1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for IDT Versaclock 5
4 *
5 * Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
6 */
7
8 /*
9 * Possible optimizations:
10 * - Use spread spectrum
11 * - Use integer divider in FOD if applicable
12 */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_platform.h>
23 #include <linux/rational.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26
27 #include <dt-bindings/clock/versaclock.h>
28
29 /* VersaClock5 registers */
30 #define VC5_OTP_CONTROL 0x00
31
32 /* Factory-reserved register block */
33 #define VC5_RSVD_DEVICE_ID 0x01
34 #define VC5_RSVD_ADC_GAIN_7_0 0x02
35 #define VC5_RSVD_ADC_GAIN_15_8 0x03
36 #define VC5_RSVD_ADC_OFFSET_7_0 0x04
37 #define VC5_RSVD_ADC_OFFSET_15_8 0x05
38 #define VC5_RSVD_TEMPY 0x06
39 #define VC5_RSVD_OFFSET_TBIN 0x07
40 #define VC5_RSVD_GAIN 0x08
41 #define VC5_RSVD_TEST_NP 0x09
42 #define VC5_RSVD_UNUSED 0x0a
43 #define VC5_RSVD_BANDGAP_TRIM_UP 0x0b
44 #define VC5_RSVD_BANDGAP_TRIM_DN 0x0c
45 #define VC5_RSVD_CLK_R_12_CLK_AMP_4 0x0d
46 #define VC5_RSVD_CLK_R_34_CLK_AMP_4 0x0e
47 #define VC5_RSVD_CLK_AMP_123 0x0f
48
49 /* Configuration register block */
50 #define VC5_PRIM_SRC_SHDN 0x10
51 #define VC5_PRIM_SRC_SHDN_EN_XTAL BIT(7)
52 #define VC5_PRIM_SRC_SHDN_EN_CLKIN BIT(6)
53 #define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ BIT(3)
54 #define VC5_PRIM_SRC_SHDN_SP BIT(1)
55 #define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN BIT(0)
56
57 #define VC5_VCO_BAND 0x11
58 #define VC5_XTAL_X1_LOAD_CAP 0x12
59 #define VC5_XTAL_X2_LOAD_CAP 0x13
60 #define VC5_REF_DIVIDER 0x15
61 #define VC5_REF_DIVIDER_SEL_PREDIV2 BIT(7)
62 #define VC5_REF_DIVIDER_REF_DIV(n) ((n) & 0x3f)
63
64 #define VC5_VCO_CTRL_AND_PREDIV 0x16
65 #define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV BIT(7)
66
67 #define VC5_FEEDBACK_INT_DIV 0x17
68 #define VC5_FEEDBACK_INT_DIV_BITS 0x18
69 #define VC5_FEEDBACK_FRAC_DIV(n) (0x19 + (n))
70 #define VC5_RC_CONTROL0 0x1e
71 #define VC5_RC_CONTROL1 0x1f
72
73 /* These registers are named "Unused Factory Reserved Registers" */
74 #define VC5_RESERVED_X0(idx) (0x20 + ((idx) * 0x10))
75 #define VC5_RESERVED_X0_BYPASS_SYNC BIT(7) /* bypass_sync<idx> bit */
76
77 /* Output divider control for divider 1,2,3,4 */
78 #define VC5_OUT_DIV_CONTROL(idx) (0x21 + ((idx) * 0x10))
79 #define VC5_OUT_DIV_CONTROL_RESET BIT(7)
80 #define VC5_OUT_DIV_CONTROL_SELB_NORM BIT(3)
81 #define VC5_OUT_DIV_CONTROL_SEL_EXT BIT(2)
82 #define VC5_OUT_DIV_CONTROL_INT_MODE BIT(1)
83 #define VC5_OUT_DIV_CONTROL_EN_FOD BIT(0)
84
85 #define VC5_OUT_DIV_FRAC(idx, n) (0x22 + ((idx) * 0x10) + (n))
86 #define VC5_OUT_DIV_FRAC4_OD_SCEE BIT(1)
87
88 #define VC5_OUT_DIV_STEP_SPREAD(idx, n) (0x26 + ((idx) * 0x10) + (n))
89 #define VC5_OUT_DIV_SPREAD_MOD(idx, n) (0x29 + ((idx) * 0x10) + (n))
90 #define VC5_OUT_DIV_SKEW_INT(idx, n) (0x2b + ((idx) * 0x10) + (n))
91 #define VC5_OUT_DIV_INT(idx, n) (0x2d + ((idx) * 0x10) + (n))
92 #define VC5_OUT_DIV_SKEW_FRAC(idx) (0x2f + ((idx) * 0x10))
93
94 /* Clock control register for clock 1,2 */
95 #define VC5_CLK_OUTPUT_CFG(idx, n) (0x60 + ((idx) * 0x2) + (n))
96 #define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT 5
97 #define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
98
99 #define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL (VC5_LVPECL)
100 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS (VC5_CMOS)
101 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33 (VC5_HCSL33)
102 #define VC5_CLK_OUTPUT_CFG0_CFG_LVDS (VC5_LVDS)
103 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2 (VC5_CMOS2)
104 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD (VC5_CMOSD)
105 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25 (VC5_HCSL25)
106
107 #define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT 3
108 #define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
109 #define VC5_CLK_OUTPUT_CFG0_PWR_18 (0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
110 #define VC5_CLK_OUTPUT_CFG0_PWR_25 (2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
111 #define VC5_CLK_OUTPUT_CFG0_PWR_33 (3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
112 #define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT 0
113 #define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
114 #define VC5_CLK_OUTPUT_CFG0_SLEW_80 (0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
115 #define VC5_CLK_OUTPUT_CFG0_SLEW_85 (1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
116 #define VC5_CLK_OUTPUT_CFG0_SLEW_90 (2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
117 #define VC5_CLK_OUTPUT_CFG0_SLEW_100 (3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
118 #define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF BIT(0)
119
120 #define VC5_CLK_OE_SHDN 0x68
121 #define VC5_CLK_OS_SHDN 0x69
122
123 #define VC5_GLOBAL_REGISTER 0x76
124 #define VC5_GLOBAL_REGISTER_GLOBAL_RESET BIT(5)
125
126 /* PLL/VCO runs between 2.5 GHz and 3.0 GHz */
127 #define VC5_PLL_VCO_MIN 2500000000UL
128 #define VC5_PLL_VCO_MAX 3000000000UL
129
130 /* VC5 Input mux settings */
131 #define VC5_MUX_IN_XIN BIT(0)
132 #define VC5_MUX_IN_CLKIN BIT(1)
133
134 /* Maximum number of clk_out supported by this driver */
135 #define VC5_MAX_CLK_OUT_NUM 5
136
137 /* Maximum number of FODs supported by this driver */
138 #define VC5_MAX_FOD_NUM 4
139
140 /* flags to describe chip features */
141 /* chip has built-in oscilator */
142 #define VC5_HAS_INTERNAL_XTAL BIT(0)
143 /* chip has PFD requency doubler */
144 #define VC5_HAS_PFD_FREQ_DBL BIT(1)
145 /* chip has bits to disable FOD sync */
146 #define VC5_HAS_BYPASS_SYNC_BIT BIT(2)
147
148 /* Supported IDT VC5 models. */
149 enum vc5_model {
150 IDT_VC5_5P49V5923,
151 IDT_VC5_5P49V5925,
152 IDT_VC5_5P49V5933,
153 IDT_VC5_5P49V5935,
154 IDT_VC6_5P49V6901,
155 IDT_VC6_5P49V6965,
156 IDT_VC6_5P49V6975,
157 };
158
159 /* Structure to describe features of a particular VC5 model */
160 struct vc5_chip_info {
161 const enum vc5_model model;
162 const unsigned int clk_fod_cnt;
163 const unsigned int clk_out_cnt;
164 const u32 flags;
165 };
166
167 struct vc5_driver_data;
168
169 struct vc5_hw_data {
170 struct clk_hw hw;
171 struct vc5_driver_data *vc5;
172 u32 div_int;
173 u32 div_frc;
174 unsigned int num;
175 };
176
177 struct vc5_out_data {
178 struct clk_hw hw;
179 struct vc5_driver_data *vc5;
180 unsigned int num;
181 unsigned int clk_output_cfg0;
182 unsigned int clk_output_cfg0_mask;
183 };
184
185 struct vc5_driver_data {
186 struct i2c_client *client;
187 struct regmap *regmap;
188 const struct vc5_chip_info *chip_info;
189
190 struct clk *pin_xin;
191 struct clk *pin_clkin;
192 unsigned char clk_mux_ins;
193 struct clk_hw clk_mux;
194 struct clk_hw clk_mul;
195 struct clk_hw clk_pfd;
196 struct vc5_hw_data clk_pll;
197 struct vc5_hw_data clk_fod[VC5_MAX_FOD_NUM];
198 struct vc5_out_data clk_out[VC5_MAX_CLK_OUT_NUM];
199 };
200
201 /*
202 * VersaClock5 i2c regmap
203 */
vc5_regmap_is_writeable(struct device * dev,unsigned int reg)204 static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
205 {
206 /* Factory reserved regs, make them read-only */
207 if (reg <= 0xf)
208 return false;
209
210 /* Factory reserved regs, make them read-only */
211 if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
212 return false;
213
214 return true;
215 }
216
217 static const struct regmap_config vc5_regmap_config = {
218 .reg_bits = 8,
219 .val_bits = 8,
220 .cache_type = REGCACHE_RBTREE,
221 .max_register = 0x76,
222 .writeable_reg = vc5_regmap_is_writeable,
223 };
224
225 /*
226 * VersaClock5 input multiplexer between XTAL and CLKIN divider
227 */
vc5_mux_get_parent(struct clk_hw * hw)228 static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
229 {
230 struct vc5_driver_data *vc5 =
231 container_of(hw, struct vc5_driver_data, clk_mux);
232 const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
233 unsigned int src;
234 int ret;
235
236 ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
237 if (ret)
238 return 0;
239
240 src &= mask;
241
242 if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
243 return 0;
244
245 if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
246 return 1;
247
248 dev_warn(&vc5->client->dev,
249 "Invalid clock input configuration (%02x)\n", src);
250 return 0;
251 }
252
vc5_mux_set_parent(struct clk_hw * hw,u8 index)253 static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
254 {
255 struct vc5_driver_data *vc5 =
256 container_of(hw, struct vc5_driver_data, clk_mux);
257 const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
258 u8 src;
259
260 if ((index > 1) || !vc5->clk_mux_ins)
261 return -EINVAL;
262
263 if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
264 if (index == 0)
265 src = VC5_PRIM_SRC_SHDN_EN_XTAL;
266 if (index == 1)
267 src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
268 } else {
269 if (index != 0)
270 return -EINVAL;
271
272 if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
273 src = VC5_PRIM_SRC_SHDN_EN_XTAL;
274 else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
275 src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
276 else /* Invalid; should have been caught by vc5_probe() */
277 return -EINVAL;
278 }
279
280 return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
281 }
282
283 static const struct clk_ops vc5_mux_ops = {
284 .set_parent = vc5_mux_set_parent,
285 .get_parent = vc5_mux_get_parent,
286 };
287
vc5_dbl_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)288 static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
289 unsigned long parent_rate)
290 {
291 struct vc5_driver_data *vc5 =
292 container_of(hw, struct vc5_driver_data, clk_mul);
293 unsigned int premul;
294 int ret;
295
296 ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
297 if (ret)
298 return 0;
299
300 if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
301 parent_rate *= 2;
302
303 return parent_rate;
304 }
305
vc5_dbl_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)306 static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
307 unsigned long *parent_rate)
308 {
309 if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
310 return rate;
311 else
312 return -EINVAL;
313 }
314
vc5_dbl_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)315 static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
316 unsigned long parent_rate)
317 {
318 struct vc5_driver_data *vc5 =
319 container_of(hw, struct vc5_driver_data, clk_mul);
320 u32 mask;
321
322 if ((parent_rate * 2) == rate)
323 mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
324 else
325 mask = 0;
326
327 return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
328 VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
329 mask);
330 }
331
332 static const struct clk_ops vc5_dbl_ops = {
333 .recalc_rate = vc5_dbl_recalc_rate,
334 .round_rate = vc5_dbl_round_rate,
335 .set_rate = vc5_dbl_set_rate,
336 };
337
vc5_pfd_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)338 static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
339 unsigned long parent_rate)
340 {
341 struct vc5_driver_data *vc5 =
342 container_of(hw, struct vc5_driver_data, clk_pfd);
343 unsigned int prediv, div;
344 int ret;
345
346 ret = regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
347 if (ret)
348 return 0;
349
350 /* The bypass_prediv is set, PLL fed from Ref_in directly. */
351 if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
352 return parent_rate;
353
354 ret = regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
355 if (ret)
356 return 0;
357
358 /* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
359 if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
360 return parent_rate / 2;
361 else
362 return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
363 }
364
vc5_pfd_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)365 static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
366 unsigned long *parent_rate)
367 {
368 unsigned long idiv;
369
370 /* PLL cannot operate with input clock above 50 MHz. */
371 if (rate > 50000000)
372 return -EINVAL;
373
374 /* CLKIN within range of PLL input, feed directly to PLL. */
375 if (*parent_rate <= 50000000)
376 return *parent_rate;
377
378 idiv = DIV_ROUND_UP(*parent_rate, rate);
379 if (idiv > 127)
380 return -EINVAL;
381
382 return *parent_rate / idiv;
383 }
384
vc5_pfd_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)385 static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
386 unsigned long parent_rate)
387 {
388 struct vc5_driver_data *vc5 =
389 container_of(hw, struct vc5_driver_data, clk_pfd);
390 unsigned long idiv;
391 int ret;
392 u8 div;
393
394 /* CLKIN within range of PLL input, feed directly to PLL. */
395 if (parent_rate <= 50000000) {
396 ret = regmap_set_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
397 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
398 if (ret)
399 return ret;
400
401 return regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
402 }
403
404 idiv = DIV_ROUND_UP(parent_rate, rate);
405
406 /* We have dedicated div-2 predivider. */
407 if (idiv == 2)
408 div = VC5_REF_DIVIDER_SEL_PREDIV2;
409 else
410 div = VC5_REF_DIVIDER_REF_DIV(idiv);
411
412 ret = regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
413 if (ret)
414 return ret;
415
416 return regmap_clear_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
417 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
418 }
419
420 static const struct clk_ops vc5_pfd_ops = {
421 .recalc_rate = vc5_pfd_recalc_rate,
422 .round_rate = vc5_pfd_round_rate,
423 .set_rate = vc5_pfd_set_rate,
424 };
425
426 /*
427 * VersaClock5 PLL/VCO
428 */
vc5_pll_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)429 static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
430 unsigned long parent_rate)
431 {
432 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
433 struct vc5_driver_data *vc5 = hwdata->vc5;
434 u32 div_int, div_frc;
435 u8 fb[5];
436
437 regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
438
439 div_int = (fb[0] << 4) | (fb[1] >> 4);
440 div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
441
442 /* The PLL divider has 12 integer bits and 24 fractional bits */
443 return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
444 }
445
vc5_pll_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)446 static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
447 unsigned long *parent_rate)
448 {
449 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
450 u32 div_int;
451 u64 div_frc;
452
453 if (rate < VC5_PLL_VCO_MIN)
454 rate = VC5_PLL_VCO_MIN;
455 if (rate > VC5_PLL_VCO_MAX)
456 rate = VC5_PLL_VCO_MAX;
457
458 /* Determine integer part, which is 12 bit wide */
459 div_int = rate / *parent_rate;
460 if (div_int > 0xfff)
461 rate = *parent_rate * 0xfff;
462
463 /* Determine best fractional part, which is 24 bit wide */
464 div_frc = rate % *parent_rate;
465 div_frc *= BIT(24) - 1;
466 do_div(div_frc, *parent_rate);
467
468 hwdata->div_int = div_int;
469 hwdata->div_frc = (u32)div_frc;
470
471 return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
472 }
473
vc5_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)474 static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
475 unsigned long parent_rate)
476 {
477 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
478 struct vc5_driver_data *vc5 = hwdata->vc5;
479 u8 fb[5];
480
481 fb[0] = hwdata->div_int >> 4;
482 fb[1] = hwdata->div_int << 4;
483 fb[2] = hwdata->div_frc >> 16;
484 fb[3] = hwdata->div_frc >> 8;
485 fb[4] = hwdata->div_frc;
486
487 return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
488 }
489
490 static const struct clk_ops vc5_pll_ops = {
491 .recalc_rate = vc5_pll_recalc_rate,
492 .round_rate = vc5_pll_round_rate,
493 .set_rate = vc5_pll_set_rate,
494 };
495
vc5_fod_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)496 static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
497 unsigned long parent_rate)
498 {
499 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
500 struct vc5_driver_data *vc5 = hwdata->vc5;
501 /* VCO frequency is divided by two before entering FOD */
502 u32 f_in = parent_rate / 2;
503 u32 div_int, div_frc;
504 u8 od_int[2];
505 u8 od_frc[4];
506
507 regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
508 od_int, 2);
509 regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
510 od_frc, 4);
511
512 div_int = (od_int[0] << 4) | (od_int[1] >> 4);
513 div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
514 (od_frc[2] << 6) | (od_frc[3] >> 2);
515
516 /* Avoid division by zero if the output is not configured. */
517 if (div_int == 0 && div_frc == 0)
518 return 0;
519
520 /* The PLL divider has 12 integer bits and 30 fractional bits */
521 return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
522 }
523
vc5_fod_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)524 static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
525 unsigned long *parent_rate)
526 {
527 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
528 /* VCO frequency is divided by two before entering FOD */
529 u32 f_in = *parent_rate / 2;
530 u32 div_int;
531 u64 div_frc;
532
533 /* Determine integer part, which is 12 bit wide */
534 div_int = f_in / rate;
535 /*
536 * WARNING: The clock chip does not output signal if the integer part
537 * of the divider is 0xfff and fractional part is non-zero.
538 * Clamp the divider at 0xffe to keep the code simple.
539 */
540 if (div_int > 0xffe) {
541 div_int = 0xffe;
542 rate = f_in / div_int;
543 }
544
545 /* Determine best fractional part, which is 30 bit wide */
546 div_frc = f_in % rate;
547 div_frc <<= 24;
548 do_div(div_frc, rate);
549
550 hwdata->div_int = div_int;
551 hwdata->div_frc = (u32)div_frc;
552
553 return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
554 }
555
vc5_fod_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)556 static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
557 unsigned long parent_rate)
558 {
559 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
560 struct vc5_driver_data *vc5 = hwdata->vc5;
561 u8 data[14] = {
562 hwdata->div_frc >> 22, hwdata->div_frc >> 14,
563 hwdata->div_frc >> 6, hwdata->div_frc << 2,
564 0, 0, 0, 0, 0,
565 0, 0,
566 hwdata->div_int >> 4, hwdata->div_int << 4,
567 0
568 };
569 int ret;
570
571 ret = regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
572 data, 14);
573 if (ret)
574 return ret;
575
576 /*
577 * Toggle magic bit in undocumented register for unknown reason.
578 * This is what the IDT timing commander tool does and the chip
579 * datasheet somewhat implies this is needed, but the register
580 * and the bit is not documented.
581 */
582 ret = regmap_clear_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
583 VC5_GLOBAL_REGISTER_GLOBAL_RESET);
584 if (ret)
585 return ret;
586
587 return regmap_set_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
588 VC5_GLOBAL_REGISTER_GLOBAL_RESET);
589 }
590
591 static const struct clk_ops vc5_fod_ops = {
592 .recalc_rate = vc5_fod_recalc_rate,
593 .round_rate = vc5_fod_round_rate,
594 .set_rate = vc5_fod_set_rate,
595 };
596
vc5_clk_out_prepare(struct clk_hw * hw)597 static int vc5_clk_out_prepare(struct clk_hw *hw)
598 {
599 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
600 struct vc5_driver_data *vc5 = hwdata->vc5;
601 const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
602 VC5_OUT_DIV_CONTROL_SEL_EXT |
603 VC5_OUT_DIV_CONTROL_EN_FOD;
604 unsigned int src;
605 int ret;
606
607 /*
608 * When enabling a FOD, all currently enabled FODs are briefly
609 * stopped in order to synchronize all of them. This causes a clock
610 * disruption to any unrelated chips that might be already using
611 * other clock outputs. Bypass the sync feature to avoid the issue,
612 * which is possible on the VersaClock 6E family via reserved
613 * registers.
614 */
615 if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
616 ret = regmap_set_bits(vc5->regmap,
617 VC5_RESERVED_X0(hwdata->num),
618 VC5_RESERVED_X0_BYPASS_SYNC);
619 if (ret)
620 return ret;
621 }
622
623 /*
624 * If the input mux is disabled, enable it first and
625 * select source from matching FOD.
626 */
627 ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
628 if (ret)
629 return ret;
630
631 if ((src & mask) == 0) {
632 src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
633 ret = regmap_update_bits(vc5->regmap,
634 VC5_OUT_DIV_CONTROL(hwdata->num),
635 mask | VC5_OUT_DIV_CONTROL_RESET, src);
636 if (ret)
637 return ret;
638 }
639
640 /* Enable the clock buffer */
641 ret = regmap_set_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
642 VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
643 if (ret)
644 return ret;
645
646 if (hwdata->clk_output_cfg0_mask) {
647 dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
648 hwdata->num, hwdata->clk_output_cfg0_mask,
649 hwdata->clk_output_cfg0);
650
651 ret = regmap_update_bits(vc5->regmap,
652 VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
653 hwdata->clk_output_cfg0_mask,
654 hwdata->clk_output_cfg0);
655 if (ret)
656 return ret;
657 }
658
659 return 0;
660 }
661
vc5_clk_out_unprepare(struct clk_hw * hw)662 static void vc5_clk_out_unprepare(struct clk_hw *hw)
663 {
664 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
665 struct vc5_driver_data *vc5 = hwdata->vc5;
666
667 /* Disable the clock buffer */
668 regmap_clear_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
669 VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
670 }
671
vc5_clk_out_get_parent(struct clk_hw * hw)672 static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
673 {
674 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
675 struct vc5_driver_data *vc5 = hwdata->vc5;
676 const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
677 VC5_OUT_DIV_CONTROL_SEL_EXT |
678 VC5_OUT_DIV_CONTROL_EN_FOD;
679 const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
680 VC5_OUT_DIV_CONTROL_EN_FOD;
681 const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
682 VC5_OUT_DIV_CONTROL_SEL_EXT;
683 unsigned int src;
684 int ret;
685
686 ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
687 if (ret)
688 return 0;
689
690 src &= mask;
691
692 if (src == 0) /* Input mux set to DISABLED */
693 return 0;
694
695 if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
696 return 0;
697
698 if (src == extclk)
699 return 1;
700
701 dev_warn(&vc5->client->dev,
702 "Invalid clock output configuration (%02x)\n", src);
703 return 0;
704 }
705
vc5_clk_out_set_parent(struct clk_hw * hw,u8 index)706 static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
707 {
708 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
709 struct vc5_driver_data *vc5 = hwdata->vc5;
710 const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
711 VC5_OUT_DIV_CONTROL_SELB_NORM |
712 VC5_OUT_DIV_CONTROL_SEL_EXT |
713 VC5_OUT_DIV_CONTROL_EN_FOD;
714 const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
715 VC5_OUT_DIV_CONTROL_SEL_EXT;
716 u8 src = VC5_OUT_DIV_CONTROL_RESET;
717
718 if (index == 0)
719 src |= VC5_OUT_DIV_CONTROL_EN_FOD;
720 else
721 src |= extclk;
722
723 return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
724 mask, src);
725 }
726
727 static const struct clk_ops vc5_clk_out_ops = {
728 .prepare = vc5_clk_out_prepare,
729 .unprepare = vc5_clk_out_unprepare,
730 .set_parent = vc5_clk_out_set_parent,
731 .get_parent = vc5_clk_out_get_parent,
732 };
733
vc5_of_clk_get(struct of_phandle_args * clkspec,void * data)734 static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
735 void *data)
736 {
737 struct vc5_driver_data *vc5 = data;
738 unsigned int idx = clkspec->args[0];
739
740 if (idx >= vc5->chip_info->clk_out_cnt)
741 return ERR_PTR(-EINVAL);
742
743 return &vc5->clk_out[idx].hw;
744 }
745
vc5_map_index_to_output(const enum vc5_model model,const unsigned int n)746 static int vc5_map_index_to_output(const enum vc5_model model,
747 const unsigned int n)
748 {
749 switch (model) {
750 case IDT_VC5_5P49V5933:
751 return (n == 0) ? 0 : 3;
752 case IDT_VC5_5P49V5923:
753 case IDT_VC5_5P49V5925:
754 case IDT_VC5_5P49V5935:
755 case IDT_VC6_5P49V6901:
756 case IDT_VC6_5P49V6965:
757 case IDT_VC6_5P49V6975:
758 default:
759 return n;
760 }
761 }
762
vc5_update_mode(struct device_node * np_output,struct vc5_out_data * clk_out)763 static int vc5_update_mode(struct device_node *np_output,
764 struct vc5_out_data *clk_out)
765 {
766 u32 value;
767
768 if (!of_property_read_u32(np_output, "idt,mode", &value)) {
769 clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
770 switch (value) {
771 case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
772 case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
773 case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
774 case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
775 case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
776 case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
777 case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
778 clk_out->clk_output_cfg0 |=
779 value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
780 break;
781 default:
782 return -EINVAL;
783 }
784 }
785 return 0;
786 }
787
vc5_update_power(struct device_node * np_output,struct vc5_out_data * clk_out)788 static int vc5_update_power(struct device_node *np_output,
789 struct vc5_out_data *clk_out)
790 {
791 u32 value;
792
793 if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
794 &value)) {
795 clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
796 switch (value) {
797 case 1800000:
798 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
799 break;
800 case 2500000:
801 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
802 break;
803 case 3300000:
804 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
805 break;
806 default:
807 return -EINVAL;
808 }
809 }
810 return 0;
811 }
812
vc5_map_cap_value(u32 femtofarads)813 static int vc5_map_cap_value(u32 femtofarads)
814 {
815 int mapped_value;
816
817 /*
818 * The datasheet explicitly states 9000 - 25000 with 0.5pF
819 * steps, but the Programmer's guide shows the steps are 0.430pF.
820 * After getting feedback from Renesas, the .5pF steps were the
821 * goal, but 430nF was the actual values.
822 * Because of this, the actual range goes to 22760 instead of 25000
823 */
824 if (femtofarads < 9000 || femtofarads > 22760)
825 return -EINVAL;
826
827 /*
828 * The Programmer's guide shows XTAL[5:0] but in reality,
829 * XTAL[0] and XTAL[1] are both LSB which makes the math
830 * strange. With clarfication from Renesas, setting the
831 * values should be simpler by ignoring XTAL[0]
832 */
833 mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
834
835 /*
836 * Since the calculation ignores XTAL[0], there is one
837 * special case where mapped_value = 32. In reality, this means
838 * the real mapped value should be 111111b. In other cases,
839 * the mapped_value needs to be shifted 1 to the left.
840 */
841 if (mapped_value > 31)
842 mapped_value = 0x3f;
843 else
844 mapped_value <<= 1;
845
846 return mapped_value;
847 }
vc5_update_cap_load(struct device_node * node,struct vc5_driver_data * vc5)848 static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
849 {
850 u32 value;
851 int mapped_value;
852 int ret;
853
854 if (of_property_read_u32(node, "idt,xtal-load-femtofarads", &value))
855 return 0;
856
857 mapped_value = vc5_map_cap_value(value);
858 if (mapped_value < 0)
859 return mapped_value;
860
861 /*
862 * The mapped_value is really the high 6 bits of
863 * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
864 * shift the value 2 places.
865 */
866 ret = regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03,
867 mapped_value << 2);
868 if (ret)
869 return ret;
870
871 return regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03,
872 mapped_value << 2);
873 }
874
vc5_update_slew(struct device_node * np_output,struct vc5_out_data * clk_out)875 static int vc5_update_slew(struct device_node *np_output,
876 struct vc5_out_data *clk_out)
877 {
878 u32 value;
879
880 if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
881 clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
882 switch (value) {
883 case 80:
884 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
885 break;
886 case 85:
887 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
888 break;
889 case 90:
890 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
891 break;
892 case 100:
893 clk_out->clk_output_cfg0 |=
894 VC5_CLK_OUTPUT_CFG0_SLEW_100;
895 break;
896 default:
897 return -EINVAL;
898 }
899 }
900 return 0;
901 }
902
vc5_get_output_config(struct i2c_client * client,struct vc5_out_data * clk_out)903 static int vc5_get_output_config(struct i2c_client *client,
904 struct vc5_out_data *clk_out)
905 {
906 struct device_node *np_output;
907 char *child_name;
908 int ret = 0;
909
910 child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
911 if (!child_name)
912 return -ENOMEM;
913
914 np_output = of_get_child_by_name(client->dev.of_node, child_name);
915 kfree(child_name);
916 if (!np_output)
917 return 0;
918
919 ret = vc5_update_mode(np_output, clk_out);
920 if (ret)
921 goto output_error;
922
923 ret = vc5_update_power(np_output, clk_out);
924 if (ret)
925 goto output_error;
926
927 ret = vc5_update_slew(np_output, clk_out);
928
929 output_error:
930 if (ret) {
931 dev_err(&client->dev,
932 "Invalid clock output configuration OUT%d\n",
933 clk_out->num + 1);
934 }
935
936 of_node_put(np_output);
937
938 return ret;
939 }
940
941 static const struct of_device_id clk_vc5_of_match[];
942
vc5_probe(struct i2c_client * client)943 static int vc5_probe(struct i2c_client *client)
944 {
945 unsigned int oe, sd, src_mask = 0, src_val = 0;
946 struct vc5_driver_data *vc5;
947 struct clk_init_data init;
948 const char *parent_names[2];
949 unsigned int n, idx = 0;
950 int ret;
951
952 vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
953 if (!vc5)
954 return -ENOMEM;
955
956 i2c_set_clientdata(client, vc5);
957 vc5->client = client;
958 vc5->chip_info = of_device_get_match_data(&client->dev);
959
960 vc5->pin_xin = devm_clk_get(&client->dev, "xin");
961 if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
962 return -EPROBE_DEFER;
963
964 vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
965 if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
966 return -EPROBE_DEFER;
967
968 vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
969 if (IS_ERR(vc5->regmap))
970 return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap),
971 "failed to allocate register map\n");
972
973 ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd);
974 if (!ret) {
975 src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
976 if (sd)
977 src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
978 } else if (ret != -EINVAL) {
979 return dev_err_probe(&client->dev, ret,
980 "could not read idt,shutdown\n");
981 }
982
983 ret = of_property_read_u32(client->dev.of_node,
984 "idt,output-enable-active", &oe);
985 if (!ret) {
986 src_mask |= VC5_PRIM_SRC_SHDN_SP;
987 if (oe)
988 src_val |= VC5_PRIM_SRC_SHDN_SP;
989 } else if (ret != -EINVAL) {
990 return dev_err_probe(&client->dev, ret,
991 "could not read idt,output-enable-active\n");
992 }
993
994 ret = regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask,
995 src_val);
996 if (ret)
997 return ret;
998
999 /* Register clock input mux */
1000 memset(&init, 0, sizeof(init));
1001
1002 if (!IS_ERR(vc5->pin_xin)) {
1003 vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
1004 parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
1005 } else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
1006 vc5->pin_xin = clk_register_fixed_rate(&client->dev,
1007 "internal-xtal", NULL,
1008 0, 25000000);
1009 if (IS_ERR(vc5->pin_xin))
1010 return PTR_ERR(vc5->pin_xin);
1011 vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
1012 parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
1013 }
1014
1015 if (!IS_ERR(vc5->pin_clkin)) {
1016 vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
1017 parent_names[init.num_parents++] =
1018 __clk_get_name(vc5->pin_clkin);
1019 }
1020
1021 if (!init.num_parents)
1022 return dev_err_probe(&client->dev, -EINVAL,
1023 "no input clock specified!\n");
1024
1025 /* Configure Optional Loading Capacitance for external XTAL */
1026 if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
1027 ret = vc5_update_cap_load(client->dev.of_node, vc5);
1028 if (ret)
1029 goto err_clk_register;
1030 }
1031
1032 init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
1033 init.ops = &vc5_mux_ops;
1034 init.flags = 0;
1035 init.parent_names = parent_names;
1036 vc5->clk_mux.init = &init;
1037 ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
1038 if (ret)
1039 goto err_clk_register;
1040 kfree(init.name); /* clock framework made a copy of the name */
1041
1042 if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
1043 /* Register frequency doubler */
1044 memset(&init, 0, sizeof(init));
1045 init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
1046 client->dev.of_node);
1047 init.ops = &vc5_dbl_ops;
1048 init.flags = CLK_SET_RATE_PARENT;
1049 init.parent_names = parent_names;
1050 parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1051 init.num_parents = 1;
1052 vc5->clk_mul.init = &init;
1053 ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
1054 if (ret)
1055 goto err_clk_register;
1056 kfree(init.name); /* clock framework made a copy of the name */
1057 }
1058
1059 /* Register PFD */
1060 memset(&init, 0, sizeof(init));
1061 init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
1062 init.ops = &vc5_pfd_ops;
1063 init.flags = CLK_SET_RATE_PARENT;
1064 init.parent_names = parent_names;
1065 if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
1066 parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
1067 else
1068 parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1069 init.num_parents = 1;
1070 vc5->clk_pfd.init = &init;
1071 ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
1072 if (ret)
1073 goto err_clk_register;
1074 kfree(init.name); /* clock framework made a copy of the name */
1075
1076 /* Register PLL */
1077 memset(&init, 0, sizeof(init));
1078 init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
1079 init.ops = &vc5_pll_ops;
1080 init.flags = CLK_SET_RATE_PARENT;
1081 init.parent_names = parent_names;
1082 parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
1083 init.num_parents = 1;
1084 vc5->clk_pll.num = 0;
1085 vc5->clk_pll.vc5 = vc5;
1086 vc5->clk_pll.hw.init = &init;
1087 ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
1088 if (ret)
1089 goto err_clk_register;
1090 kfree(init.name); /* clock framework made a copy of the name */
1091
1092 /* Register FODs */
1093 for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
1094 idx = vc5_map_index_to_output(vc5->chip_info->model, n);
1095 memset(&init, 0, sizeof(init));
1096 init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
1097 client->dev.of_node, idx);
1098 init.ops = &vc5_fod_ops;
1099 init.flags = CLK_SET_RATE_PARENT;
1100 init.parent_names = parent_names;
1101 parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
1102 init.num_parents = 1;
1103 vc5->clk_fod[n].num = idx;
1104 vc5->clk_fod[n].vc5 = vc5;
1105 vc5->clk_fod[n].hw.init = &init;
1106 ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
1107 if (ret)
1108 goto err_clk_register;
1109 kfree(init.name); /* clock framework made a copy of the name */
1110 }
1111
1112 /* Register MUX-connected OUT0_I2C_SELB output */
1113 memset(&init, 0, sizeof(init));
1114 init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
1115 client->dev.of_node);
1116 init.ops = &vc5_clk_out_ops;
1117 init.flags = CLK_SET_RATE_PARENT;
1118 init.parent_names = parent_names;
1119 parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1120 init.num_parents = 1;
1121 vc5->clk_out[0].num = idx;
1122 vc5->clk_out[0].vc5 = vc5;
1123 vc5->clk_out[0].hw.init = &init;
1124 ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
1125 if (ret)
1126 goto err_clk_register;
1127 kfree(init.name); /* clock framework made a copy of the name */
1128
1129 /* Register FOD-connected OUTx outputs */
1130 for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
1131 idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
1132 parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
1133 if (n == 1)
1134 parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
1135 else
1136 parent_names[1] =
1137 clk_hw_get_name(&vc5->clk_out[n - 1].hw);
1138
1139 memset(&init, 0, sizeof(init));
1140 init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
1141 client->dev.of_node, idx + 1);
1142 init.ops = &vc5_clk_out_ops;
1143 init.flags = CLK_SET_RATE_PARENT;
1144 init.parent_names = parent_names;
1145 init.num_parents = 2;
1146 vc5->clk_out[n].num = idx;
1147 vc5->clk_out[n].vc5 = vc5;
1148 vc5->clk_out[n].hw.init = &init;
1149 ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
1150 if (ret)
1151 goto err_clk_register;
1152 kfree(init.name); /* clock framework made a copy of the name */
1153
1154 /* Fetch Clock Output configuration from DT (if specified) */
1155 ret = vc5_get_output_config(client, &vc5->clk_out[n]);
1156 if (ret)
1157 goto err_clk;
1158 }
1159
1160 ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
1161 if (ret) {
1162 dev_err_probe(&client->dev, ret,
1163 "unable to add clk provider\n");
1164 goto err_clk;
1165 }
1166
1167 return 0;
1168
1169 err_clk_register:
1170 dev_err_probe(&client->dev, ret,
1171 "unable to register %s\n", init.name);
1172 kfree(init.name); /* clock framework made a copy of the name */
1173 err_clk:
1174 if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1175 clk_unregister_fixed_rate(vc5->pin_xin);
1176 return ret;
1177 }
1178
vc5_remove(struct i2c_client * client)1179 static void vc5_remove(struct i2c_client *client)
1180 {
1181 struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
1182
1183 of_clk_del_provider(client->dev.of_node);
1184
1185 if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1186 clk_unregister_fixed_rate(vc5->pin_xin);
1187 }
1188
vc5_suspend(struct device * dev)1189 static int __maybe_unused vc5_suspend(struct device *dev)
1190 {
1191 struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1192
1193 regcache_cache_only(vc5->regmap, true);
1194 regcache_mark_dirty(vc5->regmap);
1195
1196 return 0;
1197 }
1198
vc5_resume(struct device * dev)1199 static int __maybe_unused vc5_resume(struct device *dev)
1200 {
1201 struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1202 int ret;
1203
1204 regcache_cache_only(vc5->regmap, false);
1205 ret = regcache_sync(vc5->regmap);
1206 if (ret)
1207 dev_err(dev, "Failed to restore register map: %d\n", ret);
1208 return ret;
1209 }
1210
1211 static const struct vc5_chip_info idt_5p49v5923_info = {
1212 .model = IDT_VC5_5P49V5923,
1213 .clk_fod_cnt = 2,
1214 .clk_out_cnt = 3,
1215 .flags = 0,
1216 };
1217
1218 static const struct vc5_chip_info idt_5p49v5925_info = {
1219 .model = IDT_VC5_5P49V5925,
1220 .clk_fod_cnt = 4,
1221 .clk_out_cnt = 5,
1222 .flags = 0,
1223 };
1224
1225 static const struct vc5_chip_info idt_5p49v5933_info = {
1226 .model = IDT_VC5_5P49V5933,
1227 .clk_fod_cnt = 2,
1228 .clk_out_cnt = 3,
1229 .flags = VC5_HAS_INTERNAL_XTAL,
1230 };
1231
1232 static const struct vc5_chip_info idt_5p49v5935_info = {
1233 .model = IDT_VC5_5P49V5935,
1234 .clk_fod_cnt = 4,
1235 .clk_out_cnt = 5,
1236 .flags = VC5_HAS_INTERNAL_XTAL,
1237 };
1238
1239 static const struct vc5_chip_info idt_5p49v6901_info = {
1240 .model = IDT_VC6_5P49V6901,
1241 .clk_fod_cnt = 4,
1242 .clk_out_cnt = 5,
1243 .flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT,
1244 };
1245
1246 static const struct vc5_chip_info idt_5p49v6965_info = {
1247 .model = IDT_VC6_5P49V6965,
1248 .clk_fod_cnt = 4,
1249 .clk_out_cnt = 5,
1250 .flags = VC5_HAS_BYPASS_SYNC_BIT,
1251 };
1252
1253 static const struct vc5_chip_info idt_5p49v6975_info = {
1254 .model = IDT_VC6_5P49V6975,
1255 .clk_fod_cnt = 4,
1256 .clk_out_cnt = 5,
1257 .flags = VC5_HAS_BYPASS_SYNC_BIT | VC5_HAS_INTERNAL_XTAL,
1258 };
1259
1260 static const struct i2c_device_id vc5_id[] = {
1261 { "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
1262 { "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
1263 { "5p49v5933", .driver_data = IDT_VC5_5P49V5933 },
1264 { "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
1265 { "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
1266 { "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
1267 { "5p49v6975", .driver_data = IDT_VC6_5P49V6975 },
1268 { }
1269 };
1270 MODULE_DEVICE_TABLE(i2c, vc5_id);
1271
1272 static const struct of_device_id clk_vc5_of_match[] = {
1273 { .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
1274 { .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
1275 { .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
1276 { .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
1277 { .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
1278 { .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
1279 { .compatible = "idt,5p49v6975", .data = &idt_5p49v6975_info },
1280 { },
1281 };
1282 MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
1283
1284 static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
1285
1286 static struct i2c_driver vc5_driver = {
1287 .driver = {
1288 .name = "vc5",
1289 .pm = &vc5_pm_ops,
1290 .of_match_table = clk_vc5_of_match,
1291 },
1292 .probe_new = vc5_probe,
1293 .remove = vc5_remove,
1294 .id_table = vc5_id,
1295 };
1296 module_i2c_driver(vc5_driver);
1297
1298 MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
1299 MODULE_DESCRIPTION("IDT VersaClock 5 driver");
1300 MODULE_LICENSE("GPL");
1301