 do { \
391 _val = read_sysreg(reg); \
392 _retries--; \
393 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
394 \
395 WARN_ON_ONCE(!_retries); \
396 _val; \
397 })
398
sun50i_a64_read_cntpct_el0(void)399 static u64 notrace sun50i_a64_read_cntpct_el0(void)
400 {
401 return __sun50i_a64_read_reg(cntpct_el0);
402 }
403
sun50i_a64_read_cntvct_el0(void)404 static u64 notrace sun50i_a64_read_cntvct_el0(void)
405 {
406 return __sun50i_a64_read_reg(cntvct_el0);
407 }
408 #endif
409
410 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
412 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
413
414 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
415
416 /*
417 * Force the inlining of this function so that the register accesses
418 * can be themselves correctly inlined.
419 */
420 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)421 void erratum_set_next_event_generic(const int access, unsigned long evt,
422 struct clock_event_device *clk)
423 {
424 unsigned long ctrl;
425 u64 cval;
426
427 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
428 ctrl |= ARCH_TIMER_CTRL_ENABLE;
429 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
430
431 if (access == ARCH_TIMER_PHYS_ACCESS) {
432 cval = evt + arch_counter_get_cntpct_stable();
433 write_sysreg(cval, cntp_cval_el0);
434 } else {
435 cval = evt + arch_counter_get_cntvct_stable();
436 write_sysreg(cval, cntv_cval_el0);
437 }
438
439 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
440 }
441
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)442 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
443 struct clock_event_device *clk)
444 {
445 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
446 return 0;
447 }
448
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)449 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
450 struct clock_event_device *clk)
451 {
452 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
453 return 0;
454 }
455
456 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
457 #ifdef CONFIG_FSL_ERRATUM_A008585
458 {
459 .match_type = ate_match_dt,
460 .id = "fsl,erratum-a008585",
461 .desc = "Freescale erratum a005858",
462 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
463 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
464 .set_next_event_phys = erratum_set_next_event_phys,
465 .set_next_event_virt = erratum_set_next_event_virt,
466 },
467 #endif
468 #ifdef CONFIG_HISILICON_ERRATUM_161010101
469 {
470 .match_type = ate_match_dt,
471 .id = "hisilicon,erratum-161010101",
472 .desc = "HiSilicon erratum 161010101",
473 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
474 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
475 .set_next_event_phys = erratum_set_next_event_phys,
476 .set_next_event_virt = erratum_set_next_event_virt,
477 },
478 {
479 .match_type = ate_match_acpi_oem_info,
480 .id = hisi_161010101_oem_info,
481 .desc = "HiSilicon erratum 161010101",
482 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
483 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
484 .set_next_event_phys = erratum_set_next_event_phys,
485 .set_next_event_virt = erratum_set_next_event_virt,
486 },
487 #endif
488 #ifdef CONFIG_ARM64_ERRATUM_858921
489 {
490 .match_type = ate_match_local_cap_id,
491 .id = (void *)ARM64_WORKAROUND_858921,
492 .desc = "ARM erratum 858921",
493 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
494 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
495 .set_next_event_phys = erratum_set_next_event_phys,
496 .set_next_event_virt = erratum_set_next_event_virt,
497 },
498 #endif
499 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
500 {
501 .match_type = ate_match_dt,
502 .id = "allwinner,erratum-unknown1",
503 .desc = "Allwinner erratum UNKNOWN1",
504 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
505 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
506 .set_next_event_phys = erratum_set_next_event_phys,
507 .set_next_event_virt = erratum_set_next_event_virt,
508 },
509 #endif
510 #ifdef CONFIG_ARM64_ERRATUM_1418040
511 {
512 .match_type = ate_match_local_cap_id,
513 .id = (void *)ARM64_WORKAROUND_1418040,
514 .desc = "ARM erratum 1418040",
515 .disable_compat_vdso = true,
516 },
517 #endif
518 };
519
520 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
521 const void *);
522
523 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)524 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
525 const void *arg)
526 {
527 const struct device_node *np = arg;
528
529 return of_property_read_bool(np, wa->id);
530 }
531
532 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)533 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
534 const void *arg)
535 {
536 return this_cpu_has_cap((uintptr_t)wa->id);
537 }
538
539
540 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)541 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
542 const void *arg)
543 {
544 static const struct ate_acpi_oem_info empty_oem_info = {};
545 const struct ate_acpi_oem_info *info = wa->id;
546 const struct acpi_table_header *table = arg;
547
548 /* Iterate over the ACPI OEM info array, looking for a match */
549 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
550 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
551 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
552 info->oem_revision == table->oem_revision)
553 return true;
554
555 info++;
556 }
557
558 return false;
559 }
560
561 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)562 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
563 ate_match_fn_t match_fn,
564 void *arg)
565 {
566 int i;
567
568 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
569 if (ool_workarounds[i].match_type != type)
570 continue;
571
572 if (match_fn(&ool_workarounds[i], arg))
573 return &ool_workarounds[i];
574 }
575
576 return NULL;
577 }
578
579 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)580 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
581 bool local)
582 {
583 int i;
584
585 if (local) {
586 __this_cpu_write(timer_unstable_counter_workaround, wa);
587 } else {
588 for_each_possible_cpu(i)
589 per_cpu(timer_unstable_counter_workaround, i) = wa;
590 }
591
592 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
593 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
594
595 /*
596 * Don't use the vdso fastpath if errata require using the
597 * out-of-line counter accessor. We may change our mind pretty
598 * late in the game (with a per-CPU erratum, for example), so
599 * change both the default value and the vdso itself.
600 */
601 if (wa->read_cntvct_el0) {
602 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
603 vdso_default = VDSO_CLOCKMODE_NONE;
604 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
605 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
606 clocksource_counter.vdso_clock_mode = vdso_default;
607 }
608 }
609
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)610 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
611 void *arg)
612 {
613 const struct arch_timer_erratum_workaround *wa, *__wa;
614 ate_match_fn_t match_fn = NULL;
615 bool local = false;
616
617 switch (type) {
618 case ate_match_dt:
619 match_fn = arch_timer_check_dt_erratum;
620 break;
621 case ate_match_local_cap_id:
622 match_fn = arch_timer_check_local_cap_erratum;
623 local = true;
624 break;
625 case ate_match_acpi_oem_info:
626 match_fn = arch_timer_check_acpi_oem_erratum;
627 break;
628 default:
629 WARN_ON(1);
630 return;
631 }
632
633 wa = arch_timer_iterate_errata(type, match_fn, arg);
634 if (!wa)
635 return;
636
637 __wa = __this_cpu_read(timer_unstable_counter_workaround);
638 if (__wa && wa != __wa)
639 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640 wa->desc, __wa->desc);
641
642 if (__wa)
643 return;
644
645 arch_timer_enable_workaround(wa, local);
646 pr_info("Enabling %s workaround for %s\n",
647 local ? "local" : "global", wa->desc);
648 }
649
arch_timer_this_cpu_has_cntvct_wa(void)650 static bool arch_timer_this_cpu_has_cntvct_wa(void)
651 {
652 return has_erratum_handler(read_cntvct_el0);
653 }
654
arch_timer_counter_has_wa(void)655 static bool arch_timer_counter_has_wa(void)
656 {
657 return atomic_read(&timer_unstable_counter_workaround_in_use);
658 }
659 #else
660 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
661 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
662 #define arch_timer_counter_has_wa() ({false;})
663 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
664
timer_handler(const int access,struct clock_event_device * evt)665 static __always_inline irqreturn_t timer_handler(const int access,
666 struct clock_event_device *evt)
667 {
668 unsigned long ctrl;
669
670 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
671 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
672 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
673 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
674 evt->event_handler(evt);
675 return IRQ_HANDLED;
676 }
677
678 return IRQ_NONE;
679 }
680
arch_timer_handler_virt(int irq,void * dev_id)681 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
682 {
683 struct clock_event_device *evt = dev_id;
684
685 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
686 }
687
arch_timer_handler_phys(int irq,void * dev_id)688 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
689 {
690 struct clock_event_device *evt = dev_id;
691
692 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
693 }
694
arch_timer_handler_phys_mem(int irq,void * dev_id)695 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
696 {
697 struct clock_event_device *evt = dev_id;
698
699 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
700 }
701
arch_timer_handler_virt_mem(int irq,void * dev_id)702 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
703 {
704 struct clock_event_device *evt = dev_id;
705
706 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
707 }
708
arch_timer_shutdown(const int access,struct clock_event_device * clk)709 static __always_inline int arch_timer_shutdown(const int access,
710 struct clock_event_device *clk)
711 {
712 unsigned long ctrl;
713
714 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
716 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
717
718 return 0;
719 }
720
arch_timer_shutdown_virt(struct clock_event_device * clk)721 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
722 {
723 return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
724 }
725
arch_timer_shutdown_phys(struct clock_event_device * clk)726 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
727 {
728 return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
729 }
730
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)731 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
732 {
733 return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
734 }
735
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)736 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
737 {
738 return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
739 }
740
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)741 static __always_inline void set_next_event(const int access, unsigned long evt,
742 struct clock_event_device *clk)
743 {
744 unsigned long ctrl;
745 u64 cnt;
746
747 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
748 ctrl |= ARCH_TIMER_CTRL_ENABLE;
749 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
750
751 if (access == ARCH_TIMER_PHYS_ACCESS)
752 cnt = __arch_counter_get_cntpct();
753 else
754 cnt = __arch_counter_get_cntvct();
755
756 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
757 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
758 }
759
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)760 static int arch_timer_set_next_event_virt(unsigned long evt,
761 struct clock_event_device *clk)
762 {
763 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
764 return 0;
765 }
766
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)767 static int arch_timer_set_next_event_phys(unsigned long evt,
768 struct clock_event_device *clk)
769 {
770 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
771 return 0;
772 }
773
arch_counter_get_cnt_mem(struct arch_timer * t,int offset_lo)774 static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
775 {
776 u32 cnt_lo, cnt_hi, tmp_hi;
777
778 do {
779 cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
780 cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
781 tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
782 } while (cnt_hi != tmp_hi);
783
784 return ((u64) cnt_hi << 32) | cnt_lo;
785 }
786
set_next_event_mem(const int access,unsigned long evt,struct clock_event_device * clk)787 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
788 struct clock_event_device *clk)
789 {
790 struct arch_timer *timer = to_arch_timer(clk);
791 unsigned long ctrl;
792 u64 cnt;
793
794 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
795
796 /* Timer must be disabled before programming CVAL */
797 if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
798 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
799 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
800 }
801
802 ctrl |= ARCH_TIMER_CTRL_ENABLE;
803 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
804
805 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
806 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
807 else
808 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
809
810 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
811 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
812 }
813
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)814 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
815 struct clock_event_device *clk)
816 {
817 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
818 return 0;
819 }
820
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)821 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
822 struct clock_event_device *clk)
823 {
824 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
825 return 0;
826 }
827
__arch_timer_check_delta(void)828 static u64 __arch_timer_check_delta(void)
829 {
830 #ifdef CONFIG_ARM64
831 const struct midr_range broken_cval_midrs[] = {
832 /*
833 * XGene-1 implements CVAL in terms of TVAL, meaning
834 * that the maximum timer range is 32bit. Shame on them.
835 *
836 * Note that TVAL is signed, thus has only 31 of its
837 * 32 bits to express magnitude.
838 */
839 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
840 APM_CPU_PART_POTENZA)),
841 {},
842 };
843
844 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
845 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
846 return CLOCKSOURCE_MASK(31);
847 }
848 #endif
849 return CLOCKSOURCE_MASK(arch_counter_get_width());
850 }
851
__arch_timer_setup(unsigned type,struct clock_event_device * clk)852 static void __arch_timer_setup(unsigned type,
853 struct clock_event_device *clk)
854 {
855 u64 max_delta;
856
857 clk->features = CLOCK_EVT_FEAT_ONESHOT;
858
859 if (type == ARCH_TIMER_TYPE_CP15) {
860 typeof(clk->set_next_event) sne;
861
862 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
863
864 if (arch_timer_c3stop)
865 clk->features |= CLOCK_EVT_FEAT_C3STOP;
866 clk->name = "arch_sys_timer";
867 clk->rating = 450;
868 clk->cpumask = cpumask_of(smp_processor_id());
869 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
870 switch (arch_timer_uses_ppi) {
871 case ARCH_TIMER_VIRT_PPI:
872 clk->set_state_shutdown = arch_timer_shutdown_virt;
873 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
874 sne = erratum_handler(set_next_event_virt);
875 break;
876 case ARCH_TIMER_PHYS_SECURE_PPI:
877 case ARCH_TIMER_PHYS_NONSECURE_PPI:
878 case ARCH_TIMER_HYP_PPI:
879 clk->set_state_shutdown = arch_timer_shutdown_phys;
880 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
881 sne = erratum_handler(set_next_event_phys);
882 break;
883 default:
884 BUG();
885 }
886
887 clk->set_next_event = sne;
888 max_delta = __arch_timer_check_delta();
889 } else {
890 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
891 clk->name = "arch_mem_timer";
892 clk->rating = 400;
893 clk->cpumask = cpu_possible_mask;
894 if (arch_timer_mem_use_virtual) {
895 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
896 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
897 clk->set_next_event =
898 arch_timer_set_next_event_virt_mem;
899 } else {
900 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
901 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
902 clk->set_next_event =
903 arch_timer_set_next_event_phys_mem;
904 }
905
906 max_delta = CLOCKSOURCE_MASK(56);
907 }
908
909 clk->set_state_shutdown(clk);
910
911 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
912 }
913
arch_timer_evtstrm_enable(unsigned int divider)914 static void arch_timer_evtstrm_enable(unsigned int divider)
915 {
916 u32 cntkctl = arch_timer_get_cntkctl();
917
918 #ifdef CONFIG_ARM64
919 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
920 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
921 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
922 divider -= 8;
923 }
924 #endif
925
926 divider = min(divider, 15U);
927 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
928 /* Set the divider and enable virtual event stream */
929 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
930 | ARCH_TIMER_VIRT_EVT_EN;
931 arch_timer_set_cntkctl(cntkctl);
932 arch_timer_set_evtstrm_feature();
933 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
934 }
935
arch_timer_configure_evtstream(void)936 static void arch_timer_configure_evtstream(void)
937 {
938 int evt_stream_div, lsb;
939
940 /*
941 * As the event stream can at most be generated at half the frequency
942 * of the counter, use half the frequency when computing the divider.
943 */
944 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
945
946 /*
947 * Find the closest power of two to the divisor. If the adjacent bit
948 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
949 */
950 lsb = fls(evt_stream_div) - 1;
951 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
952 lsb++;
953
954 /* enable event stream */
955 arch_timer_evtstrm_enable(max(0, lsb));
956 }
957
arch_counter_set_user_access(void)958 static void arch_counter_set_user_access(void)
959 {
960 u32 cntkctl = arch_timer_get_cntkctl();
961
962 /* Disable user access to the timers and both counters */
963 /* Also disable virtual event stream */
964 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
965 | ARCH_TIMER_USR_VT_ACCESS_EN
966 | ARCH_TIMER_USR_VCT_ACCESS_EN
967 | ARCH_TIMER_VIRT_EVT_EN
968 | ARCH_TIMER_USR_PCT_ACCESS_EN);
969
970 /*
971 * Enable user access to the virtual counter if it doesn't
972 * need to be workaround. The vdso may have been already
973 * disabled though.
974 */
975 if (arch_timer_this_cpu_has_cntvct_wa())
976 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
977 else
978 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
979
980 arch_timer_set_cntkctl(cntkctl);
981 }
982
arch_timer_has_nonsecure_ppi(void)983 static bool arch_timer_has_nonsecure_ppi(void)
984 {
985 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
986 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
987 }
988
check_ppi_trigger(int irq)989 static u32 check_ppi_trigger(int irq)
990 {
991 u32 flags = irq_get_trigger_type(irq);
992
993 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
994 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
995 pr_warn("WARNING: Please fix your firmware\n");
996 flags = IRQF_TRIGGER_LOW;
997 }
998
999 return flags;
1000 }
1001
arch_timer_starting_cpu(unsigned int cpu)1002 static int arch_timer_starting_cpu(unsigned int cpu)
1003 {
1004 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1005 u32 flags;
1006
1007 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1008
1009 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1010 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1011
1012 if (arch_timer_has_nonsecure_ppi()) {
1013 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1014 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1015 flags);
1016 }
1017
1018 arch_counter_set_user_access();
1019 if (evtstrm_enable)
1020 arch_timer_configure_evtstream();
1021
1022 return 0;
1023 }
1024
validate_timer_rate(void)1025 static int validate_timer_rate(void)
1026 {
1027 if (!arch_timer_rate)
1028 return -EINVAL;
1029
1030 /* Arch timer frequency < 1MHz can cause trouble */
1031 WARN_ON(arch_timer_rate < 1000000);
1032
1033 return 0;
1034 }
1035
1036 /*
1037 * For historical reasons, when probing with DT we use whichever (non-zero)
1038 * rate was probed first, and don't verify that others match. If the first node
1039 * probed has a clock-frequency property, this overrides the HW register.
1040 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)1041 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1042 {
1043 /* Who has more than one independent system counter? */
1044 if (arch_timer_rate)
1045 return;
1046
1047 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1048 arch_timer_rate = rate;
1049
1050 /* Check the timer frequency. */
1051 if (validate_timer_rate())
1052 pr_warn("frequency not available\n");
1053 }
1054
arch_timer_banner(unsigned type)1055 static void __init arch_timer_banner(unsigned type)
1056 {
1057 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1058 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1059 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1060 " and " : "",
1061 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1062 (unsigned long)arch_timer_rate / 1000000,
1063 (unsigned long)(arch_timer_rate / 10000) % 100,
1064 type & ARCH_TIMER_TYPE_CP15 ?
1065 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1066 "",
1067 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1068 type & ARCH_TIMER_TYPE_MEM ?
1069 arch_timer_mem_use_virtual ? "virt" : "phys" :
1070 "");
1071 }
1072
arch_timer_get_rate(void)1073 u32 arch_timer_get_rate(void)
1074 {
1075 return arch_timer_rate;
1076 }
1077
arch_timer_evtstrm_available(void)1078 bool arch_timer_evtstrm_available(void)
1079 {
1080 /*
1081 * We might get called from a preemptible context. This is fine
1082 * because availability of the event stream should be always the same
1083 * for a preemptible context and context where we might resume a task.
1084 */
1085 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1086 }
1087
arch_counter_get_cntvct_mem(void)1088 static noinstr u64 arch_counter_get_cntvct_mem(void)
1089 {
1090 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1091 }
1092
1093 static struct arch_timer_kvm_info arch_timer_kvm_info;
1094
arch_timer_get_kvm_info(void)1095 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1096 {
1097 return &arch_timer_kvm_info;
1098 }
1099
arch_counter_register(unsigned type)1100 static void __init arch_counter_register(unsigned type)
1101 {
1102 u64 (*scr)(void);
1103 u64 start_count;
1104 int width;
1105
1106 /* Register the CP15 based counter if we have one */
1107 if (type & ARCH_TIMER_TYPE_CP15) {
1108 u64 (*rd)(void);
1109
1110 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1111 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1112 if (arch_timer_counter_has_wa()) {
1113 rd = arch_counter_get_cntvct_stable;
1114 scr = raw_counter_get_cntvct_stable;
1115 } else {
1116 rd = arch_counter_get_cntvct;
1117 scr = arch_counter_get_cntvct;
1118 }
1119 } else {
1120 if (arch_timer_counter_has_wa()) {
1121 rd = arch_counter_get_cntpct_stable;
1122 scr = raw_counter_get_cntpct_stable;
1123 } else {
1124 rd = arch_counter_get_cntpct;
1125 scr = arch_counter_get_cntpct;
1126 }
1127 }
1128
1129 arch_timer_read_counter = rd;
1130 clocksource_counter.vdso_clock_mode = vdso_default;
1131 } else {
1132 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1133 scr = arch_counter_get_cntvct_mem;
1134 }
1135
1136 width = arch_counter_get_width();
1137 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1138 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1139
1140 if (!arch_counter_suspend_stop)
1141 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1142 start_count = arch_timer_read_counter();
1143 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1144 cyclecounter.mult = clocksource_counter.mult;
1145 cyclecounter.shift = clocksource_counter.shift;
1146 timecounter_init(&arch_timer_kvm_info.timecounter,
1147 &cyclecounter, start_count);
1148
1149 sched_clock_register(scr, width, arch_timer_rate);
1150 }
1151
arch_timer_stop(struct clock_event_device * clk)1152 static void arch_timer_stop(struct clock_event_device *clk)
1153 {
1154 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1155
1156 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1157 if (arch_timer_has_nonsecure_ppi())
1158 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1159
1160 clk->set_state_shutdown(clk);
1161 }
1162
arch_timer_dying_cpu(unsigned int cpu)1163 static int arch_timer_dying_cpu(unsigned int cpu)
1164 {
1165 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1166
1167 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1168
1169 arch_timer_stop(clk);
1170 return 0;
1171 }
1172
1173 #ifdef CONFIG_CPU_PM
1174 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1175 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1176 unsigned long action, void *hcpu)
1177 {
1178 if (action == CPU_PM_ENTER) {
1179 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1180
1181 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1182 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1183 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1184
1185 if (arch_timer_have_evtstrm_feature())
1186 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1187 }
1188 return NOTIFY_OK;
1189 }
1190
1191 static struct notifier_block arch_timer_cpu_pm_notifier = {
1192 .notifier_call = arch_timer_cpu_pm_notify,
1193 };
1194
arch_timer_cpu_pm_init(void)1195 static int __init arch_timer_cpu_pm_init(void)
1196 {
1197 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1198 }
1199
arch_timer_cpu_pm_deinit(void)1200 static void __init arch_timer_cpu_pm_deinit(void)
1201 {
1202 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1203 }
1204
1205 #else
arch_timer_cpu_pm_init(void)1206 static int __init arch_timer_cpu_pm_init(void)
1207 {
1208 return 0;
1209 }
1210
arch_timer_cpu_pm_deinit(void)1211 static void __init arch_timer_cpu_pm_deinit(void)
1212 {
1213 }
1214 #endif
1215
arch_timer_register(void)1216 static int __init arch_timer_register(void)
1217 {
1218 int err;
1219 int ppi;
1220
1221 arch_timer_evt = alloc_percpu(struct clock_event_device);
1222 if (!arch_timer_evt) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
1226
1227 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1228 switch (arch_timer_uses_ppi) {
1229 case ARCH_TIMER_VIRT_PPI:
1230 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1231 "arch_timer", arch_timer_evt);
1232 break;
1233 case ARCH_TIMER_PHYS_SECURE_PPI:
1234 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1235 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1236 "arch_timer", arch_timer_evt);
1237 if (!err && arch_timer_has_nonsecure_ppi()) {
1238 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1239 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1240 "arch_timer", arch_timer_evt);
1241 if (err)
1242 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1243 arch_timer_evt);
1244 }
1245 break;
1246 case ARCH_TIMER_HYP_PPI:
1247 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1248 "arch_timer", arch_timer_evt);
1249 break;
1250 default:
1251 BUG();
1252 }
1253
1254 if (err) {
1255 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1256 goto out_free;
1257 }
1258
1259 err = arch_timer_cpu_pm_init();
1260 if (err)
1261 goto out_unreg_notify;
1262
1263 /* Register and immediately configure the timer on the boot CPU */
1264 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1265 "clockevents/arm/arch_timer:starting",
1266 arch_timer_starting_cpu, arch_timer_dying_cpu);
1267 if (err)
1268 goto out_unreg_cpupm;
1269 return 0;
1270
1271 out_unreg_cpupm:
1272 arch_timer_cpu_pm_deinit();
1273
1274 out_unreg_notify:
1275 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1276 if (arch_timer_has_nonsecure_ppi())
1277 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1278 arch_timer_evt);
1279
1280 out_free:
1281 free_percpu(arch_timer_evt);
1282 out:
1283 return err;
1284 }
1285
arch_timer_mem_register(void __iomem * base,unsigned int irq)1286 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1287 {
1288 int ret;
1289 irq_handler_t func;
1290
1291 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1292 if (!arch_timer_mem)
1293 return -ENOMEM;
1294
1295 arch_timer_mem->base = base;
1296 arch_timer_mem->evt.irq = irq;
1297 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1298
1299 if (arch_timer_mem_use_virtual)
1300 func = arch_timer_handler_virt_mem;
1301 else
1302 func = arch_timer_handler_phys_mem;
1303
1304 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1305 if (ret) {
1306 pr_err("Failed to request mem timer irq\n");
1307 kfree(arch_timer_mem);
1308 arch_timer_mem = NULL;
1309 }
1310
1311 return ret;
1312 }
1313
1314 static const struct of_device_id arch_timer_of_match[] __initconst = {
1315 { .compatible = "arm,armv7-timer", },
1316 { .compatible = "arm,armv8-timer", },
1317 {},
1318 };
1319
1320 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1321 { .compatible = "arm,armv7-timer-mem", },
1322 {},
1323 };
1324
arch_timer_needs_of_probing(void)1325 static bool __init arch_timer_needs_of_probing(void)
1326 {
1327 struct device_node *dn;
1328 bool needs_probing = false;
1329 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1330
1331 /* We have two timers, and both device-tree nodes are probed. */
1332 if ((arch_timers_present & mask) == mask)
1333 return false;
1334
1335 /*
1336 * Only one type of timer is probed,
1337 * check if we have another type of timer node in device-tree.
1338 */
1339 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1340 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1341 else
1342 dn = of_find_matching_node(NULL, arch_timer_of_match);
1343
1344 if (dn && of_device_is_available(dn))
1345 needs_probing = true;
1346
1347 of_node_put(dn);
1348
1349 return needs_probing;
1350 }
1351
arch_timer_common_init(void)1352 static int __init arch_timer_common_init(void)
1353 {
1354 arch_timer_banner(arch_timers_present);
1355 arch_counter_register(arch_timers_present);
1356 return arch_timer_arch_init();
1357 }
1358
1359 /**
1360 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1361 *
1362 * If HYP mode is available, we know that the physical timer
1363 * has been configured to be accessible from PL1. Use it, so
1364 * that a guest can use the virtual timer instead.
1365 *
1366 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1367 * accesses to CNTP_*_EL1 registers are silently redirected to
1368 * their CNTHP_*_EL2 counterparts, and use a different PPI
1369 * number.
1370 *
1371 * If no interrupt provided for virtual timer, we'll have to
1372 * stick to the physical timer. It'd better be accessible...
1373 * For arm64 we never use the secure interrupt.
1374 *
1375 * Return: a suitable PPI type for the current system.
1376 */
arch_timer_select_ppi(void)1377 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1378 {
1379 if (is_kernel_in_hyp_mode())
1380 return ARCH_TIMER_HYP_PPI;
1381
1382 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1383 return ARCH_TIMER_VIRT_PPI;
1384
1385 if (IS_ENABLED(CONFIG_ARM64))
1386 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1387
1388 return ARCH_TIMER_PHYS_SECURE_PPI;
1389 }
1390
arch_timer_populate_kvm_info(void)1391 static void __init arch_timer_populate_kvm_info(void)
1392 {
1393 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1394 if (is_kernel_in_hyp_mode())
1395 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1396 }
1397
arch_timer_of_init(struct device_node * np)1398 static int __init arch_timer_of_init(struct device_node *np)
1399 {
1400 int i, irq, ret;
1401 u32 rate;
1402 bool has_names;
1403
1404 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1405 pr_warn("multiple nodes in dt, skipping\n");
1406 return 0;
1407 }
1408
1409 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1410
1411 has_names = of_property_read_bool(np, "interrupt-names");
1412
1413 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1414 if (has_names)
1415 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1416 else
1417 irq = of_irq_get(np, i);
1418 if (irq > 0)
1419 arch_timer_ppi[i] = irq;
1420 }
1421
1422 arch_timer_populate_kvm_info();
1423
1424 rate = arch_timer_get_cntfrq();
1425 arch_timer_of_configure_rate(rate, np);
1426
1427 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1428
1429 /* Check for globally applicable workarounds */
1430 arch_timer_check_ool_workaround(ate_match_dt, np);
1431
1432 /*
1433 * If we cannot rely on firmware initializing the timer registers then
1434 * we should use the physical timers instead.
1435 */
1436 if (IS_ENABLED(CONFIG_ARM) &&
1437 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1438 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1439 else
1440 arch_timer_uses_ppi = arch_timer_select_ppi();
1441
1442 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1443 pr_err("No interrupt available, giving up\n");
1444 return -EINVAL;
1445 }
1446
1447 /* On some systems, the counter stops ticking when in suspend. */
1448 arch_counter_suspend_stop = of_property_read_bool(np,
1449 "arm,no-tick-in-suspend");
1450
1451 ret = arch_timer_register();
1452 if (ret)
1453 return ret;
1454
1455 if (arch_timer_needs_of_probing())
1456 return 0;
1457
1458 return arch_timer_common_init();
1459 }
1460 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1461 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1462
1463 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1464 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1465 {
1466 void __iomem *base;
1467 u32 rate;
1468
1469 base = ioremap(frame->cntbase, frame->size);
1470 if (!base) {
1471 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1472 return 0;
1473 }
1474
1475 rate = readl_relaxed(base + CNTFRQ);
1476
1477 iounmap(base);
1478
1479 return rate;
1480 }
1481
1482 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1483 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1484 {
1485 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1486 void __iomem *cntctlbase;
1487 u32 cnttidr;
1488 int i;
1489
1490 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1491 if (!cntctlbase) {
1492 pr_err("Can't map CNTCTLBase @ %pa\n",
1493 &timer_mem->cntctlbase);
1494 return NULL;
1495 }
1496
1497 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1498
1499 /*
1500 * Try to find a virtual capable frame. Otherwise fall back to a
1501 * physical capable frame.
1502 */
1503 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1504 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1505 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1506
1507 frame = &timer_mem->frame[i];
1508 if (!frame->valid)
1509 continue;
1510
1511 /* Try enabling everything, and see what sticks */
1512 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1513 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1514
1515 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1516 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1517 best_frame = frame;
1518 arch_timer_mem_use_virtual = true;
1519 break;
1520 }
1521
1522 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1523 continue;
1524
1525 best_frame = frame;
1526 }
1527
1528 iounmap(cntctlbase);
1529
1530 return best_frame;
1531 }
1532
1533 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1534 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1535 {
1536 void __iomem *base;
1537 int ret, irq = 0;
1538
1539 if (arch_timer_mem_use_virtual)
1540 irq = frame->virt_irq;
1541 else
1542 irq = frame->phys_irq;
1543
1544 if (!irq) {
1545 pr_err("Frame missing %s irq.\n",
1546 arch_timer_mem_use_virtual ? "virt" : "phys");
1547 return -EINVAL;
1548 }
1549
1550 if (!request_mem_region(frame->cntbase, frame->size,
1551 "arch_mem_timer"))
1552 return -EBUSY;
1553
1554 base = ioremap(frame->cntbase, frame->size);
1555 if (!base) {
1556 pr_err("Can't map frame's registers\n");
1557 return -ENXIO;
1558 }
1559
1560 ret = arch_timer_mem_register(base, irq);
1561 if (ret) {
1562 iounmap(base);
1563 return ret;
1564 }
1565
1566 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1567
1568 return 0;
1569 }
1570
arch_timer_mem_of_init(struct device_node * np)1571 static int __init arch_timer_mem_of_init(struct device_node *np)
1572 {
1573 struct arch_timer_mem *timer_mem;
1574 struct arch_timer_mem_frame *frame;
1575 struct device_node *frame_node;
1576 struct resource res;
1577 int ret = -EINVAL;
1578 u32 rate;
1579
1580 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1581 if (!timer_mem)
1582 return -ENOMEM;
1583
1584 if (of_address_to_resource(np, 0, &res))
1585 goto out;
1586 timer_mem->cntctlbase = res.start;
1587 timer_mem->size = resource_size(&res);
1588
1589 for_each_available_child_of_node(np, frame_node) {
1590 u32 n;
1591 struct arch_timer_mem_frame *frame;
1592
1593 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1594 pr_err(FW_BUG "Missing frame-number.\n");
1595 of_node_put(frame_node);
1596 goto out;
1597 }
1598 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1599 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1600 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1601 of_node_put(frame_node);
1602 goto out;
1603 }
1604 frame = &timer_mem->frame[n];
1605
1606 if (frame->valid) {
1607 pr_err(FW_BUG "Duplicated frame-number.\n");
1608 of_node_put(frame_node);
1609 goto out;
1610 }
1611
1612 if (of_address_to_resource(frame_node, 0, &res)) {
1613 of_node_put(frame_node);
1614 goto out;
1615 }
1616 frame->cntbase = res.start;
1617 frame->size = resource_size(&res);
1618
1619 frame->virt_irq = irq_of_parse_and_map(frame_node,
1620 ARCH_TIMER_VIRT_SPI);
1621 frame->phys_irq = irq_of_parse_and_map(frame_node,
1622 ARCH_TIMER_PHYS_SPI);
1623
1624 frame->valid = true;
1625 }
1626
1627 frame = arch_timer_mem_find_best_frame(timer_mem);
1628 if (!frame) {
1629 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1630 &timer_mem->cntctlbase);
1631 ret = -EINVAL;
1632 goto out;
1633 }
1634
1635 rate = arch_timer_mem_frame_get_cntfrq(frame);
1636 arch_timer_of_configure_rate(rate, np);
1637
1638 ret = arch_timer_mem_frame_register(frame);
1639 if (!ret && !arch_timer_needs_of_probing())
1640 ret = arch_timer_common_init();
1641 out:
1642 kfree(timer_mem);
1643 return ret;
1644 }
1645 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1646 arch_timer_mem_of_init);
1647
1648 #ifdef CONFIG_ACPI_GTDT
1649 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1650 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1651 {
1652 struct arch_timer_mem_frame *frame;
1653 u32 rate;
1654 int i;
1655
1656 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1657 frame = &timer_mem->frame[i];
1658
1659 if (!frame->valid)
1660 continue;
1661
1662 rate = arch_timer_mem_frame_get_cntfrq(frame);
1663 if (rate == arch_timer_rate)
1664 continue;
1665
1666 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1667 &frame->cntbase,
1668 (unsigned long)rate, (unsigned long)arch_timer_rate);
1669
1670 return -EINVAL;
1671 }
1672
1673 return 0;
1674 }
1675
arch_timer_mem_acpi_init(int platform_timer_count)1676 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1677 {
1678 struct arch_timer_mem *timers, *timer;
1679 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1680 int timer_count, i, ret = 0;
1681
1682 timers = kcalloc(platform_timer_count, sizeof(*timers),
1683 GFP_KERNEL);
1684 if (!timers)
1685 return -ENOMEM;
1686
1687 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1688 if (ret || !timer_count)
1689 goto out;
1690
1691 /*
1692 * While unlikely, it's theoretically possible that none of the frames
1693 * in a timer expose the combination of feature we want.
1694 */
1695 for (i = 0; i < timer_count; i++) {
1696 timer = &timers[i];
1697
1698 frame = arch_timer_mem_find_best_frame(timer);
1699 if (!best_frame)
1700 best_frame = frame;
1701
1702 ret = arch_timer_mem_verify_cntfrq(timer);
1703 if (ret) {
1704 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1705 goto out;
1706 }
1707
1708 if (!best_frame) /* implies !frame */
1709 /*
1710 * Only complain about missing suitable frames if we
1711 * haven't already found one in a previous iteration.
1712 */
1713 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1714 &timer->cntctlbase);
1715 }
1716
1717 if (best_frame)
1718 ret = arch_timer_mem_frame_register(best_frame);
1719 out:
1720 kfree(timers);
1721 return ret;
1722 }
1723
1724 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1725 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1726 {
1727 int ret, platform_timer_count;
1728
1729 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1730 pr_warn("already initialized, skipping\n");
1731 return -EINVAL;
1732 }
1733
1734 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1735
1736 ret = acpi_gtdt_init(table, &platform_timer_count);
1737 if (ret)
1738 return ret;
1739
1740 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1741 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1742
1743 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1744 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1745
1746 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1747 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1748
1749 arch_timer_populate_kvm_info();
1750
1751 /*
1752 * When probing via ACPI, we have no mechanism to override the sysreg
1753 * CNTFRQ value. This *must* be correct.
1754 */
1755 arch_timer_rate = arch_timer_get_cntfrq();
1756 ret = validate_timer_rate();
1757 if (ret) {
1758 pr_err(FW_BUG "frequency not available.\n");
1759 return ret;
1760 }
1761
1762 arch_timer_uses_ppi = arch_timer_select_ppi();
1763 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1764 pr_err("No interrupt available, giving up\n");
1765 return -EINVAL;
1766 }
1767
1768 /* Always-on capability */
1769 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1770
1771 /* Check for globally applicable workarounds */
1772 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1773
1774 ret = arch_timer_register();
1775 if (ret)
1776 return ret;
1777
1778 if (platform_timer_count &&
1779 arch_timer_mem_acpi_init(platform_timer_count))
1780 pr_err("Failed to initialize memory-mapped timer.\n");
1781
1782 return arch_timer_common_init();
1783 }
1784 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1785 #endif
1786
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,struct clocksource ** cs)1787 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1788 struct clocksource **cs)
1789 {
1790 struct arm_smccc_res hvc_res;
1791 u32 ptp_counter;
1792 ktime_t ktime;
1793
1794 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1795 return -EOPNOTSUPP;
1796
1797 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1798 ptp_counter = KVM_PTP_VIRT_COUNTER;
1799 else
1800 ptp_counter = KVM_PTP_PHYS_COUNTER;
1801
1802 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1803 ptp_counter, &hvc_res);
1804
1805 if ((int)(hvc_res.a0) < 0)
1806 return -EOPNOTSUPP;
1807
1808 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1809 *ts = ktime_to_timespec64(ktime);
1810 if (cycle)
1811 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1812 if (cs)
1813 *cs = &clocksource_counter;
1814
1815 return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1818