1 /*
2  * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
11  * programmed to go from @count to @limit and optionally interrupt.
12  * We've designated TIMER0 for clockevents and TIMER1 for clocksource
13  *
14  * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
15  * which are suitable for UP and SMP based clocksources respectively
16  */
17 
18 #include <linux/interrupt.h>
19 #include <linux/clk.h>
20 #include <linux/clk-provider.h>
21 #include <linux/clocksource.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
26 
27 #include <soc/arc/timers.h>
28 #include <soc/arc/mcip.h>
29 
30 
31 static unsigned long arc_timer_freq;
32 
arc_get_timer_clk(struct device_node * node)33 static int noinline arc_get_timer_clk(struct device_node *node)
34 {
35 	struct clk *clk;
36 	int ret;
37 
38 	clk = of_clk_get(node, 0);
39 	if (IS_ERR(clk)) {
40 		pr_err("timer missing clk\n");
41 		return PTR_ERR(clk);
42 	}
43 
44 	ret = clk_prepare_enable(clk);
45 	if (ret) {
46 		pr_err("Couldn't enable parent clk\n");
47 		return ret;
48 	}
49 
50 	arc_timer_freq = clk_get_rate(clk);
51 
52 	return 0;
53 }
54 
55 /********** Clock Source Device *********/
56 
57 #ifdef CONFIG_ARC_TIMERS_64BIT
58 
arc_read_gfrc(struct clocksource * cs)59 static u64 arc_read_gfrc(struct clocksource *cs)
60 {
61 	unsigned long flags;
62 	u32 l, h;
63 
64 	/*
65 	 * From a programming model pov, there seems to be just one instance of
66 	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
67 	 * an instance PER ARC CORE (not per cluster), and there are dedicated
68 	 * hardware decode logic (per core) inside ARConnect to handle
69 	 * simultaneous read/write accesses from cores via those two registers.
70 	 * So several concurrent commands to ARConnect are OK if they are
71 	 * trying to access two different sub-components (like GFRC,
72 	 * inter-core interrupt, etc...). HW also supports simultaneously
73 	 * accessing GFRC by multiple cores.
74 	 * That's why it is safe to disable hard interrupts on the local CPU
75 	 * before access to GFRC instead of taking global MCIP spinlock
76 	 * defined in arch/arc/kernel/mcip.c
77 	 */
78 	local_irq_save(flags);
79 
80 	__mcip_cmd(CMD_GFRC_READ_LO, 0);
81 	l = read_aux_reg(ARC_REG_MCIP_READBACK);
82 
83 	__mcip_cmd(CMD_GFRC_READ_HI, 0);
84 	h = read_aux_reg(ARC_REG_MCIP_READBACK);
85 
86 	local_irq_restore(flags);
87 
88 	return (((u64)h) << 32) | l;
89 }
90 
91 static struct clocksource arc_counter_gfrc = {
92 	.name   = "ARConnect GFRC",
93 	.rating = 400,
94 	.read   = arc_read_gfrc,
95 	.mask   = CLOCKSOURCE_MASK(64),
96 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
97 };
98 
arc_cs_setup_gfrc(struct device_node * node)99 static int __init arc_cs_setup_gfrc(struct device_node *node)
100 {
101 	struct mcip_bcr mp;
102 	int ret;
103 
104 	READ_BCR(ARC_REG_MCIP_BCR, mp);
105 	if (!mp.gfrc) {
106 		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
107 		return -ENXIO;
108 	}
109 
110 	ret = arc_get_timer_clk(node);
111 	if (ret)
112 		return ret;
113 
114 	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
115 }
116 TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
117 
118 #define AUX_RTC_CTRL	0x103
119 #define AUX_RTC_LOW	0x104
120 #define AUX_RTC_HIGH	0x105
121 
arc_read_rtc(struct clocksource * cs)122 static u64 arc_read_rtc(struct clocksource *cs)
123 {
124 	unsigned long status;
125 	u32 l, h;
126 
127 	/*
128 	 * hardware has an internal state machine which tracks readout of
129 	 * low/high and updates the CTRL.status if
130 	 *  - interrupt/exception taken between the two reads
131 	 *  - high increments after low has been read
132 	 */
133 	do {
134 		l = read_aux_reg(AUX_RTC_LOW);
135 		h = read_aux_reg(AUX_RTC_HIGH);
136 		status = read_aux_reg(AUX_RTC_CTRL);
137 	} while (!(status & _BITUL(31)));
138 
139 	return (((u64)h) << 32) | l;
140 }
141 
142 static struct clocksource arc_counter_rtc = {
143 	.name   = "ARCv2 RTC",
144 	.rating = 350,
145 	.read   = arc_read_rtc,
146 	.mask   = CLOCKSOURCE_MASK(64),
147 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
148 };
149 
arc_cs_setup_rtc(struct device_node * node)150 static int __init arc_cs_setup_rtc(struct device_node *node)
151 {
152 	struct bcr_timer timer;
153 	int ret;
154 
155 	READ_BCR(ARC_REG_TIMERS_BCR, timer);
156 	if (!timer.rtc) {
157 		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
158 		return -ENXIO;
159 	}
160 
161 	/* Local to CPU hence not usable in SMP */
162 	if (IS_ENABLED(CONFIG_SMP)) {
163 		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
164 		return -EINVAL;
165 	}
166 
167 	ret = arc_get_timer_clk(node);
168 	if (ret)
169 		return ret;
170 
171 	write_aux_reg(AUX_RTC_CTRL, 1);
172 
173 	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
174 }
175 TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
176 
177 #endif
178 
179 /*
180  * 32bit TIMER1 to keep counting monotonically and wraparound
181  */
182 
arc_read_timer1(struct clocksource * cs)183 static u64 arc_read_timer1(struct clocksource *cs)
184 {
185 	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
186 }
187 
188 static struct clocksource arc_counter_timer1 = {
189 	.name   = "ARC Timer1",
190 	.rating = 300,
191 	.read   = arc_read_timer1,
192 	.mask   = CLOCKSOURCE_MASK(32),
193 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
194 };
195 
arc_cs_setup_timer1(struct device_node * node)196 static int __init arc_cs_setup_timer1(struct device_node *node)
197 {
198 	int ret;
199 
200 	/* Local to CPU hence not usable in SMP */
201 	if (IS_ENABLED(CONFIG_SMP))
202 		return -EINVAL;
203 
204 	ret = arc_get_timer_clk(node);
205 	if (ret)
206 		return ret;
207 
208 	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
209 	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
210 	write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
211 
212 	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
213 }
214 
215 /********** Clock Event Device *********/
216 
217 static int arc_timer_irq;
218 
219 /*
220  * Arm the timer to interrupt after @cycles
221  * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
222  */
arc_timer_event_setup(unsigned int cycles)223 static void arc_timer_event_setup(unsigned int cycles)
224 {
225 	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
226 	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
227 
228 	write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
229 }
230 
231 
arc_clkevent_set_next_event(unsigned long delta,struct clock_event_device * dev)232 static int arc_clkevent_set_next_event(unsigned long delta,
233 				       struct clock_event_device *dev)
234 {
235 	arc_timer_event_setup(delta);
236 	return 0;
237 }
238 
arc_clkevent_set_periodic(struct clock_event_device * dev)239 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
240 {
241 	/*
242 	 * At X Hz, 1 sec = 1000ms -> X cycles;
243 	 *		      10ms -> X / 100 cycles
244 	 */
245 	arc_timer_event_setup(arc_timer_freq / HZ);
246 	return 0;
247 }
248 
249 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
250 	.name			= "ARC Timer0",
251 	.features		= CLOCK_EVT_FEAT_ONESHOT |
252 				  CLOCK_EVT_FEAT_PERIODIC,
253 	.rating			= 300,
254 	.set_next_event		= arc_clkevent_set_next_event,
255 	.set_state_periodic	= arc_clkevent_set_periodic,
256 };
257 
timer_irq_handler(int irq,void * dev_id)258 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
259 {
260 	/*
261 	 * Note that generic IRQ core could have passed @evt for @dev_id if
262 	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
263 	 */
264 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
265 	int irq_reenable = clockevent_state_periodic(evt);
266 
267 	/*
268 	 * 1. ACK the interrupt
269 	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
270 	 *      Count when [N]ot [H]alted bit.
271 	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
272 	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
273 	 *      The write below can only update the other two bits, hence
274 	 *      explicitly clears IP bit
275 	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
276 	 */
277 	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
278 
279 	evt->event_handler(evt);
280 
281 	return IRQ_HANDLED;
282 }
283 
284 
arc_timer_starting_cpu(unsigned int cpu)285 static int arc_timer_starting_cpu(unsigned int cpu)
286 {
287 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
288 
289 	evt->cpumask = cpumask_of(smp_processor_id());
290 
291 	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
292 	enable_percpu_irq(arc_timer_irq, 0);
293 	return 0;
294 }
295 
arc_timer_dying_cpu(unsigned int cpu)296 static int arc_timer_dying_cpu(unsigned int cpu)
297 {
298 	disable_percpu_irq(arc_timer_irq);
299 	return 0;
300 }
301 
302 /*
303  * clockevent setup for boot CPU
304  */
arc_clockevent_setup(struct device_node * node)305 static int __init arc_clockevent_setup(struct device_node *node)
306 {
307 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
308 	int ret;
309 
310 	arc_timer_irq = irq_of_parse_and_map(node, 0);
311 	if (arc_timer_irq <= 0) {
312 		pr_err("clockevent: missing irq\n");
313 		return -EINVAL;
314 	}
315 
316 	ret = arc_get_timer_clk(node);
317 	if (ret) {
318 		pr_err("clockevent: missing clk\n");
319 		return ret;
320 	}
321 
322 	/* Needs apriori irq_set_percpu_devid() done in intc map function */
323 	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
324 				 "Timer0 (per-cpu-tick)", evt);
325 	if (ret) {
326 		pr_err("clockevent: unable to request irq\n");
327 		return ret;
328 	}
329 
330 	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
331 				"clockevents/arc/timer:starting",
332 				arc_timer_starting_cpu,
333 				arc_timer_dying_cpu);
334 	if (ret) {
335 		pr_err("Failed to setup hotplug state\n");
336 		return ret;
337 	}
338 	return 0;
339 }
340 
arc_of_timer_init(struct device_node * np)341 static int __init arc_of_timer_init(struct device_node *np)
342 {
343 	static int init_count = 0;
344 	int ret;
345 
346 	if (!init_count) {
347 		init_count = 1;
348 		ret = arc_clockevent_setup(np);
349 	} else {
350 		ret = arc_cs_setup_timer1(np);
351 	}
352 
353 	return ret;
354 }
355 TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
356