1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx SystemACE device driver
4  *
5  * Copyright 2007 Secret Lab Technologies Ltd.
6  */
7 
8 /*
9  * The SystemACE chip is designed to configure FPGAs by loading an FPGA
10  * bitstream from a file on a CF card and squirting it into FPGAs connected
11  * to the SystemACE JTAG chain.  It also has the advantage of providing an
12  * MPU interface which can be used to control the FPGA configuration process
13  * and to use the attached CF card for general purpose storage.
14  *
15  * This driver is a block device driver for the SystemACE.
16  *
17  * Initialization:
18  *    The driver registers itself as a platform_device driver at module
19  *    load time.  The platform bus will take care of calling the
20  *    ace_probe() method for all SystemACE instances in the system.  Any
21  *    number of SystemACE instances are supported.  ace_probe() calls
22  *    ace_setup() which initialized all data structures, reads the CF
23  *    id structure and registers the device.
24  *
25  * Processing:
26  *    Just about all of the heavy lifting in this driver is performed by
27  *    a Finite State Machine (FSM).  The driver needs to wait on a number
28  *    of events; some raised by interrupts, some which need to be polled
29  *    for.  Describing all of the behaviour in a FSM seems to be the
30  *    easiest way to keep the complexity low and make it easy to
31  *    understand what the driver is doing.  If the block ops or the
32  *    request function need to interact with the hardware, then they
33  *    simply need to flag the request and kick of FSM processing.
34  *
35  *    The FSM itself is atomic-safe code which can be run from any
36  *    context.  The general process flow is:
37  *    1. obtain the ace->lock spinlock.
38  *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
39  *       cleared.
40  *    3. release the lock.
41  *
42  *    Individual states do not sleep in any way.  If a condition needs to
43  *    be waited for then the state much clear the fsm_continue flag and
44  *    either schedule the FSM to be run again at a later time, or expect
45  *    an interrupt to call the FSM when the desired condition is met.
46  *
47  *    In normal operation, the FSM is processed at interrupt context
48  *    either when the driver's tasklet is scheduled, or when an irq is
49  *    raised by the hardware.  The tasklet can be scheduled at any time.
50  *    The request method in particular schedules the tasklet when a new
51  *    request has been indicated by the block layer.  Once started, the
52  *    FSM proceeds as far as it can processing the request until it
53  *    needs on a hardware event.  At this point, it must yield execution.
54  *
55  *    A state has two options when yielding execution:
56  *    1. ace_fsm_yield()
57  *       - Call if need to poll for event.
58  *       - clears the fsm_continue flag to exit the processing loop
59  *       - reschedules the tasklet to run again as soon as possible
60  *    2. ace_fsm_yieldirq()
61  *       - Call if an irq is expected from the HW
62  *       - clears the fsm_continue flag to exit the processing loop
63  *       - does not reschedule the tasklet so the FSM will not be processed
64  *         again until an irq is received.
65  *    After calling a yield function, the state must return control back
66  *    to the FSM main loop.
67  *
68  *    Additionally, the driver maintains a kernel timer which can process
69  *    the FSM.  If the FSM gets stalled, typically due to a missed
70  *    interrupt, then the kernel timer will expire and the driver can
71  *    continue where it left off.
72  *
73  * To Do:
74  *    - Add FPGA configuration control interface.
75  *    - Request major number from lanana
76  */
77 
78 #undef DEBUG
79 
80 #include <linux/module.h>
81 #include <linux/ctype.h>
82 #include <linux/init.h>
83 #include <linux/interrupt.h>
84 #include <linux/errno.h>
85 #include <linux/kernel.h>
86 #include <linux/delay.h>
87 #include <linux/slab.h>
88 #include <linux/blk-mq.h>
89 #include <linux/mutex.h>
90 #include <linux/ata.h>
91 #include <linux/hdreg.h>
92 #include <linux/platform_device.h>
93 #if defined(CONFIG_OF)
94 #include <linux/of_address.h>
95 #include <linux/of_device.h>
96 #include <linux/of_platform.h>
97 #endif
98 
99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
101 MODULE_LICENSE("GPL");
102 
103 /* SystemACE register definitions */
104 #define ACE_BUSMODE (0x00)
105 
106 #define ACE_STATUS (0x04)
107 #define ACE_STATUS_CFGLOCK      (0x00000001)
108 #define ACE_STATUS_MPULOCK      (0x00000002)
109 #define ACE_STATUS_CFGERROR     (0x00000004)	/* config controller error */
110 #define ACE_STATUS_CFCERROR     (0x00000008)	/* CF controller error */
111 #define ACE_STATUS_CFDETECT     (0x00000010)
112 #define ACE_STATUS_DATABUFRDY   (0x00000020)
113 #define ACE_STATUS_DATABUFMODE  (0x00000040)
114 #define ACE_STATUS_CFGDONE      (0x00000080)
115 #define ACE_STATUS_RDYFORCFCMD  (0x00000100)
116 #define ACE_STATUS_CFGMODEPIN   (0x00000200)
117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
118 #define ACE_STATUS_CFBSY        (0x00020000)
119 #define ACE_STATUS_CFRDY        (0x00040000)
120 #define ACE_STATUS_CFDWF        (0x00080000)
121 #define ACE_STATUS_CFDSC        (0x00100000)
122 #define ACE_STATUS_CFDRQ        (0x00200000)
123 #define ACE_STATUS_CFCORR       (0x00400000)
124 #define ACE_STATUS_CFERR        (0x00800000)
125 
126 #define ACE_ERROR (0x08)
127 #define ACE_CFGLBA (0x0c)
128 #define ACE_MPULBA (0x10)
129 
130 #define ACE_SECCNTCMD (0x14)
131 #define ACE_SECCNTCMD_RESET      (0x0100)
132 #define ACE_SECCNTCMD_IDENTIFY   (0x0200)
133 #define ACE_SECCNTCMD_READ_DATA  (0x0300)
134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
135 #define ACE_SECCNTCMD_ABORT      (0x0600)
136 
137 #define ACE_VERSION (0x16)
138 #define ACE_VERSION_REVISION_MASK (0x00FF)
139 #define ACE_VERSION_MINOR_MASK    (0x0F00)
140 #define ACE_VERSION_MAJOR_MASK    (0xF000)
141 
142 #define ACE_CTRL (0x18)
143 #define ACE_CTRL_FORCELOCKREQ   (0x0001)
144 #define ACE_CTRL_LOCKREQ        (0x0002)
145 #define ACE_CTRL_FORCECFGADDR   (0x0004)
146 #define ACE_CTRL_FORCECFGMODE   (0x0008)
147 #define ACE_CTRL_CFGMODE        (0x0010)
148 #define ACE_CTRL_CFGSTART       (0x0020)
149 #define ACE_CTRL_CFGSEL         (0x0040)
150 #define ACE_CTRL_CFGRESET       (0x0080)
151 #define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
152 #define ACE_CTRL_ERRORIRQ       (0x0200)
153 #define ACE_CTRL_CFGDONEIRQ     (0x0400)
154 #define ACE_CTRL_RESETIRQ       (0x0800)
155 #define ACE_CTRL_CFGPROG        (0x1000)
156 #define ACE_CTRL_CFGADDR_MASK   (0xe000)
157 
158 #define ACE_FATSTAT (0x1c)
159 
160 #define ACE_NUM_MINORS 16
161 #define ACE_SECTOR_SIZE (512)
162 #define ACE_FIFO_SIZE (32)
163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
164 
165 #define ACE_BUS_WIDTH_8  0
166 #define ACE_BUS_WIDTH_16 1
167 
168 struct ace_reg_ops;
169 
170 struct ace_device {
171 	/* driver state data */
172 	int id;
173 	int media_change;
174 	int users;
175 	struct list_head list;
176 
177 	/* finite state machine data */
178 	struct tasklet_struct fsm_tasklet;
179 	uint fsm_task;		/* Current activity (ACE_TASK_*) */
180 	uint fsm_state;		/* Current state (ACE_FSM_STATE_*) */
181 	uint fsm_continue_flag;	/* cleared to exit FSM mainloop */
182 	uint fsm_iter_num;
183 	struct timer_list stall_timer;
184 
185 	/* Transfer state/result, use for both id and block request */
186 	struct request *req;	/* request being processed */
187 	void *data_ptr;		/* pointer to I/O buffer */
188 	int data_count;		/* number of buffers remaining */
189 	int data_result;	/* Result of transfer; 0 := success */
190 
191 	int id_req_count;	/* count of id requests */
192 	int id_result;
193 	struct completion id_completion;	/* used when id req finishes */
194 	int in_irq;
195 
196 	/* Details of hardware device */
197 	resource_size_t physaddr;
198 	void __iomem *baseaddr;
199 	int irq;
200 	int bus_width;		/* 0 := 8 bit; 1 := 16 bit */
201 	struct ace_reg_ops *reg_ops;
202 	int lock_count;
203 
204 	/* Block device data structures */
205 	spinlock_t lock;
206 	struct device *dev;
207 	struct request_queue *queue;
208 	struct gendisk *gd;
209 	struct blk_mq_tag_set tag_set;
210 	struct list_head rq_list;
211 
212 	/* Inserted CF card parameters */
213 	u16 cf_id[ATA_ID_WORDS];
214 };
215 
216 static DEFINE_MUTEX(xsysace_mutex);
217 static int ace_major;
218 
219 /* ---------------------------------------------------------------------
220  * Low level register access
221  */
222 
223 struct ace_reg_ops {
224 	u16(*in) (struct ace_device * ace, int reg);
225 	void (*out) (struct ace_device * ace, int reg, u16 val);
226 	void (*datain) (struct ace_device * ace);
227 	void (*dataout) (struct ace_device * ace);
228 };
229 
230 /* 8 Bit bus width */
ace_in_8(struct ace_device * ace,int reg)231 static u16 ace_in_8(struct ace_device *ace, int reg)
232 {
233 	void __iomem *r = ace->baseaddr + reg;
234 	return in_8(r) | (in_8(r + 1) << 8);
235 }
236 
ace_out_8(struct ace_device * ace,int reg,u16 val)237 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
238 {
239 	void __iomem *r = ace->baseaddr + reg;
240 	out_8(r, val);
241 	out_8(r + 1, val >> 8);
242 }
243 
ace_datain_8(struct ace_device * ace)244 static void ace_datain_8(struct ace_device *ace)
245 {
246 	void __iomem *r = ace->baseaddr + 0x40;
247 	u8 *dst = ace->data_ptr;
248 	int i = ACE_FIFO_SIZE;
249 	while (i--)
250 		*dst++ = in_8(r++);
251 	ace->data_ptr = dst;
252 }
253 
ace_dataout_8(struct ace_device * ace)254 static void ace_dataout_8(struct ace_device *ace)
255 {
256 	void __iomem *r = ace->baseaddr + 0x40;
257 	u8 *src = ace->data_ptr;
258 	int i = ACE_FIFO_SIZE;
259 	while (i--)
260 		out_8(r++, *src++);
261 	ace->data_ptr = src;
262 }
263 
264 static struct ace_reg_ops ace_reg_8_ops = {
265 	.in = ace_in_8,
266 	.out = ace_out_8,
267 	.datain = ace_datain_8,
268 	.dataout = ace_dataout_8,
269 };
270 
271 /* 16 bit big endian bus attachment */
ace_in_be16(struct ace_device * ace,int reg)272 static u16 ace_in_be16(struct ace_device *ace, int reg)
273 {
274 	return in_be16(ace->baseaddr + reg);
275 }
276 
ace_out_be16(struct ace_device * ace,int reg,u16 val)277 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
278 {
279 	out_be16(ace->baseaddr + reg, val);
280 }
281 
ace_datain_be16(struct ace_device * ace)282 static void ace_datain_be16(struct ace_device *ace)
283 {
284 	int i = ACE_FIFO_SIZE / 2;
285 	u16 *dst = ace->data_ptr;
286 	while (i--)
287 		*dst++ = in_le16(ace->baseaddr + 0x40);
288 	ace->data_ptr = dst;
289 }
290 
ace_dataout_be16(struct ace_device * ace)291 static void ace_dataout_be16(struct ace_device *ace)
292 {
293 	int i = ACE_FIFO_SIZE / 2;
294 	u16 *src = ace->data_ptr;
295 	while (i--)
296 		out_le16(ace->baseaddr + 0x40, *src++);
297 	ace->data_ptr = src;
298 }
299 
300 /* 16 bit little endian bus attachment */
ace_in_le16(struct ace_device * ace,int reg)301 static u16 ace_in_le16(struct ace_device *ace, int reg)
302 {
303 	return in_le16(ace->baseaddr + reg);
304 }
305 
ace_out_le16(struct ace_device * ace,int reg,u16 val)306 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
307 {
308 	out_le16(ace->baseaddr + reg, val);
309 }
310 
ace_datain_le16(struct ace_device * ace)311 static void ace_datain_le16(struct ace_device *ace)
312 {
313 	int i = ACE_FIFO_SIZE / 2;
314 	u16 *dst = ace->data_ptr;
315 	while (i--)
316 		*dst++ = in_be16(ace->baseaddr + 0x40);
317 	ace->data_ptr = dst;
318 }
319 
ace_dataout_le16(struct ace_device * ace)320 static void ace_dataout_le16(struct ace_device *ace)
321 {
322 	int i = ACE_FIFO_SIZE / 2;
323 	u16 *src = ace->data_ptr;
324 	while (i--)
325 		out_be16(ace->baseaddr + 0x40, *src++);
326 	ace->data_ptr = src;
327 }
328 
329 static struct ace_reg_ops ace_reg_be16_ops = {
330 	.in = ace_in_be16,
331 	.out = ace_out_be16,
332 	.datain = ace_datain_be16,
333 	.dataout = ace_dataout_be16,
334 };
335 
336 static struct ace_reg_ops ace_reg_le16_ops = {
337 	.in = ace_in_le16,
338 	.out = ace_out_le16,
339 	.datain = ace_datain_le16,
340 	.dataout = ace_dataout_le16,
341 };
342 
ace_in(struct ace_device * ace,int reg)343 static inline u16 ace_in(struct ace_device *ace, int reg)
344 {
345 	return ace->reg_ops->in(ace, reg);
346 }
347 
ace_in32(struct ace_device * ace,int reg)348 static inline u32 ace_in32(struct ace_device *ace, int reg)
349 {
350 	return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
351 }
352 
ace_out(struct ace_device * ace,int reg,u16 val)353 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
354 {
355 	ace->reg_ops->out(ace, reg, val);
356 }
357 
ace_out32(struct ace_device * ace,int reg,u32 val)358 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
359 {
360 	ace_out(ace, reg, val);
361 	ace_out(ace, reg + 2, val >> 16);
362 }
363 
364 /* ---------------------------------------------------------------------
365  * Debug support functions
366  */
367 
368 #if defined(DEBUG)
ace_dump_mem(void * base,int len)369 static void ace_dump_mem(void *base, int len)
370 {
371 	const char *ptr = base;
372 	int i, j;
373 
374 	for (i = 0; i < len; i += 16) {
375 		printk(KERN_INFO "%.8x:", i);
376 		for (j = 0; j < 16; j++) {
377 			if (!(j % 4))
378 				printk(" ");
379 			printk("%.2x", ptr[i + j]);
380 		}
381 		printk(" ");
382 		for (j = 0; j < 16; j++)
383 			printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
384 		printk("\n");
385 	}
386 }
387 #else
ace_dump_mem(void * base,int len)388 static inline void ace_dump_mem(void *base, int len)
389 {
390 }
391 #endif
392 
ace_dump_regs(struct ace_device * ace)393 static void ace_dump_regs(struct ace_device *ace)
394 {
395 	dev_info(ace->dev,
396 		 "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
397 		 "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
398 		 "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
399 		 ace_in32(ace, ACE_CTRL),
400 		 ace_in(ace, ACE_SECCNTCMD),
401 		 ace_in(ace, ACE_VERSION),
402 		 ace_in32(ace, ACE_STATUS),
403 		 ace_in32(ace, ACE_MPULBA),
404 		 ace_in(ace, ACE_BUSMODE),
405 		 ace_in32(ace, ACE_ERROR),
406 		 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
407 }
408 
ace_fix_driveid(u16 * id)409 static void ace_fix_driveid(u16 *id)
410 {
411 #if defined(__BIG_ENDIAN)
412 	int i;
413 
414 	/* All half words have wrong byte order; swap the bytes */
415 	for (i = 0; i < ATA_ID_WORDS; i++, id++)
416 		*id = le16_to_cpu(*id);
417 #endif
418 }
419 
420 /* ---------------------------------------------------------------------
421  * Finite State Machine (FSM) implementation
422  */
423 
424 /* FSM tasks; used to direct state transitions */
425 #define ACE_TASK_IDLE      0
426 #define ACE_TASK_IDENTIFY  1
427 #define ACE_TASK_READ      2
428 #define ACE_TASK_WRITE     3
429 #define ACE_FSM_NUM_TASKS  4
430 
431 /* FSM state definitions */
432 #define ACE_FSM_STATE_IDLE               0
433 #define ACE_FSM_STATE_REQ_LOCK           1
434 #define ACE_FSM_STATE_WAIT_LOCK          2
435 #define ACE_FSM_STATE_WAIT_CFREADY       3
436 #define ACE_FSM_STATE_IDENTIFY_PREPARE   4
437 #define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
438 #define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
439 #define ACE_FSM_STATE_REQ_PREPARE        7
440 #define ACE_FSM_STATE_REQ_TRANSFER       8
441 #define ACE_FSM_STATE_REQ_COMPLETE       9
442 #define ACE_FSM_STATE_ERROR             10
443 #define ACE_FSM_NUM_STATES              11
444 
445 /* Set flag to exit FSM loop and reschedule tasklet */
ace_fsm_yield(struct ace_device * ace)446 static inline void ace_fsm_yield(struct ace_device *ace)
447 {
448 	dev_dbg(ace->dev, "ace_fsm_yield()\n");
449 	tasklet_schedule(&ace->fsm_tasklet);
450 	ace->fsm_continue_flag = 0;
451 }
452 
453 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
ace_fsm_yieldirq(struct ace_device * ace)454 static inline void ace_fsm_yieldirq(struct ace_device *ace)
455 {
456 	dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
457 
458 	if (!ace->irq)
459 		/* No IRQ assigned, so need to poll */
460 		tasklet_schedule(&ace->fsm_tasklet);
461 	ace->fsm_continue_flag = 0;
462 }
463 
ace_has_next_request(struct request_queue * q)464 static bool ace_has_next_request(struct request_queue *q)
465 {
466 	struct ace_device *ace = q->queuedata;
467 
468 	return !list_empty(&ace->rq_list);
469 }
470 
471 /* Get the next read/write request; ending requests that we don't handle */
ace_get_next_request(struct request_queue * q)472 static struct request *ace_get_next_request(struct request_queue *q)
473 {
474 	struct ace_device *ace = q->queuedata;
475 	struct request *rq;
476 
477 	rq = list_first_entry_or_null(&ace->rq_list, struct request, queuelist);
478 	if (rq) {
479 		list_del_init(&rq->queuelist);
480 		blk_mq_start_request(rq);
481 	}
482 
483 	return NULL;
484 }
485 
ace_fsm_dostate(struct ace_device * ace)486 static void ace_fsm_dostate(struct ace_device *ace)
487 {
488 	struct request *req;
489 	u32 status;
490 	u16 val;
491 	int count;
492 
493 #if defined(DEBUG)
494 	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
495 		ace->fsm_state, ace->id_req_count);
496 #endif
497 
498 	/* Verify that there is actually a CF in the slot. If not, then
499 	 * bail out back to the idle state and wake up all the waiters */
500 	status = ace_in32(ace, ACE_STATUS);
501 	if ((status & ACE_STATUS_CFDETECT) == 0) {
502 		ace->fsm_state = ACE_FSM_STATE_IDLE;
503 		ace->media_change = 1;
504 		set_capacity(ace->gd, 0);
505 		dev_info(ace->dev, "No CF in slot\n");
506 
507 		/* Drop all in-flight and pending requests */
508 		if (ace->req) {
509 			blk_mq_end_request(ace->req, BLK_STS_IOERR);
510 			ace->req = NULL;
511 		}
512 		while ((req = ace_get_next_request(ace->queue)) != NULL)
513 			blk_mq_end_request(req, BLK_STS_IOERR);
514 
515 		/* Drop back to IDLE state and notify waiters */
516 		ace->fsm_state = ACE_FSM_STATE_IDLE;
517 		ace->id_result = -EIO;
518 		while (ace->id_req_count) {
519 			complete(&ace->id_completion);
520 			ace->id_req_count--;
521 		}
522 	}
523 
524 	switch (ace->fsm_state) {
525 	case ACE_FSM_STATE_IDLE:
526 		/* See if there is anything to do */
527 		if (ace->id_req_count || ace_has_next_request(ace->queue)) {
528 			ace->fsm_iter_num++;
529 			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
530 			mod_timer(&ace->stall_timer, jiffies + HZ);
531 			if (!timer_pending(&ace->stall_timer))
532 				add_timer(&ace->stall_timer);
533 			break;
534 		}
535 		del_timer(&ace->stall_timer);
536 		ace->fsm_continue_flag = 0;
537 		break;
538 
539 	case ACE_FSM_STATE_REQ_LOCK:
540 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
541 			/* Already have the lock, jump to next state */
542 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
543 			break;
544 		}
545 
546 		/* Request the lock */
547 		val = ace_in(ace, ACE_CTRL);
548 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
549 		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
550 		break;
551 
552 	case ACE_FSM_STATE_WAIT_LOCK:
553 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
554 			/* got the lock; move to next state */
555 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
556 			break;
557 		}
558 
559 		/* wait a bit for the lock */
560 		ace_fsm_yield(ace);
561 		break;
562 
563 	case ACE_FSM_STATE_WAIT_CFREADY:
564 		status = ace_in32(ace, ACE_STATUS);
565 		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
566 		    (status & ACE_STATUS_CFBSY)) {
567 			/* CF card isn't ready; it needs to be polled */
568 			ace_fsm_yield(ace);
569 			break;
570 		}
571 
572 		/* Device is ready for command; determine what to do next */
573 		if (ace->id_req_count)
574 			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
575 		else
576 			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
577 		break;
578 
579 	case ACE_FSM_STATE_IDENTIFY_PREPARE:
580 		/* Send identify command */
581 		ace->fsm_task = ACE_TASK_IDENTIFY;
582 		ace->data_ptr = ace->cf_id;
583 		ace->data_count = ACE_BUF_PER_SECTOR;
584 		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
585 
586 		/* As per datasheet, put config controller in reset */
587 		val = ace_in(ace, ACE_CTRL);
588 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
589 
590 		/* irq handler takes over from this point; wait for the
591 		 * transfer to complete */
592 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
593 		ace_fsm_yieldirq(ace);
594 		break;
595 
596 	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
597 		/* Check that the sysace is ready to receive data */
598 		status = ace_in32(ace, ACE_STATUS);
599 		if (status & ACE_STATUS_CFBSY) {
600 			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
601 				ace->fsm_task, ace->fsm_iter_num,
602 				ace->data_count);
603 			ace_fsm_yield(ace);
604 			break;
605 		}
606 		if (!(status & ACE_STATUS_DATABUFRDY)) {
607 			ace_fsm_yield(ace);
608 			break;
609 		}
610 
611 		/* Transfer the next buffer */
612 		ace->reg_ops->datain(ace);
613 		ace->data_count--;
614 
615 		/* If there are still buffers to be transfers; jump out here */
616 		if (ace->data_count != 0) {
617 			ace_fsm_yieldirq(ace);
618 			break;
619 		}
620 
621 		/* transfer finished; kick state machine */
622 		dev_dbg(ace->dev, "identify finished\n");
623 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
624 		break;
625 
626 	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
627 		ace_fix_driveid(ace->cf_id);
628 		ace_dump_mem(ace->cf_id, 512);	/* Debug: Dump out disk ID */
629 
630 		if (ace->data_result) {
631 			/* Error occurred, disable the disk */
632 			ace->media_change = 1;
633 			set_capacity(ace->gd, 0);
634 			dev_err(ace->dev, "error fetching CF id (%i)\n",
635 				ace->data_result);
636 		} else {
637 			ace->media_change = 0;
638 
639 			/* Record disk parameters */
640 			set_capacity(ace->gd,
641 				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
642 			dev_info(ace->dev, "capacity: %i sectors\n",
643 				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
644 		}
645 
646 		/* We're done, drop to IDLE state and notify waiters */
647 		ace->fsm_state = ACE_FSM_STATE_IDLE;
648 		ace->id_result = ace->data_result;
649 		while (ace->id_req_count) {
650 			complete(&ace->id_completion);
651 			ace->id_req_count--;
652 		}
653 		break;
654 
655 	case ACE_FSM_STATE_REQ_PREPARE:
656 		req = ace_get_next_request(ace->queue);
657 		if (!req) {
658 			ace->fsm_state = ACE_FSM_STATE_IDLE;
659 			break;
660 		}
661 
662 		/* Okay, it's a data request, set it up for transfer */
663 		dev_dbg(ace->dev,
664 			"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
665 			(unsigned long long)blk_rq_pos(req),
666 			blk_rq_sectors(req), blk_rq_cur_sectors(req),
667 			rq_data_dir(req));
668 
669 		ace->req = req;
670 		ace->data_ptr = bio_data(req->bio);
671 		ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
672 		ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
673 
674 		count = blk_rq_sectors(req);
675 		if (rq_data_dir(req)) {
676 			/* Kick off write request */
677 			dev_dbg(ace->dev, "write data\n");
678 			ace->fsm_task = ACE_TASK_WRITE;
679 			ace_out(ace, ACE_SECCNTCMD,
680 				count | ACE_SECCNTCMD_WRITE_DATA);
681 		} else {
682 			/* Kick off read request */
683 			dev_dbg(ace->dev, "read data\n");
684 			ace->fsm_task = ACE_TASK_READ;
685 			ace_out(ace, ACE_SECCNTCMD,
686 				count | ACE_SECCNTCMD_READ_DATA);
687 		}
688 
689 		/* As per datasheet, put config controller in reset */
690 		val = ace_in(ace, ACE_CTRL);
691 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
692 
693 		/* Move to the transfer state.  The systemace will raise
694 		 * an interrupt once there is something to do
695 		 */
696 		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
697 		if (ace->fsm_task == ACE_TASK_READ)
698 			ace_fsm_yieldirq(ace);	/* wait for data ready */
699 		break;
700 
701 	case ACE_FSM_STATE_REQ_TRANSFER:
702 		/* Check that the sysace is ready to receive data */
703 		status = ace_in32(ace, ACE_STATUS);
704 		if (status & ACE_STATUS_CFBSY) {
705 			dev_dbg(ace->dev,
706 				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
707 				ace->fsm_task, ace->fsm_iter_num,
708 				blk_rq_cur_sectors(ace->req) * 16,
709 				ace->data_count, ace->in_irq);
710 			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
711 			break;
712 		}
713 		if (!(status & ACE_STATUS_DATABUFRDY)) {
714 			dev_dbg(ace->dev,
715 				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
716 				ace->fsm_task, ace->fsm_iter_num,
717 				blk_rq_cur_sectors(ace->req) * 16,
718 				ace->data_count, ace->in_irq);
719 			ace_fsm_yieldirq(ace);
720 			break;
721 		}
722 
723 		/* Transfer the next buffer */
724 		if (ace->fsm_task == ACE_TASK_WRITE)
725 			ace->reg_ops->dataout(ace);
726 		else
727 			ace->reg_ops->datain(ace);
728 		ace->data_count--;
729 
730 		/* If there are still buffers to be transfers; jump out here */
731 		if (ace->data_count != 0) {
732 			ace_fsm_yieldirq(ace);
733 			break;
734 		}
735 
736 		/* bio finished; is there another one? */
737 		if (blk_update_request(ace->req, BLK_STS_OK,
738 		    blk_rq_cur_bytes(ace->req))) {
739 			/* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
740 			 *      blk_rq_sectors(ace->req),
741 			 *      blk_rq_cur_sectors(ace->req));
742 			 */
743 			ace->data_ptr = bio_data(ace->req->bio);
744 			ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
745 			ace_fsm_yieldirq(ace);
746 			break;
747 		}
748 
749 		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
750 		break;
751 
752 	case ACE_FSM_STATE_REQ_COMPLETE:
753 		ace->req = NULL;
754 
755 		/* Finished request; go to idle state */
756 		ace->fsm_state = ACE_FSM_STATE_IDLE;
757 		break;
758 
759 	default:
760 		ace->fsm_state = ACE_FSM_STATE_IDLE;
761 		break;
762 	}
763 }
764 
ace_fsm_tasklet(unsigned long data)765 static void ace_fsm_tasklet(unsigned long data)
766 {
767 	struct ace_device *ace = (void *)data;
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&ace->lock, flags);
771 
772 	/* Loop over state machine until told to stop */
773 	ace->fsm_continue_flag = 1;
774 	while (ace->fsm_continue_flag)
775 		ace_fsm_dostate(ace);
776 
777 	spin_unlock_irqrestore(&ace->lock, flags);
778 }
779 
ace_stall_timer(struct timer_list * t)780 static void ace_stall_timer(struct timer_list *t)
781 {
782 	struct ace_device *ace = from_timer(ace, t, stall_timer);
783 	unsigned long flags;
784 
785 	dev_warn(ace->dev,
786 		 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
787 		 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
788 		 ace->data_count);
789 	spin_lock_irqsave(&ace->lock, flags);
790 
791 	/* Rearm the stall timer *before* entering FSM (which may then
792 	 * delete the timer) */
793 	mod_timer(&ace->stall_timer, jiffies + HZ);
794 
795 	/* Loop over state machine until told to stop */
796 	ace->fsm_continue_flag = 1;
797 	while (ace->fsm_continue_flag)
798 		ace_fsm_dostate(ace);
799 
800 	spin_unlock_irqrestore(&ace->lock, flags);
801 }
802 
803 /* ---------------------------------------------------------------------
804  * Interrupt handling routines
805  */
ace_interrupt_checkstate(struct ace_device * ace)806 static int ace_interrupt_checkstate(struct ace_device *ace)
807 {
808 	u32 sreg = ace_in32(ace, ACE_STATUS);
809 	u16 creg = ace_in(ace, ACE_CTRL);
810 
811 	/* Check for error occurrence */
812 	if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
813 	    (creg & ACE_CTRL_ERRORIRQ)) {
814 		dev_err(ace->dev, "transfer failure\n");
815 		ace_dump_regs(ace);
816 		return -EIO;
817 	}
818 
819 	return 0;
820 }
821 
ace_interrupt(int irq,void * dev_id)822 static irqreturn_t ace_interrupt(int irq, void *dev_id)
823 {
824 	u16 creg;
825 	struct ace_device *ace = dev_id;
826 
827 	/* be safe and get the lock */
828 	spin_lock(&ace->lock);
829 	ace->in_irq = 1;
830 
831 	/* clear the interrupt */
832 	creg = ace_in(ace, ACE_CTRL);
833 	ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
834 	ace_out(ace, ACE_CTRL, creg);
835 
836 	/* check for IO failures */
837 	if (ace_interrupt_checkstate(ace))
838 		ace->data_result = -EIO;
839 
840 	if (ace->fsm_task == 0) {
841 		dev_err(ace->dev,
842 			"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
843 			ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
844 			ace_in(ace, ACE_SECCNTCMD));
845 		dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
846 			ace->fsm_task, ace->fsm_state, ace->data_count);
847 	}
848 
849 	/* Loop over state machine until told to stop */
850 	ace->fsm_continue_flag = 1;
851 	while (ace->fsm_continue_flag)
852 		ace_fsm_dostate(ace);
853 
854 	/* done with interrupt; drop the lock */
855 	ace->in_irq = 0;
856 	spin_unlock(&ace->lock);
857 
858 	return IRQ_HANDLED;
859 }
860 
861 /* ---------------------------------------------------------------------
862  * Block ops
863  */
ace_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)864 static blk_status_t ace_queue_rq(struct blk_mq_hw_ctx *hctx,
865 				 const struct blk_mq_queue_data *bd)
866 {
867 	struct ace_device *ace = hctx->queue->queuedata;
868 	struct request *req = bd->rq;
869 
870 	if (blk_rq_is_passthrough(req)) {
871 		blk_mq_start_request(req);
872 		return BLK_STS_IOERR;
873 	}
874 
875 	spin_lock_irq(&ace->lock);
876 	list_add_tail(&req->queuelist, &ace->rq_list);
877 	spin_unlock_irq(&ace->lock);
878 
879 	tasklet_schedule(&ace->fsm_tasklet);
880 	return BLK_STS_OK;
881 }
882 
ace_check_events(struct gendisk * gd,unsigned int clearing)883 static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
884 {
885 	struct ace_device *ace = gd->private_data;
886 	dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
887 
888 	return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
889 }
890 
ace_revalidate_disk(struct gendisk * gd)891 static int ace_revalidate_disk(struct gendisk *gd)
892 {
893 	struct ace_device *ace = gd->private_data;
894 	unsigned long flags;
895 
896 	dev_dbg(ace->dev, "ace_revalidate_disk()\n");
897 
898 	if (ace->media_change) {
899 		dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
900 
901 		spin_lock_irqsave(&ace->lock, flags);
902 		ace->id_req_count++;
903 		spin_unlock_irqrestore(&ace->lock, flags);
904 
905 		tasklet_schedule(&ace->fsm_tasklet);
906 		wait_for_completion(&ace->id_completion);
907 	}
908 
909 	dev_dbg(ace->dev, "revalidate complete\n");
910 	return ace->id_result;
911 }
912 
ace_open(struct block_device * bdev,fmode_t mode)913 static int ace_open(struct block_device *bdev, fmode_t mode)
914 {
915 	struct ace_device *ace = bdev->bd_disk->private_data;
916 	unsigned long flags;
917 
918 	dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
919 
920 	mutex_lock(&xsysace_mutex);
921 	spin_lock_irqsave(&ace->lock, flags);
922 	ace->users++;
923 	spin_unlock_irqrestore(&ace->lock, flags);
924 
925 	check_disk_change(bdev);
926 	mutex_unlock(&xsysace_mutex);
927 
928 	return 0;
929 }
930 
ace_release(struct gendisk * disk,fmode_t mode)931 static void ace_release(struct gendisk *disk, fmode_t mode)
932 {
933 	struct ace_device *ace = disk->private_data;
934 	unsigned long flags;
935 	u16 val;
936 
937 	dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
938 
939 	mutex_lock(&xsysace_mutex);
940 	spin_lock_irqsave(&ace->lock, flags);
941 	ace->users--;
942 	if (ace->users == 0) {
943 		val = ace_in(ace, ACE_CTRL);
944 		ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
945 	}
946 	spin_unlock_irqrestore(&ace->lock, flags);
947 	mutex_unlock(&xsysace_mutex);
948 }
949 
ace_getgeo(struct block_device * bdev,struct hd_geometry * geo)950 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
951 {
952 	struct ace_device *ace = bdev->bd_disk->private_data;
953 	u16 *cf_id = ace->cf_id;
954 
955 	dev_dbg(ace->dev, "ace_getgeo()\n");
956 
957 	geo->heads	= cf_id[ATA_ID_HEADS];
958 	geo->sectors	= cf_id[ATA_ID_SECTORS];
959 	geo->cylinders	= cf_id[ATA_ID_CYLS];
960 
961 	return 0;
962 }
963 
964 static const struct block_device_operations ace_fops = {
965 	.owner = THIS_MODULE,
966 	.open = ace_open,
967 	.release = ace_release,
968 	.check_events = ace_check_events,
969 	.revalidate_disk = ace_revalidate_disk,
970 	.getgeo = ace_getgeo,
971 };
972 
973 static const struct blk_mq_ops ace_mq_ops = {
974 	.queue_rq	= ace_queue_rq,
975 };
976 
977 /* --------------------------------------------------------------------
978  * SystemACE device setup/teardown code
979  */
ace_setup(struct ace_device * ace)980 static int ace_setup(struct ace_device *ace)
981 {
982 	u16 version;
983 	u16 val;
984 	int rc;
985 
986 	dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
987 	dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
988 		(unsigned long long)ace->physaddr, ace->irq);
989 
990 	spin_lock_init(&ace->lock);
991 	init_completion(&ace->id_completion);
992 	INIT_LIST_HEAD(&ace->rq_list);
993 
994 	/*
995 	 * Map the device
996 	 */
997 	ace->baseaddr = ioremap(ace->physaddr, 0x80);
998 	if (!ace->baseaddr)
999 		goto err_ioremap;
1000 
1001 	/*
1002 	 * Initialize the state machine tasklet and stall timer
1003 	 */
1004 	tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
1005 	timer_setup(&ace->stall_timer, ace_stall_timer, 0);
1006 
1007 	/*
1008 	 * Initialize the request queue
1009 	 */
1010 	ace->queue = blk_mq_init_sq_queue(&ace->tag_set, &ace_mq_ops, 2,
1011 						BLK_MQ_F_SHOULD_MERGE);
1012 	if (IS_ERR(ace->queue)) {
1013 		rc = PTR_ERR(ace->queue);
1014 		ace->queue = NULL;
1015 		goto err_blk_initq;
1016 	}
1017 	ace->queue->queuedata = ace;
1018 
1019 	blk_queue_logical_block_size(ace->queue, 512);
1020 	blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
1021 
1022 	/*
1023 	 * Allocate and initialize GD structure
1024 	 */
1025 	ace->gd = alloc_disk(ACE_NUM_MINORS);
1026 	if (!ace->gd)
1027 		goto err_alloc_disk;
1028 
1029 	ace->gd->major = ace_major;
1030 	ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1031 	ace->gd->fops = &ace_fops;
1032 	ace->gd->events = DISK_EVENT_MEDIA_CHANGE;
1033 	ace->gd->queue = ace->queue;
1034 	ace->gd->private_data = ace;
1035 	snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1036 
1037 	/* set bus width */
1038 	if (ace->bus_width == ACE_BUS_WIDTH_16) {
1039 		/* 0x0101 should work regardless of endianess */
1040 		ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1041 
1042 		/* read it back to determine endianess */
1043 		if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1044 			ace->reg_ops = &ace_reg_le16_ops;
1045 		else
1046 			ace->reg_ops = &ace_reg_be16_ops;
1047 	} else {
1048 		ace_out_8(ace, ACE_BUSMODE, 0x00);
1049 		ace->reg_ops = &ace_reg_8_ops;
1050 	}
1051 
1052 	/* Make sure version register is sane */
1053 	version = ace_in(ace, ACE_VERSION);
1054 	if ((version == 0) || (version == 0xFFFF))
1055 		goto err_read;
1056 
1057 	/* Put sysace in a sane state by clearing most control reg bits */
1058 	ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1059 		ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1060 
1061 	/* Now we can hook up the irq handler */
1062 	if (ace->irq) {
1063 		rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1064 		if (rc) {
1065 			/* Failure - fall back to polled mode */
1066 			dev_err(ace->dev, "request_irq failed\n");
1067 			ace->irq = 0;
1068 		}
1069 	}
1070 
1071 	/* Enable interrupts */
1072 	val = ace_in(ace, ACE_CTRL);
1073 	val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1074 	ace_out(ace, ACE_CTRL, val);
1075 
1076 	/* Print the identification */
1077 	dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1078 		 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1079 	dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1080 		(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1081 
1082 	ace->media_change = 1;
1083 	ace_revalidate_disk(ace->gd);
1084 
1085 	/* Make the sysace device 'live' */
1086 	add_disk(ace->gd);
1087 
1088 	return 0;
1089 
1090 err_read:
1091 	/* prevent double queue cleanup */
1092 	ace->gd->queue = NULL;
1093 	put_disk(ace->gd);
1094 err_alloc_disk:
1095 	blk_cleanup_queue(ace->queue);
1096 	blk_mq_free_tag_set(&ace->tag_set);
1097 err_blk_initq:
1098 	iounmap(ace->baseaddr);
1099 err_ioremap:
1100 	dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1101 		 (unsigned long long) ace->physaddr);
1102 	return -ENOMEM;
1103 }
1104 
ace_teardown(struct ace_device * ace)1105 static void ace_teardown(struct ace_device *ace)
1106 {
1107 	if (ace->gd) {
1108 		del_gendisk(ace->gd);
1109 		put_disk(ace->gd);
1110 	}
1111 
1112 	if (ace->queue) {
1113 		blk_cleanup_queue(ace->queue);
1114 		blk_mq_free_tag_set(&ace->tag_set);
1115 	}
1116 
1117 	tasklet_kill(&ace->fsm_tasklet);
1118 
1119 	if (ace->irq)
1120 		free_irq(ace->irq, ace);
1121 
1122 	iounmap(ace->baseaddr);
1123 }
1124 
ace_alloc(struct device * dev,int id,resource_size_t physaddr,int irq,int bus_width)1125 static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1126 		     int irq, int bus_width)
1127 {
1128 	struct ace_device *ace;
1129 	int rc;
1130 	dev_dbg(dev, "ace_alloc(%p)\n", dev);
1131 
1132 	if (!physaddr) {
1133 		rc = -ENODEV;
1134 		goto err_noreg;
1135 	}
1136 
1137 	/* Allocate and initialize the ace device structure */
1138 	ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1139 	if (!ace) {
1140 		rc = -ENOMEM;
1141 		goto err_alloc;
1142 	}
1143 
1144 	ace->dev = dev;
1145 	ace->id = id;
1146 	ace->physaddr = physaddr;
1147 	ace->irq = irq;
1148 	ace->bus_width = bus_width;
1149 
1150 	/* Call the setup code */
1151 	rc = ace_setup(ace);
1152 	if (rc)
1153 		goto err_setup;
1154 
1155 	dev_set_drvdata(dev, ace);
1156 	return 0;
1157 
1158 err_setup:
1159 	dev_set_drvdata(dev, NULL);
1160 	kfree(ace);
1161 err_alloc:
1162 err_noreg:
1163 	dev_err(dev, "could not initialize device, err=%i\n", rc);
1164 	return rc;
1165 }
1166 
ace_free(struct device * dev)1167 static void ace_free(struct device *dev)
1168 {
1169 	struct ace_device *ace = dev_get_drvdata(dev);
1170 	dev_dbg(dev, "ace_free(%p)\n", dev);
1171 
1172 	if (ace) {
1173 		ace_teardown(ace);
1174 		dev_set_drvdata(dev, NULL);
1175 		kfree(ace);
1176 	}
1177 }
1178 
1179 /* ---------------------------------------------------------------------
1180  * Platform Bus Support
1181  */
1182 
ace_probe(struct platform_device * dev)1183 static int ace_probe(struct platform_device *dev)
1184 {
1185 	resource_size_t physaddr = 0;
1186 	int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1187 	u32 id = dev->id;
1188 	int irq = 0;
1189 	int i;
1190 
1191 	dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1192 
1193 	/* device id and bus width */
1194 	if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1195 		id = 0;
1196 	if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1197 		bus_width = ACE_BUS_WIDTH_8;
1198 
1199 	for (i = 0; i < dev->num_resources; i++) {
1200 		if (dev->resource[i].flags & IORESOURCE_MEM)
1201 			physaddr = dev->resource[i].start;
1202 		if (dev->resource[i].flags & IORESOURCE_IRQ)
1203 			irq = dev->resource[i].start;
1204 	}
1205 
1206 	/* Call the bus-independent setup code */
1207 	return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1208 }
1209 
1210 /*
1211  * Platform bus remove() method
1212  */
ace_remove(struct platform_device * dev)1213 static int ace_remove(struct platform_device *dev)
1214 {
1215 	ace_free(&dev->dev);
1216 	return 0;
1217 }
1218 
1219 #if defined(CONFIG_OF)
1220 /* Match table for of_platform binding */
1221 static const struct of_device_id ace_of_match[] = {
1222 	{ .compatible = "xlnx,opb-sysace-1.00.b", },
1223 	{ .compatible = "xlnx,opb-sysace-1.00.c", },
1224 	{ .compatible = "xlnx,xps-sysace-1.00.a", },
1225 	{ .compatible = "xlnx,sysace", },
1226 	{},
1227 };
1228 MODULE_DEVICE_TABLE(of, ace_of_match);
1229 #else /* CONFIG_OF */
1230 #define ace_of_match NULL
1231 #endif /* CONFIG_OF */
1232 
1233 static struct platform_driver ace_platform_driver = {
1234 	.probe = ace_probe,
1235 	.remove = ace_remove,
1236 	.driver = {
1237 		.name = "xsysace",
1238 		.of_match_table = ace_of_match,
1239 	},
1240 };
1241 
1242 /* ---------------------------------------------------------------------
1243  * Module init/exit routines
1244  */
ace_init(void)1245 static int __init ace_init(void)
1246 {
1247 	int rc;
1248 
1249 	ace_major = register_blkdev(ace_major, "xsysace");
1250 	if (ace_major <= 0) {
1251 		rc = -ENOMEM;
1252 		goto err_blk;
1253 	}
1254 
1255 	rc = platform_driver_register(&ace_platform_driver);
1256 	if (rc)
1257 		goto err_plat;
1258 
1259 	pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1260 	return 0;
1261 
1262 err_plat:
1263 	unregister_blkdev(ace_major, "xsysace");
1264 err_blk:
1265 	printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1266 	return rc;
1267 }
1268 module_init(ace_init);
1269 
ace_exit(void)1270 static void __exit ace_exit(void)
1271 {
1272 	pr_debug("Unregistering Xilinx SystemACE driver\n");
1273 	platform_driver_unregister(&ace_platform_driver);
1274 	unregister_blkdev(ace_major, "xsysace");
1275 }
1276 module_exit(ace_exit);
1277