1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /*
3 * Copyright (C) Sunplus Technology Co., Ltd.
4 * All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/clk-provider.h>
8 #include <linux/of.h>
9 #include <linux/bitfield.h>
10 #include <linux/slab.h>
11 #include <linux/io.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14
15 #include <dt-bindings/clock/sunplus,sp7021-clkc.h>
16
17 /* speical div_width values for PLLTV/PLLA */
18 #define DIV_TV 33
19 #define DIV_A 34
20
21 /* PLLTV parameters */
22 enum {
23 SEL_FRA,
24 SDM_MOD,
25 PH_SEL,
26 NFRA,
27 DIVR,
28 DIVN,
29 DIVM,
30 P_MAX
31 };
32
33 #define MASK_SEL_FRA GENMASK(1, 1)
34 #define MASK_SDM_MOD GENMASK(2, 2)
35 #define MASK_PH_SEL GENMASK(4, 4)
36 #define MASK_NFRA GENMASK(12, 6)
37 #define MASK_DIVR GENMASK(8, 7)
38 #define MASK_DIVN GENMASK(7, 0)
39 #define MASK_DIVM GENMASK(14, 8)
40
41 /* HIWORD_MASK FIELD_PREP */
42 #define HWM_FIELD_PREP(mask, value) \
43 ({ \
44 u64 _m = mask; \
45 (_m << 16) | FIELD_PREP(_m, value); \
46 })
47
48 struct sp_pll {
49 struct clk_hw hw;
50 void __iomem *reg;
51 spinlock_t lock; /* lock for reg */
52 int div_shift;
53 int div_width;
54 int pd_bit; /* power down bit idx */
55 int bp_bit; /* bypass bit idx */
56 unsigned long brate; /* base rate, TODO: replace brate with muldiv */
57 u32 p[P_MAX]; /* for hold PLLTV/PLLA parameters */
58 };
59
60 #define to_sp_pll(_hw) container_of(_hw, struct sp_pll, hw)
61
62 struct sp_clk_gate_info {
63 u16 reg; /* reg_index_shift */
64 u16 ext_parent; /* parent is extclk */
65 };
66
67 static const struct sp_clk_gate_info sp_clk_gates[] = {
68 { 0x02 },
69 { 0x05 },
70 { 0x06 },
71 { 0x07 },
72 { 0x09 },
73 { 0x0b, 1 },
74 { 0x0f, 1 },
75 { 0x14 },
76 { 0x15 },
77 { 0x16 },
78 { 0x17 },
79 { 0x18, 1 },
80 { 0x19, 1 },
81 { 0x1a, 1 },
82 { 0x1b, 1 },
83 { 0x1c, 1 },
84 { 0x1d, 1 },
85 { 0x1e },
86 { 0x1f, 1 },
87 { 0x20 },
88 { 0x21 },
89 { 0x22 },
90 { 0x23 },
91 { 0x24 },
92 { 0x25 },
93 { 0x26 },
94 { 0x2a },
95 { 0x2b },
96 { 0x2d },
97 { 0x2e },
98 { 0x30 },
99 { 0x31 },
100 { 0x32 },
101 { 0x33 },
102 { 0x3d },
103 { 0x3e },
104 { 0x3f },
105 { 0x42 },
106 { 0x44 },
107 { 0x4b },
108 { 0x4c },
109 { 0x4d },
110 { 0x4e },
111 { 0x4f },
112 { 0x50 },
113 { 0x55 },
114 { 0x60 },
115 { 0x61 },
116 { 0x6a },
117 { 0x73 },
118 { 0x86 },
119 { 0x8a },
120 { 0x8b },
121 { 0x8d },
122 { 0x8e },
123 { 0x8f },
124 { 0x90 },
125 { 0x92 },
126 { 0x93 },
127 { 0x95 },
128 { 0x96 },
129 { 0x97 },
130 { 0x98 },
131 { 0x99 },
132 };
133
134 #define _M 1000000UL
135 #define F_27M (27 * _M)
136
137 /*********************************** PLL_TV **********************************/
138
139 /* TODO: set proper FVCO range */
140 #define FVCO_MIN (100 * _M)
141 #define FVCO_MAX (200 * _M)
142
143 #define F_MIN (FVCO_MIN / 8)
144 #define F_MAX (FVCO_MAX)
145
plltv_integer_div(struct sp_pll * clk,unsigned long freq)146 static long plltv_integer_div(struct sp_pll *clk, unsigned long freq)
147 {
148 /* valid m values: 27M must be divisible by m */
149 static const u32 m_table[] = {
150 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32
151 };
152 u32 m, n, r;
153 unsigned long fvco, nf;
154 long ret;
155
156 freq = clamp(freq, F_MIN, F_MAX);
157
158 /* DIVR 0~3 */
159 for (r = 0; r <= 3; r++) {
160 fvco = freq << r;
161 if (fvco <= FVCO_MAX)
162 break;
163 }
164
165 /* DIVM */
166 for (m = 0; m < ARRAY_SIZE(m_table); m++) {
167 nf = fvco * m_table[m];
168 n = nf / F_27M;
169 if ((n * F_27M) == nf)
170 break;
171 }
172 if (m >= ARRAY_SIZE(m_table)) {
173 ret = -EINVAL;
174 goto err_not_found;
175 }
176
177 /* save parameters */
178 clk->p[SEL_FRA] = 0;
179 clk->p[DIVR] = r;
180 clk->p[DIVN] = n;
181 clk->p[DIVM] = m_table[m];
182
183 return freq;
184
185 err_not_found:
186 pr_err("%s: %s freq:%lu not found a valid setting\n",
187 __func__, clk_hw_get_name(&clk->hw), freq);
188
189 return ret;
190 }
191
192 /* parameters for PLLTV fractional divider */
193 static const u32 pt[][5] = {
194 /* conventional fractional */
195 {
196 1, /* factor */
197 5, /* 5 * p0 (nint) */
198 1, /* 1 * p0 */
199 F_27M, /* F_27M / p0 */
200 1, /* p0 / p2 */
201 },
202 /* phase rotation */
203 {
204 10, /* factor */
205 54, /* 5.4 * p0 (nint) */
206 2, /* 0.2 * p0 */
207 F_27M / 10, /* F_27M / p0 */
208 5, /* p0 / p2 */
209 },
210 };
211
212 static const u32 sdm_mod_vals[] = { 91, 55 };
213
plltv_fractional_div(struct sp_pll * clk,unsigned long freq)214 static long plltv_fractional_div(struct sp_pll *clk, unsigned long freq)
215 {
216 u32 m, r;
217 u32 nint, nfra;
218 u32 df_quotient_min = 210000000;
219 u32 df_remainder_min = 0;
220 unsigned long fvco, nf, f, fout = 0;
221 int sdm, ph;
222
223 freq = clamp(freq, F_MIN, F_MAX);
224
225 /* DIVR 0~3 */
226 for (r = 0; r <= 3; r++) {
227 fvco = freq << r;
228 if (fvco <= FVCO_MAX)
229 break;
230 }
231 f = F_27M >> r;
232
233 /* PH_SEL */
234 for (ph = ARRAY_SIZE(pt) - 1; ph >= 0; ph--) {
235 const u32 *pp = pt[ph];
236
237 /* SDM_MOD */
238 for (sdm = 0; sdm < ARRAY_SIZE(sdm_mod_vals); sdm++) {
239 u32 mod = sdm_mod_vals[sdm];
240
241 /* DIVM 1~32 */
242 for (m = 1; m <= 32; m++) {
243 u32 df; /* diff freq */
244 u32 df_quotient, df_remainder;
245
246 nf = fvco * m;
247 nint = nf / pp[3];
248
249 if (nint < pp[1])
250 continue;
251 if (nint > pp[1])
252 break;
253
254 nfra = (((nf % pp[3]) * mod * pp[4]) + (F_27M / 2)) / F_27M;
255 if (nfra) {
256 u32 df0 = f * (nint + pp[2]) / pp[0];
257 u32 df1 = f * (mod - nfra) / mod / pp[4];
258
259 df = df0 - df1;
260 } else {
261 df = f * (nint) / pp[0];
262 }
263
264 df_quotient = df / m;
265 df_remainder = ((df % m) * 1000) / m;
266
267 if (freq > df_quotient) {
268 df_quotient = freq - df_quotient - 1;
269 df_remainder = 1000 - df_remainder;
270 } else {
271 df_quotient = df_quotient - freq;
272 }
273
274 if (df_quotient_min > df_quotient ||
275 (df_quotient_min == df_quotient &&
276 df_remainder_min > df_remainder)) {
277 /* found a closer freq, save parameters */
278 clk->p[SEL_FRA] = 1;
279 clk->p[SDM_MOD] = sdm;
280 clk->p[PH_SEL] = ph;
281 clk->p[NFRA] = nfra;
282 clk->p[DIVR] = r;
283 clk->p[DIVM] = m;
284
285 fout = df / m;
286 df_quotient_min = df_quotient;
287 df_remainder_min = df_remainder;
288 }
289 }
290 }
291 }
292
293 if (!fout) {
294 pr_err("%s: %s freq:%lu not found a valid setting\n",
295 __func__, clk_hw_get_name(&clk->hw), freq);
296 return -EINVAL;
297 }
298
299 return fout;
300 }
301
plltv_div(struct sp_pll * clk,unsigned long freq)302 static long plltv_div(struct sp_pll *clk, unsigned long freq)
303 {
304 if (freq % 100)
305 return plltv_fractional_div(clk, freq);
306
307 return plltv_integer_div(clk, freq);
308 }
309
plltv_set_rate(struct sp_pll * clk)310 static int plltv_set_rate(struct sp_pll *clk)
311 {
312 unsigned long flags;
313 u32 r0, r1, r2;
314
315 r0 = BIT(clk->bp_bit + 16);
316 r0 |= HWM_FIELD_PREP(MASK_SEL_FRA, clk->p[SEL_FRA]);
317 r0 |= HWM_FIELD_PREP(MASK_SDM_MOD, clk->p[SDM_MOD]);
318 r0 |= HWM_FIELD_PREP(MASK_PH_SEL, clk->p[PH_SEL]);
319 r0 |= HWM_FIELD_PREP(MASK_NFRA, clk->p[NFRA]);
320
321 r1 = HWM_FIELD_PREP(MASK_DIVR, clk->p[DIVR]);
322
323 r2 = HWM_FIELD_PREP(MASK_DIVN, clk->p[DIVN] - 1);
324 r2 |= HWM_FIELD_PREP(MASK_DIVM, clk->p[DIVM] - 1);
325
326 spin_lock_irqsave(&clk->lock, flags);
327 writel(r0, clk->reg);
328 writel(r1, clk->reg + 4);
329 writel(r2, clk->reg + 8);
330 spin_unlock_irqrestore(&clk->lock, flags);
331
332 return 0;
333 }
334
335 /*********************************** PLL_A ***********************************/
336
337 /* from Q628_PLLs_REG_setting.xlsx */
338 static const struct {
339 u32 rate;
340 u32 regs[5];
341 } pa[] = {
342 {
343 .rate = 135475200,
344 .regs = {
345 0x4801,
346 0x02df,
347 0x248f,
348 0x0211,
349 0x33e9
350 }
351 },
352 {
353 .rate = 147456000,
354 .regs = {
355 0x4801,
356 0x1adf,
357 0x2490,
358 0x0349,
359 0x33e9
360 }
361 },
362 {
363 .rate = 196608000,
364 .regs = {
365 0x4801,
366 0x42ef,
367 0x2495,
368 0x01c6,
369 0x33e9
370 }
371 },
372 };
373
plla_set_rate(struct sp_pll * clk)374 static int plla_set_rate(struct sp_pll *clk)
375 {
376 const u32 *pp = pa[clk->p[0]].regs;
377 unsigned long flags;
378 int i;
379
380 spin_lock_irqsave(&clk->lock, flags);
381 for (i = 0; i < ARRAY_SIZE(pa->regs); i++)
382 writel(0xffff0000 | pp[i], clk->reg + (i * 4));
383 spin_unlock_irqrestore(&clk->lock, flags);
384
385 return 0;
386 }
387
plla_round_rate(struct sp_pll * clk,unsigned long rate)388 static long plla_round_rate(struct sp_pll *clk, unsigned long rate)
389 {
390 int i = ARRAY_SIZE(pa);
391
392 while (--i) {
393 if (rate >= pa[i].rate)
394 break;
395 }
396 clk->p[0] = i;
397
398 return pa[i].rate;
399 }
400
401 /********************************** SP_PLL ***********************************/
402
sp_pll_calc_div(struct sp_pll * clk,unsigned long rate)403 static long sp_pll_calc_div(struct sp_pll *clk, unsigned long rate)
404 {
405 u32 fbdiv;
406 u32 max = 1 << clk->div_width;
407
408 fbdiv = DIV_ROUND_CLOSEST(rate, clk->brate);
409 if (fbdiv > max)
410 fbdiv = max;
411
412 return fbdiv;
413 }
414
sp_pll_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)415 static long sp_pll_round_rate(struct clk_hw *hw, unsigned long rate,
416 unsigned long *prate)
417 {
418 struct sp_pll *clk = to_sp_pll(hw);
419 long ret;
420
421 if (rate == *prate) {
422 ret = *prate; /* bypass */
423 } else if (clk->div_width == DIV_A) {
424 ret = plla_round_rate(clk, rate);
425 } else if (clk->div_width == DIV_TV) {
426 ret = plltv_div(clk, rate);
427 if (ret < 0)
428 ret = *prate;
429 } else {
430 ret = sp_pll_calc_div(clk, rate) * clk->brate;
431 }
432
433 return ret;
434 }
435
sp_pll_recalc_rate(struct clk_hw * hw,unsigned long prate)436 static unsigned long sp_pll_recalc_rate(struct clk_hw *hw,
437 unsigned long prate)
438 {
439 struct sp_pll *clk = to_sp_pll(hw);
440 u32 reg = readl(clk->reg);
441 unsigned long ret;
442
443 if (reg & BIT(clk->bp_bit)) {
444 ret = prate; /* bypass */
445 } else if (clk->div_width == DIV_A) {
446 ret = pa[clk->p[0]].rate;
447 } else if (clk->div_width == DIV_TV) {
448 u32 m, r, reg2;
449
450 r = FIELD_GET(MASK_DIVR, readl(clk->reg + 4));
451 reg2 = readl(clk->reg + 8);
452 m = FIELD_GET(MASK_DIVM, reg2) + 1;
453
454 if (reg & MASK_SEL_FRA) {
455 /* fractional divider */
456 u32 sdm = FIELD_GET(MASK_SDM_MOD, reg);
457 u32 ph = FIELD_GET(MASK_PH_SEL, reg);
458 u32 nfra = FIELD_GET(MASK_NFRA, reg);
459 const u32 *pp = pt[ph];
460 unsigned long r0, r1;
461
462 ret = prate >> r;
463 r0 = ret * (pp[1] + pp[2]) / pp[0];
464 r1 = ret * (sdm_mod_vals[sdm] - nfra) / sdm_mod_vals[sdm] / pp[4];
465 ret = (r0 - r1) / m;
466 } else {
467 /* integer divider */
468 u32 n = FIELD_GET(MASK_DIVN, reg2) + 1;
469
470 ret = (prate / m * n) >> r;
471 }
472 } else {
473 u32 fbdiv = ((reg >> clk->div_shift) & ((1 << clk->div_width) - 1)) + 1;
474
475 ret = clk->brate * fbdiv;
476 }
477
478 return ret;
479 }
480
sp_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)481 static int sp_pll_set_rate(struct clk_hw *hw, unsigned long rate,
482 unsigned long prate)
483 {
484 struct sp_pll *clk = to_sp_pll(hw);
485 unsigned long flags;
486 u32 reg;
487
488 reg = BIT(clk->bp_bit + 16); /* HIWORD_MASK */
489
490 if (rate == prate) {
491 reg |= BIT(clk->bp_bit); /* bypass */
492 } else if (clk->div_width == DIV_A) {
493 return plla_set_rate(clk);
494 } else if (clk->div_width == DIV_TV) {
495 return plltv_set_rate(clk);
496 } else if (clk->div_width) {
497 u32 fbdiv = sp_pll_calc_div(clk, rate);
498 u32 mask = GENMASK(clk->div_shift + clk->div_width - 1, clk->div_shift);
499
500 reg |= mask << 16;
501 reg |= ((fbdiv - 1) << clk->div_shift) & mask;
502 }
503
504 spin_lock_irqsave(&clk->lock, flags);
505 writel(reg, clk->reg);
506 spin_unlock_irqrestore(&clk->lock, flags);
507
508 return 0;
509 }
510
sp_pll_enable(struct clk_hw * hw)511 static int sp_pll_enable(struct clk_hw *hw)
512 {
513 struct sp_pll *clk = to_sp_pll(hw);
514
515 writel(BIT(clk->pd_bit + 16) | BIT(clk->pd_bit), clk->reg);
516
517 return 0;
518 }
519
sp_pll_disable(struct clk_hw * hw)520 static void sp_pll_disable(struct clk_hw *hw)
521 {
522 struct sp_pll *clk = to_sp_pll(hw);
523
524 writel(BIT(clk->pd_bit + 16), clk->reg);
525 }
526
sp_pll_is_enabled(struct clk_hw * hw)527 static int sp_pll_is_enabled(struct clk_hw *hw)
528 {
529 struct sp_pll *clk = to_sp_pll(hw);
530
531 return readl(clk->reg) & BIT(clk->pd_bit);
532 }
533
534 static const struct clk_ops sp_pll_ops = {
535 .enable = sp_pll_enable,
536 .disable = sp_pll_disable,
537 .is_enabled = sp_pll_is_enabled,
538 .round_rate = sp_pll_round_rate,
539 .recalc_rate = sp_pll_recalc_rate,
540 .set_rate = sp_pll_set_rate
541 };
542
543 static const struct clk_ops sp_pll_sub_ops = {
544 .enable = sp_pll_enable,
545 .disable = sp_pll_disable,
546 .is_enabled = sp_pll_is_enabled,
547 .recalc_rate = sp_pll_recalc_rate,
548 };
549
sp_pll_register(struct device * dev,const char * name,const struct clk_parent_data * parent_data,void __iomem * reg,int pd_bit,int bp_bit,unsigned long brate,int shift,int width,unsigned long flags)550 static struct clk_hw *sp_pll_register(struct device *dev, const char *name,
551 const struct clk_parent_data *parent_data,
552 void __iomem *reg, int pd_bit, int bp_bit,
553 unsigned long brate, int shift, int width,
554 unsigned long flags)
555 {
556 struct sp_pll *pll;
557 struct clk_hw *hw;
558 struct clk_init_data initd = {
559 .name = name,
560 .parent_data = parent_data,
561 .ops = (bp_bit >= 0) ? &sp_pll_ops : &sp_pll_sub_ops,
562 .num_parents = 1,
563 .flags = flags,
564 };
565 int ret;
566
567 pll = devm_kzalloc(dev, sizeof(*pll), GFP_KERNEL);
568 if (!pll)
569 return ERR_PTR(-ENOMEM);
570
571 pll->hw.init = &initd;
572 pll->reg = reg;
573 pll->pd_bit = pd_bit;
574 pll->bp_bit = bp_bit;
575 pll->brate = brate;
576 pll->div_shift = shift;
577 pll->div_width = width;
578 spin_lock_init(&pll->lock);
579
580 hw = &pll->hw;
581 ret = devm_clk_hw_register(dev, hw);
582 if (ret)
583 return ERR_PTR(ret);
584
585 return hw;
586 }
587
588 #define PLLA_CTL (pll_base + 0x1c)
589 #define PLLE_CTL (pll_base + 0x30)
590 #define PLLF_CTL (pll_base + 0x34)
591 #define PLLTV_CTL (pll_base + 0x38)
592
sp7021_clk_probe(struct platform_device * pdev)593 static int sp7021_clk_probe(struct platform_device *pdev)
594 {
595 static const u32 sp_clken[] = {
596 0x67ef, 0x03ff, 0xff03, 0xfff0, 0x0004, /* G0.1~5 */
597 0x0000, 0x8000, 0xffff, 0x0040, 0x0000, /* G0.6~10 */
598 };
599 static struct clk_parent_data pd_ext, pd_sys, pd_e;
600 struct device *dev = &pdev->dev;
601 void __iomem *clk_base, *pll_base, *sys_base;
602 struct clk_hw_onecell_data *clk_data;
603 struct clk_hw **hws;
604 int i;
605
606 clk_base = devm_platform_ioremap_resource(pdev, 0);
607 if (!clk_base)
608 return -ENXIO;
609 pll_base = devm_platform_ioremap_resource(pdev, 1);
610 if (!pll_base)
611 return -ENXIO;
612 sys_base = devm_platform_ioremap_resource(pdev, 2);
613 if (!sys_base)
614 return -ENXIO;
615
616 /* enable default clks */
617 for (i = 0; i < ARRAY_SIZE(sp_clken); i++)
618 writel((sp_clken[i] << 16) | sp_clken[i], clk_base + i * 4);
619
620 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, CLK_MAX),
621 GFP_KERNEL);
622 if (!clk_data)
623 return -ENOMEM;
624 clk_data->num = CLK_MAX;
625
626 hws = clk_data->hws;
627 pd_ext.index = 0;
628
629 /* PLLs */
630 hws[PLL_A] = sp_pll_register(dev, "plla", &pd_ext, PLLA_CTL,
631 11, 12, 27000000, 0, DIV_A, 0);
632 if (IS_ERR(hws[PLL_A]))
633 return PTR_ERR(hws[PLL_A]);
634
635 hws[PLL_E] = sp_pll_register(dev, "plle", &pd_ext, PLLE_CTL,
636 6, 2, 50000000, 0, 0, 0);
637 if (IS_ERR(hws[PLL_E]))
638 return PTR_ERR(hws[PLL_E]);
639 pd_e.hw = hws[PLL_E];
640 hws[PLL_E_2P5] = sp_pll_register(dev, "plle_2p5", &pd_e, PLLE_CTL,
641 13, -1, 2500000, 0, 0, 0);
642 if (IS_ERR(hws[PLL_E_2P5]))
643 return PTR_ERR(hws[PLL_E_2P5]);
644 hws[PLL_E_25] = sp_pll_register(dev, "plle_25", &pd_e, PLLE_CTL,
645 12, -1, 25000000, 0, 0, 0);
646 if (IS_ERR(hws[PLL_E_25]))
647 return PTR_ERR(hws[PLL_E_25]);
648 hws[PLL_E_112P5] = sp_pll_register(dev, "plle_112p5", &pd_e, PLLE_CTL,
649 11, -1, 112500000, 0, 0, 0);
650 if (IS_ERR(hws[PLL_E_112P5]))
651 return PTR_ERR(hws[PLL_E_112P5]);
652
653 hws[PLL_F] = sp_pll_register(dev, "pllf", &pd_ext, PLLF_CTL,
654 0, 10, 13500000, 1, 4, 0);
655 if (IS_ERR(hws[PLL_F]))
656 return PTR_ERR(hws[PLL_F]);
657
658 hws[PLL_TV] = sp_pll_register(dev, "plltv", &pd_ext, PLLTV_CTL,
659 0, 15, 27000000, 0, DIV_TV, 0);
660 if (IS_ERR(hws[PLL_TV]))
661 return PTR_ERR(hws[PLL_TV]);
662 hws[PLL_TV_A] = devm_clk_hw_register_divider(dev, "plltv_a", "plltv", 0,
663 PLLTV_CTL + 4, 5, 1,
664 CLK_DIVIDER_POWER_OF_TWO,
665 &to_sp_pll(hws[PLL_TV])->lock);
666 if (IS_ERR(hws[PLL_TV_A]))
667 return PTR_ERR(hws[PLL_TV_A]);
668
669 /* system clock, should not be disabled */
670 hws[PLL_SYS] = sp_pll_register(dev, "pllsys", &pd_ext, sys_base,
671 10, 9, 13500000, 0, 4, CLK_IS_CRITICAL);
672 if (IS_ERR(hws[PLL_SYS]))
673 return PTR_ERR(hws[PLL_SYS]);
674 pd_sys.hw = hws[PLL_SYS];
675
676 /* gates */
677 for (i = 0; i < ARRAY_SIZE(sp_clk_gates); i++) {
678 char name[10];
679 u32 j = sp_clk_gates[i].reg;
680 struct clk_parent_data *pd = sp_clk_gates[i].ext_parent ? &pd_ext : &pd_sys;
681
682 sprintf(name, "%02d_0x%02x", i, j);
683 hws[i] = devm_clk_hw_register_gate_parent_data(dev, name, pd, 0,
684 clk_base + (j >> 4) * 4,
685 j & 0x0f,
686 CLK_GATE_HIWORD_MASK,
687 NULL);
688 if (IS_ERR(hws[i]))
689 return PTR_ERR(hws[i]);
690 }
691
692 return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data);
693 }
694
695 static const struct of_device_id sp7021_clk_dt_ids[] = {
696 { .compatible = "sunplus,sp7021-clkc" },
697 { }
698 };
699 MODULE_DEVICE_TABLE(of, sp7021_clk_dt_ids);
700
701 static struct platform_driver sp7021_clk_driver = {
702 .probe = sp7021_clk_probe,
703 .driver = {
704 .name = "sp7021-clk",
705 .of_match_table = sp7021_clk_dt_ids,
706 },
707 };
708 module_platform_driver(sp7021_clk_driver);
709
710 MODULE_AUTHOR("Sunplus Technology");
711 MODULE_LICENSE("GPL");
712 MODULE_DESCRIPTION("Clock driver for Sunplus SP7021 SoC");
713