1  /*
2   * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
3   *
4   * cm4000_cs.c support.linux@omnikey.com
5   *
6   * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
7   * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
8   * Thu Nov 14 16:34:11 GMT 2002 mh   - added PPS functionality
9   * Tue Nov 19 16:36:27 GMT 2002 mh   - added SUSPEND/RESUME functionailty
10   * Wed Jul 28 12:55:01 CEST 2004 mh  - kernel 2.6 adjustments
11   *
12   * current version: 2.4.0gm4
13   *
14   * (C) 2000,2001,2002,2003,2004 Omnikey AG
15   *
16   * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
17   * 	- Adhere to Kernel process/coding-style.rst
18   * 	- Port to 2.6.13 "new" style PCMCIA
19   * 	- Check for copy_{from,to}_user return values
20   * 	- Use nonseekable_open()
21   * 	- add class interface for udev device creation
22   *
23   * All rights reserved. Licensed under dual BSD/GPL license.
24   */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <linux/fs.h>
31 #include <linux/delay.h>
32 #include <linux/bitrev.h>
33 #include <linux/mutex.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 
37 #include <pcmcia/cistpl.h>
38 #include <pcmcia/cisreg.h>
39 #include <pcmcia/ciscode.h>
40 #include <pcmcia/ds.h>
41 
42 #include <linux/cm4000_cs.h>
43 
44 /* #define ATR_CSUM */
45 
46 #define reader_to_dev(x)	(&x->p_dev->dev)
47 
48 /* n (debug level) is ignored */
49 /* additional debug output may be enabled by re-compiling with
50  * CM4000_DEBUG set */
51 /* #define CM4000_DEBUG */
52 #define DEBUGP(n, rdr, x, args...) do { 		\
53 		dev_dbg(reader_to_dev(rdr), "%s:" x, 	\
54 			   __func__ , ## args);		\
55 	} while (0)
56 
57 static DEFINE_MUTEX(cmm_mutex);
58 
59 #define	T_1SEC		(HZ)
60 #define	T_10MSEC	msecs_to_jiffies(10)
61 #define	T_20MSEC	msecs_to_jiffies(20)
62 #define	T_40MSEC	msecs_to_jiffies(40)
63 #define	T_50MSEC	msecs_to_jiffies(50)
64 #define	T_100MSEC	msecs_to_jiffies(100)
65 #define	T_500MSEC	msecs_to_jiffies(500)
66 
67 static void cm4000_release(struct pcmcia_device *link);
68 
69 static int major;		/* major number we get from the kernel */
70 
71 /* note: the first state has to have number 0 always */
72 
73 #define	M_FETCH_ATR	0
74 #define	M_TIMEOUT_WAIT	1
75 #define	M_READ_ATR_LEN	2
76 #define	M_READ_ATR	3
77 #define	M_ATR_PRESENT	4
78 #define	M_BAD_CARD	5
79 #define M_CARDOFF	6
80 
81 #define	LOCK_IO			0
82 #define	LOCK_MONITOR		1
83 
84 #define IS_AUTOPPS_ACT		 6
85 #define	IS_PROCBYTE_PRESENT	 7
86 #define	IS_INVREV		 8
87 #define IS_ANY_T0		 9
88 #define	IS_ANY_T1		10
89 #define	IS_ATR_PRESENT		11
90 #define	IS_ATR_VALID		12
91 #define	IS_CMM_ABSENT		13
92 #define	IS_BAD_LENGTH		14
93 #define	IS_BAD_CSUM		15
94 #define	IS_BAD_CARD		16
95 
96 #define REG_FLAGS0(x)		(x + 0)
97 #define REG_FLAGS1(x)		(x + 1)
98 #define REG_NUM_BYTES(x)	(x + 2)
99 #define REG_BUF_ADDR(x)		(x + 3)
100 #define REG_BUF_DATA(x)		(x + 4)
101 #define REG_NUM_SEND(x)		(x + 5)
102 #define REG_BAUDRATE(x)		(x + 6)
103 #define REG_STOPBITS(x)		(x + 7)
104 
105 struct cm4000_dev {
106 	struct pcmcia_device *p_dev;
107 
108 	unsigned char atr[MAX_ATR];
109 	unsigned char rbuf[512];
110 	unsigned char sbuf[512];
111 
112 	wait_queue_head_t devq;		/* when removing cardman must not be
113 					   zeroed! */
114 
115 	wait_queue_head_t ioq;		/* if IO is locked, wait on this Q */
116 	wait_queue_head_t atrq;		/* wait for ATR valid */
117 	wait_queue_head_t readq;	/* used by write to wake blk.read */
118 
119 	/* warning: do not move this fields.
120 	 * initialising to zero depends on it - see ZERO_DEV below.  */
121 	unsigned char atr_csum;
122 	unsigned char atr_len_retry;
123 	unsigned short atr_len;
124 	unsigned short rlen;	/* bytes avail. after write */
125 	unsigned short rpos;	/* latest read pos. write zeroes */
126 	unsigned char procbyte;	/* T=0 procedure byte */
127 	unsigned char mstate;	/* state of card monitor */
128 	unsigned char cwarn;	/* slow down warning */
129 	unsigned char flags0;	/* cardman IO-flags 0 */
130 	unsigned char flags1;	/* cardman IO-flags 1 */
131 	unsigned int mdelay;	/* variable monitor speeds, in jiffies */
132 
133 	unsigned int baudv;	/* baud value for speed */
134 	unsigned char ta1;
135 	unsigned char proto;	/* T=0, T=1, ... */
136 	unsigned long flags;	/* lock+flags (MONITOR,IO,ATR) * for concurrent
137 				   access */
138 
139 	unsigned char pts[4];
140 
141 	struct timer_list timer;	/* used to keep monitor running */
142 	int monitor_running;
143 };
144 
145 #define	ZERO_DEV(dev)  						\
146 	memset(&dev->atr_csum,0,				\
147 		sizeof(struct cm4000_dev) - 			\
148 		offsetof(struct cm4000_dev, atr_csum))
149 
150 static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
151 static struct class *cmm_class;
152 
153 /* This table doesn't use spaces after the comma between fields and thus
154  * violates process/coding-style.rst.  However, I don't really think wrapping it around will
155  * make it any clearer to read -HW */
156 static unsigned char fi_di_table[10][14] = {
157 /*FI     00   01   02   03   04   05   06   07   08   09   10   11   12   13 */
158 /*DI */
159 /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
160 /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
161 /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
162 /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
163 /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
164 /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
165 /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
166 /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
167 /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
168 /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
169 };
170 
171 #ifndef CM4000_DEBUG
172 #define	xoutb	outb
173 #define	xinb	inb
174 #else
xoutb(unsigned char val,unsigned short port)175 static inline void xoutb(unsigned char val, unsigned short port)
176 {
177 	pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
178 	outb(val, port);
179 }
xinb(unsigned short port)180 static inline unsigned char xinb(unsigned short port)
181 {
182 	unsigned char val;
183 
184 	val = inb(port);
185 	pr_debug("%.2x=inb(%.4x)\n", val, port);
186 
187 	return val;
188 }
189 #endif
190 
invert_revert(unsigned char ch)191 static inline unsigned char invert_revert(unsigned char ch)
192 {
193 	return bitrev8(~ch);
194 }
195 
str_invert_revert(unsigned char * b,int len)196 static void str_invert_revert(unsigned char *b, int len)
197 {
198 	int i;
199 
200 	for (i = 0; i < len; i++)
201 		b[i] = invert_revert(b[i]);
202 }
203 
204 #define	ATRLENCK(dev,pos) \
205 	if (pos>=dev->atr_len || pos>=MAX_ATR) \
206 		goto return_0;
207 
calc_baudv(unsigned char fidi)208 static unsigned int calc_baudv(unsigned char fidi)
209 {
210 	unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
211 
212 	fi_rfu = 372;
213 	di_rfu = 1;
214 
215 	/* FI */
216 	switch ((fidi >> 4) & 0x0F) {
217 	case 0x00:
218 		wcrcf = 372;
219 		break;
220 	case 0x01:
221 		wcrcf = 372;
222 		break;
223 	case 0x02:
224 		wcrcf = 558;
225 		break;
226 	case 0x03:
227 		wcrcf = 744;
228 		break;
229 	case 0x04:
230 		wcrcf = 1116;
231 		break;
232 	case 0x05:
233 		wcrcf = 1488;
234 		break;
235 	case 0x06:
236 		wcrcf = 1860;
237 		break;
238 	case 0x07:
239 		wcrcf = fi_rfu;
240 		break;
241 	case 0x08:
242 		wcrcf = fi_rfu;
243 		break;
244 	case 0x09:
245 		wcrcf = 512;
246 		break;
247 	case 0x0A:
248 		wcrcf = 768;
249 		break;
250 	case 0x0B:
251 		wcrcf = 1024;
252 		break;
253 	case 0x0C:
254 		wcrcf = 1536;
255 		break;
256 	case 0x0D:
257 		wcrcf = 2048;
258 		break;
259 	default:
260 		wcrcf = fi_rfu;
261 		break;
262 	}
263 
264 	/* DI */
265 	switch (fidi & 0x0F) {
266 	case 0x00:
267 		wbrcf = di_rfu;
268 		break;
269 	case 0x01:
270 		wbrcf = 1;
271 		break;
272 	case 0x02:
273 		wbrcf = 2;
274 		break;
275 	case 0x03:
276 		wbrcf = 4;
277 		break;
278 	case 0x04:
279 		wbrcf = 8;
280 		break;
281 	case 0x05:
282 		wbrcf = 16;
283 		break;
284 	case 0x06:
285 		wbrcf = 32;
286 		break;
287 	case 0x07:
288 		wbrcf = di_rfu;
289 		break;
290 	case 0x08:
291 		wbrcf = 12;
292 		break;
293 	case 0x09:
294 		wbrcf = 20;
295 		break;
296 	default:
297 		wbrcf = di_rfu;
298 		break;
299 	}
300 
301 	return (wcrcf / wbrcf);
302 }
303 
io_read_num_rec_bytes(unsigned int iobase,unsigned short * s)304 static unsigned short io_read_num_rec_bytes(unsigned int iobase,
305 					    unsigned short *s)
306 {
307 	unsigned short tmp;
308 
309 	tmp = *s = 0;
310 	do {
311 		*s = tmp;
312 		tmp = inb(REG_NUM_BYTES(iobase)) |
313 				(inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
314 	} while (tmp != *s);
315 
316 	return *s;
317 }
318 
parse_atr(struct cm4000_dev * dev)319 static int parse_atr(struct cm4000_dev *dev)
320 {
321 	unsigned char any_t1, any_t0;
322 	unsigned char ch, ifno;
323 	int ix, done;
324 
325 	DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
326 
327 	if (dev->atr_len < 3) {
328 		DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
329 		return 0;
330 	}
331 
332 	if (dev->atr[0] == 0x3f)
333 		set_bit(IS_INVREV, &dev->flags);
334 	else
335 		clear_bit(IS_INVREV, &dev->flags);
336 	ix = 1;
337 	ifno = 1;
338 	ch = dev->atr[1];
339 	dev->proto = 0;		/* XXX PROTO */
340 	any_t1 = any_t0 = done = 0;
341 	dev->ta1 = 0x11;	/* defaults to 9600 baud */
342 	do {
343 		if (ifno == 1 && (ch & 0x10)) {
344 			/* read first interface byte and TA1 is present */
345 			dev->ta1 = dev->atr[2];
346 			DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
347 			ifno++;
348 		} else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
349 			dev->ta1 = 0x11;
350 			ifno++;
351 		}
352 
353 		DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
354 		ix += ((ch & 0x10) >> 4)	/* no of int.face chars */
355 		    +((ch & 0x20) >> 5)
356 		    + ((ch & 0x40) >> 6)
357 		    + ((ch & 0x80) >> 7);
358 		/* ATRLENCK(dev,ix); */
359 		if (ch & 0x80) {	/* TDi */
360 			ch = dev->atr[ix];
361 			if ((ch & 0x0f)) {
362 				any_t1 = 1;
363 				DEBUGP(5, dev, "card is capable of T=1\n");
364 			} else {
365 				any_t0 = 1;
366 				DEBUGP(5, dev, "card is capable of T=0\n");
367 			}
368 		} else
369 			done = 1;
370 	} while (!done);
371 
372 	DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
373 	      ix, dev->atr[1] & 15, any_t1);
374 	if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
375 		DEBUGP(5, dev, "length error\n");
376 		return 0;
377 	}
378 	if (any_t0)
379 		set_bit(IS_ANY_T0, &dev->flags);
380 
381 	if (any_t1) {		/* compute csum */
382 		dev->atr_csum = 0;
383 #ifdef ATR_CSUM
384 		for (i = 1; i < dev->atr_len; i++)
385 			dev->atr_csum ^= dev->atr[i];
386 		if (dev->atr_csum) {
387 			set_bit(IS_BAD_CSUM, &dev->flags);
388 			DEBUGP(5, dev, "bad checksum\n");
389 			goto return_0;
390 		}
391 #endif
392 		if (any_t0 == 0)
393 			dev->proto = 1;	/* XXX PROTO */
394 		set_bit(IS_ANY_T1, &dev->flags);
395 	}
396 
397 	return 1;
398 }
399 
400 struct card_fixup {
401 	char atr[12];
402 	u_int8_t atr_len;
403 	u_int8_t stopbits;
404 };
405 
406 static struct card_fixup card_fixups[] = {
407 	{	/* ACOS */
408 		.atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
409 		.atr_len = 7,
410 		.stopbits = 0x03,
411 	},
412 	{	/* Motorola */
413 		.atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
414 			0x41, 0x81, 0x81 },
415 		.atr_len = 11,
416 		.stopbits = 0x04,
417 	},
418 };
419 
set_cardparameter(struct cm4000_dev * dev)420 static void set_cardparameter(struct cm4000_dev *dev)
421 {
422 	int i;
423 	unsigned int iobase = dev->p_dev->resource[0]->start;
424 	u_int8_t stopbits = 0x02; /* ISO default */
425 
426 	DEBUGP(3, dev, "-> set_cardparameter\n");
427 
428 	dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
429 	xoutb(dev->flags1, REG_FLAGS1(iobase));
430 	DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
431 
432 	/* set baudrate */
433 	xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
434 
435 	DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
436 	      ((dev->baudv - 1) & 0xFF));
437 
438 	/* set stopbits */
439 	for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
440 		if (!memcmp(dev->atr, card_fixups[i].atr,
441 			    card_fixups[i].atr_len))
442 			stopbits = card_fixups[i].stopbits;
443 	}
444 	xoutb(stopbits, REG_STOPBITS(iobase));
445 
446 	DEBUGP(3, dev, "<- set_cardparameter\n");
447 }
448 
set_protocol(struct cm4000_dev * dev,struct ptsreq * ptsreq)449 static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
450 {
451 
452 	unsigned long tmp, i;
453 	unsigned short num_bytes_read;
454 	unsigned char pts_reply[4];
455 	ssize_t rc;
456 	unsigned int iobase = dev->p_dev->resource[0]->start;
457 
458 	rc = 0;
459 
460 	DEBUGP(3, dev, "-> set_protocol\n");
461 	DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
462 		 "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
463 		 "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
464 		 (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
465 		 ptsreq->pts3);
466 
467 	/* Fill PTS structure */
468 	dev->pts[0] = 0xff;
469 	dev->pts[1] = 0x00;
470 	tmp = ptsreq->protocol;
471 	while ((tmp = (tmp >> 1)) > 0)
472 		dev->pts[1]++;
473 	dev->proto = dev->pts[1];	/* Set new protocol */
474 	dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
475 
476 	/* Correct Fi/Di according to CM4000 Fi/Di table */
477 	DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
478 	/* set Fi/Di according to ATR TA(1) */
479 	dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
480 
481 	/* Calculate PCK character */
482 	dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
483 
484 	DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
485 	       dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
486 
487 	/* check card convention */
488 	if (test_bit(IS_INVREV, &dev->flags))
489 		str_invert_revert(dev->pts, 4);
490 
491 	/* reset SM */
492 	xoutb(0x80, REG_FLAGS0(iobase));
493 
494 	/* Enable access to the message buffer */
495 	DEBUGP(5, dev, "Enable access to the messages buffer\n");
496 	dev->flags1 = 0x20	/* T_Active */
497 	    | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
498 	    | ((dev->baudv >> 8) & 0x01);	/* MSB-baud */
499 	xoutb(dev->flags1, REG_FLAGS1(iobase));
500 
501 	DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
502 	       dev->flags1);
503 
504 	/* write challenge to the buffer */
505 	DEBUGP(5, dev, "Write challenge to buffer: ");
506 	for (i = 0; i < 4; i++) {
507 		xoutb(i, REG_BUF_ADDR(iobase));
508 		xoutb(dev->pts[i], REG_BUF_DATA(iobase));	/* buf data */
509 #ifdef CM4000_DEBUG
510 		pr_debug("0x%.2x ", dev->pts[i]);
511 	}
512 	pr_debug("\n");
513 #else
514 	}
515 #endif
516 
517 	/* set number of bytes to write */
518 	DEBUGP(5, dev, "Set number of bytes to write\n");
519 	xoutb(0x04, REG_NUM_SEND(iobase));
520 
521 	/* Trigger CARDMAN CONTROLLER */
522 	xoutb(0x50, REG_FLAGS0(iobase));
523 
524 	/* Monitor progress */
525 	/* wait for xmit done */
526 	DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
527 
528 	for (i = 0; i < 100; i++) {
529 		if (inb(REG_FLAGS0(iobase)) & 0x08) {
530 			DEBUGP(5, dev, "NumRecBytes is valid\n");
531 			break;
532 		}
533 		mdelay(10);
534 	}
535 	if (i == 100) {
536 		DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
537 		       "valid\n");
538 		rc = -EIO;
539 		goto exit_setprotocol;
540 	}
541 
542 	DEBUGP(5, dev, "Reading NumRecBytes\n");
543 	for (i = 0; i < 100; i++) {
544 		io_read_num_rec_bytes(iobase, &num_bytes_read);
545 		if (num_bytes_read >= 4) {
546 			DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
547 			break;
548 		}
549 		mdelay(10);
550 	}
551 
552 	/* check whether it is a short PTS reply? */
553 	if (num_bytes_read == 3)
554 		i = 0;
555 
556 	if (i == 100) {
557 		DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
558 		rc = -EIO;
559 		goto exit_setprotocol;
560 	}
561 
562 	DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
563 	xoutb(0x80, REG_FLAGS0(iobase));
564 
565 	/* Read PPS reply */
566 	DEBUGP(5, dev, "Read PPS reply\n");
567 	for (i = 0; i < num_bytes_read; i++) {
568 		xoutb(i, REG_BUF_ADDR(iobase));
569 		pts_reply[i] = inb(REG_BUF_DATA(iobase));
570 	}
571 
572 #ifdef CM4000_DEBUG
573 	DEBUGP(2, dev, "PTSreply: ");
574 	for (i = 0; i < num_bytes_read; i++) {
575 		pr_debug("0x%.2x ", pts_reply[i]);
576 	}
577 	pr_debug("\n");
578 #endif	/* CM4000_DEBUG */
579 
580 	DEBUGP(5, dev, "Clear Tactive in Flags1\n");
581 	xoutb(0x20, REG_FLAGS1(iobase));
582 
583 	/* Compare ptsreq and ptsreply */
584 	if ((dev->pts[0] == pts_reply[0]) &&
585 	    (dev->pts[1] == pts_reply[1]) &&
586 	    (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
587 		/* setcardparameter according to PPS */
588 		dev->baudv = calc_baudv(dev->pts[2]);
589 		set_cardparameter(dev);
590 	} else if ((dev->pts[0] == pts_reply[0]) &&
591 		   ((dev->pts[1] & 0xef) == pts_reply[1]) &&
592 		   ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
593 		/* short PTS reply, set card parameter to default values */
594 		dev->baudv = calc_baudv(0x11);
595 		set_cardparameter(dev);
596 	} else
597 		rc = -EIO;
598 
599 exit_setprotocol:
600 	DEBUGP(3, dev, "<- set_protocol\n");
601 	return rc;
602 }
603 
io_detect_cm4000(unsigned int iobase,struct cm4000_dev * dev)604 static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
605 {
606 
607 	/* note: statemachine is assumed to be reset */
608 	if (inb(REG_FLAGS0(iobase)) & 8) {
609 		clear_bit(IS_ATR_VALID, &dev->flags);
610 		set_bit(IS_CMM_ABSENT, &dev->flags);
611 		return 0;	/* detect CMM = 1 -> failure */
612 	}
613 	/* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
614 	xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
615 	if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
616 		clear_bit(IS_ATR_VALID, &dev->flags);
617 		set_bit(IS_CMM_ABSENT, &dev->flags);
618 		return 0;	/* detect CMM=0 -> failure */
619 	}
620 	/* clear detectCMM again by restoring original flags1 */
621 	xoutb(dev->flags1, REG_FLAGS1(iobase));
622 	return 1;
623 }
624 
terminate_monitor(struct cm4000_dev * dev)625 static void terminate_monitor(struct cm4000_dev *dev)
626 {
627 
628 	/* tell the monitor to stop and wait until
629 	 * it terminates.
630 	 */
631 	DEBUGP(3, dev, "-> terminate_monitor\n");
632 	wait_event_interruptible(dev->devq,
633 				 test_and_set_bit(LOCK_MONITOR,
634 						  (void *)&dev->flags));
635 
636 	/* now, LOCK_MONITOR has been set.
637 	 * allow a last cycle in the monitor.
638 	 * the monitor will indicate that it has
639 	 * finished by clearing this bit.
640 	 */
641 	DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
642 	while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
643 		msleep(25);
644 
645 	DEBUGP(5, dev, "Delete timer\n");
646 	del_timer_sync(&dev->timer);
647 #ifdef CM4000_DEBUG
648 	dev->monitor_running = 0;
649 #endif
650 
651 	DEBUGP(3, dev, "<- terminate_monitor\n");
652 }
653 
654 /*
655  * monitor the card every 50msec. as a side-effect, retrieve the
656  * atr once a card is inserted. another side-effect of retrieving the
657  * atr is that the card will be powered on, so there is no need to
658  * power on the card explicitly from the application: the driver
659  * is already doing that for you.
660  */
661 
monitor_card(struct timer_list * t)662 static void monitor_card(struct timer_list *t)
663 {
664 	struct cm4000_dev *dev = from_timer(dev, t, timer);
665 	unsigned int iobase = dev->p_dev->resource[0]->start;
666 	unsigned short s;
667 	struct ptsreq ptsreq;
668 	int i, atrc;
669 
670 	DEBUGP(7, dev, "->  monitor_card\n");
671 
672 	/* if someone has set the lock for us: we're done! */
673 	if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
674 		DEBUGP(4, dev, "About to stop monitor\n");
675 		/* no */
676 		dev->rlen =
677 		    dev->rpos =
678 		    dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
679 		dev->mstate = M_FETCH_ATR;
680 		clear_bit(LOCK_MONITOR, &dev->flags);
681 		/* close et al. are sleeping on devq, so wake it */
682 		wake_up_interruptible(&dev->devq);
683 		DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
684 		return;
685 	}
686 
687 	/* try to lock io: if it is already locked, just add another timer */
688 	if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
689 		DEBUGP(4, dev, "Couldn't get IO lock\n");
690 		goto return_with_timer;
691 	}
692 
693 	/* is a card/a reader inserted at all ? */
694 	dev->flags0 = xinb(REG_FLAGS0(iobase));
695 	DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
696 	DEBUGP(7, dev, "smartcard present: %s\n",
697 	       dev->flags0 & 1 ? "yes" : "no");
698 	DEBUGP(7, dev, "cardman present: %s\n",
699 	       dev->flags0 == 0xff ? "no" : "yes");
700 
701 	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
702 	    || dev->flags0 == 0xff) {	/* no cardman inserted */
703 		/* no */
704 		dev->rlen =
705 		    dev->rpos =
706 		    dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
707 		dev->mstate = M_FETCH_ATR;
708 
709 		dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
710 
711 		if (dev->flags0 == 0xff) {
712 			DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
713 			set_bit(IS_CMM_ABSENT, &dev->flags);
714 		} else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
715 			DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
716 			       "(card is removed)\n");
717 			clear_bit(IS_CMM_ABSENT, &dev->flags);
718 		}
719 
720 		goto release_io;
721 	} else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
722 		/* cardman and card present but cardman was absent before
723 		 * (after suspend with inserted card) */
724 		DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
725 		clear_bit(IS_CMM_ABSENT, &dev->flags);
726 	}
727 
728 	if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
729 		DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
730 		goto release_io;
731 	}
732 
733 	switch (dev->mstate) {
734 		unsigned char flags0;
735 	case M_CARDOFF:
736 		DEBUGP(4, dev, "M_CARDOFF\n");
737 		flags0 = inb(REG_FLAGS0(iobase));
738 		if (flags0 & 0x02) {
739 			/* wait until Flags0 indicate power is off */
740 			dev->mdelay = T_10MSEC;
741 		} else {
742 			/* Flags0 indicate power off and no card inserted now;
743 			 * Reset CARDMAN CONTROLLER */
744 			xoutb(0x80, REG_FLAGS0(iobase));
745 
746 			/* prepare for fetching ATR again: after card off ATR
747 			 * is read again automatically */
748 			dev->rlen =
749 			    dev->rpos =
750 			    dev->atr_csum =
751 			    dev->atr_len_retry = dev->cwarn = 0;
752 			dev->mstate = M_FETCH_ATR;
753 
754 			/* minimal gap between CARDOFF and read ATR is 50msec */
755 			dev->mdelay = T_50MSEC;
756 		}
757 		break;
758 	case M_FETCH_ATR:
759 		DEBUGP(4, dev, "M_FETCH_ATR\n");
760 		xoutb(0x80, REG_FLAGS0(iobase));
761 		DEBUGP(4, dev, "Reset BAUDV to 9600\n");
762 		dev->baudv = 0x173;	/* 9600 */
763 		xoutb(0x02, REG_STOPBITS(iobase));	/* stopbits=2 */
764 		xoutb(0x73, REG_BAUDRATE(iobase));	/* baud value */
765 		xoutb(0x21, REG_FLAGS1(iobase));	/* T_Active=1, baud
766 							   value */
767 		/* warm start vs. power on: */
768 		xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
769 		dev->mdelay = T_40MSEC;
770 		dev->mstate = M_TIMEOUT_WAIT;
771 		break;
772 	case M_TIMEOUT_WAIT:
773 		DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
774 		/* numRecBytes */
775 		io_read_num_rec_bytes(iobase, &dev->atr_len);
776 		dev->mdelay = T_10MSEC;
777 		dev->mstate = M_READ_ATR_LEN;
778 		break;
779 	case M_READ_ATR_LEN:
780 		DEBUGP(4, dev, "M_READ_ATR_LEN\n");
781 		/* infinite loop possible, since there is no timeout */
782 
783 #define	MAX_ATR_LEN_RETRY	100
784 
785 		if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
786 			if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) {					/* + XX msec */
787 				dev->mdelay = T_10MSEC;
788 				dev->mstate = M_READ_ATR;
789 			}
790 		} else {
791 			dev->atr_len = s;
792 			dev->atr_len_retry = 0;	/* set new timeout */
793 		}
794 
795 		DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
796 		break;
797 	case M_READ_ATR:
798 		DEBUGP(4, dev, "M_READ_ATR\n");
799 		xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM */
800 		for (i = 0; i < dev->atr_len; i++) {
801 			xoutb(i, REG_BUF_ADDR(iobase));
802 			dev->atr[i] = inb(REG_BUF_DATA(iobase));
803 		}
804 		/* Deactivate T_Active flags */
805 		DEBUGP(4, dev, "Deactivate T_Active flags\n");
806 		dev->flags1 = 0x01;
807 		xoutb(dev->flags1, REG_FLAGS1(iobase));
808 
809 		/* atr is present (which doesn't mean it's valid) */
810 		set_bit(IS_ATR_PRESENT, &dev->flags);
811 		if (dev->atr[0] == 0x03)
812 			str_invert_revert(dev->atr, dev->atr_len);
813 		atrc = parse_atr(dev);
814 		if (atrc == 0) {	/* atr invalid */
815 			dev->mdelay = 0;
816 			dev->mstate = M_BAD_CARD;
817 		} else {
818 			dev->mdelay = T_50MSEC;
819 			dev->mstate = M_ATR_PRESENT;
820 			set_bit(IS_ATR_VALID, &dev->flags);
821 		}
822 
823 		if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
824 			DEBUGP(4, dev, "monitor_card: ATR valid\n");
825  			/* if ta1 == 0x11, no PPS necessary (default values) */
826 			/* do not do PPS with multi protocol cards */
827 			if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
828 			    (dev->ta1 != 0x11) &&
829 			    !(test_bit(IS_ANY_T0, &dev->flags) &&
830 			    test_bit(IS_ANY_T1, &dev->flags))) {
831 				DEBUGP(4, dev, "Perform AUTOPPS\n");
832 				set_bit(IS_AUTOPPS_ACT, &dev->flags);
833 				ptsreq.protocol = (0x01 << dev->proto);
834 				ptsreq.flags = 0x01;
835 				ptsreq.pts1 = 0x00;
836 				ptsreq.pts2 = 0x00;
837 				ptsreq.pts3 = 0x00;
838 				if (set_protocol(dev, &ptsreq) == 0) {
839 					DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
840 					clear_bit(IS_AUTOPPS_ACT, &dev->flags);
841 					wake_up_interruptible(&dev->atrq);
842 				} else {
843 					DEBUGP(4, dev, "AUTOPPS failed: "
844 					       "repower using defaults\n");
845 					/* prepare for repowering  */
846 					clear_bit(IS_ATR_PRESENT, &dev->flags);
847 					clear_bit(IS_ATR_VALID, &dev->flags);
848 					dev->rlen =
849 					    dev->rpos =
850 					    dev->atr_csum =
851 					    dev->atr_len_retry = dev->cwarn = 0;
852 					dev->mstate = M_FETCH_ATR;
853 
854 					dev->mdelay = T_50MSEC;
855 				}
856 			} else {
857 				/* for cards which use slightly different
858 				 * params (extra guard time) */
859 				set_cardparameter(dev);
860 				if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
861 					DEBUGP(4, dev, "AUTOPPS already active "
862 					       "2nd try:use default values\n");
863 				if (dev->ta1 == 0x11)
864 					DEBUGP(4, dev, "No AUTOPPS necessary "
865 					       "TA(1)==0x11\n");
866 				if (test_bit(IS_ANY_T0, &dev->flags)
867 				    && test_bit(IS_ANY_T1, &dev->flags))
868 					DEBUGP(4, dev, "Do NOT perform AUTOPPS "
869 					       "with multiprotocol cards\n");
870 				clear_bit(IS_AUTOPPS_ACT, &dev->flags);
871 				wake_up_interruptible(&dev->atrq);
872 			}
873 		} else {
874 			DEBUGP(4, dev, "ATR invalid\n");
875 			wake_up_interruptible(&dev->atrq);
876 		}
877 		break;
878 	case M_BAD_CARD:
879 		DEBUGP(4, dev, "M_BAD_CARD\n");
880 		/* slow down warning, but prompt immediately after insertion */
881 		if (dev->cwarn == 0 || dev->cwarn == 10) {
882 			set_bit(IS_BAD_CARD, &dev->flags);
883 			dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
884 			if (test_bit(IS_BAD_CSUM, &dev->flags)) {
885 				DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
886 				       "be zero) failed\n", dev->atr_csum);
887 			}
888 #ifdef CM4000_DEBUG
889 			else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
890 				DEBUGP(4, dev, "ATR length error\n");
891 			} else {
892 				DEBUGP(4, dev, "card damaged or wrong way "
893 					"inserted\n");
894 			}
895 #endif
896 			dev->cwarn = 0;
897 			wake_up_interruptible(&dev->atrq);	/* wake open */
898 		}
899 		dev->cwarn++;
900 		dev->mdelay = T_100MSEC;
901 		dev->mstate = M_FETCH_ATR;
902 		break;
903 	default:
904 		DEBUGP(7, dev, "Unknown action\n");
905 		break;		/* nothing */
906 	}
907 
908 release_io:
909 	DEBUGP(7, dev, "release_io\n");
910 	clear_bit(LOCK_IO, &dev->flags);
911 	wake_up_interruptible(&dev->ioq);	/* whoever needs IO */
912 
913 return_with_timer:
914 	DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
915 	mod_timer(&dev->timer, jiffies + dev->mdelay);
916 	clear_bit(LOCK_MONITOR, &dev->flags);
917 }
918 
919 /* Interface to userland (file_operations) */
920 
cmm_read(struct file * filp,__user char * buf,size_t count,loff_t * ppos)921 static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
922 			loff_t *ppos)
923 {
924 	struct cm4000_dev *dev = filp->private_data;
925 	unsigned int iobase = dev->p_dev->resource[0]->start;
926 	ssize_t rc;
927 	int i, j, k;
928 
929 	DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
930 
931 	if (count == 0)		/* according to manpage */
932 		return 0;
933 
934 	if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
935 	    test_bit(IS_CMM_ABSENT, &dev->flags))
936 		return -ENODEV;
937 
938 	if (test_bit(IS_BAD_CSUM, &dev->flags))
939 		return -EIO;
940 
941 	/* also see the note about this in cmm_write */
942 	if (wait_event_interruptible
943 	    (dev->atrq,
944 	     ((filp->f_flags & O_NONBLOCK)
945 	      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
946 		if (filp->f_flags & O_NONBLOCK)
947 			return -EAGAIN;
948 		return -ERESTARTSYS;
949 	}
950 
951 	if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
952 		return -EIO;
953 
954 	/* this one implements blocking IO */
955 	if (wait_event_interruptible
956 	    (dev->readq,
957 	     ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
958 		if (filp->f_flags & O_NONBLOCK)
959 			return -EAGAIN;
960 		return -ERESTARTSYS;
961 	}
962 
963 	/* lock io */
964 	if (wait_event_interruptible
965 	    (dev->ioq,
966 	     ((filp->f_flags & O_NONBLOCK)
967 	      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
968 		if (filp->f_flags & O_NONBLOCK)
969 			return -EAGAIN;
970 		return -ERESTARTSYS;
971 	}
972 
973 	rc = 0;
974 	dev->flags0 = inb(REG_FLAGS0(iobase));
975 	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
976 	    || dev->flags0 == 0xff) {	/* no cardman inserted */
977 		clear_bit(IS_ATR_VALID, &dev->flags);
978 		if (dev->flags0 & 1) {
979 			set_bit(IS_CMM_ABSENT, &dev->flags);
980 			rc = -ENODEV;
981 		} else {
982 			rc = -EIO;
983 		}
984 		goto release_io;
985 	}
986 
987 	DEBUGP(4, dev, "begin read answer\n");
988 	j = min(count, (size_t)(dev->rlen - dev->rpos));
989 	k = dev->rpos;
990 	if (k + j > 255)
991 		j = 256 - k;
992 	DEBUGP(4, dev, "read1 j=%d\n", j);
993 	for (i = 0; i < j; i++) {
994 		xoutb(k++, REG_BUF_ADDR(iobase));
995 		dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
996 	}
997 	j = min(count, (size_t)(dev->rlen - dev->rpos));
998 	if (k + j > 255) {
999 		DEBUGP(4, dev, "read2 j=%d\n", j);
1000 		dev->flags1 |= 0x10;	/* MSB buf addr set */
1001 		xoutb(dev->flags1, REG_FLAGS1(iobase));
1002 		for (; i < j; i++) {
1003 			xoutb(k++, REG_BUF_ADDR(iobase));
1004 			dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1005 		}
1006 	}
1007 
1008 	if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
1009 		DEBUGP(4, dev, "T=0 and count > buffer\n");
1010 		dev->rbuf[i] = dev->rbuf[i - 1];
1011 		dev->rbuf[i - 1] = dev->procbyte;
1012 		j++;
1013 	}
1014 	count = j;
1015 
1016 	dev->rpos = dev->rlen + 1;
1017 
1018 	/* Clear T1Active */
1019 	DEBUGP(4, dev, "Clear T1Active\n");
1020 	dev->flags1 &= 0xdf;
1021 	xoutb(dev->flags1, REG_FLAGS1(iobase));
1022 
1023 	xoutb(0, REG_FLAGS1(iobase));	/* clear detectCMM */
1024 	/* last check before exit */
1025 	if (!io_detect_cm4000(iobase, dev)) {
1026 		rc = -ENODEV;
1027 		goto release_io;
1028 	}
1029 
1030 	if (test_bit(IS_INVREV, &dev->flags) && count > 0)
1031 		str_invert_revert(dev->rbuf, count);
1032 
1033 	if (copy_to_user(buf, dev->rbuf, count))
1034 		rc = -EFAULT;
1035 
1036 release_io:
1037 	clear_bit(LOCK_IO, &dev->flags);
1038 	wake_up_interruptible(&dev->ioq);
1039 
1040 	DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n",
1041 	       (rc < 0 ? rc : count));
1042 	return rc < 0 ? rc : count;
1043 }
1044 
cmm_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1045 static ssize_t cmm_write(struct file *filp, const char __user *buf,
1046 			 size_t count, loff_t *ppos)
1047 {
1048 	struct cm4000_dev *dev = filp->private_data;
1049 	unsigned int iobase = dev->p_dev->resource[0]->start;
1050 	unsigned short s;
1051 	unsigned char tmp;
1052 	unsigned char infolen;
1053 	unsigned char sendT0;
1054 	unsigned short nsend;
1055 	unsigned short nr;
1056 	ssize_t rc;
1057 	int i;
1058 
1059 	DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
1060 
1061 	if (count == 0)		/* according to manpage */
1062 		return 0;
1063 
1064 	if (dev->proto == 0 && count < 4) {
1065 		/* T0 must have at least 4 bytes */
1066 		DEBUGP(4, dev, "T0 short write\n");
1067 		return -EIO;
1068 	}
1069 
1070 	nr = count & 0x1ff;	/* max bytes to write */
1071 
1072 	sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
1073 
1074 	if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
1075 	    test_bit(IS_CMM_ABSENT, &dev->flags))
1076 		return -ENODEV;
1077 
1078 	if (test_bit(IS_BAD_CSUM, &dev->flags)) {
1079 		DEBUGP(4, dev, "bad csum\n");
1080 		return -EIO;
1081 	}
1082 
1083 	/*
1084 	 * wait for atr to become valid.
1085 	 * note: it is important to lock this code. if we dont, the monitor
1086 	 * could be run between test_bit and the call to sleep on the
1087 	 * atr-queue.  if *then* the monitor detects atr valid, it will wake up
1088 	 * any process on the atr-queue, *but* since we have been interrupted,
1089 	 * we do not yet sleep on this queue. this would result in a missed
1090 	 * wake_up and the calling process would sleep forever (until
1091 	 * interrupted).  also, do *not* restore_flags before sleep_on, because
1092 	 * this could result in the same situation!
1093 	 */
1094 	if (wait_event_interruptible
1095 	    (dev->atrq,
1096 	     ((filp->f_flags & O_NONBLOCK)
1097 	      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
1098 		if (filp->f_flags & O_NONBLOCK)
1099 			return -EAGAIN;
1100 		return -ERESTARTSYS;
1101 	}
1102 
1103 	if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {	/* invalid atr */
1104 		DEBUGP(4, dev, "invalid ATR\n");
1105 		return -EIO;
1106 	}
1107 
1108 	/* lock io */
1109 	if (wait_event_interruptible
1110 	    (dev->ioq,
1111 	     ((filp->f_flags & O_NONBLOCK)
1112 	      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
1113 		if (filp->f_flags & O_NONBLOCK)
1114 			return -EAGAIN;
1115 		return -ERESTARTSYS;
1116 	}
1117 
1118 	if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
1119 		return -EFAULT;
1120 
1121 	rc = 0;
1122 	dev->flags0 = inb(REG_FLAGS0(iobase));
1123 	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
1124 	    || dev->flags0 == 0xff) {	/* no cardman inserted */
1125 		clear_bit(IS_ATR_VALID, &dev->flags);
1126 		if (dev->flags0 & 1) {
1127 			set_bit(IS_CMM_ABSENT, &dev->flags);
1128 			rc = -ENODEV;
1129 		} else {
1130 			DEBUGP(4, dev, "IO error\n");
1131 			rc = -EIO;
1132 		}
1133 		goto release_io;
1134 	}
1135 
1136 	xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM  */
1137 
1138 	if (!io_detect_cm4000(iobase, dev)) {
1139 		rc = -ENODEV;
1140 		goto release_io;
1141 	}
1142 
1143 	/* reflect T=0 send/read mode in flags1 */
1144 	dev->flags1 |= (sendT0);
1145 
1146 	set_cardparameter(dev);
1147 
1148 	/* dummy read, reset flag procedure received */
1149 	tmp = inb(REG_FLAGS1(iobase));
1150 
1151 	dev->flags1 = 0x20	/* T_Active */
1152 	    | (sendT0)
1153 	    | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity  */
1154 	    | (((dev->baudv - 1) & 0x0100) >> 8);	/* MSB-Baud */
1155 	DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
1156 	xoutb(dev->flags1, REG_FLAGS1(iobase));
1157 
1158 	/* xmit data */
1159 	DEBUGP(4, dev, "Xmit data\n");
1160 	for (i = 0; i < nr; i++) {
1161 		if (i >= 256) {
1162 			dev->flags1 = 0x20	/* T_Active */
1163 			    | (sendT0)	/* SendT0 */
1164 				/* inverse parity: */
1165 			    | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
1166 			    | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
1167 			    | 0x10;	/* set address high */
1168 			DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
1169 			       "high\n", dev->flags1);
1170 			xoutb(dev->flags1, REG_FLAGS1(iobase));
1171 		}
1172 		if (test_bit(IS_INVREV, &dev->flags)) {
1173 			DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
1174 				"-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
1175 			      invert_revert(dev->sbuf[i]));
1176 			xoutb(i, REG_BUF_ADDR(iobase));
1177 			xoutb(invert_revert(dev->sbuf[i]),
1178 			      REG_BUF_DATA(iobase));
1179 		} else {
1180 			xoutb(i, REG_BUF_ADDR(iobase));
1181 			xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
1182 		}
1183 	}
1184 	DEBUGP(4, dev, "Xmit done\n");
1185 
1186 	if (dev->proto == 0) {
1187 		/* T=0 proto: 0 byte reply  */
1188 		if (nr == 4) {
1189 			DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
1190 			xoutb(i, REG_BUF_ADDR(iobase));
1191 			if (test_bit(IS_INVREV, &dev->flags))
1192 				xoutb(0xff, REG_BUF_DATA(iobase));
1193 			else
1194 				xoutb(0x00, REG_BUF_DATA(iobase));
1195 		}
1196 
1197 		/* numSendBytes */
1198 		if (sendT0)
1199 			nsend = nr;
1200 		else {
1201 			if (nr == 4)
1202 				nsend = 5;
1203 			else {
1204 				nsend = 5 + (unsigned char)dev->sbuf[4];
1205 				if (dev->sbuf[4] == 0)
1206 					nsend += 0x100;
1207 			}
1208 		}
1209 	} else
1210 		nsend = nr;
1211 
1212 	/* T0: output procedure byte */
1213 	if (test_bit(IS_INVREV, &dev->flags)) {
1214 		DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
1215 		       "0x%.2x\n", invert_revert(dev->sbuf[1]));
1216 		xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
1217 	} else {
1218 		DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
1219 		xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
1220 	}
1221 
1222 	DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
1223 	       (unsigned char)(nsend & 0xff));
1224 	xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
1225 
1226 	DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
1227 	       0x40	/* SM_Active */
1228 	      | (dev->flags0 & 2 ? 0 : 4)	/* power on if needed */
1229 	      |(dev->proto ? 0x10 : 0x08)	/* T=1/T=0 */
1230 	      |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
1231 	xoutb(0x40		/* SM_Active */
1232 	      | (dev->flags0 & 2 ? 0 : 4)	/* power on if needed */
1233 	      |(dev->proto ? 0x10 : 0x08)	/* T=1/T=0 */
1234 	      |(nsend & 0x100) >> 8,	/* MSB numSendBytes */
1235 	      REG_FLAGS0(iobase));
1236 
1237 	/* wait for xmit done */
1238 	if (dev->proto == 1) {
1239 		DEBUGP(4, dev, "Wait for xmit done\n");
1240 		for (i = 0; i < 1000; i++) {
1241 			if (inb(REG_FLAGS0(iobase)) & 0x08)
1242 				break;
1243 			msleep_interruptible(10);
1244 		}
1245 		if (i == 1000) {
1246 			DEBUGP(4, dev, "timeout waiting for xmit done\n");
1247 			rc = -EIO;
1248 			goto release_io;
1249 		}
1250 	}
1251 
1252 	/* T=1: wait for infoLen */
1253 
1254 	infolen = 0;
1255 	if (dev->proto) {
1256 		/* wait until infoLen is valid */
1257 		for (i = 0; i < 6000; i++) {	/* max waiting time of 1 min */
1258 			io_read_num_rec_bytes(iobase, &s);
1259 			if (s >= 3) {
1260 				infolen = inb(REG_FLAGS1(iobase));
1261 				DEBUGP(4, dev, "infolen=%d\n", infolen);
1262 				break;
1263 			}
1264 			msleep_interruptible(10);
1265 		}
1266 		if (i == 6000) {
1267 			DEBUGP(4, dev, "timeout waiting for infoLen\n");
1268 			rc = -EIO;
1269 			goto release_io;
1270 		}
1271 	} else
1272 		clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
1273 
1274 	/* numRecBytes | bit9 of numRecytes */
1275 	io_read_num_rec_bytes(iobase, &dev->rlen);
1276 	for (i = 0; i < 600; i++) {	/* max waiting time of 2 sec */
1277 		if (dev->proto) {
1278 			if (dev->rlen >= infolen + 4)
1279 				break;
1280 		}
1281 		msleep_interruptible(10);
1282 		/* numRecBytes | bit9 of numRecytes */
1283 		io_read_num_rec_bytes(iobase, &s);
1284 		if (s > dev->rlen) {
1285 			DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
1286 			i = 0;	/* reset timeout */
1287 			dev->rlen = s;
1288 		}
1289 		/* T=0: we are done when numRecBytes doesn't
1290 		 *      increment any more and NoProcedureByte
1291 		 *      is set and numRecBytes == bytes sent + 6
1292 		 *      (header bytes + data + 1 for sw2)
1293 		 *      except when the card replies an error
1294 		 *      which means, no data will be sent back.
1295 		 */
1296 		else if (dev->proto == 0) {
1297 			if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
1298 				/* no procedure byte received since last read */
1299 				DEBUGP(1, dev, "NoProcedure byte set\n");
1300 				/* i=0; */
1301 			} else {
1302 				/* procedure byte received since last read */
1303 				DEBUGP(1, dev, "NoProcedure byte unset "
1304 					"(reset timeout)\n");
1305 				dev->procbyte = inb(REG_FLAGS1(iobase));
1306 				DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
1307 				      dev->procbyte);
1308 				i = 0;	/* resettimeout */
1309 			}
1310 			if (inb(REG_FLAGS0(iobase)) & 0x08) {
1311 				DEBUGP(1, dev, "T0Done flag (read reply)\n");
1312 				break;
1313 			}
1314 		}
1315 		if (dev->proto)
1316 			infolen = inb(REG_FLAGS1(iobase));
1317 	}
1318 	if (i == 600) {
1319 		DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
1320 		rc = -EIO;
1321 		goto release_io;
1322 	} else {
1323 		if (dev->proto == 0) {
1324 			DEBUGP(1, dev, "Wait for T0Done bit to be  set\n");
1325 			for (i = 0; i < 1000; i++) {
1326 				if (inb(REG_FLAGS0(iobase)) & 0x08)
1327 					break;
1328 				msleep_interruptible(10);
1329 			}
1330 			if (i == 1000) {
1331 				DEBUGP(1, dev, "timeout waiting for T0Done\n");
1332 				rc = -EIO;
1333 				goto release_io;
1334 			}
1335 
1336 			dev->procbyte = inb(REG_FLAGS1(iobase));
1337 			DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
1338 			      dev->procbyte);
1339 
1340 			io_read_num_rec_bytes(iobase, &dev->rlen);
1341 			DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
1342 
1343 		}
1344 	}
1345 	/* T=1: read offset=zero, T=0: read offset=after challenge */
1346 	dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
1347 	DEBUGP(4, dev, "dev->rlen = %i,  dev->rpos = %i, nr = %i\n",
1348 	      dev->rlen, dev->rpos, nr);
1349 
1350 release_io:
1351 	DEBUGP(4, dev, "Reset SM\n");
1352 	xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM */
1353 
1354 	if (rc < 0) {
1355 		DEBUGP(4, dev, "Write failed but clear T_Active\n");
1356 		dev->flags1 &= 0xdf;
1357 		xoutb(dev->flags1, REG_FLAGS1(iobase));
1358 	}
1359 
1360 	clear_bit(LOCK_IO, &dev->flags);
1361 	wake_up_interruptible(&dev->ioq);
1362 	wake_up_interruptible(&dev->readq);	/* tell read we have data */
1363 
1364 	/* ITSEC E2: clear write buffer */
1365 	memset((char *)dev->sbuf, 0, 512);
1366 
1367 	/* return error or actually written bytes */
1368 	DEBUGP(2, dev, "<- cmm_write\n");
1369 	return rc < 0 ? rc : nr;
1370 }
1371 
start_monitor(struct cm4000_dev * dev)1372 static void start_monitor(struct cm4000_dev *dev)
1373 {
1374 	DEBUGP(3, dev, "-> start_monitor\n");
1375 	if (!dev->monitor_running) {
1376 		DEBUGP(5, dev, "create, init and add timer\n");
1377 		timer_setup(&dev->timer, monitor_card, 0);
1378 		dev->monitor_running = 1;
1379 		mod_timer(&dev->timer, jiffies);
1380 	} else
1381 		DEBUGP(5, dev, "monitor already running\n");
1382 	DEBUGP(3, dev, "<- start_monitor\n");
1383 }
1384 
stop_monitor(struct cm4000_dev * dev)1385 static void stop_monitor(struct cm4000_dev *dev)
1386 {
1387 	DEBUGP(3, dev, "-> stop_monitor\n");
1388 	if (dev->monitor_running) {
1389 		DEBUGP(5, dev, "stopping monitor\n");
1390 		terminate_monitor(dev);
1391 		/* reset monitor SM */
1392 		clear_bit(IS_ATR_VALID, &dev->flags);
1393 		clear_bit(IS_ATR_PRESENT, &dev->flags);
1394 	} else
1395 		DEBUGP(5, dev, "monitor already stopped\n");
1396 	DEBUGP(3, dev, "<- stop_monitor\n");
1397 }
1398 
cmm_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1399 static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1400 {
1401 	struct cm4000_dev *dev = filp->private_data;
1402 	unsigned int iobase = dev->p_dev->resource[0]->start;
1403 	struct inode *inode = file_inode(filp);
1404 	struct pcmcia_device *link;
1405 	int size;
1406 	int rc;
1407 	void __user *argp = (void __user *)arg;
1408 #ifdef CM4000_DEBUG
1409 	char *ioctl_names[CM_IOC_MAXNR + 1] = {
1410 		[_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
1411 		[_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
1412 		[_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
1413 		[_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
1414 		[_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
1415 	};
1416 	DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
1417 	       iminor(inode), ioctl_names[_IOC_NR(cmd)]);
1418 #endif
1419 
1420 	mutex_lock(&cmm_mutex);
1421 	rc = -ENODEV;
1422 	link = dev_table[iminor(inode)];
1423 	if (!pcmcia_dev_present(link)) {
1424 		DEBUGP(4, dev, "DEV_OK false\n");
1425 		goto out;
1426 	}
1427 
1428 	if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
1429 		DEBUGP(4, dev, "CMM_ABSENT flag set\n");
1430 		goto out;
1431 	}
1432 	rc = -EINVAL;
1433 
1434 	if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
1435 		DEBUGP(4, dev, "ioctype mismatch\n");
1436 		goto out;
1437 	}
1438 	if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
1439 		DEBUGP(4, dev, "iocnr mismatch\n");
1440 		goto out;
1441 	}
1442 	size = _IOC_SIZE(cmd);
1443 	rc = -EFAULT;
1444 	DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n",
1445 	      _IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd);
1446 
1447 	if (_IOC_DIR(cmd) & _IOC_READ) {
1448 		if (!access_ok(VERIFY_WRITE, argp, size))
1449 			goto out;
1450 	}
1451 	if (_IOC_DIR(cmd) & _IOC_WRITE) {
1452 		if (!access_ok(VERIFY_READ, argp, size))
1453 			goto out;
1454 	}
1455 	rc = 0;
1456 
1457 	switch (cmd) {
1458 	case CM_IOCGSTATUS:
1459 		DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
1460 		{
1461 			int status;
1462 
1463 			/* clear other bits, but leave inserted & powered as
1464 			 * they are */
1465 			status = dev->flags0 & 3;
1466 			if (test_bit(IS_ATR_PRESENT, &dev->flags))
1467 				status |= CM_ATR_PRESENT;
1468 			if (test_bit(IS_ATR_VALID, &dev->flags))
1469 				status |= CM_ATR_VALID;
1470 			if (test_bit(IS_CMM_ABSENT, &dev->flags))
1471 				status |= CM_NO_READER;
1472 			if (test_bit(IS_BAD_CARD, &dev->flags))
1473 				status |= CM_BAD_CARD;
1474 			if (copy_to_user(argp, &status, sizeof(int)))
1475 				rc = -EFAULT;
1476 		}
1477 		break;
1478 	case CM_IOCGATR:
1479 		DEBUGP(4, dev, "... in CM_IOCGATR\n");
1480 		{
1481 			struct atreq __user *atreq = argp;
1482 			int tmp;
1483 			/* allow nonblocking io and being interrupted */
1484 			if (wait_event_interruptible
1485 			    (dev->atrq,
1486 			     ((filp->f_flags & O_NONBLOCK)
1487 			      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1488 				  != 0)))) {
1489 				if (filp->f_flags & O_NONBLOCK)
1490 					rc = -EAGAIN;
1491 				else
1492 					rc = -ERESTARTSYS;
1493 				break;
1494 			}
1495 
1496 			rc = -EFAULT;
1497 			if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
1498 				tmp = -1;
1499 				if (copy_to_user(&(atreq->atr_len), &tmp,
1500 						 sizeof(int)))
1501 					break;
1502 			} else {
1503 				if (copy_to_user(atreq->atr, dev->atr,
1504 						 dev->atr_len))
1505 					break;
1506 
1507 				tmp = dev->atr_len;
1508 				if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
1509 					break;
1510 			}
1511 			rc = 0;
1512 			break;
1513 		}
1514 	case CM_IOCARDOFF:
1515 
1516 #ifdef CM4000_DEBUG
1517 		DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
1518 		if (dev->flags0 & 0x01) {
1519 			DEBUGP(4, dev, "    Card inserted\n");
1520 		} else {
1521 			DEBUGP(2, dev, "    No card inserted\n");
1522 		}
1523 		if (dev->flags0 & 0x02) {
1524 			DEBUGP(4, dev, "    Card powered\n");
1525 		} else {
1526 			DEBUGP(2, dev, "    Card not powered\n");
1527 		}
1528 #endif
1529 
1530 		/* is a card inserted and powered? */
1531 		if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
1532 
1533 			/* get IO lock */
1534 			if (wait_event_interruptible
1535 			    (dev->ioq,
1536 			     ((filp->f_flags & O_NONBLOCK)
1537 			      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1538 				  == 0)))) {
1539 				if (filp->f_flags & O_NONBLOCK)
1540 					rc = -EAGAIN;
1541 				else
1542 					rc = -ERESTARTSYS;
1543 				break;
1544 			}
1545 			/* Set Flags0 = 0x42 */
1546 			DEBUGP(4, dev, "Set Flags0=0x42 \n");
1547 			xoutb(0x42, REG_FLAGS0(iobase));
1548 			clear_bit(IS_ATR_PRESENT, &dev->flags);
1549 			clear_bit(IS_ATR_VALID, &dev->flags);
1550 			dev->mstate = M_CARDOFF;
1551 			clear_bit(LOCK_IO, &dev->flags);
1552 			if (wait_event_interruptible
1553 			    (dev->atrq,
1554 			     ((filp->f_flags & O_NONBLOCK)
1555 			      || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
1556 				  0)))) {
1557 				if (filp->f_flags & O_NONBLOCK)
1558 					rc = -EAGAIN;
1559 				else
1560 					rc = -ERESTARTSYS;
1561 				break;
1562 			}
1563 		}
1564 		/* release lock */
1565 		clear_bit(LOCK_IO, &dev->flags);
1566 		wake_up_interruptible(&dev->ioq);
1567 
1568 		rc = 0;
1569 		break;
1570 	case CM_IOCSPTS:
1571 		{
1572 			struct ptsreq krnptsreq;
1573 
1574 			if (copy_from_user(&krnptsreq, argp,
1575 					   sizeof(struct ptsreq))) {
1576 				rc = -EFAULT;
1577 				break;
1578 			}
1579 
1580 			rc = 0;
1581 			DEBUGP(4, dev, "... in CM_IOCSPTS\n");
1582 			/* wait for ATR to get valid */
1583 			if (wait_event_interruptible
1584 			    (dev->atrq,
1585 			     ((filp->f_flags & O_NONBLOCK)
1586 			      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1587 				  != 0)))) {
1588 				if (filp->f_flags & O_NONBLOCK)
1589 					rc = -EAGAIN;
1590 				else
1591 					rc = -ERESTARTSYS;
1592 				break;
1593 			}
1594 			/* get IO lock */
1595 			if (wait_event_interruptible
1596 			    (dev->ioq,
1597 			     ((filp->f_flags & O_NONBLOCK)
1598 			      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1599 				  == 0)))) {
1600 				if (filp->f_flags & O_NONBLOCK)
1601 					rc = -EAGAIN;
1602 				else
1603 					rc = -ERESTARTSYS;
1604 				break;
1605 			}
1606 
1607 			if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
1608 				/* auto power_on again */
1609 				dev->mstate = M_FETCH_ATR;
1610 				clear_bit(IS_ATR_VALID, &dev->flags);
1611 			}
1612 			/* release lock */
1613 			clear_bit(LOCK_IO, &dev->flags);
1614 			wake_up_interruptible(&dev->ioq);
1615 
1616 		}
1617 		break;
1618 #ifdef CM4000_DEBUG
1619 	case CM_IOSDBGLVL:
1620 		rc = -ENOTTY;
1621 		break;
1622 #endif
1623 	default:
1624 		DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
1625 		rc = -ENOTTY;
1626 	}
1627 out:
1628 	mutex_unlock(&cmm_mutex);
1629 	return rc;
1630 }
1631 
cmm_open(struct inode * inode,struct file * filp)1632 static int cmm_open(struct inode *inode, struct file *filp)
1633 {
1634 	struct cm4000_dev *dev;
1635 	struct pcmcia_device *link;
1636 	int minor = iminor(inode);
1637 	int ret;
1638 
1639 	if (minor >= CM4000_MAX_DEV)
1640 		return -ENODEV;
1641 
1642 	mutex_lock(&cmm_mutex);
1643 	link = dev_table[minor];
1644 	if (link == NULL || !pcmcia_dev_present(link)) {
1645 		ret = -ENODEV;
1646 		goto out;
1647 	}
1648 
1649 	if (link->open) {
1650 		ret = -EBUSY;
1651 		goto out;
1652 	}
1653 
1654 	dev = link->priv;
1655 	filp->private_data = dev;
1656 
1657 	DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
1658 	      imajor(inode), minor, current->comm, current->pid);
1659 
1660 	/* init device variables, they may be "polluted" after close
1661 	 * or, the device may never have been closed (i.e. open failed)
1662 	 */
1663 
1664 	ZERO_DEV(dev);
1665 
1666 	/* opening will always block since the
1667 	 * monitor will be started by open, which
1668 	 * means we have to wait for ATR becoming
1669 	 * valid = block until valid (or card
1670 	 * inserted)
1671 	 */
1672 	if (filp->f_flags & O_NONBLOCK) {
1673 		ret = -EAGAIN;
1674 		goto out;
1675 	}
1676 
1677 	dev->mdelay = T_50MSEC;
1678 
1679 	/* start monitoring the cardstatus */
1680 	start_monitor(dev);
1681 
1682 	link->open = 1;		/* only one open per device */
1683 
1684 	DEBUGP(2, dev, "<- cmm_open\n");
1685 	ret = nonseekable_open(inode, filp);
1686 out:
1687 	mutex_unlock(&cmm_mutex);
1688 	return ret;
1689 }
1690 
cmm_close(struct inode * inode,struct file * filp)1691 static int cmm_close(struct inode *inode, struct file *filp)
1692 {
1693 	struct cm4000_dev *dev;
1694 	struct pcmcia_device *link;
1695 	int minor = iminor(inode);
1696 
1697 	if (minor >= CM4000_MAX_DEV)
1698 		return -ENODEV;
1699 
1700 	link = dev_table[minor];
1701 	if (link == NULL)
1702 		return -ENODEV;
1703 
1704 	dev = link->priv;
1705 
1706 	DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
1707 	       imajor(inode), minor);
1708 
1709 	stop_monitor(dev);
1710 
1711 	ZERO_DEV(dev);
1712 
1713 	link->open = 0;		/* only one open per device */
1714 	wake_up(&dev->devq);	/* socket removed? */
1715 
1716 	DEBUGP(2, dev, "cmm_close\n");
1717 	return 0;
1718 }
1719 
cmm_cm4000_release(struct pcmcia_device * link)1720 static void cmm_cm4000_release(struct pcmcia_device * link)
1721 {
1722 	struct cm4000_dev *dev = link->priv;
1723 
1724 	/* dont terminate the monitor, rather rely on
1725 	 * close doing that for us.
1726 	 */
1727 	DEBUGP(3, dev, "-> cmm_cm4000_release\n");
1728 	while (link->open) {
1729 		printk(KERN_INFO MODULE_NAME ": delaying release until "
1730 		       "process has terminated\n");
1731 		/* note: don't interrupt us:
1732 		 * close the applications which own
1733 		 * the devices _first_ !
1734 		 */
1735 		wait_event(dev->devq, (link->open == 0));
1736 	}
1737 	/* dev->devq=NULL;	this cannot be zeroed earlier */
1738 	DEBUGP(3, dev, "<- cmm_cm4000_release\n");
1739 	return;
1740 }
1741 
1742 /*==== Interface to PCMCIA Layer =======================================*/
1743 
cm4000_config_check(struct pcmcia_device * p_dev,void * priv_data)1744 static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
1745 {
1746 	return pcmcia_request_io(p_dev);
1747 }
1748 
cm4000_config(struct pcmcia_device * link,int devno)1749 static int cm4000_config(struct pcmcia_device * link, int devno)
1750 {
1751 	link->config_flags |= CONF_AUTO_SET_IO;
1752 
1753 	/* read the config-tuples */
1754 	if (pcmcia_loop_config(link, cm4000_config_check, NULL))
1755 		goto cs_release;
1756 
1757 	if (pcmcia_enable_device(link))
1758 		goto cs_release;
1759 
1760 	return 0;
1761 
1762 cs_release:
1763 	cm4000_release(link);
1764 	return -ENODEV;
1765 }
1766 
cm4000_suspend(struct pcmcia_device * link)1767 static int cm4000_suspend(struct pcmcia_device *link)
1768 {
1769 	struct cm4000_dev *dev;
1770 
1771 	dev = link->priv;
1772 	stop_monitor(dev);
1773 
1774 	return 0;
1775 }
1776 
cm4000_resume(struct pcmcia_device * link)1777 static int cm4000_resume(struct pcmcia_device *link)
1778 {
1779 	struct cm4000_dev *dev;
1780 
1781 	dev = link->priv;
1782 	if (link->open)
1783 		start_monitor(dev);
1784 
1785 	return 0;
1786 }
1787 
cm4000_release(struct pcmcia_device * link)1788 static void cm4000_release(struct pcmcia_device *link)
1789 {
1790 	cmm_cm4000_release(link);	/* delay release until device closed */
1791 	pcmcia_disable_device(link);
1792 }
1793 
cm4000_probe(struct pcmcia_device * link)1794 static int cm4000_probe(struct pcmcia_device *link)
1795 {
1796 	struct cm4000_dev *dev;
1797 	int i, ret;
1798 
1799 	for (i = 0; i < CM4000_MAX_DEV; i++)
1800 		if (dev_table[i] == NULL)
1801 			break;
1802 
1803 	if (i == CM4000_MAX_DEV) {
1804 		printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
1805 		return -ENODEV;
1806 	}
1807 
1808 	/* create a new cm4000_cs device */
1809 	dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
1810 	if (dev == NULL)
1811 		return -ENOMEM;
1812 
1813 	dev->p_dev = link;
1814 	link->priv = dev;
1815 	dev_table[i] = link;
1816 
1817 	init_waitqueue_head(&dev->devq);
1818 	init_waitqueue_head(&dev->ioq);
1819 	init_waitqueue_head(&dev->atrq);
1820 	init_waitqueue_head(&dev->readq);
1821 
1822 	ret = cm4000_config(link, i);
1823 	if (ret) {
1824 		dev_table[i] = NULL;
1825 		kfree(dev);
1826 		return ret;
1827 	}
1828 
1829 	device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
1830 
1831 	return 0;
1832 }
1833 
cm4000_detach(struct pcmcia_device * link)1834 static void cm4000_detach(struct pcmcia_device *link)
1835 {
1836 	struct cm4000_dev *dev = link->priv;
1837 	int devno;
1838 
1839 	/* find device */
1840 	for (devno = 0; devno < CM4000_MAX_DEV; devno++)
1841 		if (dev_table[devno] == link)
1842 			break;
1843 	if (devno == CM4000_MAX_DEV)
1844 		return;
1845 
1846 	stop_monitor(dev);
1847 
1848 	cm4000_release(link);
1849 
1850 	dev_table[devno] = NULL;
1851 	kfree(dev);
1852 
1853 	device_destroy(cmm_class, MKDEV(major, devno));
1854 
1855 	return;
1856 }
1857 
1858 static const struct file_operations cm4000_fops = {
1859 	.owner	= THIS_MODULE,
1860 	.read	= cmm_read,
1861 	.write	= cmm_write,
1862 	.unlocked_ioctl	= cmm_ioctl,
1863 	.open	= cmm_open,
1864 	.release= cmm_close,
1865 	.llseek = no_llseek,
1866 };
1867 
1868 static const struct pcmcia_device_id cm4000_ids[] = {
1869 	PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
1870 	PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
1871 	PCMCIA_DEVICE_NULL,
1872 };
1873 MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
1874 
1875 static struct pcmcia_driver cm4000_driver = {
1876 	.owner	  = THIS_MODULE,
1877 	.name	  = "cm4000_cs",
1878 	.probe    = cm4000_probe,
1879 	.remove   = cm4000_detach,
1880 	.suspend  = cm4000_suspend,
1881 	.resume   = cm4000_resume,
1882 	.id_table = cm4000_ids,
1883 };
1884 
cmm_init(void)1885 static int __init cmm_init(void)
1886 {
1887 	int rc;
1888 
1889 	cmm_class = class_create(THIS_MODULE, "cardman_4000");
1890 	if (IS_ERR(cmm_class))
1891 		return PTR_ERR(cmm_class);
1892 
1893 	major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
1894 	if (major < 0) {
1895 		printk(KERN_WARNING MODULE_NAME
1896 			": could not get major number\n");
1897 		class_destroy(cmm_class);
1898 		return major;
1899 	}
1900 
1901 	rc = pcmcia_register_driver(&cm4000_driver);
1902 	if (rc < 0) {
1903 		unregister_chrdev(major, DEVICE_NAME);
1904 		class_destroy(cmm_class);
1905 		return rc;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
cmm_exit(void)1911 static void __exit cmm_exit(void)
1912 {
1913 	pcmcia_unregister_driver(&cm4000_driver);
1914 	unregister_chrdev(major, DEVICE_NAME);
1915 	class_destroy(cmm_class);
1916 };
1917 
1918 module_init(cmm_init);
1919 module_exit(cmm_exit);
1920 MODULE_LICENSE("Dual BSD/GPL");
1921