1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45 /*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
136 *
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278
279 /* #define ADD_INTERRUPT_BENCH */
280
281 /*
282 * Configuration information
283 */
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
290
291
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
294 /*
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
300 */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
304 /*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
308 static int random_read_wakeup_bits = 64;
309
310 /*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316
317 /*
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
361 */
362 static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373 #if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399 #endif
400 };
401
402 /*
403 * Static global variables
404 */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411
412 struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416 };
417
418 struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421
422 /*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 __u32 out[CHACHA20_BLOCK_WORDS]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf, int nbytes);
441
442 static struct ratelimit_state unseeded_warning =
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444 static struct ratelimit_state urandom_warning =
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446
447 static int ratelimit_disable __read_mostly;
448
449 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451
452 /**********************************************************************
453 *
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
456 *
457 **********************************************************************/
458
459 struct entropy_store;
460 struct entropy_store {
461 /* read-only data: */
462 const struct poolinfo *poolinfo;
463 __u32 *pool;
464 const char *name;
465 struct entropy_store *pull;
466 struct work_struct push_work;
467
468 /* read-write data: */
469 unsigned long last_pulled;
470 spinlock_t lock;
471 unsigned short add_ptr;
472 unsigned short input_rotate;
473 int entropy_count;
474 int entropy_total;
475 unsigned int initialized:1;
476 unsigned int last_data_init:1;
477 __u8 last_data[EXTRACT_SIZE];
478 };
479
480 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 size_t nbytes, int min, int rsvd);
482 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 size_t nbytes, int fips);
484
485 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
486 static void push_to_pool(struct work_struct *work);
487 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
489
490 static struct entropy_store input_pool = {
491 .poolinfo = &poolinfo_table[0],
492 .name = "input",
493 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
494 .pool = input_pool_data
495 };
496
497 static struct entropy_store blocking_pool = {
498 .poolinfo = &poolinfo_table[1],
499 .name = "blocking",
500 .pull = &input_pool,
501 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
502 .pool = blocking_pool_data,
503 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 push_to_pool),
505 };
506
507 static __u32 const twist_table[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510
511 /*
512 * This function adds bytes into the entropy "pool". It does not
513 * update the entropy estimate. The caller should call
514 * credit_entropy_bits if this is appropriate.
515 *
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
520 */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)521 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
522 int nbytes)
523 {
524 unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 int input_rotate;
526 int wordmask = r->poolinfo->poolwords - 1;
527 const char *bytes = in;
528 __u32 w;
529
530 tap1 = r->poolinfo->tap1;
531 tap2 = r->poolinfo->tap2;
532 tap3 = r->poolinfo->tap3;
533 tap4 = r->poolinfo->tap4;
534 tap5 = r->poolinfo->tap5;
535
536 input_rotate = r->input_rotate;
537 i = r->add_ptr;
538
539 /* mix one byte at a time to simplify size handling and churn faster */
540 while (nbytes--) {
541 w = rol32(*bytes++, input_rotate);
542 i = (i - 1) & wordmask;
543
544 /* XOR in the various taps */
545 w ^= r->pool[i];
546 w ^= r->pool[(i + tap1) & wordmask];
547 w ^= r->pool[(i + tap2) & wordmask];
548 w ^= r->pool[(i + tap3) & wordmask];
549 w ^= r->pool[(i + tap4) & wordmask];
550 w ^= r->pool[(i + tap5) & wordmask];
551
552 /* Mix the result back in with a twist */
553 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
554
555 /*
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
560 */
561 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
562 }
563
564 r->input_rotate = input_rotate;
565 r->add_ptr = i;
566 }
567
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)568 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
569 int nbytes)
570 {
571 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
572 _mix_pool_bytes(r, in, nbytes);
573 }
574
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)575 static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 int nbytes)
577 {
578 unsigned long flags;
579
580 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
581 spin_lock_irqsave(&r->lock, flags);
582 _mix_pool_bytes(r, in, nbytes);
583 spin_unlock_irqrestore(&r->lock, flags);
584 }
585
586 struct fast_pool {
587 __u32 pool[4];
588 unsigned long last;
589 unsigned short reg_idx;
590 unsigned char count;
591 };
592
593 /*
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
597 */
fast_mix(struct fast_pool * f)598 static void fast_mix(struct fast_pool *f)
599 {
600 __u32 a = f->pool[0], b = f->pool[1];
601 __u32 c = f->pool[2], d = f->pool[3];
602
603 a += b; c += d;
604 b = rol32(b, 6); d = rol32(d, 27);
605 d ^= a; b ^= c;
606
607 a += b; c += d;
608 b = rol32(b, 16); d = rol32(d, 14);
609 d ^= a; b ^= c;
610
611 a += b; c += d;
612 b = rol32(b, 6); d = rol32(d, 27);
613 d ^= a; b ^= c;
614
615 a += b; c += d;
616 b = rol32(b, 16); d = rol32(d, 14);
617 d ^= a; b ^= c;
618
619 f->pool[0] = a; f->pool[1] = b;
620 f->pool[2] = c; f->pool[3] = d;
621 f->count++;
622 }
623
process_random_ready_list(void)624 static void process_random_ready_list(void)
625 {
626 unsigned long flags;
627 struct random_ready_callback *rdy, *tmp;
628
629 spin_lock_irqsave(&random_ready_list_lock, flags);
630 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 struct module *owner = rdy->owner;
632
633 list_del_init(&rdy->list);
634 rdy->func(rdy);
635 module_put(owner);
636 }
637 spin_unlock_irqrestore(&random_ready_list_lock, flags);
638 }
639
640 /*
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
644 */
credit_entropy_bits(struct entropy_store * r,int nbits)645 static void credit_entropy_bits(struct entropy_store *r, int nbits)
646 {
647 int entropy_count, orig;
648 const int pool_size = r->poolinfo->poolfracbits;
649 int nfrac = nbits << ENTROPY_SHIFT;
650
651 if (!nbits)
652 return;
653
654 retry:
655 entropy_count = orig = READ_ONCE(r->entropy_count);
656 if (nfrac < 0) {
657 /* Debit */
658 entropy_count += nfrac;
659 } else {
660 /*
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
665 *
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
668 *
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
675 *
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
680 */
681 int pnfrac = nfrac;
682 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 /* The +2 corresponds to the /4 in the denominator */
684
685 do {
686 unsigned int anfrac = min(pnfrac, pool_size/2);
687 unsigned int add =
688 ((pool_size - entropy_count)*anfrac*3) >> s;
689
690 entropy_count += add;
691 pnfrac -= anfrac;
692 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 }
694
695 if (unlikely(entropy_count < 0)) {
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r->name, entropy_count);
698 WARN_ON(1);
699 entropy_count = 0;
700 } else if (entropy_count > pool_size)
701 entropy_count = pool_size;
702 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 goto retry;
704
705 r->entropy_total += nbits;
706 if (!r->initialized && r->entropy_total > 128) {
707 r->initialized = 1;
708 r->entropy_total = 0;
709 }
710
711 trace_credit_entropy_bits(r->name, nbits,
712 entropy_count >> ENTROPY_SHIFT,
713 r->entropy_total, _RET_IP_);
714
715 if (r == &input_pool) {
716 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
717
718 if (crng_init < 2 && entropy_bits >= 128) {
719 crng_reseed(&primary_crng, r);
720 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 }
722
723 /* should we wake readers? */
724 if (entropy_bits >= random_read_wakeup_bits &&
725 wq_has_sleeper(&random_read_wait)) {
726 wake_up_interruptible(&random_read_wait);
727 kill_fasync(&fasync, SIGIO, POLL_IN);
728 }
729 /* If the input pool is getting full, send some
730 * entropy to the blocking pool until it is 75% full.
731 */
732 if (entropy_bits > random_write_wakeup_bits &&
733 r->initialized &&
734 r->entropy_total >= 2*random_read_wakeup_bits) {
735 struct entropy_store *other = &blocking_pool;
736
737 if (other->entropy_count <=
738 3 * other->poolinfo->poolfracbits / 4) {
739 schedule_work(&other->push_work);
740 r->entropy_total = 0;
741 }
742 }
743 }
744 }
745
credit_entropy_bits_safe(struct entropy_store * r,int nbits)746 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
747 {
748 const int nbits_max = r->poolinfo->poolwords * 32;
749
750 if (nbits < 0)
751 return -EINVAL;
752
753 /* Cap the value to avoid overflows */
754 nbits = min(nbits, nbits_max);
755
756 credit_entropy_bits(r, nbits);
757 return 0;
758 }
759
760 /*********************************************************************
761 *
762 * CRNG using CHACHA20
763 *
764 *********************************************************************/
765
766 #define CRNG_RESEED_INTERVAL (300*HZ)
767
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
769
770 #ifdef CONFIG_NUMA
771 /*
772 * Hack to deal with crazy userspace progams when they are all trying
773 * to access /dev/urandom in parallel. The programs are almost
774 * certainly doing something terribly wrong, but we'll work around
775 * their brain damage.
776 */
777 static struct crng_state **crng_node_pool __read_mostly;
778 #endif
779
780 static void invalidate_batched_entropy(void);
781
782 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
parse_trust_cpu(char * arg)783 static int __init parse_trust_cpu(char *arg)
784 {
785 return kstrtobool(arg, &trust_cpu);
786 }
787 early_param("random.trust_cpu", parse_trust_cpu);
788
crng_initialize(struct crng_state * crng)789 static void crng_initialize(struct crng_state *crng)
790 {
791 int i;
792 int arch_init = 1;
793 unsigned long rv;
794
795 memcpy(&crng->state[0], "expand 32-byte k", 16);
796 if (crng == &primary_crng)
797 _extract_entropy(&input_pool, &crng->state[4],
798 sizeof(__u32) * 12, 0);
799 else
800 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
801 for (i = 4; i < 16; i++) {
802 if (!arch_get_random_seed_long(&rv) &&
803 !arch_get_random_long(&rv)) {
804 rv = random_get_entropy();
805 arch_init = 0;
806 }
807 crng->state[i] ^= rv;
808 }
809 if (trust_cpu && arch_init) {
810 crng_init = 2;
811 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
812 }
813 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
814 }
815
816 #ifdef CONFIG_NUMA
do_numa_crng_init(struct work_struct * work)817 static void do_numa_crng_init(struct work_struct *work)
818 {
819 int i;
820 struct crng_state *crng;
821 struct crng_state **pool;
822
823 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
824 for_each_online_node(i) {
825 crng = kmalloc_node(sizeof(struct crng_state),
826 GFP_KERNEL | __GFP_NOFAIL, i);
827 spin_lock_init(&crng->lock);
828 crng_initialize(crng);
829 pool[i] = crng;
830 }
831 mb();
832 if (cmpxchg(&crng_node_pool, NULL, pool)) {
833 for_each_node(i)
834 kfree(pool[i]);
835 kfree(pool);
836 }
837 }
838
839 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
840
numa_crng_init(void)841 static void numa_crng_init(void)
842 {
843 schedule_work(&numa_crng_init_work);
844 }
845 #else
numa_crng_init(void)846 static void numa_crng_init(void) {}
847 #endif
848
849 /*
850 * crng_fast_load() can be called by code in the interrupt service
851 * path. So we can't afford to dilly-dally.
852 */
crng_fast_load(const char * cp,size_t len)853 static int crng_fast_load(const char *cp, size_t len)
854 {
855 unsigned long flags;
856 char *p;
857
858 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
859 return 0;
860 if (crng_init != 0) {
861 spin_unlock_irqrestore(&primary_crng.lock, flags);
862 return 0;
863 }
864 p = (unsigned char *) &primary_crng.state[4];
865 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
866 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
867 cp++; crng_init_cnt++; len--;
868 }
869 spin_unlock_irqrestore(&primary_crng.lock, flags);
870 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
871 invalidate_batched_entropy();
872 crng_init = 1;
873 wake_up_interruptible(&crng_init_wait);
874 pr_notice("random: fast init done\n");
875 }
876 return 1;
877 }
878
879 /*
880 * crng_slow_load() is called by add_device_randomness, which has two
881 * attributes. (1) We can't trust the buffer passed to it is
882 * guaranteed to be unpredictable (so it might not have any entropy at
883 * all), and (2) it doesn't have the performance constraints of
884 * crng_fast_load().
885 *
886 * So we do something more comprehensive which is guaranteed to touch
887 * all of the primary_crng's state, and which uses a LFSR with a
888 * period of 255 as part of the mixing algorithm. Finally, we do
889 * *not* advance crng_init_cnt since buffer we may get may be something
890 * like a fixed DMI table (for example), which might very well be
891 * unique to the machine, but is otherwise unvarying.
892 */
crng_slow_load(const char * cp,size_t len)893 static int crng_slow_load(const char *cp, size_t len)
894 {
895 unsigned long flags;
896 static unsigned char lfsr = 1;
897 unsigned char tmp;
898 unsigned i, max = CHACHA20_KEY_SIZE;
899 const char * src_buf = cp;
900 char * dest_buf = (char *) &primary_crng.state[4];
901
902 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
903 return 0;
904 if (crng_init != 0) {
905 spin_unlock_irqrestore(&primary_crng.lock, flags);
906 return 0;
907 }
908 if (len > max)
909 max = len;
910
911 for (i = 0; i < max ; i++) {
912 tmp = lfsr;
913 lfsr >>= 1;
914 if (tmp & 1)
915 lfsr ^= 0xE1;
916 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
917 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
918 lfsr += (tmp << 3) | (tmp >> 5);
919 }
920 spin_unlock_irqrestore(&primary_crng.lock, flags);
921 return 1;
922 }
923
crng_reseed(struct crng_state * crng,struct entropy_store * r)924 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
925 {
926 unsigned long flags;
927 int i, num;
928 union {
929 __u32 block[CHACHA20_BLOCK_WORDS];
930 __u32 key[8];
931 } buf;
932
933 if (r) {
934 num = extract_entropy(r, &buf, 32, 16, 0);
935 if (num == 0)
936 return;
937 } else {
938 _extract_crng(&primary_crng, buf.block);
939 _crng_backtrack_protect(&primary_crng, buf.block,
940 CHACHA20_KEY_SIZE);
941 }
942 spin_lock_irqsave(&crng->lock, flags);
943 for (i = 0; i < 8; i++) {
944 unsigned long rv;
945 if (!arch_get_random_seed_long(&rv) &&
946 !arch_get_random_long(&rv))
947 rv = random_get_entropy();
948 crng->state[i+4] ^= buf.key[i] ^ rv;
949 }
950 memzero_explicit(&buf, sizeof(buf));
951 crng->init_time = jiffies;
952 spin_unlock_irqrestore(&crng->lock, flags);
953 if (crng == &primary_crng && crng_init < 2) {
954 invalidate_batched_entropy();
955 numa_crng_init();
956 crng_init = 2;
957 process_random_ready_list();
958 wake_up_interruptible(&crng_init_wait);
959 pr_notice("random: crng init done\n");
960 if (unseeded_warning.missed) {
961 pr_notice("random: %d get_random_xx warning(s) missed "
962 "due to ratelimiting\n",
963 unseeded_warning.missed);
964 unseeded_warning.missed = 0;
965 }
966 if (urandom_warning.missed) {
967 pr_notice("random: %d urandom warning(s) missed "
968 "due to ratelimiting\n",
969 urandom_warning.missed);
970 urandom_warning.missed = 0;
971 }
972 }
973 }
974
_extract_crng(struct crng_state * crng,__u32 out[CHACHA20_BLOCK_WORDS])975 static void _extract_crng(struct crng_state *crng,
976 __u32 out[CHACHA20_BLOCK_WORDS])
977 {
978 unsigned long v, flags;
979
980 if (crng_ready() &&
981 (time_after(crng_global_init_time, crng->init_time) ||
982 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
983 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
984 spin_lock_irqsave(&crng->lock, flags);
985 if (arch_get_random_long(&v))
986 crng->state[14] ^= v;
987 chacha20_block(&crng->state[0], out);
988 if (crng->state[12] == 0)
989 crng->state[13]++;
990 spin_unlock_irqrestore(&crng->lock, flags);
991 }
992
extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])993 static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
994 {
995 struct crng_state *crng = NULL;
996
997 #ifdef CONFIG_NUMA
998 if (crng_node_pool)
999 crng = crng_node_pool[numa_node_id()];
1000 if (crng == NULL)
1001 #endif
1002 crng = &primary_crng;
1003 _extract_crng(crng, out);
1004 }
1005
1006 /*
1007 * Use the leftover bytes from the CRNG block output (if there is
1008 * enough) to mutate the CRNG key to provide backtracking protection.
1009 */
_crng_backtrack_protect(struct crng_state * crng,__u32 tmp[CHACHA20_BLOCK_WORDS],int used)1010 static void _crng_backtrack_protect(struct crng_state *crng,
1011 __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1012 {
1013 unsigned long flags;
1014 __u32 *s, *d;
1015 int i;
1016
1017 used = round_up(used, sizeof(__u32));
1018 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1019 extract_crng(tmp);
1020 used = 0;
1021 }
1022 spin_lock_irqsave(&crng->lock, flags);
1023 s = &tmp[used / sizeof(__u32)];
1024 d = &crng->state[4];
1025 for (i=0; i < 8; i++)
1026 *d++ ^= *s++;
1027 spin_unlock_irqrestore(&crng->lock, flags);
1028 }
1029
crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS],int used)1030 static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1031 {
1032 struct crng_state *crng = NULL;
1033
1034 #ifdef CONFIG_NUMA
1035 if (crng_node_pool)
1036 crng = crng_node_pool[numa_node_id()];
1037 if (crng == NULL)
1038 #endif
1039 crng = &primary_crng;
1040 _crng_backtrack_protect(crng, tmp, used);
1041 }
1042
extract_crng_user(void __user * buf,size_t nbytes)1043 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1044 {
1045 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1046 __u32 tmp[CHACHA20_BLOCK_WORDS];
1047 int large_request = (nbytes > 256);
1048
1049 while (nbytes) {
1050 if (large_request && need_resched()) {
1051 if (signal_pending(current)) {
1052 if (ret == 0)
1053 ret = -ERESTARTSYS;
1054 break;
1055 }
1056 schedule();
1057 }
1058
1059 extract_crng(tmp);
1060 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1061 if (copy_to_user(buf, tmp, i)) {
1062 ret = -EFAULT;
1063 break;
1064 }
1065
1066 nbytes -= i;
1067 buf += i;
1068 ret += i;
1069 }
1070 crng_backtrack_protect(tmp, i);
1071
1072 /* Wipe data just written to memory */
1073 memzero_explicit(tmp, sizeof(tmp));
1074
1075 return ret;
1076 }
1077
1078
1079 /*********************************************************************
1080 *
1081 * Entropy input management
1082 *
1083 *********************************************************************/
1084
1085 /* There is one of these per entropy source */
1086 struct timer_rand_state {
1087 cycles_t last_time;
1088 long last_delta, last_delta2;
1089 };
1090
1091 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1092
1093 /*
1094 * Add device- or boot-specific data to the input pool to help
1095 * initialize it.
1096 *
1097 * None of this adds any entropy; it is meant to avoid the problem of
1098 * the entropy pool having similar initial state across largely
1099 * identical devices.
1100 */
add_device_randomness(const void * buf,unsigned int size)1101 void add_device_randomness(const void *buf, unsigned int size)
1102 {
1103 unsigned long time = random_get_entropy() ^ jiffies;
1104 unsigned long flags;
1105
1106 if (!crng_ready() && size)
1107 crng_slow_load(buf, size);
1108
1109 trace_add_device_randomness(size, _RET_IP_);
1110 spin_lock_irqsave(&input_pool.lock, flags);
1111 _mix_pool_bytes(&input_pool, buf, size);
1112 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1113 spin_unlock_irqrestore(&input_pool.lock, flags);
1114 }
1115 EXPORT_SYMBOL(add_device_randomness);
1116
1117 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1118
1119 /*
1120 * This function adds entropy to the entropy "pool" by using timing
1121 * delays. It uses the timer_rand_state structure to make an estimate
1122 * of how many bits of entropy this call has added to the pool.
1123 *
1124 * The number "num" is also added to the pool - it should somehow describe
1125 * the type of event which just happened. This is currently 0-255 for
1126 * keyboard scan codes, and 256 upwards for interrupts.
1127 *
1128 */
add_timer_randomness(struct timer_rand_state * state,unsigned num)1129 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1130 {
1131 struct entropy_store *r;
1132 struct {
1133 long jiffies;
1134 unsigned cycles;
1135 unsigned num;
1136 } sample;
1137 long delta, delta2, delta3;
1138
1139 sample.jiffies = jiffies;
1140 sample.cycles = random_get_entropy();
1141 sample.num = num;
1142 r = &input_pool;
1143 mix_pool_bytes(r, &sample, sizeof(sample));
1144
1145 /*
1146 * Calculate number of bits of randomness we probably added.
1147 * We take into account the first, second and third-order deltas
1148 * in order to make our estimate.
1149 */
1150 delta = sample.jiffies - state->last_time;
1151 state->last_time = sample.jiffies;
1152
1153 delta2 = delta - state->last_delta;
1154 state->last_delta = delta;
1155
1156 delta3 = delta2 - state->last_delta2;
1157 state->last_delta2 = delta2;
1158
1159 if (delta < 0)
1160 delta = -delta;
1161 if (delta2 < 0)
1162 delta2 = -delta2;
1163 if (delta3 < 0)
1164 delta3 = -delta3;
1165 if (delta > delta2)
1166 delta = delta2;
1167 if (delta > delta3)
1168 delta = delta3;
1169
1170 /*
1171 * delta is now minimum absolute delta.
1172 * Round down by 1 bit on general principles,
1173 * and limit entropy entimate to 12 bits.
1174 */
1175 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1176 }
1177
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1178 void add_input_randomness(unsigned int type, unsigned int code,
1179 unsigned int value)
1180 {
1181 static unsigned char last_value;
1182
1183 /* ignore autorepeat and the like */
1184 if (value == last_value)
1185 return;
1186
1187 last_value = value;
1188 add_timer_randomness(&input_timer_state,
1189 (type << 4) ^ code ^ (code >> 4) ^ value);
1190 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1191 }
1192 EXPORT_SYMBOL_GPL(add_input_randomness);
1193
1194 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1195
1196 #ifdef ADD_INTERRUPT_BENCH
1197 static unsigned long avg_cycles, avg_deviation;
1198
1199 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1200 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1201
add_interrupt_bench(cycles_t start)1202 static void add_interrupt_bench(cycles_t start)
1203 {
1204 long delta = random_get_entropy() - start;
1205
1206 /* Use a weighted moving average */
1207 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1208 avg_cycles += delta;
1209 /* And average deviation */
1210 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1211 avg_deviation += delta;
1212 }
1213 #else
1214 #define add_interrupt_bench(x)
1215 #endif
1216
get_reg(struct fast_pool * f,struct pt_regs * regs)1217 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1218 {
1219 __u32 *ptr = (__u32 *) regs;
1220 unsigned int idx;
1221
1222 if (regs == NULL)
1223 return 0;
1224 idx = READ_ONCE(f->reg_idx);
1225 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1226 idx = 0;
1227 ptr += idx++;
1228 WRITE_ONCE(f->reg_idx, idx);
1229 return *ptr;
1230 }
1231
add_interrupt_randomness(int irq,int irq_flags)1232 void add_interrupt_randomness(int irq, int irq_flags)
1233 {
1234 struct entropy_store *r;
1235 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1236 struct pt_regs *regs = get_irq_regs();
1237 unsigned long now = jiffies;
1238 cycles_t cycles = random_get_entropy();
1239 __u32 c_high, j_high;
1240 __u64 ip;
1241 unsigned long seed;
1242 int credit = 0;
1243
1244 if (cycles == 0)
1245 cycles = get_reg(fast_pool, regs);
1246 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1247 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1248 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1249 fast_pool->pool[1] ^= now ^ c_high;
1250 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1251 fast_pool->pool[2] ^= ip;
1252 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1253 get_reg(fast_pool, regs);
1254
1255 fast_mix(fast_pool);
1256 add_interrupt_bench(cycles);
1257
1258 if (unlikely(crng_init == 0)) {
1259 if ((fast_pool->count >= 64) &&
1260 crng_fast_load((char *) fast_pool->pool,
1261 sizeof(fast_pool->pool))) {
1262 fast_pool->count = 0;
1263 fast_pool->last = now;
1264 }
1265 return;
1266 }
1267
1268 if ((fast_pool->count < 64) &&
1269 !time_after(now, fast_pool->last + HZ))
1270 return;
1271
1272 r = &input_pool;
1273 if (!spin_trylock(&r->lock))
1274 return;
1275
1276 fast_pool->last = now;
1277 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1278
1279 /*
1280 * If we have architectural seed generator, produce a seed and
1281 * add it to the pool. For the sake of paranoia don't let the
1282 * architectural seed generator dominate the input from the
1283 * interrupt noise.
1284 */
1285 if (arch_get_random_seed_long(&seed)) {
1286 __mix_pool_bytes(r, &seed, sizeof(seed));
1287 credit = 1;
1288 }
1289 spin_unlock(&r->lock);
1290
1291 fast_pool->count = 0;
1292
1293 /* award one bit for the contents of the fast pool */
1294 credit_entropy_bits(r, credit + 1);
1295 }
1296 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1297
1298 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1299 void add_disk_randomness(struct gendisk *disk)
1300 {
1301 if (!disk || !disk->random)
1302 return;
1303 /* first major is 1, so we get >= 0x200 here */
1304 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1305 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1306 }
1307 EXPORT_SYMBOL_GPL(add_disk_randomness);
1308 #endif
1309
1310 /*********************************************************************
1311 *
1312 * Entropy extraction routines
1313 *
1314 *********************************************************************/
1315
1316 /*
1317 * This utility inline function is responsible for transferring entropy
1318 * from the primary pool to the secondary extraction pool. We make
1319 * sure we pull enough for a 'catastrophic reseed'.
1320 */
1321 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1322 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1323 {
1324 if (!r->pull ||
1325 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1326 r->entropy_count > r->poolinfo->poolfracbits)
1327 return;
1328
1329 _xfer_secondary_pool(r, nbytes);
1330 }
1331
_xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1332 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1333 {
1334 __u32 tmp[OUTPUT_POOL_WORDS];
1335
1336 int bytes = nbytes;
1337
1338 /* pull at least as much as a wakeup */
1339 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1340 /* but never more than the buffer size */
1341 bytes = min_t(int, bytes, sizeof(tmp));
1342
1343 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1344 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1345 bytes = extract_entropy(r->pull, tmp, bytes,
1346 random_read_wakeup_bits / 8, 0);
1347 mix_pool_bytes(r, tmp, bytes);
1348 credit_entropy_bits(r, bytes*8);
1349 }
1350
1351 /*
1352 * Used as a workqueue function so that when the input pool is getting
1353 * full, we can "spill over" some entropy to the output pools. That
1354 * way the output pools can store some of the excess entropy instead
1355 * of letting it go to waste.
1356 */
push_to_pool(struct work_struct * work)1357 static void push_to_pool(struct work_struct *work)
1358 {
1359 struct entropy_store *r = container_of(work, struct entropy_store,
1360 push_work);
1361 BUG_ON(!r);
1362 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1363 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1364 r->pull->entropy_count >> ENTROPY_SHIFT);
1365 }
1366
1367 /*
1368 * This function decides how many bytes to actually take from the
1369 * given pool, and also debits the entropy count accordingly.
1370 */
account(struct entropy_store * r,size_t nbytes,int min,int reserved)1371 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1372 int reserved)
1373 {
1374 int entropy_count, orig, have_bytes;
1375 size_t ibytes, nfrac;
1376
1377 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1378
1379 /* Can we pull enough? */
1380 retry:
1381 entropy_count = orig = READ_ONCE(r->entropy_count);
1382 ibytes = nbytes;
1383 /* never pull more than available */
1384 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1385
1386 if ((have_bytes -= reserved) < 0)
1387 have_bytes = 0;
1388 ibytes = min_t(size_t, ibytes, have_bytes);
1389 if (ibytes < min)
1390 ibytes = 0;
1391
1392 if (unlikely(entropy_count < 0)) {
1393 pr_warn("random: negative entropy count: pool %s count %d\n",
1394 r->name, entropy_count);
1395 WARN_ON(1);
1396 entropy_count = 0;
1397 }
1398 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1399 if ((size_t) entropy_count > nfrac)
1400 entropy_count -= nfrac;
1401 else
1402 entropy_count = 0;
1403
1404 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1405 goto retry;
1406
1407 trace_debit_entropy(r->name, 8 * ibytes);
1408 if (ibytes &&
1409 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1410 wake_up_interruptible(&random_write_wait);
1411 kill_fasync(&fasync, SIGIO, POLL_OUT);
1412 }
1413
1414 return ibytes;
1415 }
1416
1417 /*
1418 * This function does the actual extraction for extract_entropy and
1419 * extract_entropy_user.
1420 *
1421 * Note: we assume that .poolwords is a multiple of 16 words.
1422 */
extract_buf(struct entropy_store * r,__u8 * out)1423 static void extract_buf(struct entropy_store *r, __u8 *out)
1424 {
1425 int i;
1426 union {
1427 __u32 w[5];
1428 unsigned long l[LONGS(20)];
1429 } hash;
1430 __u32 workspace[SHA_WORKSPACE_WORDS];
1431 unsigned long flags;
1432
1433 /*
1434 * If we have an architectural hardware random number
1435 * generator, use it for SHA's initial vector
1436 */
1437 sha_init(hash.w);
1438 for (i = 0; i < LONGS(20); i++) {
1439 unsigned long v;
1440 if (!arch_get_random_long(&v))
1441 break;
1442 hash.l[i] = v;
1443 }
1444
1445 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1446 spin_lock_irqsave(&r->lock, flags);
1447 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1448 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1449
1450 /*
1451 * We mix the hash back into the pool to prevent backtracking
1452 * attacks (where the attacker knows the state of the pool
1453 * plus the current outputs, and attempts to find previous
1454 * ouputs), unless the hash function can be inverted. By
1455 * mixing at least a SHA1 worth of hash data back, we make
1456 * brute-forcing the feedback as hard as brute-forcing the
1457 * hash.
1458 */
1459 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1460 spin_unlock_irqrestore(&r->lock, flags);
1461
1462 memzero_explicit(workspace, sizeof(workspace));
1463
1464 /*
1465 * In case the hash function has some recognizable output
1466 * pattern, we fold it in half. Thus, we always feed back
1467 * twice as much data as we output.
1468 */
1469 hash.w[0] ^= hash.w[3];
1470 hash.w[1] ^= hash.w[4];
1471 hash.w[2] ^= rol32(hash.w[2], 16);
1472
1473 memcpy(out, &hash, EXTRACT_SIZE);
1474 memzero_explicit(&hash, sizeof(hash));
1475 }
1476
_extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int fips)1477 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1478 size_t nbytes, int fips)
1479 {
1480 ssize_t ret = 0, i;
1481 __u8 tmp[EXTRACT_SIZE];
1482 unsigned long flags;
1483
1484 while (nbytes) {
1485 extract_buf(r, tmp);
1486
1487 if (fips) {
1488 spin_lock_irqsave(&r->lock, flags);
1489 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1490 panic("Hardware RNG duplicated output!\n");
1491 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1492 spin_unlock_irqrestore(&r->lock, flags);
1493 }
1494 i = min_t(int, nbytes, EXTRACT_SIZE);
1495 memcpy(buf, tmp, i);
1496 nbytes -= i;
1497 buf += i;
1498 ret += i;
1499 }
1500
1501 /* Wipe data just returned from memory */
1502 memzero_explicit(tmp, sizeof(tmp));
1503
1504 return ret;
1505 }
1506
1507 /*
1508 * This function extracts randomness from the "entropy pool", and
1509 * returns it in a buffer.
1510 *
1511 * The min parameter specifies the minimum amount we can pull before
1512 * failing to avoid races that defeat catastrophic reseeding while the
1513 * reserved parameter indicates how much entropy we must leave in the
1514 * pool after each pull to avoid starving other readers.
1515 */
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)1516 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1517 size_t nbytes, int min, int reserved)
1518 {
1519 __u8 tmp[EXTRACT_SIZE];
1520 unsigned long flags;
1521
1522 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1523 if (fips_enabled) {
1524 spin_lock_irqsave(&r->lock, flags);
1525 if (!r->last_data_init) {
1526 r->last_data_init = 1;
1527 spin_unlock_irqrestore(&r->lock, flags);
1528 trace_extract_entropy(r->name, EXTRACT_SIZE,
1529 ENTROPY_BITS(r), _RET_IP_);
1530 xfer_secondary_pool(r, EXTRACT_SIZE);
1531 extract_buf(r, tmp);
1532 spin_lock_irqsave(&r->lock, flags);
1533 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1534 }
1535 spin_unlock_irqrestore(&r->lock, flags);
1536 }
1537
1538 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1539 xfer_secondary_pool(r, nbytes);
1540 nbytes = account(r, nbytes, min, reserved);
1541
1542 return _extract_entropy(r, buf, nbytes, fips_enabled);
1543 }
1544
1545 /*
1546 * This function extracts randomness from the "entropy pool", and
1547 * returns it in a userspace buffer.
1548 */
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)1549 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1550 size_t nbytes)
1551 {
1552 ssize_t ret = 0, i;
1553 __u8 tmp[EXTRACT_SIZE];
1554 int large_request = (nbytes > 256);
1555
1556 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1557 xfer_secondary_pool(r, nbytes);
1558 nbytes = account(r, nbytes, 0, 0);
1559
1560 while (nbytes) {
1561 if (large_request && need_resched()) {
1562 if (signal_pending(current)) {
1563 if (ret == 0)
1564 ret = -ERESTARTSYS;
1565 break;
1566 }
1567 schedule();
1568 }
1569
1570 extract_buf(r, tmp);
1571 i = min_t(int, nbytes, EXTRACT_SIZE);
1572 if (copy_to_user(buf, tmp, i)) {
1573 ret = -EFAULT;
1574 break;
1575 }
1576
1577 nbytes -= i;
1578 buf += i;
1579 ret += i;
1580 }
1581
1582 /* Wipe data just returned from memory */
1583 memzero_explicit(tmp, sizeof(tmp));
1584
1585 return ret;
1586 }
1587
1588 #define warn_unseeded_randomness(previous) \
1589 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1590
_warn_unseeded_randomness(const char * func_name,void * caller,void ** previous)1591 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1592 void **previous)
1593 {
1594 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1595 const bool print_once = false;
1596 #else
1597 static bool print_once __read_mostly;
1598 #endif
1599
1600 if (print_once ||
1601 crng_ready() ||
1602 (previous && (caller == READ_ONCE(*previous))))
1603 return;
1604 WRITE_ONCE(*previous, caller);
1605 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1606 print_once = true;
1607 #endif
1608 if (__ratelimit(&unseeded_warning))
1609 pr_notice("random: %s called from %pS with crng_init=%d\n",
1610 func_name, caller, crng_init);
1611 }
1612
1613 /*
1614 * This function is the exported kernel interface. It returns some
1615 * number of good random numbers, suitable for key generation, seeding
1616 * TCP sequence numbers, etc. It does not rely on the hardware random
1617 * number generator. For random bytes direct from the hardware RNG
1618 * (when available), use get_random_bytes_arch(). In order to ensure
1619 * that the randomness provided by this function is okay, the function
1620 * wait_for_random_bytes() should be called and return 0 at least once
1621 * at any point prior.
1622 */
_get_random_bytes(void * buf,int nbytes)1623 static void _get_random_bytes(void *buf, int nbytes)
1624 {
1625 __u32 tmp[CHACHA20_BLOCK_WORDS];
1626
1627 trace_get_random_bytes(nbytes, _RET_IP_);
1628
1629 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1630 extract_crng(buf);
1631 buf += CHACHA20_BLOCK_SIZE;
1632 nbytes -= CHACHA20_BLOCK_SIZE;
1633 }
1634
1635 if (nbytes > 0) {
1636 extract_crng(tmp);
1637 memcpy(buf, tmp, nbytes);
1638 crng_backtrack_protect(tmp, nbytes);
1639 } else
1640 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1641 memzero_explicit(tmp, sizeof(tmp));
1642 }
1643
get_random_bytes(void * buf,int nbytes)1644 void get_random_bytes(void *buf, int nbytes)
1645 {
1646 static void *previous;
1647
1648 warn_unseeded_randomness(&previous);
1649 _get_random_bytes(buf, nbytes);
1650 }
1651 EXPORT_SYMBOL(get_random_bytes);
1652
1653 /*
1654 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1655 * cryptographically secure random numbers. This applies to: the /dev/urandom
1656 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1657 * family of functions. Using any of these functions without first calling
1658 * this function forfeits the guarantee of security.
1659 *
1660 * Returns: 0 if the urandom pool has been seeded.
1661 * -ERESTARTSYS if the function was interrupted by a signal.
1662 */
wait_for_random_bytes(void)1663 int wait_for_random_bytes(void)
1664 {
1665 if (likely(crng_ready()))
1666 return 0;
1667 return wait_event_interruptible(crng_init_wait, crng_ready());
1668 }
1669 EXPORT_SYMBOL(wait_for_random_bytes);
1670
1671 /*
1672 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1673 * to supply cryptographically secure random numbers. This applies to: the
1674 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1675 * ,u64,int,long} family of functions.
1676 *
1677 * Returns: true if the urandom pool has been seeded.
1678 * false if the urandom pool has not been seeded.
1679 */
rng_is_initialized(void)1680 bool rng_is_initialized(void)
1681 {
1682 return crng_ready();
1683 }
1684 EXPORT_SYMBOL(rng_is_initialized);
1685
1686 /*
1687 * Add a callback function that will be invoked when the nonblocking
1688 * pool is initialised.
1689 *
1690 * returns: 0 if callback is successfully added
1691 * -EALREADY if pool is already initialised (callback not called)
1692 * -ENOENT if module for callback is not alive
1693 */
add_random_ready_callback(struct random_ready_callback * rdy)1694 int add_random_ready_callback(struct random_ready_callback *rdy)
1695 {
1696 struct module *owner;
1697 unsigned long flags;
1698 int err = -EALREADY;
1699
1700 if (crng_ready())
1701 return err;
1702
1703 owner = rdy->owner;
1704 if (!try_module_get(owner))
1705 return -ENOENT;
1706
1707 spin_lock_irqsave(&random_ready_list_lock, flags);
1708 if (crng_ready())
1709 goto out;
1710
1711 owner = NULL;
1712
1713 list_add(&rdy->list, &random_ready_list);
1714 err = 0;
1715
1716 out:
1717 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1718
1719 module_put(owner);
1720
1721 return err;
1722 }
1723 EXPORT_SYMBOL(add_random_ready_callback);
1724
1725 /*
1726 * Delete a previously registered readiness callback function.
1727 */
del_random_ready_callback(struct random_ready_callback * rdy)1728 void del_random_ready_callback(struct random_ready_callback *rdy)
1729 {
1730 unsigned long flags;
1731 struct module *owner = NULL;
1732
1733 spin_lock_irqsave(&random_ready_list_lock, flags);
1734 if (!list_empty(&rdy->list)) {
1735 list_del_init(&rdy->list);
1736 owner = rdy->owner;
1737 }
1738 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1739
1740 module_put(owner);
1741 }
1742 EXPORT_SYMBOL(del_random_ready_callback);
1743
1744 /*
1745 * This function will use the architecture-specific hardware random
1746 * number generator if it is available. The arch-specific hw RNG will
1747 * almost certainly be faster than what we can do in software, but it
1748 * is impossible to verify that it is implemented securely (as
1749 * opposed, to, say, the AES encryption of a sequence number using a
1750 * key known by the NSA). So it's useful if we need the speed, but
1751 * only if we're willing to trust the hardware manufacturer not to
1752 * have put in a back door.
1753 *
1754 * Return number of bytes filled in.
1755 */
get_random_bytes_arch(void * buf,int nbytes)1756 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1757 {
1758 int left = nbytes;
1759 char *p = buf;
1760
1761 trace_get_random_bytes_arch(left, _RET_IP_);
1762 while (left) {
1763 unsigned long v;
1764 int chunk = min_t(int, left, sizeof(unsigned long));
1765
1766 if (!arch_get_random_long(&v))
1767 break;
1768
1769 memcpy(p, &v, chunk);
1770 p += chunk;
1771 left -= chunk;
1772 }
1773
1774 return nbytes - left;
1775 }
1776 EXPORT_SYMBOL(get_random_bytes_arch);
1777
1778 /*
1779 * init_std_data - initialize pool with system data
1780 *
1781 * @r: pool to initialize
1782 *
1783 * This function clears the pool's entropy count and mixes some system
1784 * data into the pool to prepare it for use. The pool is not cleared
1785 * as that can only decrease the entropy in the pool.
1786 */
init_std_data(struct entropy_store * r)1787 static void init_std_data(struct entropy_store *r)
1788 {
1789 int i;
1790 ktime_t now = ktime_get_real();
1791 unsigned long rv;
1792
1793 r->last_pulled = jiffies;
1794 mix_pool_bytes(r, &now, sizeof(now));
1795 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1796 if (!arch_get_random_seed_long(&rv) &&
1797 !arch_get_random_long(&rv))
1798 rv = random_get_entropy();
1799 mix_pool_bytes(r, &rv, sizeof(rv));
1800 }
1801 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1802 }
1803
1804 /*
1805 * Note that setup_arch() may call add_device_randomness()
1806 * long before we get here. This allows seeding of the pools
1807 * with some platform dependent data very early in the boot
1808 * process. But it limits our options here. We must use
1809 * statically allocated structures that already have all
1810 * initializations complete at compile time. We should also
1811 * take care not to overwrite the precious per platform data
1812 * we were given.
1813 */
rand_initialize(void)1814 static int rand_initialize(void)
1815 {
1816 init_std_data(&input_pool);
1817 init_std_data(&blocking_pool);
1818 crng_initialize(&primary_crng);
1819 crng_global_init_time = jiffies;
1820 if (ratelimit_disable) {
1821 urandom_warning.interval = 0;
1822 unseeded_warning.interval = 0;
1823 }
1824 return 0;
1825 }
1826 early_initcall(rand_initialize);
1827
1828 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1829 void rand_initialize_disk(struct gendisk *disk)
1830 {
1831 struct timer_rand_state *state;
1832
1833 /*
1834 * If kzalloc returns null, we just won't use that entropy
1835 * source.
1836 */
1837 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1838 if (state) {
1839 state->last_time = INITIAL_JIFFIES;
1840 disk->random = state;
1841 }
1842 }
1843 #endif
1844
1845 static ssize_t
_random_read(int nonblock,char __user * buf,size_t nbytes)1846 _random_read(int nonblock, char __user *buf, size_t nbytes)
1847 {
1848 ssize_t n;
1849
1850 if (nbytes == 0)
1851 return 0;
1852
1853 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1854 while (1) {
1855 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1856 if (n < 0)
1857 return n;
1858 trace_random_read(n*8, (nbytes-n)*8,
1859 ENTROPY_BITS(&blocking_pool),
1860 ENTROPY_BITS(&input_pool));
1861 if (n > 0)
1862 return n;
1863
1864 /* Pool is (near) empty. Maybe wait and retry. */
1865 if (nonblock)
1866 return -EAGAIN;
1867
1868 wait_event_interruptible(random_read_wait,
1869 ENTROPY_BITS(&input_pool) >=
1870 random_read_wakeup_bits);
1871 if (signal_pending(current))
1872 return -ERESTARTSYS;
1873 }
1874 }
1875
1876 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1877 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1878 {
1879 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1880 }
1881
1882 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1883 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1884 {
1885 unsigned long flags;
1886 static int maxwarn = 10;
1887 int ret;
1888
1889 if (!crng_ready() && maxwarn > 0) {
1890 maxwarn--;
1891 if (__ratelimit(&urandom_warning))
1892 printk(KERN_NOTICE "random: %s: uninitialized "
1893 "urandom read (%zd bytes read)\n",
1894 current->comm, nbytes);
1895 spin_lock_irqsave(&primary_crng.lock, flags);
1896 crng_init_cnt = 0;
1897 spin_unlock_irqrestore(&primary_crng.lock, flags);
1898 }
1899 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1900 ret = extract_crng_user(buf, nbytes);
1901 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1902 return ret;
1903 }
1904
1905 static __poll_t
random_poll(struct file * file,poll_table * wait)1906 random_poll(struct file *file, poll_table * wait)
1907 {
1908 __poll_t mask;
1909
1910 poll_wait(file, &random_read_wait, wait);
1911 poll_wait(file, &random_write_wait, wait);
1912 mask = 0;
1913 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1914 mask |= EPOLLIN | EPOLLRDNORM;
1915 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1916 mask |= EPOLLOUT | EPOLLWRNORM;
1917 return mask;
1918 }
1919
1920 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1921 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1922 {
1923 size_t bytes;
1924 __u32 t, buf[16];
1925 const char __user *p = buffer;
1926
1927 while (count > 0) {
1928 int b, i = 0;
1929
1930 bytes = min(count, sizeof(buf));
1931 if (copy_from_user(&buf, p, bytes))
1932 return -EFAULT;
1933
1934 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1935 if (!arch_get_random_int(&t))
1936 break;
1937 buf[i] ^= t;
1938 }
1939
1940 count -= bytes;
1941 p += bytes;
1942
1943 mix_pool_bytes(r, buf, bytes);
1944 cond_resched();
1945 }
1946
1947 return 0;
1948 }
1949
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1950 static ssize_t random_write(struct file *file, const char __user *buffer,
1951 size_t count, loff_t *ppos)
1952 {
1953 size_t ret;
1954
1955 ret = write_pool(&input_pool, buffer, count);
1956 if (ret)
1957 return ret;
1958
1959 return (ssize_t)count;
1960 }
1961
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1962 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1963 {
1964 int size, ent_count;
1965 int __user *p = (int __user *)arg;
1966 int retval;
1967
1968 switch (cmd) {
1969 case RNDGETENTCNT:
1970 /* inherently racy, no point locking */
1971 ent_count = ENTROPY_BITS(&input_pool);
1972 if (put_user(ent_count, p))
1973 return -EFAULT;
1974 return 0;
1975 case RNDADDTOENTCNT:
1976 if (!capable(CAP_SYS_ADMIN))
1977 return -EPERM;
1978 if (get_user(ent_count, p))
1979 return -EFAULT;
1980 return credit_entropy_bits_safe(&input_pool, ent_count);
1981 case RNDADDENTROPY:
1982 if (!capable(CAP_SYS_ADMIN))
1983 return -EPERM;
1984 if (get_user(ent_count, p++))
1985 return -EFAULT;
1986 if (ent_count < 0)
1987 return -EINVAL;
1988 if (get_user(size, p++))
1989 return -EFAULT;
1990 retval = write_pool(&input_pool, (const char __user *)p,
1991 size);
1992 if (retval < 0)
1993 return retval;
1994 return credit_entropy_bits_safe(&input_pool, ent_count);
1995 case RNDZAPENTCNT:
1996 case RNDCLEARPOOL:
1997 /*
1998 * Clear the entropy pool counters. We no longer clear
1999 * the entropy pool, as that's silly.
2000 */
2001 if (!capable(CAP_SYS_ADMIN))
2002 return -EPERM;
2003 input_pool.entropy_count = 0;
2004 blocking_pool.entropy_count = 0;
2005 return 0;
2006 case RNDRESEEDCRNG:
2007 if (!capable(CAP_SYS_ADMIN))
2008 return -EPERM;
2009 if (crng_init < 2)
2010 return -ENODATA;
2011 crng_reseed(&primary_crng, NULL);
2012 crng_global_init_time = jiffies - 1;
2013 return 0;
2014 default:
2015 return -EINVAL;
2016 }
2017 }
2018
random_fasync(int fd,struct file * filp,int on)2019 static int random_fasync(int fd, struct file *filp, int on)
2020 {
2021 return fasync_helper(fd, filp, on, &fasync);
2022 }
2023
2024 const struct file_operations random_fops = {
2025 .read = random_read,
2026 .write = random_write,
2027 .poll = random_poll,
2028 .unlocked_ioctl = random_ioctl,
2029 .fasync = random_fasync,
2030 .llseek = noop_llseek,
2031 };
2032
2033 const struct file_operations urandom_fops = {
2034 .read = urandom_read,
2035 .write = random_write,
2036 .unlocked_ioctl = random_ioctl,
2037 .fasync = random_fasync,
2038 .llseek = noop_llseek,
2039 };
2040
SYSCALL_DEFINE3(getrandom,char __user *,buf,size_t,count,unsigned int,flags)2041 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2042 unsigned int, flags)
2043 {
2044 int ret;
2045
2046 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2047 return -EINVAL;
2048
2049 if (count > INT_MAX)
2050 count = INT_MAX;
2051
2052 if (flags & GRND_RANDOM)
2053 return _random_read(flags & GRND_NONBLOCK, buf, count);
2054
2055 if (!crng_ready()) {
2056 if (flags & GRND_NONBLOCK)
2057 return -EAGAIN;
2058 ret = wait_for_random_bytes();
2059 if (unlikely(ret))
2060 return ret;
2061 }
2062 return urandom_read(NULL, buf, count, NULL);
2063 }
2064
2065 /********************************************************************
2066 *
2067 * Sysctl interface
2068 *
2069 ********************************************************************/
2070
2071 #ifdef CONFIG_SYSCTL
2072
2073 #include <linux/sysctl.h>
2074
2075 static int min_read_thresh = 8, min_write_thresh;
2076 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2077 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2078 static int random_min_urandom_seed = 60;
2079 static char sysctl_bootid[16];
2080
2081 /*
2082 * This function is used to return both the bootid UUID, and random
2083 * UUID. The difference is in whether table->data is NULL; if it is,
2084 * then a new UUID is generated and returned to the user.
2085 *
2086 * If the user accesses this via the proc interface, the UUID will be
2087 * returned as an ASCII string in the standard UUID format; if via the
2088 * sysctl system call, as 16 bytes of binary data.
2089 */
proc_do_uuid(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2090 static int proc_do_uuid(struct ctl_table *table, int write,
2091 void __user *buffer, size_t *lenp, loff_t *ppos)
2092 {
2093 struct ctl_table fake_table;
2094 unsigned char buf[64], tmp_uuid[16], *uuid;
2095
2096 uuid = table->data;
2097 if (!uuid) {
2098 uuid = tmp_uuid;
2099 generate_random_uuid(uuid);
2100 } else {
2101 static DEFINE_SPINLOCK(bootid_spinlock);
2102
2103 spin_lock(&bootid_spinlock);
2104 if (!uuid[8])
2105 generate_random_uuid(uuid);
2106 spin_unlock(&bootid_spinlock);
2107 }
2108
2109 sprintf(buf, "%pU", uuid);
2110
2111 fake_table.data = buf;
2112 fake_table.maxlen = sizeof(buf);
2113
2114 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2115 }
2116
2117 /*
2118 * Return entropy available scaled to integral bits
2119 */
proc_do_entropy(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2120 static int proc_do_entropy(struct ctl_table *table, int write,
2121 void __user *buffer, size_t *lenp, loff_t *ppos)
2122 {
2123 struct ctl_table fake_table;
2124 int entropy_count;
2125
2126 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2127
2128 fake_table.data = &entropy_count;
2129 fake_table.maxlen = sizeof(entropy_count);
2130
2131 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2132 }
2133
2134 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2135 extern struct ctl_table random_table[];
2136 struct ctl_table random_table[] = {
2137 {
2138 .procname = "poolsize",
2139 .data = &sysctl_poolsize,
2140 .maxlen = sizeof(int),
2141 .mode = 0444,
2142 .proc_handler = proc_dointvec,
2143 },
2144 {
2145 .procname = "entropy_avail",
2146 .maxlen = sizeof(int),
2147 .mode = 0444,
2148 .proc_handler = proc_do_entropy,
2149 .data = &input_pool.entropy_count,
2150 },
2151 {
2152 .procname = "read_wakeup_threshold",
2153 .data = &random_read_wakeup_bits,
2154 .maxlen = sizeof(int),
2155 .mode = 0644,
2156 .proc_handler = proc_dointvec_minmax,
2157 .extra1 = &min_read_thresh,
2158 .extra2 = &max_read_thresh,
2159 },
2160 {
2161 .procname = "write_wakeup_threshold",
2162 .data = &random_write_wakeup_bits,
2163 .maxlen = sizeof(int),
2164 .mode = 0644,
2165 .proc_handler = proc_dointvec_minmax,
2166 .extra1 = &min_write_thresh,
2167 .extra2 = &max_write_thresh,
2168 },
2169 {
2170 .procname = "urandom_min_reseed_secs",
2171 .data = &random_min_urandom_seed,
2172 .maxlen = sizeof(int),
2173 .mode = 0644,
2174 .proc_handler = proc_dointvec,
2175 },
2176 {
2177 .procname = "boot_id",
2178 .data = &sysctl_bootid,
2179 .maxlen = 16,
2180 .mode = 0444,
2181 .proc_handler = proc_do_uuid,
2182 },
2183 {
2184 .procname = "uuid",
2185 .maxlen = 16,
2186 .mode = 0444,
2187 .proc_handler = proc_do_uuid,
2188 },
2189 #ifdef ADD_INTERRUPT_BENCH
2190 {
2191 .procname = "add_interrupt_avg_cycles",
2192 .data = &avg_cycles,
2193 .maxlen = sizeof(avg_cycles),
2194 .mode = 0444,
2195 .proc_handler = proc_doulongvec_minmax,
2196 },
2197 {
2198 .procname = "add_interrupt_avg_deviation",
2199 .data = &avg_deviation,
2200 .maxlen = sizeof(avg_deviation),
2201 .mode = 0444,
2202 .proc_handler = proc_doulongvec_minmax,
2203 },
2204 #endif
2205 { }
2206 };
2207 #endif /* CONFIG_SYSCTL */
2208
2209 struct batched_entropy {
2210 union {
2211 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2212 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2213 };
2214 unsigned int position;
2215 };
2216 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2217
2218 /*
2219 * Get a random word for internal kernel use only. The quality of the random
2220 * number is either as good as RDRAND or as good as /dev/urandom, with the
2221 * goal of being quite fast and not depleting entropy. In order to ensure
2222 * that the randomness provided by this function is okay, the function
2223 * wait_for_random_bytes() should be called and return 0 at least once
2224 * at any point prior.
2225 */
2226 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
get_random_u64(void)2227 u64 get_random_u64(void)
2228 {
2229 u64 ret;
2230 bool use_lock;
2231 unsigned long flags = 0;
2232 struct batched_entropy *batch;
2233 static void *previous;
2234
2235 #if BITS_PER_LONG == 64
2236 if (arch_get_random_long((unsigned long *)&ret))
2237 return ret;
2238 #else
2239 if (arch_get_random_long((unsigned long *)&ret) &&
2240 arch_get_random_long((unsigned long *)&ret + 1))
2241 return ret;
2242 #endif
2243
2244 warn_unseeded_randomness(&previous);
2245
2246 use_lock = READ_ONCE(crng_init) < 2;
2247 batch = &get_cpu_var(batched_entropy_u64);
2248 if (use_lock)
2249 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2250 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2251 extract_crng((__u32 *)batch->entropy_u64);
2252 batch->position = 0;
2253 }
2254 ret = batch->entropy_u64[batch->position++];
2255 if (use_lock)
2256 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2257 put_cpu_var(batched_entropy_u64);
2258 return ret;
2259 }
2260 EXPORT_SYMBOL(get_random_u64);
2261
2262 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
get_random_u32(void)2263 u32 get_random_u32(void)
2264 {
2265 u32 ret;
2266 bool use_lock;
2267 unsigned long flags = 0;
2268 struct batched_entropy *batch;
2269 static void *previous;
2270
2271 if (arch_get_random_int(&ret))
2272 return ret;
2273
2274 warn_unseeded_randomness(&previous);
2275
2276 use_lock = READ_ONCE(crng_init) < 2;
2277 batch = &get_cpu_var(batched_entropy_u32);
2278 if (use_lock)
2279 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2280 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2281 extract_crng(batch->entropy_u32);
2282 batch->position = 0;
2283 }
2284 ret = batch->entropy_u32[batch->position++];
2285 if (use_lock)
2286 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2287 put_cpu_var(batched_entropy_u32);
2288 return ret;
2289 }
2290 EXPORT_SYMBOL(get_random_u32);
2291
2292 /* It's important to invalidate all potential batched entropy that might
2293 * be stored before the crng is initialized, which we can do lazily by
2294 * simply resetting the counter to zero so that it's re-extracted on the
2295 * next usage. */
invalidate_batched_entropy(void)2296 static void invalidate_batched_entropy(void)
2297 {
2298 int cpu;
2299 unsigned long flags;
2300
2301 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2302 for_each_possible_cpu (cpu) {
2303 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2304 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2305 }
2306 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2307 }
2308
2309 /**
2310 * randomize_page - Generate a random, page aligned address
2311 * @start: The smallest acceptable address the caller will take.
2312 * @range: The size of the area, starting at @start, within which the
2313 * random address must fall.
2314 *
2315 * If @start + @range would overflow, @range is capped.
2316 *
2317 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2318 * @start was already page aligned. We now align it regardless.
2319 *
2320 * Return: A page aligned address within [start, start + range). On error,
2321 * @start is returned.
2322 */
2323 unsigned long
randomize_page(unsigned long start,unsigned long range)2324 randomize_page(unsigned long start, unsigned long range)
2325 {
2326 if (!PAGE_ALIGNED(start)) {
2327 range -= PAGE_ALIGN(start) - start;
2328 start = PAGE_ALIGN(start);
2329 }
2330
2331 if (start > ULONG_MAX - range)
2332 range = ULONG_MAX - start;
2333
2334 range >>= PAGE_SHIFT;
2335
2336 if (range == 0)
2337 return start;
2338
2339 return start + (get_random_long() % range << PAGE_SHIFT);
2340 }
2341
2342 /* Interface for in-kernel drivers of true hardware RNGs.
2343 * Those devices may produce endless random bits and will be throttled
2344 * when our pool is full.
2345 */
add_hwgenerator_randomness(const char * buffer,size_t count,size_t entropy)2346 void add_hwgenerator_randomness(const char *buffer, size_t count,
2347 size_t entropy)
2348 {
2349 struct entropy_store *poolp = &input_pool;
2350
2351 if (unlikely(crng_init == 0)) {
2352 crng_fast_load(buffer, count);
2353 return;
2354 }
2355
2356 /* Suspend writing if we're above the trickle threshold.
2357 * We'll be woken up again once below random_write_wakeup_thresh,
2358 * or when the calling thread is about to terminate.
2359 */
2360 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2361 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2362 mix_pool_bytes(poolp, buffer, count);
2363 credit_entropy_bits(poolp, entropy);
2364 }
2365 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2366