1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR 0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n) (0x40 + ((n) * 4))
40 #define CNTACR_RPCT BIT(0)
41 #define CNTACR_RVCT BIT(1)
42 #define CNTACR_RFRQ BIT(2)
43 #define CNTACR_RVOFF BIT(3)
44 #define CNTACR_RWVT BIT(4)
45 #define CNTACR_RWPT BIT(5)
46
47 #define CNTVCT_LO 0x08
48 #define CNTVCT_HI 0x0c
49 #define CNTFRQ 0x10
50 #define CNTP_TVAL 0x28
51 #define CNTP_CTL 0x2c
52 #define CNTV_TVAL 0x38
53 #define CNTV_CTL 0x3c
54
55 static unsigned arch_timers_present __initdata;
56
57 static void __iomem *arch_counter_base __ro_after_init;
58
59 struct arch_timer {
60 void __iomem *base;
61 struct clock_event_device evt;
62 };
63
64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
65
66 static u32 arch_timer_rate __ro_after_init;
67 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
68
69 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
70 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
71 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
72 [ARCH_TIMER_VIRT_PPI] = "virt",
73 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
74 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
75 };
76
77 static struct clock_event_device __percpu *arch_timer_evt;
78
79 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
80 static bool arch_timer_c3stop __ro_after_init;
81 static bool arch_timer_mem_use_virtual __ro_after_init;
82 static bool arch_counter_suspend_stop __ro_after_init;
83 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
84 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
85 #else
86 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
87 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
88
89 static cpumask_t evtstrm_available = CPU_MASK_NONE;
90 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
91
early_evtstrm_cfg(char * buf)92 static int __init early_evtstrm_cfg(char *buf)
93 {
94 return strtobool(buf, &evtstrm_enable);
95 }
96 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
97
98 /*
99 * Architected system timer support.
100 */
101
102 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u32 val,struct clock_event_device * clk)103 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
104 struct clock_event_device *clk)
105 {
106 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
107 struct arch_timer *timer = to_arch_timer(clk);
108 switch (reg) {
109 case ARCH_TIMER_REG_CTRL:
110 writel_relaxed(val, timer->base + CNTP_CTL);
111 break;
112 case ARCH_TIMER_REG_TVAL:
113 writel_relaxed(val, timer->base + CNTP_TVAL);
114 break;
115 }
116 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
117 struct arch_timer *timer = to_arch_timer(clk);
118 switch (reg) {
119 case ARCH_TIMER_REG_CTRL:
120 writel_relaxed(val, timer->base + CNTV_CTL);
121 break;
122 case ARCH_TIMER_REG_TVAL:
123 writel_relaxed(val, timer->base + CNTV_TVAL);
124 break;
125 }
126 } else {
127 arch_timer_reg_write_cp15(access, reg, val);
128 }
129 }
130
131 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)132 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
133 struct clock_event_device *clk)
134 {
135 u32 val;
136
137 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
138 struct arch_timer *timer = to_arch_timer(clk);
139 switch (reg) {
140 case ARCH_TIMER_REG_CTRL:
141 val = readl_relaxed(timer->base + CNTP_CTL);
142 break;
143 case ARCH_TIMER_REG_TVAL:
144 val = readl_relaxed(timer->base + CNTP_TVAL);
145 break;
146 }
147 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
148 struct arch_timer *timer = to_arch_timer(clk);
149 switch (reg) {
150 case ARCH_TIMER_REG_CTRL:
151 val = readl_relaxed(timer->base + CNTV_CTL);
152 break;
153 case ARCH_TIMER_REG_TVAL:
154 val = readl_relaxed(timer->base + CNTV_TVAL);
155 break;
156 }
157 } else {
158 val = arch_timer_reg_read_cp15(access, reg);
159 }
160
161 return val;
162 }
163
arch_counter_get_cntpct_stable(void)164 static notrace u64 arch_counter_get_cntpct_stable(void)
165 {
166 return __arch_counter_get_cntpct_stable();
167 }
168
arch_counter_get_cntpct(void)169 static notrace u64 arch_counter_get_cntpct(void)
170 {
171 return __arch_counter_get_cntpct();
172 }
173
arch_counter_get_cntvct_stable(void)174 static notrace u64 arch_counter_get_cntvct_stable(void)
175 {
176 return __arch_counter_get_cntvct_stable();
177 }
178
arch_counter_get_cntvct(void)179 static notrace u64 arch_counter_get_cntvct(void)
180 {
181 return __arch_counter_get_cntvct();
182 }
183
184 /*
185 * Default to cp15 based access because arm64 uses this function for
186 * sched_clock() before DT is probed and the cp15 method is guaranteed
187 * to exist on arm64. arm doesn't use this before DT is probed so even
188 * if we don't have the cp15 accessors we won't have a problem.
189 */
190 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
191 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
192
arch_counter_read(struct clocksource * cs)193 static u64 arch_counter_read(struct clocksource *cs)
194 {
195 return arch_timer_read_counter();
196 }
197
arch_counter_read_cc(const struct cyclecounter * cc)198 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
199 {
200 return arch_timer_read_counter();
201 }
202
203 static struct clocksource clocksource_counter = {
204 .name = "arch_sys_counter",
205 .id = CSID_ARM_ARCH_COUNTER,
206 .rating = 400,
207 .read = arch_counter_read,
208 .mask = CLOCKSOURCE_MASK(56),
209 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
210 };
211
212 static struct cyclecounter cyclecounter __ro_after_init = {
213 .read = arch_counter_read_cc,
214 .mask = CLOCKSOURCE_MASK(56),
215 };
216
217 struct ate_acpi_oem_info {
218 char oem_id[ACPI_OEM_ID_SIZE + 1];
219 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
220 u32 oem_revision;
221 };
222
223 #ifdef CONFIG_FSL_ERRATUM_A008585
224 /*
225 * The number of retries is an arbitrary value well beyond the highest number
226 * of iterations the loop has been observed to take.
227 */
228 #define __fsl_a008585_read_reg(reg) ({ \
229 u64 _old, _new; \
230 int _retries = 200; \
231 \
232 do { \
233 _old = read_sysreg(reg); \
234 _new = read_sysreg(reg); \
235 _retries--; \
236 } while (unlikely(_old != _new) && _retries); \
237 \
238 WARN_ON_ONCE(!_retries); \
239 _new; \
240 })
241
fsl_a008585_read_cntp_tval_el0(void)242 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
243 {
244 return __fsl_a008585_read_reg(cntp_tval_el0);
245 }
246
fsl_a008585_read_cntv_tval_el0(void)247 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
248 {
249 return __fsl_a008585_read_reg(cntv_tval_el0);
250 }
251
fsl_a008585_read_cntpct_el0(void)252 static u64 notrace fsl_a008585_read_cntpct_el0(void)
253 {
254 return __fsl_a008585_read_reg(cntpct_el0);
255 }
256
fsl_a008585_read_cntvct_el0(void)257 static u64 notrace fsl_a008585_read_cntvct_el0(void)
258 {
259 return __fsl_a008585_read_reg(cntvct_el0);
260 }
261 #endif
262
263 #ifdef CONFIG_HISILICON_ERRATUM_161010101
264 /*
265 * Verify whether the value of the second read is larger than the first by
266 * less than 32 is the only way to confirm the value is correct, so clear the
267 * lower 5 bits to check whether the difference is greater than 32 or not.
268 * Theoretically the erratum should not occur more than twice in succession
269 * when reading the system counter, but it is possible that some interrupts
270 * may lead to more than twice read errors, triggering the warning, so setting
271 * the number of retries far beyond the number of iterations the loop has been
272 * observed to take.
273 */
274 #define __hisi_161010101_read_reg(reg) ({ \
275 u64 _old, _new; \
276 int _retries = 50; \
277 \
278 do { \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
281 _retries--; \
282 } while (unlikely((_new - _old) >> 5) && _retries); \
283 \
284 WARN_ON_ONCE(!_retries); \
285 _new; \
286 })
287
hisi_161010101_read_cntp_tval_el0(void)288 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
289 {
290 return __hisi_161010101_read_reg(cntp_tval_el0);
291 }
292
hisi_161010101_read_cntv_tval_el0(void)293 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
294 {
295 return __hisi_161010101_read_reg(cntv_tval_el0);
296 }
297
hisi_161010101_read_cntpct_el0(void)298 static u64 notrace hisi_161010101_read_cntpct_el0(void)
299 {
300 return __hisi_161010101_read_reg(cntpct_el0);
301 }
302
hisi_161010101_read_cntvct_el0(void)303 static u64 notrace hisi_161010101_read_cntvct_el0(void)
304 {
305 return __hisi_161010101_read_reg(cntvct_el0);
306 }
307
308 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
309 /*
310 * Note that trailing spaces are required to properly match
311 * the OEM table information.
312 */
313 {
314 .oem_id = "HISI ",
315 .oem_table_id = "HIP05 ",
316 .oem_revision = 0,
317 },
318 {
319 .oem_id = "HISI ",
320 .oem_table_id = "HIP06 ",
321 .oem_revision = 0,
322 },
323 {
324 .oem_id = "HISI ",
325 .oem_table_id = "HIP07 ",
326 .oem_revision = 0,
327 },
328 { /* Sentinel indicating the end of the OEM array */ },
329 };
330 #endif
331
332 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)333 static u64 notrace arm64_858921_read_cntpct_el0(void)
334 {
335 u64 old, new;
336
337 old = read_sysreg(cntpct_el0);
338 new = read_sysreg(cntpct_el0);
339 return (((old ^ new) >> 32) & 1) ? old : new;
340 }
341
arm64_858921_read_cntvct_el0(void)342 static u64 notrace arm64_858921_read_cntvct_el0(void)
343 {
344 u64 old, new;
345
346 old = read_sysreg(cntvct_el0);
347 new = read_sysreg(cntvct_el0);
348 return (((old ^ new) >> 32) & 1) ? old : new;
349 }
350 #endif
351
352 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
353 /*
354 * The low bits of the counter registers are indeterminate while bit 10 or
355 * greater is rolling over. Since the counter value can jump both backward
356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
359 */
360 #define __sun50i_a64_read_reg(reg) ({ \
361 u64 _val; \
362 int _retries = 150; \
363 \
364 do { \
365 _val = read_sysreg(reg); \
366 _retries--; \
367 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
368 \
369 WARN_ON_ONCE(!_retries); \
370 _val; \
371 })
372
sun50i_a64_read_cntpct_el0(void)373 static u64 notrace sun50i_a64_read_cntpct_el0(void)
374 {
375 return __sun50i_a64_read_reg(cntpct_el0);
376 }
377
sun50i_a64_read_cntvct_el0(void)378 static u64 notrace sun50i_a64_read_cntvct_el0(void)
379 {
380 return __sun50i_a64_read_reg(cntvct_el0);
381 }
382
sun50i_a64_read_cntp_tval_el0(void)383 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
384 {
385 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
386 }
387
sun50i_a64_read_cntv_tval_el0(void)388 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
389 {
390 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
391 }
392 #endif
393
394 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
395 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
396 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
397
398 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
399
erratum_set_next_event_tval_generic(const int access,unsigned long evt,struct clock_event_device * clk)400 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
401 struct clock_event_device *clk)
402 {
403 unsigned long ctrl;
404 u64 cval;
405
406 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
407 ctrl |= ARCH_TIMER_CTRL_ENABLE;
408 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
409
410 if (access == ARCH_TIMER_PHYS_ACCESS) {
411 cval = evt + arch_counter_get_cntpct_stable();
412 write_sysreg(cval, cntp_cval_el0);
413 } else {
414 cval = evt + arch_counter_get_cntvct_stable();
415 write_sysreg(cval, cntv_cval_el0);
416 }
417
418 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
419 }
420
erratum_set_next_event_tval_virt(unsigned long evt,struct clock_event_device * clk)421 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
422 struct clock_event_device *clk)
423 {
424 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
425 return 0;
426 }
427
erratum_set_next_event_tval_phys(unsigned long evt,struct clock_event_device * clk)428 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
429 struct clock_event_device *clk)
430 {
431 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
432 return 0;
433 }
434
435 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
436 #ifdef CONFIG_FSL_ERRATUM_A008585
437 {
438 .match_type = ate_match_dt,
439 .id = "fsl,erratum-a008585",
440 .desc = "Freescale erratum a005858",
441 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
442 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 .set_next_event_phys = erratum_set_next_event_tval_phys,
446 .set_next_event_virt = erratum_set_next_event_tval_virt,
447 },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450 {
451 .match_type = ate_match_dt,
452 .id = "hisilicon,erratum-161010101",
453 .desc = "HiSilicon erratum 161010101",
454 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
455 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
456 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
457 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
458 .set_next_event_phys = erratum_set_next_event_tval_phys,
459 .set_next_event_virt = erratum_set_next_event_tval_virt,
460 },
461 {
462 .match_type = ate_match_acpi_oem_info,
463 .id = hisi_161010101_oem_info,
464 .desc = "HiSilicon erratum 161010101",
465 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
466 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
467 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
468 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
469 .set_next_event_phys = erratum_set_next_event_tval_phys,
470 .set_next_event_virt = erratum_set_next_event_tval_virt,
471 },
472 #endif
473 #ifdef CONFIG_ARM64_ERRATUM_858921
474 {
475 .match_type = ate_match_local_cap_id,
476 .id = (void *)ARM64_WORKAROUND_858921,
477 .desc = "ARM erratum 858921",
478 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
479 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
480 },
481 #endif
482 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
483 {
484 .match_type = ate_match_dt,
485 .id = "allwinner,erratum-unknown1",
486 .desc = "Allwinner erratum UNKNOWN1",
487 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
488 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
489 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
490 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
491 .set_next_event_phys = erratum_set_next_event_tval_phys,
492 .set_next_event_virt = erratum_set_next_event_tval_virt,
493 },
494 #endif
495 #ifdef CONFIG_ARM64_ERRATUM_1418040
496 {
497 .match_type = ate_match_local_cap_id,
498 .id = (void *)ARM64_WORKAROUND_1418040,
499 .desc = "ARM erratum 1418040",
500 .disable_compat_vdso = true,
501 },
502 #endif
503 };
504
505 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
506 const void *);
507
508 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)509 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
510 const void *arg)
511 {
512 const struct device_node *np = arg;
513
514 return of_property_read_bool(np, wa->id);
515 }
516
517 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)518 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
519 const void *arg)
520 {
521 return this_cpu_has_cap((uintptr_t)wa->id);
522 }
523
524
525 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)526 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
527 const void *arg)
528 {
529 static const struct ate_acpi_oem_info empty_oem_info = {};
530 const struct ate_acpi_oem_info *info = wa->id;
531 const struct acpi_table_header *table = arg;
532
533 /* Iterate over the ACPI OEM info array, looking for a match */
534 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
535 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
536 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
537 info->oem_revision == table->oem_revision)
538 return true;
539
540 info++;
541 }
542
543 return false;
544 }
545
546 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)547 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
548 ate_match_fn_t match_fn,
549 void *arg)
550 {
551 int i;
552
553 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
554 if (ool_workarounds[i].match_type != type)
555 continue;
556
557 if (match_fn(&ool_workarounds[i], arg))
558 return &ool_workarounds[i];
559 }
560
561 return NULL;
562 }
563
564 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)565 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
566 bool local)
567 {
568 int i;
569
570 if (local) {
571 __this_cpu_write(timer_unstable_counter_workaround, wa);
572 } else {
573 for_each_possible_cpu(i)
574 per_cpu(timer_unstable_counter_workaround, i) = wa;
575 }
576
577 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
578 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
579
580 /*
581 * Don't use the vdso fastpath if errata require using the
582 * out-of-line counter accessor. We may change our mind pretty
583 * late in the game (with a per-CPU erratum, for example), so
584 * change both the default value and the vdso itself.
585 */
586 if (wa->read_cntvct_el0) {
587 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
588 vdso_default = VDSO_CLOCKMODE_NONE;
589 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
590 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
591 clocksource_counter.vdso_clock_mode = vdso_default;
592 }
593 }
594
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)595 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
596 void *arg)
597 {
598 const struct arch_timer_erratum_workaround *wa, *__wa;
599 ate_match_fn_t match_fn = NULL;
600 bool local = false;
601
602 switch (type) {
603 case ate_match_dt:
604 match_fn = arch_timer_check_dt_erratum;
605 break;
606 case ate_match_local_cap_id:
607 match_fn = arch_timer_check_local_cap_erratum;
608 local = true;
609 break;
610 case ate_match_acpi_oem_info:
611 match_fn = arch_timer_check_acpi_oem_erratum;
612 break;
613 default:
614 WARN_ON(1);
615 return;
616 }
617
618 wa = arch_timer_iterate_errata(type, match_fn, arg);
619 if (!wa)
620 return;
621
622 __wa = __this_cpu_read(timer_unstable_counter_workaround);
623 if (__wa && wa != __wa)
624 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
625 wa->desc, __wa->desc);
626
627 if (__wa)
628 return;
629
630 arch_timer_enable_workaround(wa, local);
631 pr_info("Enabling %s workaround for %s\n",
632 local ? "local" : "global", wa->desc);
633 }
634
arch_timer_this_cpu_has_cntvct_wa(void)635 static bool arch_timer_this_cpu_has_cntvct_wa(void)
636 {
637 return has_erratum_handler(read_cntvct_el0);
638 }
639
arch_timer_counter_has_wa(void)640 static bool arch_timer_counter_has_wa(void)
641 {
642 return atomic_read(&timer_unstable_counter_workaround_in_use);
643 }
644 #else
645 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
646 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
647 #define arch_timer_counter_has_wa() ({false;})
648 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
649
timer_handler(const int access,struct clock_event_device * evt)650 static __always_inline irqreturn_t timer_handler(const int access,
651 struct clock_event_device *evt)
652 {
653 unsigned long ctrl;
654
655 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
656 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
657 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
658 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
659 evt->event_handler(evt);
660 return IRQ_HANDLED;
661 }
662
663 return IRQ_NONE;
664 }
665
arch_timer_handler_virt(int irq,void * dev_id)666 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
667 {
668 struct clock_event_device *evt = dev_id;
669
670 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
671 }
672
arch_timer_handler_phys(int irq,void * dev_id)673 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
674 {
675 struct clock_event_device *evt = dev_id;
676
677 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
678 }
679
arch_timer_handler_phys_mem(int irq,void * dev_id)680 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
681 {
682 struct clock_event_device *evt = dev_id;
683
684 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
685 }
686
arch_timer_handler_virt_mem(int irq,void * dev_id)687 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
688 {
689 struct clock_event_device *evt = dev_id;
690
691 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
692 }
693
timer_shutdown(const int access,struct clock_event_device * clk)694 static __always_inline int timer_shutdown(const int access,
695 struct clock_event_device *clk)
696 {
697 unsigned long ctrl;
698
699 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
700 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
701 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
702
703 return 0;
704 }
705
arch_timer_shutdown_virt(struct clock_event_device * clk)706 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
707 {
708 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
709 }
710
arch_timer_shutdown_phys(struct clock_event_device * clk)711 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
712 {
713 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
714 }
715
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)716 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
717 {
718 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
719 }
720
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)721 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
722 {
723 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
724 }
725
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)726 static __always_inline void set_next_event(const int access, unsigned long evt,
727 struct clock_event_device *clk)
728 {
729 unsigned long ctrl;
730 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
731 ctrl |= ARCH_TIMER_CTRL_ENABLE;
732 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
733 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
734 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
735 }
736
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)737 static int arch_timer_set_next_event_virt(unsigned long evt,
738 struct clock_event_device *clk)
739 {
740 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
741 return 0;
742 }
743
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)744 static int arch_timer_set_next_event_phys(unsigned long evt,
745 struct clock_event_device *clk)
746 {
747 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
748 return 0;
749 }
750
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)751 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
752 struct clock_event_device *clk)
753 {
754 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
755 return 0;
756 }
757
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)758 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
759 struct clock_event_device *clk)
760 {
761 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
762 return 0;
763 }
764
__arch_timer_setup(unsigned type,struct clock_event_device * clk)765 static void __arch_timer_setup(unsigned type,
766 struct clock_event_device *clk)
767 {
768 clk->features = CLOCK_EVT_FEAT_ONESHOT;
769
770 if (type == ARCH_TIMER_TYPE_CP15) {
771 typeof(clk->set_next_event) sne;
772
773 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
774
775 if (arch_timer_c3stop)
776 clk->features |= CLOCK_EVT_FEAT_C3STOP;
777 clk->name = "arch_sys_timer";
778 clk->rating = 450;
779 clk->cpumask = cpumask_of(smp_processor_id());
780 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
781 switch (arch_timer_uses_ppi) {
782 case ARCH_TIMER_VIRT_PPI:
783 clk->set_state_shutdown = arch_timer_shutdown_virt;
784 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
785 sne = erratum_handler(set_next_event_virt);
786 break;
787 case ARCH_TIMER_PHYS_SECURE_PPI:
788 case ARCH_TIMER_PHYS_NONSECURE_PPI:
789 case ARCH_TIMER_HYP_PPI:
790 clk->set_state_shutdown = arch_timer_shutdown_phys;
791 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
792 sne = erratum_handler(set_next_event_phys);
793 break;
794 default:
795 BUG();
796 }
797
798 clk->set_next_event = sne;
799 } else {
800 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
801 clk->name = "arch_mem_timer";
802 clk->rating = 400;
803 clk->cpumask = cpu_possible_mask;
804 if (arch_timer_mem_use_virtual) {
805 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
806 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
807 clk->set_next_event =
808 arch_timer_set_next_event_virt_mem;
809 } else {
810 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
811 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
812 clk->set_next_event =
813 arch_timer_set_next_event_phys_mem;
814 }
815 }
816
817 clk->set_state_shutdown(clk);
818
819 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
820 }
821
arch_timer_evtstrm_enable(int divider)822 static void arch_timer_evtstrm_enable(int divider)
823 {
824 u32 cntkctl = arch_timer_get_cntkctl();
825
826 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
827 /* Set the divider and enable virtual event stream */
828 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
829 | ARCH_TIMER_VIRT_EVT_EN;
830 arch_timer_set_cntkctl(cntkctl);
831 arch_timer_set_evtstrm_feature();
832 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
833 }
834
arch_timer_configure_evtstream(void)835 static void arch_timer_configure_evtstream(void)
836 {
837 int evt_stream_div, lsb;
838
839 /*
840 * As the event stream can at most be generated at half the frequency
841 * of the counter, use half the frequency when computing the divider.
842 */
843 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
844
845 /*
846 * Find the closest power of two to the divisor. If the adjacent bit
847 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
848 */
849 lsb = fls(evt_stream_div) - 1;
850 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
851 lsb++;
852
853 /* enable event stream */
854 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
855 }
856
arch_counter_set_user_access(void)857 static void arch_counter_set_user_access(void)
858 {
859 u32 cntkctl = arch_timer_get_cntkctl();
860
861 /* Disable user access to the timers and both counters */
862 /* Also disable virtual event stream */
863 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
864 | ARCH_TIMER_USR_VT_ACCESS_EN
865 | ARCH_TIMER_USR_VCT_ACCESS_EN
866 | ARCH_TIMER_VIRT_EVT_EN
867 | ARCH_TIMER_USR_PCT_ACCESS_EN);
868
869 /*
870 * Enable user access to the virtual counter if it doesn't
871 * need to be workaround. The vdso may have been already
872 * disabled though.
873 */
874 if (arch_timer_this_cpu_has_cntvct_wa())
875 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
876 else
877 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
878
879 arch_timer_set_cntkctl(cntkctl);
880 }
881
arch_timer_has_nonsecure_ppi(void)882 static bool arch_timer_has_nonsecure_ppi(void)
883 {
884 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
885 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
886 }
887
check_ppi_trigger(int irq)888 static u32 check_ppi_trigger(int irq)
889 {
890 u32 flags = irq_get_trigger_type(irq);
891
892 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
893 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
894 pr_warn("WARNING: Please fix your firmware\n");
895 flags = IRQF_TRIGGER_LOW;
896 }
897
898 return flags;
899 }
900
arch_timer_starting_cpu(unsigned int cpu)901 static int arch_timer_starting_cpu(unsigned int cpu)
902 {
903 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
904 u32 flags;
905
906 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
907
908 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
909 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
910
911 if (arch_timer_has_nonsecure_ppi()) {
912 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
913 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
914 flags);
915 }
916
917 arch_counter_set_user_access();
918 if (evtstrm_enable)
919 arch_timer_configure_evtstream();
920
921 return 0;
922 }
923
validate_timer_rate(void)924 static int validate_timer_rate(void)
925 {
926 if (!arch_timer_rate)
927 return -EINVAL;
928
929 /* Arch timer frequency < 1MHz can cause trouble */
930 WARN_ON(arch_timer_rate < 1000000);
931
932 return 0;
933 }
934
935 /*
936 * For historical reasons, when probing with DT we use whichever (non-zero)
937 * rate was probed first, and don't verify that others match. If the first node
938 * probed has a clock-frequency property, this overrides the HW register.
939 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)940 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
941 {
942 /* Who has more than one independent system counter? */
943 if (arch_timer_rate)
944 return;
945
946 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
947 arch_timer_rate = rate;
948
949 /* Check the timer frequency. */
950 if (validate_timer_rate())
951 pr_warn("frequency not available\n");
952 }
953
arch_timer_banner(unsigned type)954 static void __init arch_timer_banner(unsigned type)
955 {
956 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
957 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
958 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
959 " and " : "",
960 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
961 (unsigned long)arch_timer_rate / 1000000,
962 (unsigned long)(arch_timer_rate / 10000) % 100,
963 type & ARCH_TIMER_TYPE_CP15 ?
964 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
965 "",
966 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
967 type & ARCH_TIMER_TYPE_MEM ?
968 arch_timer_mem_use_virtual ? "virt" : "phys" :
969 "");
970 }
971
arch_timer_get_rate(void)972 u32 arch_timer_get_rate(void)
973 {
974 return arch_timer_rate;
975 }
976
arch_timer_evtstrm_available(void)977 bool arch_timer_evtstrm_available(void)
978 {
979 /*
980 * We might get called from a preemptible context. This is fine
981 * because availability of the event stream should be always the same
982 * for a preemptible context and context where we might resume a task.
983 */
984 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
985 }
986
arch_counter_get_cntvct_mem(void)987 static u64 arch_counter_get_cntvct_mem(void)
988 {
989 u32 vct_lo, vct_hi, tmp_hi;
990
991 do {
992 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
993 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
994 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
995 } while (vct_hi != tmp_hi);
996
997 return ((u64) vct_hi << 32) | vct_lo;
998 }
999
1000 static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
arch_timer_get_kvm_info(void)1002 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003 {
1004 return &arch_timer_kvm_info;
1005 }
1006
arch_counter_register(unsigned type)1007 static void __init arch_counter_register(unsigned type)
1008 {
1009 u64 start_count;
1010
1011 /* Register the CP15 based counter if we have one */
1012 if (type & ARCH_TIMER_TYPE_CP15) {
1013 u64 (*rd)(void);
1014
1015 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017 if (arch_timer_counter_has_wa())
1018 rd = arch_counter_get_cntvct_stable;
1019 else
1020 rd = arch_counter_get_cntvct;
1021 } else {
1022 if (arch_timer_counter_has_wa())
1023 rd = arch_counter_get_cntpct_stable;
1024 else
1025 rd = arch_counter_get_cntpct;
1026 }
1027
1028 arch_timer_read_counter = rd;
1029 clocksource_counter.vdso_clock_mode = vdso_default;
1030 } else {
1031 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032 }
1033
1034 if (!arch_counter_suspend_stop)
1035 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036 start_count = arch_timer_read_counter();
1037 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038 cyclecounter.mult = clocksource_counter.mult;
1039 cyclecounter.shift = clocksource_counter.shift;
1040 timecounter_init(&arch_timer_kvm_info.timecounter,
1041 &cyclecounter, start_count);
1042
1043 /* 56 bits minimum, so we assume worst case rollover */
1044 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045 }
1046
arch_timer_stop(struct clock_event_device * clk)1047 static void arch_timer_stop(struct clock_event_device *clk)
1048 {
1049 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052 if (arch_timer_has_nonsecure_ppi())
1053 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055 clk->set_state_shutdown(clk);
1056 }
1057
arch_timer_dying_cpu(unsigned int cpu)1058 static int arch_timer_dying_cpu(unsigned int cpu)
1059 {
1060 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064 arch_timer_stop(clk);
1065 return 0;
1066 }
1067
1068 #ifdef CONFIG_CPU_PM
1069 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1070 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071 unsigned long action, void *hcpu)
1072 {
1073 if (action == CPU_PM_ENTER) {
1074 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080 if (arch_timer_have_evtstrm_feature())
1081 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082 }
1083 return NOTIFY_OK;
1084 }
1085
1086 static struct notifier_block arch_timer_cpu_pm_notifier = {
1087 .notifier_call = arch_timer_cpu_pm_notify,
1088 };
1089
arch_timer_cpu_pm_init(void)1090 static int __init arch_timer_cpu_pm_init(void)
1091 {
1092 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093 }
1094
arch_timer_cpu_pm_deinit(void)1095 static void __init arch_timer_cpu_pm_deinit(void)
1096 {
1097 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098 }
1099
1100 #else
arch_timer_cpu_pm_init(void)1101 static int __init arch_timer_cpu_pm_init(void)
1102 {
1103 return 0;
1104 }
1105
arch_timer_cpu_pm_deinit(void)1106 static void __init arch_timer_cpu_pm_deinit(void)
1107 {
1108 }
1109 #endif
1110
arch_timer_register(void)1111 static int __init arch_timer_register(void)
1112 {
1113 int err;
1114 int ppi;
1115
1116 arch_timer_evt = alloc_percpu(struct clock_event_device);
1117 if (!arch_timer_evt) {
1118 err = -ENOMEM;
1119 goto out;
1120 }
1121
1122 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123 switch (arch_timer_uses_ppi) {
1124 case ARCH_TIMER_VIRT_PPI:
1125 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126 "arch_timer", arch_timer_evt);
1127 break;
1128 case ARCH_TIMER_PHYS_SECURE_PPI:
1129 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 "arch_timer", arch_timer_evt);
1132 if (!err && arch_timer_has_nonsecure_ppi()) {
1133 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135 "arch_timer", arch_timer_evt);
1136 if (err)
1137 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138 arch_timer_evt);
1139 }
1140 break;
1141 case ARCH_TIMER_HYP_PPI:
1142 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143 "arch_timer", arch_timer_evt);
1144 break;
1145 default:
1146 BUG();
1147 }
1148
1149 if (err) {
1150 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151 goto out_free;
1152 }
1153
1154 err = arch_timer_cpu_pm_init();
1155 if (err)
1156 goto out_unreg_notify;
1157
1158 /* Register and immediately configure the timer on the boot CPU */
1159 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160 "clockevents/arm/arch_timer:starting",
1161 arch_timer_starting_cpu, arch_timer_dying_cpu);
1162 if (err)
1163 goto out_unreg_cpupm;
1164 return 0;
1165
1166 out_unreg_cpupm:
1167 arch_timer_cpu_pm_deinit();
1168
1169 out_unreg_notify:
1170 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171 if (arch_timer_has_nonsecure_ppi())
1172 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173 arch_timer_evt);
1174
1175 out_free:
1176 free_percpu(arch_timer_evt);
1177 out:
1178 return err;
1179 }
1180
arch_timer_mem_register(void __iomem * base,unsigned int irq)1181 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182 {
1183 int ret;
1184 irq_handler_t func;
1185 struct arch_timer *t;
1186
1187 t = kzalloc(sizeof(*t), GFP_KERNEL);
1188 if (!t)
1189 return -ENOMEM;
1190
1191 t->base = base;
1192 t->evt.irq = irq;
1193 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195 if (arch_timer_mem_use_virtual)
1196 func = arch_timer_handler_virt_mem;
1197 else
1198 func = arch_timer_handler_phys_mem;
1199
1200 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201 if (ret) {
1202 pr_err("Failed to request mem timer irq\n");
1203 kfree(t);
1204 }
1205
1206 return ret;
1207 }
1208
1209 static const struct of_device_id arch_timer_of_match[] __initconst = {
1210 { .compatible = "arm,armv7-timer", },
1211 { .compatible = "arm,armv8-timer", },
1212 {},
1213 };
1214
1215 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216 { .compatible = "arm,armv7-timer-mem", },
1217 {},
1218 };
1219
arch_timer_needs_of_probing(void)1220 static bool __init arch_timer_needs_of_probing(void)
1221 {
1222 struct device_node *dn;
1223 bool needs_probing = false;
1224 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226 /* We have two timers, and both device-tree nodes are probed. */
1227 if ((arch_timers_present & mask) == mask)
1228 return false;
1229
1230 /*
1231 * Only one type of timer is probed,
1232 * check if we have another type of timer node in device-tree.
1233 */
1234 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236 else
1237 dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239 if (dn && of_device_is_available(dn))
1240 needs_probing = true;
1241
1242 of_node_put(dn);
1243
1244 return needs_probing;
1245 }
1246
arch_timer_common_init(void)1247 static int __init arch_timer_common_init(void)
1248 {
1249 arch_timer_banner(arch_timers_present);
1250 arch_counter_register(arch_timers_present);
1251 return arch_timer_arch_init();
1252 }
1253
1254 /**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
arch_timer_select_ppi(void)1272 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273 {
1274 if (is_kernel_in_hyp_mode())
1275 return ARCH_TIMER_HYP_PPI;
1276
1277 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278 return ARCH_TIMER_VIRT_PPI;
1279
1280 if (IS_ENABLED(CONFIG_ARM64))
1281 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283 return ARCH_TIMER_PHYS_SECURE_PPI;
1284 }
1285
arch_timer_populate_kvm_info(void)1286 static void __init arch_timer_populate_kvm_info(void)
1287 {
1288 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289 if (is_kernel_in_hyp_mode())
1290 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291 }
1292
arch_timer_of_init(struct device_node * np)1293 static int __init arch_timer_of_init(struct device_node *np)
1294 {
1295 int i, irq, ret;
1296 u32 rate;
1297 bool has_names;
1298
1299 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300 pr_warn("multiple nodes in dt, skipping\n");
1301 return 0;
1302 }
1303
1304 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306 has_names = of_property_read_bool(np, "interrupt-names");
1307
1308 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309 if (has_names)
1310 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311 else
1312 irq = of_irq_get(np, i);
1313 if (irq > 0)
1314 arch_timer_ppi[i] = irq;
1315 }
1316
1317 arch_timer_populate_kvm_info();
1318
1319 rate = arch_timer_get_cntfrq();
1320 arch_timer_of_configure_rate(rate, np);
1321
1322 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324 /* Check for globally applicable workarounds */
1325 arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327 /*
1328 * If we cannot rely on firmware initializing the timer registers then
1329 * we should use the physical timers instead.
1330 */
1331 if (IS_ENABLED(CONFIG_ARM) &&
1332 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334 else
1335 arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338 pr_err("No interrupt available, giving up\n");
1339 return -EINVAL;
1340 }
1341
1342 /* On some systems, the counter stops ticking when in suspend. */
1343 arch_counter_suspend_stop = of_property_read_bool(np,
1344 "arm,no-tick-in-suspend");
1345
1346 ret = arch_timer_register();
1347 if (ret)
1348 return ret;
1349
1350 if (arch_timer_needs_of_probing())
1351 return 0;
1352
1353 return arch_timer_common_init();
1354 }
1355 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1359 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360 {
1361 void __iomem *base;
1362 u32 rate;
1363
1364 base = ioremap(frame->cntbase, frame->size);
1365 if (!base) {
1366 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367 return 0;
1368 }
1369
1370 rate = readl_relaxed(base + CNTFRQ);
1371
1372 iounmap(base);
1373
1374 return rate;
1375 }
1376
1377 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1378 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379 {
1380 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381 void __iomem *cntctlbase;
1382 u32 cnttidr;
1383 int i;
1384
1385 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386 if (!cntctlbase) {
1387 pr_err("Can't map CNTCTLBase @ %pa\n",
1388 &timer_mem->cntctlbase);
1389 return NULL;
1390 }
1391
1392 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394 /*
1395 * Try to find a virtual capable frame. Otherwise fall back to a
1396 * physical capable frame.
1397 */
1398 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402 frame = &timer_mem->frame[i];
1403 if (!frame->valid)
1404 continue;
1405
1406 /* Try enabling everything, and see what sticks */
1407 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412 best_frame = frame;
1413 arch_timer_mem_use_virtual = true;
1414 break;
1415 }
1416
1417 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418 continue;
1419
1420 best_frame = frame;
1421 }
1422
1423 iounmap(cntctlbase);
1424
1425 return best_frame;
1426 }
1427
1428 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1429 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430 {
1431 void __iomem *base;
1432 int ret, irq = 0;
1433
1434 if (arch_timer_mem_use_virtual)
1435 irq = frame->virt_irq;
1436 else
1437 irq = frame->phys_irq;
1438
1439 if (!irq) {
1440 pr_err("Frame missing %s irq.\n",
1441 arch_timer_mem_use_virtual ? "virt" : "phys");
1442 return -EINVAL;
1443 }
1444
1445 if (!request_mem_region(frame->cntbase, frame->size,
1446 "arch_mem_timer"))
1447 return -EBUSY;
1448
1449 base = ioremap(frame->cntbase, frame->size);
1450 if (!base) {
1451 pr_err("Can't map frame's registers\n");
1452 return -ENXIO;
1453 }
1454
1455 ret = arch_timer_mem_register(base, irq);
1456 if (ret) {
1457 iounmap(base);
1458 return ret;
1459 }
1460
1461 arch_counter_base = base;
1462 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464 return 0;
1465 }
1466
arch_timer_mem_of_init(struct device_node * np)1467 static int __init arch_timer_mem_of_init(struct device_node *np)
1468 {
1469 struct arch_timer_mem *timer_mem;
1470 struct arch_timer_mem_frame *frame;
1471 struct device_node *frame_node;
1472 struct resource res;
1473 int ret = -EINVAL;
1474 u32 rate;
1475
1476 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477 if (!timer_mem)
1478 return -ENOMEM;
1479
1480 if (of_address_to_resource(np, 0, &res))
1481 goto out;
1482 timer_mem->cntctlbase = res.start;
1483 timer_mem->size = resource_size(&res);
1484
1485 for_each_available_child_of_node(np, frame_node) {
1486 u32 n;
1487 struct arch_timer_mem_frame *frame;
1488
1489 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490 pr_err(FW_BUG "Missing frame-number.\n");
1491 of_node_put(frame_node);
1492 goto out;
1493 }
1494 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497 of_node_put(frame_node);
1498 goto out;
1499 }
1500 frame = &timer_mem->frame[n];
1501
1502 if (frame->valid) {
1503 pr_err(FW_BUG "Duplicated frame-number.\n");
1504 of_node_put(frame_node);
1505 goto out;
1506 }
1507
1508 if (of_address_to_resource(frame_node, 0, &res)) {
1509 of_node_put(frame_node);
1510 goto out;
1511 }
1512 frame->cntbase = res.start;
1513 frame->size = resource_size(&res);
1514
1515 frame->virt_irq = irq_of_parse_and_map(frame_node,
1516 ARCH_TIMER_VIRT_SPI);
1517 frame->phys_irq = irq_of_parse_and_map(frame_node,
1518 ARCH_TIMER_PHYS_SPI);
1519
1520 frame->valid = true;
1521 }
1522
1523 frame = arch_timer_mem_find_best_frame(timer_mem);
1524 if (!frame) {
1525 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526 &timer_mem->cntctlbase);
1527 ret = -EINVAL;
1528 goto out;
1529 }
1530
1531 rate = arch_timer_mem_frame_get_cntfrq(frame);
1532 arch_timer_of_configure_rate(rate, np);
1533
1534 ret = arch_timer_mem_frame_register(frame);
1535 if (!ret && !arch_timer_needs_of_probing())
1536 ret = arch_timer_common_init();
1537 out:
1538 kfree(timer_mem);
1539 return ret;
1540 }
1541 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542 arch_timer_mem_of_init);
1543
1544 #ifdef CONFIG_ACPI_GTDT
1545 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1546 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547 {
1548 struct arch_timer_mem_frame *frame;
1549 u32 rate;
1550 int i;
1551
1552 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553 frame = &timer_mem->frame[i];
1554
1555 if (!frame->valid)
1556 continue;
1557
1558 rate = arch_timer_mem_frame_get_cntfrq(frame);
1559 if (rate == arch_timer_rate)
1560 continue;
1561
1562 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563 &frame->cntbase,
1564 (unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566 return -EINVAL;
1567 }
1568
1569 return 0;
1570 }
1571
arch_timer_mem_acpi_init(int platform_timer_count)1572 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573 {
1574 struct arch_timer_mem *timers, *timer;
1575 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576 int timer_count, i, ret = 0;
1577
1578 timers = kcalloc(platform_timer_count, sizeof(*timers),
1579 GFP_KERNEL);
1580 if (!timers)
1581 return -ENOMEM;
1582
1583 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584 if (ret || !timer_count)
1585 goto out;
1586
1587 /*
1588 * While unlikely, it's theoretically possible that none of the frames
1589 * in a timer expose the combination of feature we want.
1590 */
1591 for (i = 0; i < timer_count; i++) {
1592 timer = &timers[i];
1593
1594 frame = arch_timer_mem_find_best_frame(timer);
1595 if (!best_frame)
1596 best_frame = frame;
1597
1598 ret = arch_timer_mem_verify_cntfrq(timer);
1599 if (ret) {
1600 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601 goto out;
1602 }
1603
1604 if (!best_frame) /* implies !frame */
1605 /*
1606 * Only complain about missing suitable frames if we
1607 * haven't already found one in a previous iteration.
1608 */
1609 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610 &timer->cntctlbase);
1611 }
1612
1613 if (best_frame)
1614 ret = arch_timer_mem_frame_register(best_frame);
1615 out:
1616 kfree(timers);
1617 return ret;
1618 }
1619
1620 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1621 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622 {
1623 int ret, platform_timer_count;
1624
1625 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626 pr_warn("already initialized, skipping\n");
1627 return -EINVAL;
1628 }
1629
1630 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632 ret = acpi_gtdt_init(table, &platform_timer_count);
1633 if (ret)
1634 return ret;
1635
1636 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645 arch_timer_populate_kvm_info();
1646
1647 /*
1648 * When probing via ACPI, we have no mechanism to override the sysreg
1649 * CNTFRQ value. This *must* be correct.
1650 */
1651 arch_timer_rate = arch_timer_get_cntfrq();
1652 ret = validate_timer_rate();
1653 if (ret) {
1654 pr_err(FW_BUG "frequency not available.\n");
1655 return ret;
1656 }
1657
1658 arch_timer_uses_ppi = arch_timer_select_ppi();
1659 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660 pr_err("No interrupt available, giving up\n");
1661 return -EINVAL;
1662 }
1663
1664 /* Always-on capability */
1665 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667 /* Check for globally applicable workarounds */
1668 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670 ret = arch_timer_register();
1671 if (ret)
1672 return ret;
1673
1674 if (platform_timer_count &&
1675 arch_timer_mem_acpi_init(platform_timer_count))
1676 pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678 return arch_timer_common_init();
1679 }
1680 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681 #endif
1682
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,struct clocksource ** cs)1683 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684 struct clocksource **cs)
1685 {
1686 struct arm_smccc_res hvc_res;
1687 u32 ptp_counter;
1688 ktime_t ktime;
1689
1690 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691 return -EOPNOTSUPP;
1692
1693 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694 ptp_counter = KVM_PTP_VIRT_COUNTER;
1695 else
1696 ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699 ptp_counter, &hvc_res);
1700
1701 if ((int)(hvc_res.a0) < 0)
1702 return -EOPNOTSUPP;
1703
1704 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705 *ts = ktime_to_timespec64(ktime);
1706 if (cycle)
1707 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708 if (cs)
1709 *cs = &clocksource_counter;
1710
1711 return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1714