1 /*
2 * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
3 *
4 * cm4000_cs.c support.linux@omnikey.com
5 *
6 * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
7 * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
8 * Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
9 * Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
10 * Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
11 *
12 * current version: 2.4.0gm4
13 *
14 * (C) 2000,2001,2002,2003,2004 Omnikey AG
15 *
16 * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
17 * - Adhere to Kernel process/coding-style.rst
18 * - Port to 2.6.13 "new" style PCMCIA
19 * - Check for copy_{from,to}_user return values
20 * - Use nonseekable_open()
21 * - add class interface for udev device creation
22 *
23 * All rights reserved. Licensed under dual BSD/GPL license.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <linux/fs.h>
31 #include <linux/delay.h>
32 #include <linux/bitrev.h>
33 #include <linux/mutex.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36
37 #include <pcmcia/cistpl.h>
38 #include <pcmcia/cisreg.h>
39 #include <pcmcia/ciscode.h>
40 #include <pcmcia/ds.h>
41
42 #include <linux/cm4000_cs.h>
43
44 /* #define ATR_CSUM */
45
46 #define reader_to_dev(x) (&x->p_dev->dev)
47
48 /* n (debug level) is ignored */
49 /* additional debug output may be enabled by re-compiling with
50 * CM4000_DEBUG set */
51 /* #define CM4000_DEBUG */
52 #define DEBUGP(n, rdr, x, args...) do { \
53 dev_dbg(reader_to_dev(rdr), "%s:" x, \
54 __func__ , ## args); \
55 } while (0)
56
57 static DEFINE_MUTEX(cmm_mutex);
58
59 #define T_1SEC (HZ)
60 #define T_10MSEC msecs_to_jiffies(10)
61 #define T_20MSEC msecs_to_jiffies(20)
62 #define T_40MSEC msecs_to_jiffies(40)
63 #define T_50MSEC msecs_to_jiffies(50)
64 #define T_100MSEC msecs_to_jiffies(100)
65 #define T_500MSEC msecs_to_jiffies(500)
66
67 static void cm4000_release(struct pcmcia_device *link);
68
69 static int major; /* major number we get from the kernel */
70
71 /* note: the first state has to have number 0 always */
72
73 #define M_FETCH_ATR 0
74 #define M_TIMEOUT_WAIT 1
75 #define M_READ_ATR_LEN 2
76 #define M_READ_ATR 3
77 #define M_ATR_PRESENT 4
78 #define M_BAD_CARD 5
79 #define M_CARDOFF 6
80
81 #define LOCK_IO 0
82 #define LOCK_MONITOR 1
83
84 #define IS_AUTOPPS_ACT 6
85 #define IS_PROCBYTE_PRESENT 7
86 #define IS_INVREV 8
87 #define IS_ANY_T0 9
88 #define IS_ANY_T1 10
89 #define IS_ATR_PRESENT 11
90 #define IS_ATR_VALID 12
91 #define IS_CMM_ABSENT 13
92 #define IS_BAD_LENGTH 14
93 #define IS_BAD_CSUM 15
94 #define IS_BAD_CARD 16
95
96 #define REG_FLAGS0(x) (x + 0)
97 #define REG_FLAGS1(x) (x + 1)
98 #define REG_NUM_BYTES(x) (x + 2)
99 #define REG_BUF_ADDR(x) (x + 3)
100 #define REG_BUF_DATA(x) (x + 4)
101 #define REG_NUM_SEND(x) (x + 5)
102 #define REG_BAUDRATE(x) (x + 6)
103 #define REG_STOPBITS(x) (x + 7)
104
105 struct cm4000_dev {
106 struct pcmcia_device *p_dev;
107
108 unsigned char atr[MAX_ATR];
109 unsigned char rbuf[512];
110 unsigned char sbuf[512];
111
112 wait_queue_head_t devq; /* when removing cardman must not be
113 zeroed! */
114
115 wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
116 wait_queue_head_t atrq; /* wait for ATR valid */
117 wait_queue_head_t readq; /* used by write to wake blk.read */
118
119 /* warning: do not move this fields.
120 * initialising to zero depends on it - see ZERO_DEV below. */
121 unsigned char atr_csum;
122 unsigned char atr_len_retry;
123 unsigned short atr_len;
124 unsigned short rlen; /* bytes avail. after write */
125 unsigned short rpos; /* latest read pos. write zeroes */
126 unsigned char procbyte; /* T=0 procedure byte */
127 unsigned char mstate; /* state of card monitor */
128 unsigned char cwarn; /* slow down warning */
129 unsigned char flags0; /* cardman IO-flags 0 */
130 unsigned char flags1; /* cardman IO-flags 1 */
131 unsigned int mdelay; /* variable monitor speeds, in jiffies */
132
133 unsigned int baudv; /* baud value for speed */
134 unsigned char ta1;
135 unsigned char proto; /* T=0, T=1, ... */
136 unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
137 access */
138
139 unsigned char pts[4];
140
141 struct timer_list timer; /* used to keep monitor running */
142 int monitor_running;
143 };
144
145 #define ZERO_DEV(dev) \
146 memset(&dev->atr_csum,0, \
147 sizeof(struct cm4000_dev) - \
148 offsetof(struct cm4000_dev, atr_csum))
149
150 static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
151 static struct class *cmm_class;
152
153 /* This table doesn't use spaces after the comma between fields and thus
154 * violates process/coding-style.rst. However, I don't really think wrapping it around will
155 * make it any clearer to read -HW */
156 static unsigned char fi_di_table[10][14] = {
157 /*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
158 /*DI */
159 /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
160 /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
161 /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
162 /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
163 /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
164 /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
165 /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
166 /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
167 /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
168 /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
169 };
170
171 #ifndef CM4000_DEBUG
172 #define xoutb outb
173 #define xinb inb
174 #else
xoutb(unsigned char val,unsigned short port)175 static inline void xoutb(unsigned char val, unsigned short port)
176 {
177 pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
178 outb(val, port);
179 }
xinb(unsigned short port)180 static inline unsigned char xinb(unsigned short port)
181 {
182 unsigned char val;
183
184 val = inb(port);
185 pr_debug("%.2x=inb(%.4x)\n", val, port);
186
187 return val;
188 }
189 #endif
190
invert_revert(unsigned char ch)191 static inline unsigned char invert_revert(unsigned char ch)
192 {
193 return bitrev8(~ch);
194 }
195
str_invert_revert(unsigned char * b,int len)196 static void str_invert_revert(unsigned char *b, int len)
197 {
198 int i;
199
200 for (i = 0; i < len; i++)
201 b[i] = invert_revert(b[i]);
202 }
203
204 #define ATRLENCK(dev,pos) \
205 if (pos>=dev->atr_len || pos>=MAX_ATR) \
206 goto return_0;
207
calc_baudv(unsigned char fidi)208 static unsigned int calc_baudv(unsigned char fidi)
209 {
210 unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
211
212 fi_rfu = 372;
213 di_rfu = 1;
214
215 /* FI */
216 switch ((fidi >> 4) & 0x0F) {
217 case 0x00:
218 wcrcf = 372;
219 break;
220 case 0x01:
221 wcrcf = 372;
222 break;
223 case 0x02:
224 wcrcf = 558;
225 break;
226 case 0x03:
227 wcrcf = 744;
228 break;
229 case 0x04:
230 wcrcf = 1116;
231 break;
232 case 0x05:
233 wcrcf = 1488;
234 break;
235 case 0x06:
236 wcrcf = 1860;
237 break;
238 case 0x07:
239 wcrcf = fi_rfu;
240 break;
241 case 0x08:
242 wcrcf = fi_rfu;
243 break;
244 case 0x09:
245 wcrcf = 512;
246 break;
247 case 0x0A:
248 wcrcf = 768;
249 break;
250 case 0x0B:
251 wcrcf = 1024;
252 break;
253 case 0x0C:
254 wcrcf = 1536;
255 break;
256 case 0x0D:
257 wcrcf = 2048;
258 break;
259 default:
260 wcrcf = fi_rfu;
261 break;
262 }
263
264 /* DI */
265 switch (fidi & 0x0F) {
266 case 0x00:
267 wbrcf = di_rfu;
268 break;
269 case 0x01:
270 wbrcf = 1;
271 break;
272 case 0x02:
273 wbrcf = 2;
274 break;
275 case 0x03:
276 wbrcf = 4;
277 break;
278 case 0x04:
279 wbrcf = 8;
280 break;
281 case 0x05:
282 wbrcf = 16;
283 break;
284 case 0x06:
285 wbrcf = 32;
286 break;
287 case 0x07:
288 wbrcf = di_rfu;
289 break;
290 case 0x08:
291 wbrcf = 12;
292 break;
293 case 0x09:
294 wbrcf = 20;
295 break;
296 default:
297 wbrcf = di_rfu;
298 break;
299 }
300
301 return (wcrcf / wbrcf);
302 }
303
io_read_num_rec_bytes(unsigned int iobase,unsigned short * s)304 static unsigned short io_read_num_rec_bytes(unsigned int iobase,
305 unsigned short *s)
306 {
307 unsigned short tmp;
308
309 tmp = *s = 0;
310 do {
311 *s = tmp;
312 tmp = inb(REG_NUM_BYTES(iobase)) |
313 (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
314 } while (tmp != *s);
315
316 return *s;
317 }
318
parse_atr(struct cm4000_dev * dev)319 static int parse_atr(struct cm4000_dev *dev)
320 {
321 unsigned char any_t1, any_t0;
322 unsigned char ch, ifno;
323 int ix, done;
324
325 DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
326
327 if (dev->atr_len < 3) {
328 DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
329 return 0;
330 }
331
332 if (dev->atr[0] == 0x3f)
333 set_bit(IS_INVREV, &dev->flags);
334 else
335 clear_bit(IS_INVREV, &dev->flags);
336 ix = 1;
337 ifno = 1;
338 ch = dev->atr[1];
339 dev->proto = 0; /* XXX PROTO */
340 any_t1 = any_t0 = done = 0;
341 dev->ta1 = 0x11; /* defaults to 9600 baud */
342 do {
343 if (ifno == 1 && (ch & 0x10)) {
344 /* read first interface byte and TA1 is present */
345 dev->ta1 = dev->atr[2];
346 DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
347 ifno++;
348 } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
349 dev->ta1 = 0x11;
350 ifno++;
351 }
352
353 DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
354 ix += ((ch & 0x10) >> 4) /* no of int.face chars */
355 +((ch & 0x20) >> 5)
356 + ((ch & 0x40) >> 6)
357 + ((ch & 0x80) >> 7);
358 /* ATRLENCK(dev,ix); */
359 if (ch & 0x80) { /* TDi */
360 ch = dev->atr[ix];
361 if ((ch & 0x0f)) {
362 any_t1 = 1;
363 DEBUGP(5, dev, "card is capable of T=1\n");
364 } else {
365 any_t0 = 1;
366 DEBUGP(5, dev, "card is capable of T=0\n");
367 }
368 } else
369 done = 1;
370 } while (!done);
371
372 DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
373 ix, dev->atr[1] & 15, any_t1);
374 if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
375 DEBUGP(5, dev, "length error\n");
376 return 0;
377 }
378 if (any_t0)
379 set_bit(IS_ANY_T0, &dev->flags);
380
381 if (any_t1) { /* compute csum */
382 dev->atr_csum = 0;
383 #ifdef ATR_CSUM
384 for (i = 1; i < dev->atr_len; i++)
385 dev->atr_csum ^= dev->atr[i];
386 if (dev->atr_csum) {
387 set_bit(IS_BAD_CSUM, &dev->flags);
388 DEBUGP(5, dev, "bad checksum\n");
389 goto return_0;
390 }
391 #endif
392 if (any_t0 == 0)
393 dev->proto = 1; /* XXX PROTO */
394 set_bit(IS_ANY_T1, &dev->flags);
395 }
396
397 return 1;
398 }
399
400 struct card_fixup {
401 char atr[12];
402 u_int8_t atr_len;
403 u_int8_t stopbits;
404 };
405
406 static struct card_fixup card_fixups[] = {
407 { /* ACOS */
408 .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
409 .atr_len = 7,
410 .stopbits = 0x03,
411 },
412 { /* Motorola */
413 .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
414 0x41, 0x81, 0x81 },
415 .atr_len = 11,
416 .stopbits = 0x04,
417 },
418 };
419
set_cardparameter(struct cm4000_dev * dev)420 static void set_cardparameter(struct cm4000_dev *dev)
421 {
422 int i;
423 unsigned int iobase = dev->p_dev->resource[0]->start;
424 u_int8_t stopbits = 0x02; /* ISO default */
425
426 DEBUGP(3, dev, "-> set_cardparameter\n");
427
428 dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
429 xoutb(dev->flags1, REG_FLAGS1(iobase));
430 DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
431
432 /* set baudrate */
433 xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
434
435 DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
436 ((dev->baudv - 1) & 0xFF));
437
438 /* set stopbits */
439 for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
440 if (!memcmp(dev->atr, card_fixups[i].atr,
441 card_fixups[i].atr_len))
442 stopbits = card_fixups[i].stopbits;
443 }
444 xoutb(stopbits, REG_STOPBITS(iobase));
445
446 DEBUGP(3, dev, "<- set_cardparameter\n");
447 }
448
set_protocol(struct cm4000_dev * dev,struct ptsreq * ptsreq)449 static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
450 {
451
452 unsigned long tmp, i;
453 unsigned short num_bytes_read;
454 unsigned char pts_reply[4];
455 ssize_t rc;
456 unsigned int iobase = dev->p_dev->resource[0]->start;
457
458 rc = 0;
459
460 DEBUGP(3, dev, "-> set_protocol\n");
461 DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
462 "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
463 "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
464 (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
465 ptsreq->pts3);
466
467 /* Fill PTS structure */
468 dev->pts[0] = 0xff;
469 dev->pts[1] = 0x00;
470 tmp = ptsreq->protocol;
471 while ((tmp = (tmp >> 1)) > 0)
472 dev->pts[1]++;
473 dev->proto = dev->pts[1]; /* Set new protocol */
474 dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
475
476 /* Correct Fi/Di according to CM4000 Fi/Di table */
477 DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
478 /* set Fi/Di according to ATR TA(1) */
479 dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
480
481 /* Calculate PCK character */
482 dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
483
484 DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
485 dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
486
487 /* check card convention */
488 if (test_bit(IS_INVREV, &dev->flags))
489 str_invert_revert(dev->pts, 4);
490
491 /* reset SM */
492 xoutb(0x80, REG_FLAGS0(iobase));
493
494 /* Enable access to the message buffer */
495 DEBUGP(5, dev, "Enable access to the messages buffer\n");
496 dev->flags1 = 0x20 /* T_Active */
497 | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
498 | ((dev->baudv >> 8) & 0x01); /* MSB-baud */
499 xoutb(dev->flags1, REG_FLAGS1(iobase));
500
501 DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
502 dev->flags1);
503
504 /* write challenge to the buffer */
505 DEBUGP(5, dev, "Write challenge to buffer: ");
506 for (i = 0; i < 4; i++) {
507 xoutb(i, REG_BUF_ADDR(iobase));
508 xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
509 #ifdef CM4000_DEBUG
510 pr_debug("0x%.2x ", dev->pts[i]);
511 }
512 pr_debug("\n");
513 #else
514 }
515 #endif
516
517 /* set number of bytes to write */
518 DEBUGP(5, dev, "Set number of bytes to write\n");
519 xoutb(0x04, REG_NUM_SEND(iobase));
520
521 /* Trigger CARDMAN CONTROLLER */
522 xoutb(0x50, REG_FLAGS0(iobase));
523
524 /* Monitor progress */
525 /* wait for xmit done */
526 DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
527
528 for (i = 0; i < 100; i++) {
529 if (inb(REG_FLAGS0(iobase)) & 0x08) {
530 DEBUGP(5, dev, "NumRecBytes is valid\n");
531 break;
532 }
533 usleep_range(10000, 11000);
534 }
535 if (i == 100) {
536 DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
537 "valid\n");
538 rc = -EIO;
539 goto exit_setprotocol;
540 }
541
542 DEBUGP(5, dev, "Reading NumRecBytes\n");
543 for (i = 0; i < 100; i++) {
544 io_read_num_rec_bytes(iobase, &num_bytes_read);
545 if (num_bytes_read >= 4) {
546 DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
547 if (num_bytes_read > 4) {
548 rc = -EIO;
549 goto exit_setprotocol;
550 }
551 break;
552 }
553 usleep_range(10000, 11000);
554 }
555
556 /* check whether it is a short PTS reply? */
557 if (num_bytes_read == 3)
558 i = 0;
559
560 if (i == 100) {
561 DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
562 rc = -EIO;
563 goto exit_setprotocol;
564 }
565
566 DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
567 xoutb(0x80, REG_FLAGS0(iobase));
568
569 /* Read PPS reply */
570 DEBUGP(5, dev, "Read PPS reply\n");
571 for (i = 0; i < num_bytes_read; i++) {
572 xoutb(i, REG_BUF_ADDR(iobase));
573 pts_reply[i] = inb(REG_BUF_DATA(iobase));
574 }
575
576 #ifdef CM4000_DEBUG
577 DEBUGP(2, dev, "PTSreply: ");
578 for (i = 0; i < num_bytes_read; i++) {
579 pr_debug("0x%.2x ", pts_reply[i]);
580 }
581 pr_debug("\n");
582 #endif /* CM4000_DEBUG */
583
584 DEBUGP(5, dev, "Clear Tactive in Flags1\n");
585 xoutb(0x20, REG_FLAGS1(iobase));
586
587 /* Compare ptsreq and ptsreply */
588 if ((dev->pts[0] == pts_reply[0]) &&
589 (dev->pts[1] == pts_reply[1]) &&
590 (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
591 /* setcardparameter according to PPS */
592 dev->baudv = calc_baudv(dev->pts[2]);
593 set_cardparameter(dev);
594 } else if ((dev->pts[0] == pts_reply[0]) &&
595 ((dev->pts[1] & 0xef) == pts_reply[1]) &&
596 ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
597 /* short PTS reply, set card parameter to default values */
598 dev->baudv = calc_baudv(0x11);
599 set_cardparameter(dev);
600 } else
601 rc = -EIO;
602
603 exit_setprotocol:
604 DEBUGP(3, dev, "<- set_protocol\n");
605 return rc;
606 }
607
io_detect_cm4000(unsigned int iobase,struct cm4000_dev * dev)608 static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
609 {
610
611 /* note: statemachine is assumed to be reset */
612 if (inb(REG_FLAGS0(iobase)) & 8) {
613 clear_bit(IS_ATR_VALID, &dev->flags);
614 set_bit(IS_CMM_ABSENT, &dev->flags);
615 return 0; /* detect CMM = 1 -> failure */
616 }
617 /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
618 xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
619 if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
620 clear_bit(IS_ATR_VALID, &dev->flags);
621 set_bit(IS_CMM_ABSENT, &dev->flags);
622 return 0; /* detect CMM=0 -> failure */
623 }
624 /* clear detectCMM again by restoring original flags1 */
625 xoutb(dev->flags1, REG_FLAGS1(iobase));
626 return 1;
627 }
628
terminate_monitor(struct cm4000_dev * dev)629 static void terminate_monitor(struct cm4000_dev *dev)
630 {
631
632 /* tell the monitor to stop and wait until
633 * it terminates.
634 */
635 DEBUGP(3, dev, "-> terminate_monitor\n");
636 wait_event_interruptible(dev->devq,
637 test_and_set_bit(LOCK_MONITOR,
638 (void *)&dev->flags));
639
640 /* now, LOCK_MONITOR has been set.
641 * allow a last cycle in the monitor.
642 * the monitor will indicate that it has
643 * finished by clearing this bit.
644 */
645 DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
646 while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
647 msleep(25);
648
649 DEBUGP(5, dev, "Delete timer\n");
650 del_timer_sync(&dev->timer);
651 #ifdef CM4000_DEBUG
652 dev->monitor_running = 0;
653 #endif
654
655 DEBUGP(3, dev, "<- terminate_monitor\n");
656 }
657
658 /*
659 * monitor the card every 50msec. as a side-effect, retrieve the
660 * atr once a card is inserted. another side-effect of retrieving the
661 * atr is that the card will be powered on, so there is no need to
662 * power on the card explicitly from the application: the driver
663 * is already doing that for you.
664 */
665
monitor_card(struct timer_list * t)666 static void monitor_card(struct timer_list *t)
667 {
668 struct cm4000_dev *dev = from_timer(dev, t, timer);
669 unsigned int iobase = dev->p_dev->resource[0]->start;
670 unsigned short s;
671 struct ptsreq ptsreq;
672 int i, atrc;
673
674 DEBUGP(7, dev, "-> monitor_card\n");
675
676 /* if someone has set the lock for us: we're done! */
677 if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
678 DEBUGP(4, dev, "About to stop monitor\n");
679 /* no */
680 dev->rlen =
681 dev->rpos =
682 dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
683 dev->mstate = M_FETCH_ATR;
684 clear_bit(LOCK_MONITOR, &dev->flags);
685 /* close et al. are sleeping on devq, so wake it */
686 wake_up_interruptible(&dev->devq);
687 DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
688 return;
689 }
690
691 /* try to lock io: if it is already locked, just add another timer */
692 if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
693 DEBUGP(4, dev, "Couldn't get IO lock\n");
694 goto return_with_timer;
695 }
696
697 /* is a card/a reader inserted at all ? */
698 dev->flags0 = xinb(REG_FLAGS0(iobase));
699 DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
700 DEBUGP(7, dev, "smartcard present: %s\n",
701 dev->flags0 & 1 ? "yes" : "no");
702 DEBUGP(7, dev, "cardman present: %s\n",
703 dev->flags0 == 0xff ? "no" : "yes");
704
705 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
706 || dev->flags0 == 0xff) { /* no cardman inserted */
707 /* no */
708 dev->rlen =
709 dev->rpos =
710 dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
711 dev->mstate = M_FETCH_ATR;
712
713 dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
714
715 if (dev->flags0 == 0xff) {
716 DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
717 set_bit(IS_CMM_ABSENT, &dev->flags);
718 } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
719 DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
720 "(card is removed)\n");
721 clear_bit(IS_CMM_ABSENT, &dev->flags);
722 }
723
724 goto release_io;
725 } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
726 /* cardman and card present but cardman was absent before
727 * (after suspend with inserted card) */
728 DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
729 clear_bit(IS_CMM_ABSENT, &dev->flags);
730 }
731
732 if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
733 DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
734 goto release_io;
735 }
736
737 switch (dev->mstate) {
738 case M_CARDOFF: {
739 unsigned char flags0;
740
741 DEBUGP(4, dev, "M_CARDOFF\n");
742 flags0 = inb(REG_FLAGS0(iobase));
743 if (flags0 & 0x02) {
744 /* wait until Flags0 indicate power is off */
745 dev->mdelay = T_10MSEC;
746 } else {
747 /* Flags0 indicate power off and no card inserted now;
748 * Reset CARDMAN CONTROLLER */
749 xoutb(0x80, REG_FLAGS0(iobase));
750
751 /* prepare for fetching ATR again: after card off ATR
752 * is read again automatically */
753 dev->rlen =
754 dev->rpos =
755 dev->atr_csum =
756 dev->atr_len_retry = dev->cwarn = 0;
757 dev->mstate = M_FETCH_ATR;
758
759 /* minimal gap between CARDOFF and read ATR is 50msec */
760 dev->mdelay = T_50MSEC;
761 }
762 break;
763 }
764 case M_FETCH_ATR:
765 DEBUGP(4, dev, "M_FETCH_ATR\n");
766 xoutb(0x80, REG_FLAGS0(iobase));
767 DEBUGP(4, dev, "Reset BAUDV to 9600\n");
768 dev->baudv = 0x173; /* 9600 */
769 xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
770 xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
771 xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
772 value */
773 /* warm start vs. power on: */
774 xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
775 dev->mdelay = T_40MSEC;
776 dev->mstate = M_TIMEOUT_WAIT;
777 break;
778 case M_TIMEOUT_WAIT:
779 DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
780 /* numRecBytes */
781 io_read_num_rec_bytes(iobase, &dev->atr_len);
782 dev->mdelay = T_10MSEC;
783 dev->mstate = M_READ_ATR_LEN;
784 break;
785 case M_READ_ATR_LEN:
786 DEBUGP(4, dev, "M_READ_ATR_LEN\n");
787 /* infinite loop possible, since there is no timeout */
788
789 #define MAX_ATR_LEN_RETRY 100
790
791 if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
792 if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
793 dev->mdelay = T_10MSEC;
794 dev->mstate = M_READ_ATR;
795 }
796 } else {
797 dev->atr_len = s;
798 dev->atr_len_retry = 0; /* set new timeout */
799 }
800
801 DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
802 break;
803 case M_READ_ATR:
804 DEBUGP(4, dev, "M_READ_ATR\n");
805 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
806 for (i = 0; i < dev->atr_len; i++) {
807 xoutb(i, REG_BUF_ADDR(iobase));
808 dev->atr[i] = inb(REG_BUF_DATA(iobase));
809 }
810 /* Deactivate T_Active flags */
811 DEBUGP(4, dev, "Deactivate T_Active flags\n");
812 dev->flags1 = 0x01;
813 xoutb(dev->flags1, REG_FLAGS1(iobase));
814
815 /* atr is present (which doesn't mean it's valid) */
816 set_bit(IS_ATR_PRESENT, &dev->flags);
817 if (dev->atr[0] == 0x03)
818 str_invert_revert(dev->atr, dev->atr_len);
819 atrc = parse_atr(dev);
820 if (atrc == 0) { /* atr invalid */
821 dev->mdelay = 0;
822 dev->mstate = M_BAD_CARD;
823 } else {
824 dev->mdelay = T_50MSEC;
825 dev->mstate = M_ATR_PRESENT;
826 set_bit(IS_ATR_VALID, &dev->flags);
827 }
828
829 if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
830 DEBUGP(4, dev, "monitor_card: ATR valid\n");
831 /* if ta1 == 0x11, no PPS necessary (default values) */
832 /* do not do PPS with multi protocol cards */
833 if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
834 (dev->ta1 != 0x11) &&
835 !(test_bit(IS_ANY_T0, &dev->flags) &&
836 test_bit(IS_ANY_T1, &dev->flags))) {
837 DEBUGP(4, dev, "Perform AUTOPPS\n");
838 set_bit(IS_AUTOPPS_ACT, &dev->flags);
839 ptsreq.protocol = (0x01 << dev->proto);
840 ptsreq.flags = 0x01;
841 ptsreq.pts1 = 0x00;
842 ptsreq.pts2 = 0x00;
843 ptsreq.pts3 = 0x00;
844 if (set_protocol(dev, &ptsreq) == 0) {
845 DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
846 clear_bit(IS_AUTOPPS_ACT, &dev->flags);
847 wake_up_interruptible(&dev->atrq);
848 } else {
849 DEBUGP(4, dev, "AUTOPPS failed: "
850 "repower using defaults\n");
851 /* prepare for repowering */
852 clear_bit(IS_ATR_PRESENT, &dev->flags);
853 clear_bit(IS_ATR_VALID, &dev->flags);
854 dev->rlen =
855 dev->rpos =
856 dev->atr_csum =
857 dev->atr_len_retry = dev->cwarn = 0;
858 dev->mstate = M_FETCH_ATR;
859
860 dev->mdelay = T_50MSEC;
861 }
862 } else {
863 /* for cards which use slightly different
864 * params (extra guard time) */
865 set_cardparameter(dev);
866 if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
867 DEBUGP(4, dev, "AUTOPPS already active "
868 "2nd try:use default values\n");
869 if (dev->ta1 == 0x11)
870 DEBUGP(4, dev, "No AUTOPPS necessary "
871 "TA(1)==0x11\n");
872 if (test_bit(IS_ANY_T0, &dev->flags)
873 && test_bit(IS_ANY_T1, &dev->flags))
874 DEBUGP(4, dev, "Do NOT perform AUTOPPS "
875 "with multiprotocol cards\n");
876 clear_bit(IS_AUTOPPS_ACT, &dev->flags);
877 wake_up_interruptible(&dev->atrq);
878 }
879 } else {
880 DEBUGP(4, dev, "ATR invalid\n");
881 wake_up_interruptible(&dev->atrq);
882 }
883 break;
884 case M_BAD_CARD:
885 DEBUGP(4, dev, "M_BAD_CARD\n");
886 /* slow down warning, but prompt immediately after insertion */
887 if (dev->cwarn == 0 || dev->cwarn == 10) {
888 set_bit(IS_BAD_CARD, &dev->flags);
889 dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
890 if (test_bit(IS_BAD_CSUM, &dev->flags)) {
891 DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
892 "be zero) failed\n", dev->atr_csum);
893 }
894 #ifdef CM4000_DEBUG
895 else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
896 DEBUGP(4, dev, "ATR length error\n");
897 } else {
898 DEBUGP(4, dev, "card damaged or wrong way "
899 "inserted\n");
900 }
901 #endif
902 dev->cwarn = 0;
903 wake_up_interruptible(&dev->atrq); /* wake open */
904 }
905 dev->cwarn++;
906 dev->mdelay = T_100MSEC;
907 dev->mstate = M_FETCH_ATR;
908 break;
909 default:
910 DEBUGP(7, dev, "Unknown action\n");
911 break; /* nothing */
912 }
913
914 release_io:
915 DEBUGP(7, dev, "release_io\n");
916 clear_bit(LOCK_IO, &dev->flags);
917 wake_up_interruptible(&dev->ioq); /* whoever needs IO */
918
919 return_with_timer:
920 DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
921 mod_timer(&dev->timer, jiffies + dev->mdelay);
922 clear_bit(LOCK_MONITOR, &dev->flags);
923 }
924
925 /* Interface to userland (file_operations) */
926
cmm_read(struct file * filp,__user char * buf,size_t count,loff_t * ppos)927 static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
928 loff_t *ppos)
929 {
930 struct cm4000_dev *dev = filp->private_data;
931 unsigned int iobase = dev->p_dev->resource[0]->start;
932 ssize_t rc;
933 int i, j, k;
934
935 DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
936
937 if (count == 0) /* according to manpage */
938 return 0;
939
940 if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
941 test_bit(IS_CMM_ABSENT, &dev->flags))
942 return -ENODEV;
943
944 if (test_bit(IS_BAD_CSUM, &dev->flags))
945 return -EIO;
946
947 /* also see the note about this in cmm_write */
948 if (wait_event_interruptible
949 (dev->atrq,
950 ((filp->f_flags & O_NONBLOCK)
951 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
952 if (filp->f_flags & O_NONBLOCK)
953 return -EAGAIN;
954 return -ERESTARTSYS;
955 }
956
957 if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
958 return -EIO;
959
960 /* this one implements blocking IO */
961 if (wait_event_interruptible
962 (dev->readq,
963 ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
964 if (filp->f_flags & O_NONBLOCK)
965 return -EAGAIN;
966 return -ERESTARTSYS;
967 }
968
969 /* lock io */
970 if (wait_event_interruptible
971 (dev->ioq,
972 ((filp->f_flags & O_NONBLOCK)
973 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
974 if (filp->f_flags & O_NONBLOCK)
975 return -EAGAIN;
976 return -ERESTARTSYS;
977 }
978
979 rc = 0;
980 dev->flags0 = inb(REG_FLAGS0(iobase));
981 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
982 || dev->flags0 == 0xff) { /* no cardman inserted */
983 clear_bit(IS_ATR_VALID, &dev->flags);
984 if (dev->flags0 & 1) {
985 set_bit(IS_CMM_ABSENT, &dev->flags);
986 rc = -ENODEV;
987 } else {
988 rc = -EIO;
989 }
990 goto release_io;
991 }
992
993 DEBUGP(4, dev, "begin read answer\n");
994 j = min(count, (size_t)(dev->rlen - dev->rpos));
995 k = dev->rpos;
996 if (k + j > 255)
997 j = 256 - k;
998 DEBUGP(4, dev, "read1 j=%d\n", j);
999 for (i = 0; i < j; i++) {
1000 xoutb(k++, REG_BUF_ADDR(iobase));
1001 dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1002 }
1003 j = min(count, (size_t)(dev->rlen - dev->rpos));
1004 if (k + j > 255) {
1005 DEBUGP(4, dev, "read2 j=%d\n", j);
1006 dev->flags1 |= 0x10; /* MSB buf addr set */
1007 xoutb(dev->flags1, REG_FLAGS1(iobase));
1008 for (; i < j; i++) {
1009 xoutb(k++, REG_BUF_ADDR(iobase));
1010 dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1011 }
1012 }
1013
1014 if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
1015 DEBUGP(4, dev, "T=0 and count > buffer\n");
1016 dev->rbuf[i] = dev->rbuf[i - 1];
1017 dev->rbuf[i - 1] = dev->procbyte;
1018 j++;
1019 }
1020 count = j;
1021
1022 dev->rpos = dev->rlen + 1;
1023
1024 /* Clear T1Active */
1025 DEBUGP(4, dev, "Clear T1Active\n");
1026 dev->flags1 &= 0xdf;
1027 xoutb(dev->flags1, REG_FLAGS1(iobase));
1028
1029 xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
1030 /* last check before exit */
1031 if (!io_detect_cm4000(iobase, dev)) {
1032 rc = -ENODEV;
1033 goto release_io;
1034 }
1035
1036 if (test_bit(IS_INVREV, &dev->flags) && count > 0)
1037 str_invert_revert(dev->rbuf, count);
1038
1039 if (copy_to_user(buf, dev->rbuf, count))
1040 rc = -EFAULT;
1041
1042 release_io:
1043 clear_bit(LOCK_IO, &dev->flags);
1044 wake_up_interruptible(&dev->ioq);
1045
1046 DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n",
1047 (rc < 0 ? rc : count));
1048 return rc < 0 ? rc : count;
1049 }
1050
cmm_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1051 static ssize_t cmm_write(struct file *filp, const char __user *buf,
1052 size_t count, loff_t *ppos)
1053 {
1054 struct cm4000_dev *dev = filp->private_data;
1055 unsigned int iobase = dev->p_dev->resource[0]->start;
1056 unsigned short s;
1057 unsigned char infolen;
1058 unsigned char sendT0;
1059 unsigned short nsend;
1060 unsigned short nr;
1061 ssize_t rc;
1062 int i;
1063
1064 DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
1065
1066 if (count == 0) /* according to manpage */
1067 return 0;
1068
1069 if (dev->proto == 0 && count < 4) {
1070 /* T0 must have at least 4 bytes */
1071 DEBUGP(4, dev, "T0 short write\n");
1072 return -EIO;
1073 }
1074
1075 nr = count & 0x1ff; /* max bytes to write */
1076
1077 sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
1078
1079 if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
1080 test_bit(IS_CMM_ABSENT, &dev->flags))
1081 return -ENODEV;
1082
1083 if (test_bit(IS_BAD_CSUM, &dev->flags)) {
1084 DEBUGP(4, dev, "bad csum\n");
1085 return -EIO;
1086 }
1087
1088 /*
1089 * wait for atr to become valid.
1090 * note: it is important to lock this code. if we dont, the monitor
1091 * could be run between test_bit and the call to sleep on the
1092 * atr-queue. if *then* the monitor detects atr valid, it will wake up
1093 * any process on the atr-queue, *but* since we have been interrupted,
1094 * we do not yet sleep on this queue. this would result in a missed
1095 * wake_up and the calling process would sleep forever (until
1096 * interrupted). also, do *not* restore_flags before sleep_on, because
1097 * this could result in the same situation!
1098 */
1099 if (wait_event_interruptible
1100 (dev->atrq,
1101 ((filp->f_flags & O_NONBLOCK)
1102 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
1103 if (filp->f_flags & O_NONBLOCK)
1104 return -EAGAIN;
1105 return -ERESTARTSYS;
1106 }
1107
1108 if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
1109 DEBUGP(4, dev, "invalid ATR\n");
1110 return -EIO;
1111 }
1112
1113 /* lock io */
1114 if (wait_event_interruptible
1115 (dev->ioq,
1116 ((filp->f_flags & O_NONBLOCK)
1117 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
1118 if (filp->f_flags & O_NONBLOCK)
1119 return -EAGAIN;
1120 return -ERESTARTSYS;
1121 }
1122
1123 if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
1124 return -EFAULT;
1125
1126 rc = 0;
1127 dev->flags0 = inb(REG_FLAGS0(iobase));
1128 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
1129 || dev->flags0 == 0xff) { /* no cardman inserted */
1130 clear_bit(IS_ATR_VALID, &dev->flags);
1131 if (dev->flags0 & 1) {
1132 set_bit(IS_CMM_ABSENT, &dev->flags);
1133 rc = -ENODEV;
1134 } else {
1135 DEBUGP(4, dev, "IO error\n");
1136 rc = -EIO;
1137 }
1138 goto release_io;
1139 }
1140
1141 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
1142
1143 if (!io_detect_cm4000(iobase, dev)) {
1144 rc = -ENODEV;
1145 goto release_io;
1146 }
1147
1148 /* reflect T=0 send/read mode in flags1 */
1149 dev->flags1 |= (sendT0);
1150
1151 set_cardparameter(dev);
1152
1153 /* dummy read, reset flag procedure received */
1154 inb(REG_FLAGS1(iobase));
1155
1156 dev->flags1 = 0x20 /* T_Active */
1157 | (sendT0)
1158 | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
1159 | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
1160 DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
1161 xoutb(dev->flags1, REG_FLAGS1(iobase));
1162
1163 /* xmit data */
1164 DEBUGP(4, dev, "Xmit data\n");
1165 for (i = 0; i < nr; i++) {
1166 if (i >= 256) {
1167 dev->flags1 = 0x20 /* T_Active */
1168 | (sendT0) /* SendT0 */
1169 /* inverse parity: */
1170 | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
1171 | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
1172 | 0x10; /* set address high */
1173 DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
1174 "high\n", dev->flags1);
1175 xoutb(dev->flags1, REG_FLAGS1(iobase));
1176 }
1177 if (test_bit(IS_INVREV, &dev->flags)) {
1178 DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
1179 "-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
1180 invert_revert(dev->sbuf[i]));
1181 xoutb(i, REG_BUF_ADDR(iobase));
1182 xoutb(invert_revert(dev->sbuf[i]),
1183 REG_BUF_DATA(iobase));
1184 } else {
1185 xoutb(i, REG_BUF_ADDR(iobase));
1186 xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
1187 }
1188 }
1189 DEBUGP(4, dev, "Xmit done\n");
1190
1191 if (dev->proto == 0) {
1192 /* T=0 proto: 0 byte reply */
1193 if (nr == 4) {
1194 DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
1195 xoutb(i, REG_BUF_ADDR(iobase));
1196 if (test_bit(IS_INVREV, &dev->flags))
1197 xoutb(0xff, REG_BUF_DATA(iobase));
1198 else
1199 xoutb(0x00, REG_BUF_DATA(iobase));
1200 }
1201
1202 /* numSendBytes */
1203 if (sendT0)
1204 nsend = nr;
1205 else {
1206 if (nr == 4)
1207 nsend = 5;
1208 else {
1209 nsend = 5 + (unsigned char)dev->sbuf[4];
1210 if (dev->sbuf[4] == 0)
1211 nsend += 0x100;
1212 }
1213 }
1214 } else
1215 nsend = nr;
1216
1217 /* T0: output procedure byte */
1218 if (test_bit(IS_INVREV, &dev->flags)) {
1219 DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
1220 "0x%.2x\n", invert_revert(dev->sbuf[1]));
1221 xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
1222 } else {
1223 DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
1224 xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
1225 }
1226
1227 DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
1228 (unsigned char)(nsend & 0xff));
1229 xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
1230
1231 DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
1232 0x40 /* SM_Active */
1233 | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
1234 |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
1235 |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
1236 xoutb(0x40 /* SM_Active */
1237 | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
1238 |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
1239 |(nsend & 0x100) >> 8, /* MSB numSendBytes */
1240 REG_FLAGS0(iobase));
1241
1242 /* wait for xmit done */
1243 if (dev->proto == 1) {
1244 DEBUGP(4, dev, "Wait for xmit done\n");
1245 for (i = 0; i < 1000; i++) {
1246 if (inb(REG_FLAGS0(iobase)) & 0x08)
1247 break;
1248 msleep_interruptible(10);
1249 }
1250 if (i == 1000) {
1251 DEBUGP(4, dev, "timeout waiting for xmit done\n");
1252 rc = -EIO;
1253 goto release_io;
1254 }
1255 }
1256
1257 /* T=1: wait for infoLen */
1258
1259 infolen = 0;
1260 if (dev->proto) {
1261 /* wait until infoLen is valid */
1262 for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
1263 io_read_num_rec_bytes(iobase, &s);
1264 if (s >= 3) {
1265 infolen = inb(REG_FLAGS1(iobase));
1266 DEBUGP(4, dev, "infolen=%d\n", infolen);
1267 break;
1268 }
1269 msleep_interruptible(10);
1270 }
1271 if (i == 6000) {
1272 DEBUGP(4, dev, "timeout waiting for infoLen\n");
1273 rc = -EIO;
1274 goto release_io;
1275 }
1276 } else
1277 clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
1278
1279 /* numRecBytes | bit9 of numRecytes */
1280 io_read_num_rec_bytes(iobase, &dev->rlen);
1281 for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
1282 if (dev->proto) {
1283 if (dev->rlen >= infolen + 4)
1284 break;
1285 }
1286 msleep_interruptible(10);
1287 /* numRecBytes | bit9 of numRecytes */
1288 io_read_num_rec_bytes(iobase, &s);
1289 if (s > dev->rlen) {
1290 DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
1291 i = 0; /* reset timeout */
1292 dev->rlen = s;
1293 }
1294 /* T=0: we are done when numRecBytes doesn't
1295 * increment any more and NoProcedureByte
1296 * is set and numRecBytes == bytes sent + 6
1297 * (header bytes + data + 1 for sw2)
1298 * except when the card replies an error
1299 * which means, no data will be sent back.
1300 */
1301 else if (dev->proto == 0) {
1302 if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
1303 /* no procedure byte received since last read */
1304 DEBUGP(1, dev, "NoProcedure byte set\n");
1305 /* i=0; */
1306 } else {
1307 /* procedure byte received since last read */
1308 DEBUGP(1, dev, "NoProcedure byte unset "
1309 "(reset timeout)\n");
1310 dev->procbyte = inb(REG_FLAGS1(iobase));
1311 DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
1312 dev->procbyte);
1313 i = 0; /* resettimeout */
1314 }
1315 if (inb(REG_FLAGS0(iobase)) & 0x08) {
1316 DEBUGP(1, dev, "T0Done flag (read reply)\n");
1317 break;
1318 }
1319 }
1320 if (dev->proto)
1321 infolen = inb(REG_FLAGS1(iobase));
1322 }
1323 if (i == 600) {
1324 DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
1325 rc = -EIO;
1326 goto release_io;
1327 } else {
1328 if (dev->proto == 0) {
1329 DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
1330 for (i = 0; i < 1000; i++) {
1331 if (inb(REG_FLAGS0(iobase)) & 0x08)
1332 break;
1333 msleep_interruptible(10);
1334 }
1335 if (i == 1000) {
1336 DEBUGP(1, dev, "timeout waiting for T0Done\n");
1337 rc = -EIO;
1338 goto release_io;
1339 }
1340
1341 dev->procbyte = inb(REG_FLAGS1(iobase));
1342 DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
1343 dev->procbyte);
1344
1345 io_read_num_rec_bytes(iobase, &dev->rlen);
1346 DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
1347
1348 }
1349 }
1350 /* T=1: read offset=zero, T=0: read offset=after challenge */
1351 dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
1352 DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
1353 dev->rlen, dev->rpos, nr);
1354
1355 release_io:
1356 DEBUGP(4, dev, "Reset SM\n");
1357 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
1358
1359 if (rc < 0) {
1360 DEBUGP(4, dev, "Write failed but clear T_Active\n");
1361 dev->flags1 &= 0xdf;
1362 xoutb(dev->flags1, REG_FLAGS1(iobase));
1363 }
1364
1365 clear_bit(LOCK_IO, &dev->flags);
1366 wake_up_interruptible(&dev->ioq);
1367 wake_up_interruptible(&dev->readq); /* tell read we have data */
1368
1369 /* ITSEC E2: clear write buffer */
1370 memset((char *)dev->sbuf, 0, 512);
1371
1372 /* return error or actually written bytes */
1373 DEBUGP(2, dev, "<- cmm_write\n");
1374 return rc < 0 ? rc : nr;
1375 }
1376
start_monitor(struct cm4000_dev * dev)1377 static void start_monitor(struct cm4000_dev *dev)
1378 {
1379 DEBUGP(3, dev, "-> start_monitor\n");
1380 if (!dev->monitor_running) {
1381 DEBUGP(5, dev, "create, init and add timer\n");
1382 timer_setup(&dev->timer, monitor_card, 0);
1383 dev->monitor_running = 1;
1384 mod_timer(&dev->timer, jiffies);
1385 } else
1386 DEBUGP(5, dev, "monitor already running\n");
1387 DEBUGP(3, dev, "<- start_monitor\n");
1388 }
1389
stop_monitor(struct cm4000_dev * dev)1390 static void stop_monitor(struct cm4000_dev *dev)
1391 {
1392 DEBUGP(3, dev, "-> stop_monitor\n");
1393 if (dev->monitor_running) {
1394 DEBUGP(5, dev, "stopping monitor\n");
1395 terminate_monitor(dev);
1396 /* reset monitor SM */
1397 clear_bit(IS_ATR_VALID, &dev->flags);
1398 clear_bit(IS_ATR_PRESENT, &dev->flags);
1399 } else
1400 DEBUGP(5, dev, "monitor already stopped\n");
1401 DEBUGP(3, dev, "<- stop_monitor\n");
1402 }
1403
cmm_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1404 static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1405 {
1406 struct cm4000_dev *dev = filp->private_data;
1407 unsigned int iobase = dev->p_dev->resource[0]->start;
1408 struct inode *inode = file_inode(filp);
1409 struct pcmcia_device *link;
1410 int rc;
1411 void __user *argp = (void __user *)arg;
1412 #ifdef CM4000_DEBUG
1413 char *ioctl_names[CM_IOC_MAXNR + 1] = {
1414 [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
1415 [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
1416 [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
1417 [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
1418 [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
1419 };
1420 DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
1421 iminor(inode), ioctl_names[_IOC_NR(cmd)]);
1422 #endif
1423
1424 mutex_lock(&cmm_mutex);
1425 rc = -ENODEV;
1426 link = dev_table[iminor(inode)];
1427 if (!pcmcia_dev_present(link)) {
1428 DEBUGP(4, dev, "DEV_OK false\n");
1429 goto out;
1430 }
1431
1432 if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
1433 DEBUGP(4, dev, "CMM_ABSENT flag set\n");
1434 goto out;
1435 }
1436 rc = -EINVAL;
1437
1438 if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
1439 DEBUGP(4, dev, "ioctype mismatch\n");
1440 goto out;
1441 }
1442 if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
1443 DEBUGP(4, dev, "iocnr mismatch\n");
1444 goto out;
1445 }
1446 rc = 0;
1447
1448 switch (cmd) {
1449 case CM_IOCGSTATUS:
1450 DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
1451 {
1452 int status;
1453
1454 /* clear other bits, but leave inserted & powered as
1455 * they are */
1456 status = dev->flags0 & 3;
1457 if (test_bit(IS_ATR_PRESENT, &dev->flags))
1458 status |= CM_ATR_PRESENT;
1459 if (test_bit(IS_ATR_VALID, &dev->flags))
1460 status |= CM_ATR_VALID;
1461 if (test_bit(IS_CMM_ABSENT, &dev->flags))
1462 status |= CM_NO_READER;
1463 if (test_bit(IS_BAD_CARD, &dev->flags))
1464 status |= CM_BAD_CARD;
1465 if (copy_to_user(argp, &status, sizeof(int)))
1466 rc = -EFAULT;
1467 }
1468 break;
1469 case CM_IOCGATR:
1470 DEBUGP(4, dev, "... in CM_IOCGATR\n");
1471 {
1472 struct atreq __user *atreq = argp;
1473 int tmp;
1474 /* allow nonblocking io and being interrupted */
1475 if (wait_event_interruptible
1476 (dev->atrq,
1477 ((filp->f_flags & O_NONBLOCK)
1478 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1479 != 0)))) {
1480 if (filp->f_flags & O_NONBLOCK)
1481 rc = -EAGAIN;
1482 else
1483 rc = -ERESTARTSYS;
1484 break;
1485 }
1486
1487 rc = -EFAULT;
1488 if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
1489 tmp = -1;
1490 if (copy_to_user(&(atreq->atr_len), &tmp,
1491 sizeof(int)))
1492 break;
1493 } else {
1494 if (copy_to_user(atreq->atr, dev->atr,
1495 dev->atr_len))
1496 break;
1497
1498 tmp = dev->atr_len;
1499 if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
1500 break;
1501 }
1502 rc = 0;
1503 break;
1504 }
1505 case CM_IOCARDOFF:
1506
1507 #ifdef CM4000_DEBUG
1508 DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
1509 if (dev->flags0 & 0x01) {
1510 DEBUGP(4, dev, " Card inserted\n");
1511 } else {
1512 DEBUGP(2, dev, " No card inserted\n");
1513 }
1514 if (dev->flags0 & 0x02) {
1515 DEBUGP(4, dev, " Card powered\n");
1516 } else {
1517 DEBUGP(2, dev, " Card not powered\n");
1518 }
1519 #endif
1520
1521 /* is a card inserted and powered? */
1522 if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
1523
1524 /* get IO lock */
1525 if (wait_event_interruptible
1526 (dev->ioq,
1527 ((filp->f_flags & O_NONBLOCK)
1528 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1529 == 0)))) {
1530 if (filp->f_flags & O_NONBLOCK)
1531 rc = -EAGAIN;
1532 else
1533 rc = -ERESTARTSYS;
1534 break;
1535 }
1536 /* Set Flags0 = 0x42 */
1537 DEBUGP(4, dev, "Set Flags0=0x42 \n");
1538 xoutb(0x42, REG_FLAGS0(iobase));
1539 clear_bit(IS_ATR_PRESENT, &dev->flags);
1540 clear_bit(IS_ATR_VALID, &dev->flags);
1541 dev->mstate = M_CARDOFF;
1542 clear_bit(LOCK_IO, &dev->flags);
1543 if (wait_event_interruptible
1544 (dev->atrq,
1545 ((filp->f_flags & O_NONBLOCK)
1546 || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
1547 0)))) {
1548 if (filp->f_flags & O_NONBLOCK)
1549 rc = -EAGAIN;
1550 else
1551 rc = -ERESTARTSYS;
1552 break;
1553 }
1554 }
1555 /* release lock */
1556 clear_bit(LOCK_IO, &dev->flags);
1557 wake_up_interruptible(&dev->ioq);
1558
1559 rc = 0;
1560 break;
1561 case CM_IOCSPTS:
1562 {
1563 struct ptsreq krnptsreq;
1564
1565 if (copy_from_user(&krnptsreq, argp,
1566 sizeof(struct ptsreq))) {
1567 rc = -EFAULT;
1568 break;
1569 }
1570
1571 rc = 0;
1572 DEBUGP(4, dev, "... in CM_IOCSPTS\n");
1573 /* wait for ATR to get valid */
1574 if (wait_event_interruptible
1575 (dev->atrq,
1576 ((filp->f_flags & O_NONBLOCK)
1577 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1578 != 0)))) {
1579 if (filp->f_flags & O_NONBLOCK)
1580 rc = -EAGAIN;
1581 else
1582 rc = -ERESTARTSYS;
1583 break;
1584 }
1585 /* get IO lock */
1586 if (wait_event_interruptible
1587 (dev->ioq,
1588 ((filp->f_flags & O_NONBLOCK)
1589 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1590 == 0)))) {
1591 if (filp->f_flags & O_NONBLOCK)
1592 rc = -EAGAIN;
1593 else
1594 rc = -ERESTARTSYS;
1595 break;
1596 }
1597
1598 if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
1599 /* auto power_on again */
1600 dev->mstate = M_FETCH_ATR;
1601 clear_bit(IS_ATR_VALID, &dev->flags);
1602 }
1603 /* release lock */
1604 clear_bit(LOCK_IO, &dev->flags);
1605 wake_up_interruptible(&dev->ioq);
1606
1607 }
1608 break;
1609 #ifdef CM4000_DEBUG
1610 case CM_IOSDBGLVL:
1611 rc = -ENOTTY;
1612 break;
1613 #endif
1614 default:
1615 DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
1616 rc = -ENOTTY;
1617 }
1618 out:
1619 mutex_unlock(&cmm_mutex);
1620 return rc;
1621 }
1622
cmm_open(struct inode * inode,struct file * filp)1623 static int cmm_open(struct inode *inode, struct file *filp)
1624 {
1625 struct cm4000_dev *dev;
1626 struct pcmcia_device *link;
1627 int minor = iminor(inode);
1628 int ret;
1629
1630 if (minor >= CM4000_MAX_DEV)
1631 return -ENODEV;
1632
1633 mutex_lock(&cmm_mutex);
1634 link = dev_table[minor];
1635 if (link == NULL || !pcmcia_dev_present(link)) {
1636 ret = -ENODEV;
1637 goto out;
1638 }
1639
1640 if (link->open) {
1641 ret = -EBUSY;
1642 goto out;
1643 }
1644
1645 dev = link->priv;
1646 filp->private_data = dev;
1647
1648 DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
1649 imajor(inode), minor, current->comm, current->pid);
1650
1651 /* init device variables, they may be "polluted" after close
1652 * or, the device may never have been closed (i.e. open failed)
1653 */
1654
1655 ZERO_DEV(dev);
1656
1657 /* opening will always block since the
1658 * monitor will be started by open, which
1659 * means we have to wait for ATR becoming
1660 * valid = block until valid (or card
1661 * inserted)
1662 */
1663 if (filp->f_flags & O_NONBLOCK) {
1664 ret = -EAGAIN;
1665 goto out;
1666 }
1667
1668 dev->mdelay = T_50MSEC;
1669
1670 /* start monitoring the cardstatus */
1671 start_monitor(dev);
1672
1673 link->open = 1; /* only one open per device */
1674
1675 DEBUGP(2, dev, "<- cmm_open\n");
1676 ret = stream_open(inode, filp);
1677 out:
1678 mutex_unlock(&cmm_mutex);
1679 return ret;
1680 }
1681
cmm_close(struct inode * inode,struct file * filp)1682 static int cmm_close(struct inode *inode, struct file *filp)
1683 {
1684 struct cm4000_dev *dev;
1685 struct pcmcia_device *link;
1686 int minor = iminor(inode);
1687
1688 if (minor >= CM4000_MAX_DEV)
1689 return -ENODEV;
1690
1691 link = dev_table[minor];
1692 if (link == NULL)
1693 return -ENODEV;
1694
1695 dev = link->priv;
1696
1697 DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
1698 imajor(inode), minor);
1699
1700 stop_monitor(dev);
1701
1702 ZERO_DEV(dev);
1703
1704 link->open = 0; /* only one open per device */
1705 wake_up(&dev->devq); /* socket removed? */
1706
1707 DEBUGP(2, dev, "cmm_close\n");
1708 return 0;
1709 }
1710
cmm_cm4000_release(struct pcmcia_device * link)1711 static void cmm_cm4000_release(struct pcmcia_device * link)
1712 {
1713 struct cm4000_dev *dev = link->priv;
1714
1715 /* dont terminate the monitor, rather rely on
1716 * close doing that for us.
1717 */
1718 DEBUGP(3, dev, "-> cmm_cm4000_release\n");
1719 while (link->open) {
1720 printk(KERN_INFO MODULE_NAME ": delaying release until "
1721 "process has terminated\n");
1722 /* note: don't interrupt us:
1723 * close the applications which own
1724 * the devices _first_ !
1725 */
1726 wait_event(dev->devq, (link->open == 0));
1727 }
1728 /* dev->devq=NULL; this cannot be zeroed earlier */
1729 DEBUGP(3, dev, "<- cmm_cm4000_release\n");
1730 return;
1731 }
1732
1733 /*==== Interface to PCMCIA Layer =======================================*/
1734
cm4000_config_check(struct pcmcia_device * p_dev,void * priv_data)1735 static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
1736 {
1737 return pcmcia_request_io(p_dev);
1738 }
1739
cm4000_config(struct pcmcia_device * link,int devno)1740 static int cm4000_config(struct pcmcia_device * link, int devno)
1741 {
1742 link->config_flags |= CONF_AUTO_SET_IO;
1743
1744 /* read the config-tuples */
1745 if (pcmcia_loop_config(link, cm4000_config_check, NULL))
1746 goto cs_release;
1747
1748 if (pcmcia_enable_device(link))
1749 goto cs_release;
1750
1751 return 0;
1752
1753 cs_release:
1754 cm4000_release(link);
1755 return -ENODEV;
1756 }
1757
cm4000_suspend(struct pcmcia_device * link)1758 static int cm4000_suspend(struct pcmcia_device *link)
1759 {
1760 struct cm4000_dev *dev;
1761
1762 dev = link->priv;
1763 stop_monitor(dev);
1764
1765 return 0;
1766 }
1767
cm4000_resume(struct pcmcia_device * link)1768 static int cm4000_resume(struct pcmcia_device *link)
1769 {
1770 struct cm4000_dev *dev;
1771
1772 dev = link->priv;
1773 if (link->open)
1774 start_monitor(dev);
1775
1776 return 0;
1777 }
1778
cm4000_release(struct pcmcia_device * link)1779 static void cm4000_release(struct pcmcia_device *link)
1780 {
1781 cmm_cm4000_release(link); /* delay release until device closed */
1782 pcmcia_disable_device(link);
1783 }
1784
cm4000_probe(struct pcmcia_device * link)1785 static int cm4000_probe(struct pcmcia_device *link)
1786 {
1787 struct cm4000_dev *dev;
1788 int i, ret;
1789
1790 for (i = 0; i < CM4000_MAX_DEV; i++)
1791 if (dev_table[i] == NULL)
1792 break;
1793
1794 if (i == CM4000_MAX_DEV) {
1795 printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
1796 return -ENODEV;
1797 }
1798
1799 /* create a new cm4000_cs device */
1800 dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
1801 if (dev == NULL)
1802 return -ENOMEM;
1803
1804 dev->p_dev = link;
1805 link->priv = dev;
1806 dev_table[i] = link;
1807
1808 init_waitqueue_head(&dev->devq);
1809 init_waitqueue_head(&dev->ioq);
1810 init_waitqueue_head(&dev->atrq);
1811 init_waitqueue_head(&dev->readq);
1812
1813 ret = cm4000_config(link, i);
1814 if (ret) {
1815 dev_table[i] = NULL;
1816 kfree(dev);
1817 return ret;
1818 }
1819
1820 device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
1821
1822 return 0;
1823 }
1824
cm4000_detach(struct pcmcia_device * link)1825 static void cm4000_detach(struct pcmcia_device *link)
1826 {
1827 struct cm4000_dev *dev = link->priv;
1828 int devno;
1829
1830 /* find device */
1831 for (devno = 0; devno < CM4000_MAX_DEV; devno++)
1832 if (dev_table[devno] == link)
1833 break;
1834 if (devno == CM4000_MAX_DEV)
1835 return;
1836
1837 stop_monitor(dev);
1838
1839 cm4000_release(link);
1840
1841 dev_table[devno] = NULL;
1842 kfree(dev);
1843
1844 device_destroy(cmm_class, MKDEV(major, devno));
1845
1846 return;
1847 }
1848
1849 static const struct file_operations cm4000_fops = {
1850 .owner = THIS_MODULE,
1851 .read = cmm_read,
1852 .write = cmm_write,
1853 .unlocked_ioctl = cmm_ioctl,
1854 .open = cmm_open,
1855 .release= cmm_close,
1856 .llseek = no_llseek,
1857 };
1858
1859 static const struct pcmcia_device_id cm4000_ids[] = {
1860 PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
1861 PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
1862 PCMCIA_DEVICE_NULL,
1863 };
1864 MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
1865
1866 static struct pcmcia_driver cm4000_driver = {
1867 .owner = THIS_MODULE,
1868 .name = "cm4000_cs",
1869 .probe = cm4000_probe,
1870 .remove = cm4000_detach,
1871 .suspend = cm4000_suspend,
1872 .resume = cm4000_resume,
1873 .id_table = cm4000_ids,
1874 };
1875
cmm_init(void)1876 static int __init cmm_init(void)
1877 {
1878 int rc;
1879
1880 cmm_class = class_create(THIS_MODULE, "cardman_4000");
1881 if (IS_ERR(cmm_class))
1882 return PTR_ERR(cmm_class);
1883
1884 major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
1885 if (major < 0) {
1886 printk(KERN_WARNING MODULE_NAME
1887 ": could not get major number\n");
1888 class_destroy(cmm_class);
1889 return major;
1890 }
1891
1892 rc = pcmcia_register_driver(&cm4000_driver);
1893 if (rc < 0) {
1894 unregister_chrdev(major, DEVICE_NAME);
1895 class_destroy(cmm_class);
1896 return rc;
1897 }
1898
1899 return 0;
1900 }
1901
cmm_exit(void)1902 static void __exit cmm_exit(void)
1903 {
1904 pcmcia_unregister_driver(&cm4000_driver);
1905 unregister_chrdev(major, DEVICE_NAME);
1906 class_destroy(cmm_class);
1907 };
1908
1909 module_init(cmm_init);
1910 module_exit(cmm_exit);
1911 MODULE_LICENSE("Dual BSD/GPL");
1912