1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR 0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
49
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
52 #define CNTFRQ 0x10
53 #define CNTP_TVAL 0x28
54 #define CNTP_CTL 0x2c
55 #define CNTV_TVAL 0x38
56 #define CNTV_CTL 0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
early_evtstrm_cfg(char * buf)83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89 /*
90 * Architected system timer support.
91 */
92
93 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u32 val,struct clock_event_device * clk)94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 struct clock_event_device *clk)
96 {
97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 struct arch_timer *timer = to_arch_timer(clk);
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 writel_relaxed(val, timer->base + CNTP_CTL);
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 writel_relaxed(val, timer->base + CNTP_TVAL);
105 break;
106 }
107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 struct arch_timer *timer = to_arch_timer(clk);
109 switch (reg) {
110 case ARCH_TIMER_REG_CTRL:
111 writel_relaxed(val, timer->base + CNTV_CTL);
112 break;
113 case ARCH_TIMER_REG_TVAL:
114 writel_relaxed(val, timer->base + CNTV_TVAL);
115 break;
116 }
117 } else {
118 arch_timer_reg_write_cp15(access, reg, val);
119 }
120 }
121
122 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 struct clock_event_device *clk)
125 {
126 u32 val;
127
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 val = readl_relaxed(timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_TVAL:
135 val = readl_relaxed(timer->base + CNTP_TVAL);
136 break;
137 }
138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 struct arch_timer *timer = to_arch_timer(clk);
140 switch (reg) {
141 case ARCH_TIMER_REG_CTRL:
142 val = readl_relaxed(timer->base + CNTV_CTL);
143 break;
144 case ARCH_TIMER_REG_TVAL:
145 val = readl_relaxed(timer->base + CNTV_TVAL);
146 break;
147 }
148 } else {
149 val = arch_timer_reg_read_cp15(access, reg);
150 }
151
152 return val;
153 }
154
155 /*
156 * Default to cp15 based access because arm64 uses this function for
157 * sched_clock() before DT is probed and the cp15 method is guaranteed
158 * to exist on arm64. arm doesn't use this before DT is probed so even
159 * if we don't have the cp15 accessors we won't have a problem.
160 */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
arch_counter_read(struct clocksource * cs)164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166 return arch_timer_read_counter();
167 }
168
arch_counter_read_cc(const struct cyclecounter * cc)169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171 return arch_timer_read_counter();
172 }
173
174 static struct clocksource clocksource_counter = {
175 .name = "arch_sys_counter",
176 .rating = 400,
177 .read = arch_counter_read,
178 .mask = CLOCKSOURCE_MASK(56),
179 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181
182 static struct cyclecounter cyclecounter __ro_after_init = {
183 .read = arch_counter_read_cc,
184 .mask = CLOCKSOURCE_MASK(56),
185 };
186
187 struct ate_acpi_oem_info {
188 char oem_id[ACPI_OEM_ID_SIZE + 1];
189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 u32 oem_revision;
191 };
192
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195 * The number of retries is an arbitrary value well beyond the highest number
196 * of iterations the loop has been observed to take.
197 */
198 #define __fsl_a008585_read_reg(reg) ({ \
199 u64 _old, _new; \
200 int _retries = 200; \
201 \
202 do { \
203 _old = read_sysreg(reg); \
204 _new = read_sysreg(reg); \
205 _retries--; \
206 } while (unlikely(_old != _new) && _retries); \
207 \
208 WARN_ON_ONCE(!_retries); \
209 _new; \
210 })
211
fsl_a008585_read_cntp_tval_el0(void)212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214 return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216
fsl_a008585_read_cntv_tval_el0(void)217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219 return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221
fsl_a008585_read_cntpct_el0(void)222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224 return __fsl_a008585_read_reg(cntpct_el0);
225 }
226
fsl_a008585_read_cntvct_el0(void)227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229 return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235 * Verify whether the value of the second read is larger than the first by
236 * less than 32 is the only way to confirm the value is correct, so clear the
237 * lower 5 bits to check whether the difference is greater than 32 or not.
238 * Theoretically the erratum should not occur more than twice in succession
239 * when reading the system counter, but it is possible that some interrupts
240 * may lead to more than twice read errors, triggering the warning, so setting
241 * the number of retries far beyond the number of iterations the loop has been
242 * observed to take.
243 */
244 #define __hisi_161010101_read_reg(reg) ({ \
245 u64 _old, _new; \
246 int _retries = 50; \
247 \
248 do { \
249 _old = read_sysreg(reg); \
250 _new = read_sysreg(reg); \
251 _retries--; \
252 } while (unlikely((_new - _old) >> 5) && _retries); \
253 \
254 WARN_ON_ONCE(!_retries); \
255 _new; \
256 })
257
hisi_161010101_read_cntp_tval_el0(void)258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260 return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262
hisi_161010101_read_cntv_tval_el0(void)263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265 return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267
hisi_161010101_read_cntpct_el0(void)268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270 return __hisi_161010101_read_reg(cntpct_el0);
271 }
272
hisi_161010101_read_cntvct_el0(void)273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275 return __hisi_161010101_read_reg(cntvct_el0);
276 }
277
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 /*
280 * Note that trailing spaces are required to properly match
281 * the OEM table information.
282 */
283 {
284 .oem_id = "HISI ",
285 .oem_table_id = "HIP05 ",
286 .oem_revision = 0,
287 },
288 {
289 .oem_id = "HISI ",
290 .oem_table_id = "HIP06 ",
291 .oem_revision = 0,
292 },
293 {
294 .oem_id = "HISI ",
295 .oem_table_id = "HIP07 ",
296 .oem_revision = 0,
297 },
298 { /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301
302 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305 u64 old, new;
306
307 old = read_sysreg(cntpct_el0);
308 new = read_sysreg(cntpct_el0);
309 return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311
arm64_858921_read_cntvct_el0(void)312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314 u64 old, new;
315
316 old = read_sysreg(cntvct_el0);
317 new = read_sysreg(cntvct_el0);
318 return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321
322 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
323 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
324 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
325
326 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
327 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
328
erratum_set_next_event_tval_generic(const int access,unsigned long evt,struct clock_event_device * clk)329 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
330 struct clock_event_device *clk)
331 {
332 unsigned long ctrl;
333 u64 cval;
334
335 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
336 ctrl |= ARCH_TIMER_CTRL_ENABLE;
337 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
338
339 if (access == ARCH_TIMER_PHYS_ACCESS) {
340 cval = evt + arch_counter_get_cntpct();
341 write_sysreg(cval, cntp_cval_el0);
342 } else {
343 cval = evt + arch_counter_get_cntvct();
344 write_sysreg(cval, cntv_cval_el0);
345 }
346
347 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348 }
349
erratum_set_next_event_tval_virt(unsigned long evt,struct clock_event_device * clk)350 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
351 struct clock_event_device *clk)
352 {
353 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
354 return 0;
355 }
356
erratum_set_next_event_tval_phys(unsigned long evt,struct clock_event_device * clk)357 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
358 struct clock_event_device *clk)
359 {
360 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
361 return 0;
362 }
363
364 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
365 #ifdef CONFIG_FSL_ERRATUM_A008585
366 {
367 .match_type = ate_match_dt,
368 .id = "fsl,erratum-a008585",
369 .desc = "Freescale erratum a005858",
370 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
371 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
372 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
373 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
374 .set_next_event_phys = erratum_set_next_event_tval_phys,
375 .set_next_event_virt = erratum_set_next_event_tval_virt,
376 },
377 #endif
378 #ifdef CONFIG_HISILICON_ERRATUM_161010101
379 {
380 .match_type = ate_match_dt,
381 .id = "hisilicon,erratum-161010101",
382 .desc = "HiSilicon erratum 161010101",
383 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
384 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
385 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
386 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
387 .set_next_event_phys = erratum_set_next_event_tval_phys,
388 .set_next_event_virt = erratum_set_next_event_tval_virt,
389 },
390 {
391 .match_type = ate_match_acpi_oem_info,
392 .id = hisi_161010101_oem_info,
393 .desc = "HiSilicon erratum 161010101",
394 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
395 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
396 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
397 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
398 .set_next_event_phys = erratum_set_next_event_tval_phys,
399 .set_next_event_virt = erratum_set_next_event_tval_virt,
400 },
401 #endif
402 #ifdef CONFIG_ARM64_ERRATUM_858921
403 {
404 .match_type = ate_match_local_cap_id,
405 .id = (void *)ARM64_WORKAROUND_858921,
406 .desc = "ARM erratum 858921",
407 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
408 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
409 },
410 #endif
411 };
412
413 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
414 const void *);
415
416 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)417 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
418 const void *arg)
419 {
420 const struct device_node *np = arg;
421
422 return of_property_read_bool(np, wa->id);
423 }
424
425 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)426 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
427 const void *arg)
428 {
429 return this_cpu_has_cap((uintptr_t)wa->id);
430 }
431
432
433 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)434 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
435 const void *arg)
436 {
437 static const struct ate_acpi_oem_info empty_oem_info = {};
438 const struct ate_acpi_oem_info *info = wa->id;
439 const struct acpi_table_header *table = arg;
440
441 /* Iterate over the ACPI OEM info array, looking for a match */
442 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
443 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
444 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
445 info->oem_revision == table->oem_revision)
446 return true;
447
448 info++;
449 }
450
451 return false;
452 }
453
454 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)455 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
456 ate_match_fn_t match_fn,
457 void *arg)
458 {
459 int i;
460
461 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
462 if (ool_workarounds[i].match_type != type)
463 continue;
464
465 if (match_fn(&ool_workarounds[i], arg))
466 return &ool_workarounds[i];
467 }
468
469 return NULL;
470 }
471
472 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)473 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
474 bool local)
475 {
476 int i;
477
478 if (local) {
479 __this_cpu_write(timer_unstable_counter_workaround, wa);
480 } else {
481 for_each_possible_cpu(i)
482 per_cpu(timer_unstable_counter_workaround, i) = wa;
483 }
484
485 /*
486 * Use the locked version, as we're called from the CPU
487 * hotplug framework. Otherwise, we end-up in deadlock-land.
488 */
489 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
490
491 /*
492 * Don't use the vdso fastpath if errata require using the
493 * out-of-line counter accessor. We may change our mind pretty
494 * late in the game (with a per-CPU erratum, for example), so
495 * change both the default value and the vdso itself.
496 */
497 if (wa->read_cntvct_el0) {
498 clocksource_counter.archdata.vdso_direct = false;
499 vdso_default = false;
500 }
501 }
502
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)503 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
504 void *arg)
505 {
506 const struct arch_timer_erratum_workaround *wa;
507 ate_match_fn_t match_fn = NULL;
508 bool local = false;
509
510 switch (type) {
511 case ate_match_dt:
512 match_fn = arch_timer_check_dt_erratum;
513 break;
514 case ate_match_local_cap_id:
515 match_fn = arch_timer_check_local_cap_erratum;
516 local = true;
517 break;
518 case ate_match_acpi_oem_info:
519 match_fn = arch_timer_check_acpi_oem_erratum;
520 break;
521 default:
522 WARN_ON(1);
523 return;
524 }
525
526 wa = arch_timer_iterate_errata(type, match_fn, arg);
527 if (!wa)
528 return;
529
530 if (needs_unstable_timer_counter_workaround()) {
531 const struct arch_timer_erratum_workaround *__wa;
532 __wa = __this_cpu_read(timer_unstable_counter_workaround);
533 if (__wa && wa != __wa)
534 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
535 wa->desc, __wa->desc);
536
537 if (__wa)
538 return;
539 }
540
541 arch_timer_enable_workaround(wa, local);
542 pr_info("Enabling %s workaround for %s\n",
543 local ? "local" : "global", wa->desc);
544 }
545
546 #define erratum_handler(fn, r, ...) \
547 ({ \
548 bool __val; \
549 if (needs_unstable_timer_counter_workaround()) { \
550 const struct arch_timer_erratum_workaround *__wa; \
551 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
552 if (__wa && __wa->fn) { \
553 r = __wa->fn(__VA_ARGS__); \
554 __val = true; \
555 } else { \
556 __val = false; \
557 } \
558 } else { \
559 __val = false; \
560 } \
561 __val; \
562 })
563
arch_timer_this_cpu_has_cntvct_wa(void)564 static bool arch_timer_this_cpu_has_cntvct_wa(void)
565 {
566 const struct arch_timer_erratum_workaround *wa;
567
568 wa = __this_cpu_read(timer_unstable_counter_workaround);
569 return wa && wa->read_cntvct_el0;
570 }
571 #else
572 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
573 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
574 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
575 #define erratum_handler(fn, r, ...) ({false;})
576 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
577 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
578
timer_handler(const int access,struct clock_event_device * evt)579 static __always_inline irqreturn_t timer_handler(const int access,
580 struct clock_event_device *evt)
581 {
582 unsigned long ctrl;
583
584 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
585 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
586 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
587 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
588 evt->event_handler(evt);
589 return IRQ_HANDLED;
590 }
591
592 return IRQ_NONE;
593 }
594
arch_timer_handler_virt(int irq,void * dev_id)595 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
596 {
597 struct clock_event_device *evt = dev_id;
598
599 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
600 }
601
arch_timer_handler_phys(int irq,void * dev_id)602 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
603 {
604 struct clock_event_device *evt = dev_id;
605
606 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
607 }
608
arch_timer_handler_phys_mem(int irq,void * dev_id)609 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
610 {
611 struct clock_event_device *evt = dev_id;
612
613 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
614 }
615
arch_timer_handler_virt_mem(int irq,void * dev_id)616 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
617 {
618 struct clock_event_device *evt = dev_id;
619
620 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
621 }
622
timer_shutdown(const int access,struct clock_event_device * clk)623 static __always_inline int timer_shutdown(const int access,
624 struct clock_event_device *clk)
625 {
626 unsigned long ctrl;
627
628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
630 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
631
632 return 0;
633 }
634
arch_timer_shutdown_virt(struct clock_event_device * clk)635 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
636 {
637 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
638 }
639
arch_timer_shutdown_phys(struct clock_event_device * clk)640 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
641 {
642 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
643 }
644
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)645 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
646 {
647 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
648 }
649
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)650 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
651 {
652 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
653 }
654
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)655 static __always_inline void set_next_event(const int access, unsigned long evt,
656 struct clock_event_device *clk)
657 {
658 unsigned long ctrl;
659 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
660 ctrl |= ARCH_TIMER_CTRL_ENABLE;
661 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
662 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
663 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
664 }
665
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)666 static int arch_timer_set_next_event_virt(unsigned long evt,
667 struct clock_event_device *clk)
668 {
669 int ret;
670
671 if (erratum_handler(set_next_event_virt, ret, evt, clk))
672 return ret;
673
674 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
675 return 0;
676 }
677
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)678 static int arch_timer_set_next_event_phys(unsigned long evt,
679 struct clock_event_device *clk)
680 {
681 int ret;
682
683 if (erratum_handler(set_next_event_phys, ret, evt, clk))
684 return ret;
685
686 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
687 return 0;
688 }
689
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)690 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
691 struct clock_event_device *clk)
692 {
693 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
694 return 0;
695 }
696
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)697 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
698 struct clock_event_device *clk)
699 {
700 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
701 return 0;
702 }
703
__arch_timer_setup(unsigned type,struct clock_event_device * clk)704 static void __arch_timer_setup(unsigned type,
705 struct clock_event_device *clk)
706 {
707 clk->features = CLOCK_EVT_FEAT_ONESHOT;
708
709 if (type == ARCH_TIMER_TYPE_CP15) {
710 if (arch_timer_c3stop)
711 clk->features |= CLOCK_EVT_FEAT_C3STOP;
712 clk->name = "arch_sys_timer";
713 clk->rating = 450;
714 clk->cpumask = cpumask_of(smp_processor_id());
715 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
716 switch (arch_timer_uses_ppi) {
717 case ARCH_TIMER_VIRT_PPI:
718 clk->set_state_shutdown = arch_timer_shutdown_virt;
719 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
720 clk->set_next_event = arch_timer_set_next_event_virt;
721 break;
722 case ARCH_TIMER_PHYS_SECURE_PPI:
723 case ARCH_TIMER_PHYS_NONSECURE_PPI:
724 case ARCH_TIMER_HYP_PPI:
725 clk->set_state_shutdown = arch_timer_shutdown_phys;
726 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
727 clk->set_next_event = arch_timer_set_next_event_phys;
728 break;
729 default:
730 BUG();
731 }
732
733 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
734 } else {
735 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
736 clk->name = "arch_mem_timer";
737 clk->rating = 400;
738 clk->cpumask = cpu_possible_mask;
739 if (arch_timer_mem_use_virtual) {
740 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
741 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
742 clk->set_next_event =
743 arch_timer_set_next_event_virt_mem;
744 } else {
745 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
746 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
747 clk->set_next_event =
748 arch_timer_set_next_event_phys_mem;
749 }
750 }
751
752 clk->set_state_shutdown(clk);
753
754 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
755 }
756
arch_timer_evtstrm_enable(int divider)757 static void arch_timer_evtstrm_enable(int divider)
758 {
759 u32 cntkctl = arch_timer_get_cntkctl();
760
761 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
762 /* Set the divider and enable virtual event stream */
763 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
764 | ARCH_TIMER_VIRT_EVT_EN;
765 arch_timer_set_cntkctl(cntkctl);
766 elf_hwcap |= HWCAP_EVTSTRM;
767 #ifdef CONFIG_COMPAT
768 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
769 #endif
770 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
771 }
772
arch_timer_configure_evtstream(void)773 static void arch_timer_configure_evtstream(void)
774 {
775 int evt_stream_div, pos;
776
777 /* Find the closest power of two to the divisor */
778 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
779 pos = fls(evt_stream_div);
780 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
781 pos--;
782 /* enable event stream */
783 arch_timer_evtstrm_enable(min(pos, 15));
784 }
785
arch_counter_set_user_access(void)786 static void arch_counter_set_user_access(void)
787 {
788 u32 cntkctl = arch_timer_get_cntkctl();
789
790 /* Disable user access to the timers and both counters */
791 /* Also disable virtual event stream */
792 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
793 | ARCH_TIMER_USR_VT_ACCESS_EN
794 | ARCH_TIMER_USR_VCT_ACCESS_EN
795 | ARCH_TIMER_VIRT_EVT_EN
796 | ARCH_TIMER_USR_PCT_ACCESS_EN);
797
798 /*
799 * Enable user access to the virtual counter if it doesn't
800 * need to be workaround. The vdso may have been already
801 * disabled though.
802 */
803 if (arch_timer_this_cpu_has_cntvct_wa())
804 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
805 else
806 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
807
808 arch_timer_set_cntkctl(cntkctl);
809 }
810
arch_timer_has_nonsecure_ppi(void)811 static bool arch_timer_has_nonsecure_ppi(void)
812 {
813 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
814 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
815 }
816
check_ppi_trigger(int irq)817 static u32 check_ppi_trigger(int irq)
818 {
819 u32 flags = irq_get_trigger_type(irq);
820
821 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
822 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
823 pr_warn("WARNING: Please fix your firmware\n");
824 flags = IRQF_TRIGGER_LOW;
825 }
826
827 return flags;
828 }
829
arch_timer_starting_cpu(unsigned int cpu)830 static int arch_timer_starting_cpu(unsigned int cpu)
831 {
832 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
833 u32 flags;
834
835 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
836
837 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
838 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
839
840 if (arch_timer_has_nonsecure_ppi()) {
841 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
842 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
843 flags);
844 }
845
846 arch_counter_set_user_access();
847 if (evtstrm_enable)
848 arch_timer_configure_evtstream();
849
850 return 0;
851 }
852
853 /*
854 * For historical reasons, when probing with DT we use whichever (non-zero)
855 * rate was probed first, and don't verify that others match. If the first node
856 * probed has a clock-frequency property, this overrides the HW register.
857 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)858 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
859 {
860 /* Who has more than one independent system counter? */
861 if (arch_timer_rate)
862 return;
863
864 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
865 arch_timer_rate = rate;
866
867 /* Check the timer frequency. */
868 if (arch_timer_rate == 0)
869 pr_warn("frequency not available\n");
870 }
871
arch_timer_banner(unsigned type)872 static void arch_timer_banner(unsigned type)
873 {
874 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
875 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
876 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
877 " and " : "",
878 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
879 (unsigned long)arch_timer_rate / 1000000,
880 (unsigned long)(arch_timer_rate / 10000) % 100,
881 type & ARCH_TIMER_TYPE_CP15 ?
882 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
883 "",
884 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
885 type & ARCH_TIMER_TYPE_MEM ?
886 arch_timer_mem_use_virtual ? "virt" : "phys" :
887 "");
888 }
889
arch_timer_get_rate(void)890 u32 arch_timer_get_rate(void)
891 {
892 return arch_timer_rate;
893 }
894
arch_timer_evtstrm_available(void)895 bool arch_timer_evtstrm_available(void)
896 {
897 /*
898 * We might get called from a preemptible context. This is fine
899 * because availability of the event stream should be always the same
900 * for a preemptible context and context where we might resume a task.
901 */
902 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
903 }
904
arch_counter_get_cntvct_mem(void)905 static u64 arch_counter_get_cntvct_mem(void)
906 {
907 u32 vct_lo, vct_hi, tmp_hi;
908
909 do {
910 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
911 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
912 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
913 } while (vct_hi != tmp_hi);
914
915 return ((u64) vct_hi << 32) | vct_lo;
916 }
917
918 static struct arch_timer_kvm_info arch_timer_kvm_info;
919
arch_timer_get_kvm_info(void)920 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
921 {
922 return &arch_timer_kvm_info;
923 }
924
arch_counter_register(unsigned type)925 static void __init arch_counter_register(unsigned type)
926 {
927 u64 start_count;
928
929 /* Register the CP15 based counter if we have one */
930 if (type & ARCH_TIMER_TYPE_CP15) {
931 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
932 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
933 arch_timer_read_counter = arch_counter_get_cntvct;
934 else
935 arch_timer_read_counter = arch_counter_get_cntpct;
936
937 clocksource_counter.archdata.vdso_direct = vdso_default;
938 } else {
939 arch_timer_read_counter = arch_counter_get_cntvct_mem;
940 }
941
942 if (!arch_counter_suspend_stop)
943 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
944 start_count = arch_timer_read_counter();
945 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
946 cyclecounter.mult = clocksource_counter.mult;
947 cyclecounter.shift = clocksource_counter.shift;
948 timecounter_init(&arch_timer_kvm_info.timecounter,
949 &cyclecounter, start_count);
950
951 /* 56 bits minimum, so we assume worst case rollover */
952 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
953 }
954
arch_timer_stop(struct clock_event_device * clk)955 static void arch_timer_stop(struct clock_event_device *clk)
956 {
957 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
958
959 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
960 if (arch_timer_has_nonsecure_ppi())
961 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962
963 clk->set_state_shutdown(clk);
964 }
965
arch_timer_dying_cpu(unsigned int cpu)966 static int arch_timer_dying_cpu(unsigned int cpu)
967 {
968 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
969
970 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
971
972 arch_timer_stop(clk);
973 return 0;
974 }
975
976 #ifdef CONFIG_CPU_PM
977 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)978 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
979 unsigned long action, void *hcpu)
980 {
981 if (action == CPU_PM_ENTER) {
982 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
983
984 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
985 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
986 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
987
988 if (elf_hwcap & HWCAP_EVTSTRM)
989 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
990 }
991 return NOTIFY_OK;
992 }
993
994 static struct notifier_block arch_timer_cpu_pm_notifier = {
995 .notifier_call = arch_timer_cpu_pm_notify,
996 };
997
arch_timer_cpu_pm_init(void)998 static int __init arch_timer_cpu_pm_init(void)
999 {
1000 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001 }
1002
arch_timer_cpu_pm_deinit(void)1003 static void __init arch_timer_cpu_pm_deinit(void)
1004 {
1005 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006 }
1007
1008 #else
arch_timer_cpu_pm_init(void)1009 static int __init arch_timer_cpu_pm_init(void)
1010 {
1011 return 0;
1012 }
1013
arch_timer_cpu_pm_deinit(void)1014 static void __init arch_timer_cpu_pm_deinit(void)
1015 {
1016 }
1017 #endif
1018
arch_timer_register(void)1019 static int __init arch_timer_register(void)
1020 {
1021 int err;
1022 int ppi;
1023
1024 arch_timer_evt = alloc_percpu(struct clock_event_device);
1025 if (!arch_timer_evt) {
1026 err = -ENOMEM;
1027 goto out;
1028 }
1029
1030 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031 switch (arch_timer_uses_ppi) {
1032 case ARCH_TIMER_VIRT_PPI:
1033 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034 "arch_timer", arch_timer_evt);
1035 break;
1036 case ARCH_TIMER_PHYS_SECURE_PPI:
1037 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039 "arch_timer", arch_timer_evt);
1040 if (!err && arch_timer_has_nonsecure_ppi()) {
1041 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043 "arch_timer", arch_timer_evt);
1044 if (err)
1045 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046 arch_timer_evt);
1047 }
1048 break;
1049 case ARCH_TIMER_HYP_PPI:
1050 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051 "arch_timer", arch_timer_evt);
1052 break;
1053 default:
1054 BUG();
1055 }
1056
1057 if (err) {
1058 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059 goto out_free;
1060 }
1061
1062 err = arch_timer_cpu_pm_init();
1063 if (err)
1064 goto out_unreg_notify;
1065
1066 /* Register and immediately configure the timer on the boot CPU */
1067 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068 "clockevents/arm/arch_timer:starting",
1069 arch_timer_starting_cpu, arch_timer_dying_cpu);
1070 if (err)
1071 goto out_unreg_cpupm;
1072 return 0;
1073
1074 out_unreg_cpupm:
1075 arch_timer_cpu_pm_deinit();
1076
1077 out_unreg_notify:
1078 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079 if (arch_timer_has_nonsecure_ppi())
1080 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081 arch_timer_evt);
1082
1083 out_free:
1084 free_percpu(arch_timer_evt);
1085 out:
1086 return err;
1087 }
1088
arch_timer_mem_register(void __iomem * base,unsigned int irq)1089 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090 {
1091 int ret;
1092 irq_handler_t func;
1093 struct arch_timer *t;
1094
1095 t = kzalloc(sizeof(*t), GFP_KERNEL);
1096 if (!t)
1097 return -ENOMEM;
1098
1099 t->base = base;
1100 t->evt.irq = irq;
1101 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103 if (arch_timer_mem_use_virtual)
1104 func = arch_timer_handler_virt_mem;
1105 else
1106 func = arch_timer_handler_phys_mem;
1107
1108 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109 if (ret) {
1110 pr_err("Failed to request mem timer irq\n");
1111 kfree(t);
1112 }
1113
1114 return ret;
1115 }
1116
1117 static const struct of_device_id arch_timer_of_match[] __initconst = {
1118 { .compatible = "arm,armv7-timer", },
1119 { .compatible = "arm,armv8-timer", },
1120 {},
1121 };
1122
1123 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124 { .compatible = "arm,armv7-timer-mem", },
1125 {},
1126 };
1127
arch_timer_needs_of_probing(void)1128 static bool __init arch_timer_needs_of_probing(void)
1129 {
1130 struct device_node *dn;
1131 bool needs_probing = false;
1132 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134 /* We have two timers, and both device-tree nodes are probed. */
1135 if ((arch_timers_present & mask) == mask)
1136 return false;
1137
1138 /*
1139 * Only one type of timer is probed,
1140 * check if we have another type of timer node in device-tree.
1141 */
1142 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144 else
1145 dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147 if (dn && of_device_is_available(dn))
1148 needs_probing = true;
1149
1150 of_node_put(dn);
1151
1152 return needs_probing;
1153 }
1154
arch_timer_common_init(void)1155 static int __init arch_timer_common_init(void)
1156 {
1157 arch_timer_banner(arch_timers_present);
1158 arch_counter_register(arch_timers_present);
1159 return arch_timer_arch_init();
1160 }
1161
1162 /**
1163 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164 *
1165 * If HYP mode is available, we know that the physical timer
1166 * has been configured to be accessible from PL1. Use it, so
1167 * that a guest can use the virtual timer instead.
1168 *
1169 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170 * accesses to CNTP_*_EL1 registers are silently redirected to
1171 * their CNTHP_*_EL2 counterparts, and use a different PPI
1172 * number.
1173 *
1174 * If no interrupt provided for virtual timer, we'll have to
1175 * stick to the physical timer. It'd better be accessible...
1176 * For arm64 we never use the secure interrupt.
1177 *
1178 * Return: a suitable PPI type for the current system.
1179 */
arch_timer_select_ppi(void)1180 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181 {
1182 if (is_kernel_in_hyp_mode())
1183 return ARCH_TIMER_HYP_PPI;
1184
1185 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186 return ARCH_TIMER_VIRT_PPI;
1187
1188 if (IS_ENABLED(CONFIG_ARM64))
1189 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191 return ARCH_TIMER_PHYS_SECURE_PPI;
1192 }
1193
arch_timer_of_init(struct device_node * np)1194 static int __init arch_timer_of_init(struct device_node *np)
1195 {
1196 int i, ret;
1197 u32 rate;
1198
1199 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200 pr_warn("multiple nodes in dt, skipping\n");
1201 return 0;
1202 }
1203
1204 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1209
1210 rate = arch_timer_get_cntfrq();
1211 arch_timer_of_configure_rate(rate, np);
1212
1213 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215 /* Check for globally applicable workarounds */
1216 arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218 /*
1219 * If we cannot rely on firmware initializing the timer registers then
1220 * we should use the physical timers instead.
1221 */
1222 if (IS_ENABLED(CONFIG_ARM) &&
1223 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225 else
1226 arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229 pr_err("No interrupt available, giving up\n");
1230 return -EINVAL;
1231 }
1232
1233 /* On some systems, the counter stops ticking when in suspend. */
1234 arch_counter_suspend_stop = of_property_read_bool(np,
1235 "arm,no-tick-in-suspend");
1236
1237 ret = arch_timer_register();
1238 if (ret)
1239 return ret;
1240
1241 if (arch_timer_needs_of_probing())
1242 return 0;
1243
1244 return arch_timer_common_init();
1245 }
1246 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1250 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251 {
1252 void __iomem *base;
1253 u32 rate;
1254
1255 base = ioremap(frame->cntbase, frame->size);
1256 if (!base) {
1257 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258 return 0;
1259 }
1260
1261 rate = readl_relaxed(base + CNTFRQ);
1262
1263 iounmap(base);
1264
1265 return rate;
1266 }
1267
1268 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1269 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270 {
1271 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272 void __iomem *cntctlbase;
1273 u32 cnttidr;
1274 int i;
1275
1276 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277 if (!cntctlbase) {
1278 pr_err("Can't map CNTCTLBase @ %pa\n",
1279 &timer_mem->cntctlbase);
1280 return NULL;
1281 }
1282
1283 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285 /*
1286 * Try to find a virtual capable frame. Otherwise fall back to a
1287 * physical capable frame.
1288 */
1289 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293 frame = &timer_mem->frame[i];
1294 if (!frame->valid)
1295 continue;
1296
1297 /* Try enabling everything, and see what sticks */
1298 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303 best_frame = frame;
1304 arch_timer_mem_use_virtual = true;
1305 break;
1306 }
1307
1308 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309 continue;
1310
1311 best_frame = frame;
1312 }
1313
1314 iounmap(cntctlbase);
1315
1316 return best_frame;
1317 }
1318
1319 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1320 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321 {
1322 void __iomem *base;
1323 int ret, irq = 0;
1324
1325 if (arch_timer_mem_use_virtual)
1326 irq = frame->virt_irq;
1327 else
1328 irq = frame->phys_irq;
1329
1330 if (!irq) {
1331 pr_err("Frame missing %s irq.\n",
1332 arch_timer_mem_use_virtual ? "virt" : "phys");
1333 return -EINVAL;
1334 }
1335
1336 if (!request_mem_region(frame->cntbase, frame->size,
1337 "arch_mem_timer"))
1338 return -EBUSY;
1339
1340 base = ioremap(frame->cntbase, frame->size);
1341 if (!base) {
1342 pr_err("Can't map frame's registers\n");
1343 return -ENXIO;
1344 }
1345
1346 ret = arch_timer_mem_register(base, irq);
1347 if (ret) {
1348 iounmap(base);
1349 return ret;
1350 }
1351
1352 arch_counter_base = base;
1353 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355 return 0;
1356 }
1357
arch_timer_mem_of_init(struct device_node * np)1358 static int __init arch_timer_mem_of_init(struct device_node *np)
1359 {
1360 struct arch_timer_mem *timer_mem;
1361 struct arch_timer_mem_frame *frame;
1362 struct device_node *frame_node;
1363 struct resource res;
1364 int ret = -EINVAL;
1365 u32 rate;
1366
1367 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368 if (!timer_mem)
1369 return -ENOMEM;
1370
1371 if (of_address_to_resource(np, 0, &res))
1372 goto out;
1373 timer_mem->cntctlbase = res.start;
1374 timer_mem->size = resource_size(&res);
1375
1376 for_each_available_child_of_node(np, frame_node) {
1377 u32 n;
1378 struct arch_timer_mem_frame *frame;
1379
1380 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381 pr_err(FW_BUG "Missing frame-number.\n");
1382 of_node_put(frame_node);
1383 goto out;
1384 }
1385 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388 of_node_put(frame_node);
1389 goto out;
1390 }
1391 frame = &timer_mem->frame[n];
1392
1393 if (frame->valid) {
1394 pr_err(FW_BUG "Duplicated frame-number.\n");
1395 of_node_put(frame_node);
1396 goto out;
1397 }
1398
1399 if (of_address_to_resource(frame_node, 0, &res)) {
1400 of_node_put(frame_node);
1401 goto out;
1402 }
1403 frame->cntbase = res.start;
1404 frame->size = resource_size(&res);
1405
1406 frame->virt_irq = irq_of_parse_and_map(frame_node,
1407 ARCH_TIMER_VIRT_SPI);
1408 frame->phys_irq = irq_of_parse_and_map(frame_node,
1409 ARCH_TIMER_PHYS_SPI);
1410
1411 frame->valid = true;
1412 }
1413
1414 frame = arch_timer_mem_find_best_frame(timer_mem);
1415 if (!frame) {
1416 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417 &timer_mem->cntctlbase);
1418 ret = -EINVAL;
1419 goto out;
1420 }
1421
1422 rate = arch_timer_mem_frame_get_cntfrq(frame);
1423 arch_timer_of_configure_rate(rate, np);
1424
1425 ret = arch_timer_mem_frame_register(frame);
1426 if (!ret && !arch_timer_needs_of_probing())
1427 ret = arch_timer_common_init();
1428 out:
1429 kfree(timer_mem);
1430 return ret;
1431 }
1432 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433 arch_timer_mem_of_init);
1434
1435 #ifdef CONFIG_ACPI_GTDT
1436 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1437 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438 {
1439 struct arch_timer_mem_frame *frame;
1440 u32 rate;
1441 int i;
1442
1443 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444 frame = &timer_mem->frame[i];
1445
1446 if (!frame->valid)
1447 continue;
1448
1449 rate = arch_timer_mem_frame_get_cntfrq(frame);
1450 if (rate == arch_timer_rate)
1451 continue;
1452
1453 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454 &frame->cntbase,
1455 (unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457 return -EINVAL;
1458 }
1459
1460 return 0;
1461 }
1462
arch_timer_mem_acpi_init(int platform_timer_count)1463 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464 {
1465 struct arch_timer_mem *timers, *timer;
1466 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467 int timer_count, i, ret = 0;
1468
1469 timers = kcalloc(platform_timer_count, sizeof(*timers),
1470 GFP_KERNEL);
1471 if (!timers)
1472 return -ENOMEM;
1473
1474 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475 if (ret || !timer_count)
1476 goto out;
1477
1478 /*
1479 * While unlikely, it's theoretically possible that none of the frames
1480 * in a timer expose the combination of feature we want.
1481 */
1482 for (i = 0; i < timer_count; i++) {
1483 timer = &timers[i];
1484
1485 frame = arch_timer_mem_find_best_frame(timer);
1486 if (!best_frame)
1487 best_frame = frame;
1488
1489 ret = arch_timer_mem_verify_cntfrq(timer);
1490 if (ret) {
1491 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492 goto out;
1493 }
1494
1495 if (!best_frame) /* implies !frame */
1496 /*
1497 * Only complain about missing suitable frames if we
1498 * haven't already found one in a previous iteration.
1499 */
1500 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501 &timer->cntctlbase);
1502 }
1503
1504 if (best_frame)
1505 ret = arch_timer_mem_frame_register(best_frame);
1506 out:
1507 kfree(timers);
1508 return ret;
1509 }
1510
1511 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1512 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513 {
1514 int ret, platform_timer_count;
1515
1516 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517 pr_warn("already initialized, skipping\n");
1518 return -EINVAL;
1519 }
1520
1521 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523 ret = acpi_gtdt_init(table, &platform_timer_count);
1524 if (ret) {
1525 pr_err("Failed to init GTDT table.\n");
1526 return ret;
1527 }
1528
1529 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540 /*
1541 * When probing via ACPI, we have no mechanism to override the sysreg
1542 * CNTFRQ value. This *must* be correct.
1543 */
1544 arch_timer_rate = arch_timer_get_cntfrq();
1545 if (!arch_timer_rate) {
1546 pr_err(FW_BUG "frequency not available.\n");
1547 return -EINVAL;
1548 }
1549
1550 arch_timer_uses_ppi = arch_timer_select_ppi();
1551 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552 pr_err("No interrupt available, giving up\n");
1553 return -EINVAL;
1554 }
1555
1556 /* Always-on capability */
1557 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559 /* Check for globally applicable workarounds */
1560 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562 ret = arch_timer_register();
1563 if (ret)
1564 return ret;
1565
1566 if (platform_timer_count &&
1567 arch_timer_mem_acpi_init(platform_timer_count))
1568 pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570 return arch_timer_common_init();
1571 }
1572 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573 #endif
1574