1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Xilinx SystemACE device driver
4 *
5 * Copyright 2007 Secret Lab Technologies Ltd.
6 */
7
8 /*
9 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
10 * bitstream from a file on a CF card and squirting it into FPGAs connected
11 * to the SystemACE JTAG chain. It also has the advantage of providing an
12 * MPU interface which can be used to control the FPGA configuration process
13 * and to use the attached CF card for general purpose storage.
14 *
15 * This driver is a block device driver for the SystemACE.
16 *
17 * Initialization:
18 * The driver registers itself as a platform_device driver at module
19 * load time. The platform bus will take care of calling the
20 * ace_probe() method for all SystemACE instances in the system. Any
21 * number of SystemACE instances are supported. ace_probe() calls
22 * ace_setup() which initialized all data structures, reads the CF
23 * id structure and registers the device.
24 *
25 * Processing:
26 * Just about all of the heavy lifting in this driver is performed by
27 * a Finite State Machine (FSM). The driver needs to wait on a number
28 * of events; some raised by interrupts, some which need to be polled
29 * for. Describing all of the behaviour in a FSM seems to be the
30 * easiest way to keep the complexity low and make it easy to
31 * understand what the driver is doing. If the block ops or the
32 * request function need to interact with the hardware, then they
33 * simply need to flag the request and kick of FSM processing.
34 *
35 * The FSM itself is atomic-safe code which can be run from any
36 * context. The general process flow is:
37 * 1. obtain the ace->lock spinlock.
38 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
39 * cleared.
40 * 3. release the lock.
41 *
42 * Individual states do not sleep in any way. If a condition needs to
43 * be waited for then the state much clear the fsm_continue flag and
44 * either schedule the FSM to be run again at a later time, or expect
45 * an interrupt to call the FSM when the desired condition is met.
46 *
47 * In normal operation, the FSM is processed at interrupt context
48 * either when the driver's tasklet is scheduled, or when an irq is
49 * raised by the hardware. The tasklet can be scheduled at any time.
50 * The request method in particular schedules the tasklet when a new
51 * request has been indicated by the block layer. Once started, the
52 * FSM proceeds as far as it can processing the request until it
53 * needs on a hardware event. At this point, it must yield execution.
54 *
55 * A state has two options when yielding execution:
56 * 1. ace_fsm_yield()
57 * - Call if need to poll for event.
58 * - clears the fsm_continue flag to exit the processing loop
59 * - reschedules the tasklet to run again as soon as possible
60 * 2. ace_fsm_yieldirq()
61 * - Call if an irq is expected from the HW
62 * - clears the fsm_continue flag to exit the processing loop
63 * - does not reschedule the tasklet so the FSM will not be processed
64 * again until an irq is received.
65 * After calling a yield function, the state must return control back
66 * to the FSM main loop.
67 *
68 * Additionally, the driver maintains a kernel timer which can process
69 * the FSM. If the FSM gets stalled, typically due to a missed
70 * interrupt, then the kernel timer will expire and the driver can
71 * continue where it left off.
72 *
73 * To Do:
74 * - Add FPGA configuration control interface.
75 * - Request major number from lanana
76 */
77
78 #undef DEBUG
79
80 #include <linux/module.h>
81 #include <linux/ctype.h>
82 #include <linux/init.h>
83 #include <linux/interrupt.h>
84 #include <linux/errno.h>
85 #include <linux/kernel.h>
86 #include <linux/delay.h>
87 #include <linux/slab.h>
88 #include <linux/blk-mq.h>
89 #include <linux/mutex.h>
90 #include <linux/ata.h>
91 #include <linux/hdreg.h>
92 #include <linux/platform_device.h>
93 #if defined(CONFIG_OF)
94 #include <linux/of_address.h>
95 #include <linux/of_device.h>
96 #include <linux/of_platform.h>
97 #endif
98
99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
101 MODULE_LICENSE("GPL");
102
103 /* SystemACE register definitions */
104 #define ACE_BUSMODE (0x00)
105
106 #define ACE_STATUS (0x04)
107 #define ACE_STATUS_CFGLOCK (0x00000001)
108 #define ACE_STATUS_MPULOCK (0x00000002)
109 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
110 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
111 #define ACE_STATUS_CFDETECT (0x00000010)
112 #define ACE_STATUS_DATABUFRDY (0x00000020)
113 #define ACE_STATUS_DATABUFMODE (0x00000040)
114 #define ACE_STATUS_CFGDONE (0x00000080)
115 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
116 #define ACE_STATUS_CFGMODEPIN (0x00000200)
117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
118 #define ACE_STATUS_CFBSY (0x00020000)
119 #define ACE_STATUS_CFRDY (0x00040000)
120 #define ACE_STATUS_CFDWF (0x00080000)
121 #define ACE_STATUS_CFDSC (0x00100000)
122 #define ACE_STATUS_CFDRQ (0x00200000)
123 #define ACE_STATUS_CFCORR (0x00400000)
124 #define ACE_STATUS_CFERR (0x00800000)
125
126 #define ACE_ERROR (0x08)
127 #define ACE_CFGLBA (0x0c)
128 #define ACE_MPULBA (0x10)
129
130 #define ACE_SECCNTCMD (0x14)
131 #define ACE_SECCNTCMD_RESET (0x0100)
132 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
133 #define ACE_SECCNTCMD_READ_DATA (0x0300)
134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
135 #define ACE_SECCNTCMD_ABORT (0x0600)
136
137 #define ACE_VERSION (0x16)
138 #define ACE_VERSION_REVISION_MASK (0x00FF)
139 #define ACE_VERSION_MINOR_MASK (0x0F00)
140 #define ACE_VERSION_MAJOR_MASK (0xF000)
141
142 #define ACE_CTRL (0x18)
143 #define ACE_CTRL_FORCELOCKREQ (0x0001)
144 #define ACE_CTRL_LOCKREQ (0x0002)
145 #define ACE_CTRL_FORCECFGADDR (0x0004)
146 #define ACE_CTRL_FORCECFGMODE (0x0008)
147 #define ACE_CTRL_CFGMODE (0x0010)
148 #define ACE_CTRL_CFGSTART (0x0020)
149 #define ACE_CTRL_CFGSEL (0x0040)
150 #define ACE_CTRL_CFGRESET (0x0080)
151 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
152 #define ACE_CTRL_ERRORIRQ (0x0200)
153 #define ACE_CTRL_CFGDONEIRQ (0x0400)
154 #define ACE_CTRL_RESETIRQ (0x0800)
155 #define ACE_CTRL_CFGPROG (0x1000)
156 #define ACE_CTRL_CFGADDR_MASK (0xe000)
157
158 #define ACE_FATSTAT (0x1c)
159
160 #define ACE_NUM_MINORS 16
161 #define ACE_SECTOR_SIZE (512)
162 #define ACE_FIFO_SIZE (32)
163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
164
165 #define ACE_BUS_WIDTH_8 0
166 #define ACE_BUS_WIDTH_16 1
167
168 struct ace_reg_ops;
169
170 struct ace_device {
171 /* driver state data */
172 int id;
173 int media_change;
174 int users;
175 struct list_head list;
176
177 /* finite state machine data */
178 struct tasklet_struct fsm_tasklet;
179 uint fsm_task; /* Current activity (ACE_TASK_*) */
180 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
181 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
182 uint fsm_iter_num;
183 struct timer_list stall_timer;
184
185 /* Transfer state/result, use for both id and block request */
186 struct request *req; /* request being processed */
187 void *data_ptr; /* pointer to I/O buffer */
188 int data_count; /* number of buffers remaining */
189 int data_result; /* Result of transfer; 0 := success */
190
191 int id_req_count; /* count of id requests */
192 int id_result;
193 struct completion id_completion; /* used when id req finishes */
194 int in_irq;
195
196 /* Details of hardware device */
197 resource_size_t physaddr;
198 void __iomem *baseaddr;
199 int irq;
200 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
201 struct ace_reg_ops *reg_ops;
202 int lock_count;
203
204 /* Block device data structures */
205 spinlock_t lock;
206 struct device *dev;
207 struct request_queue *queue;
208 struct gendisk *gd;
209 struct blk_mq_tag_set tag_set;
210 struct list_head rq_list;
211
212 /* Inserted CF card parameters */
213 u16 cf_id[ATA_ID_WORDS];
214 };
215
216 static DEFINE_MUTEX(xsysace_mutex);
217 static int ace_major;
218
219 /* ---------------------------------------------------------------------
220 * Low level register access
221 */
222
223 struct ace_reg_ops {
224 u16(*in) (struct ace_device * ace, int reg);
225 void (*out) (struct ace_device * ace, int reg, u16 val);
226 void (*datain) (struct ace_device * ace);
227 void (*dataout) (struct ace_device * ace);
228 };
229
230 /* 8 Bit bus width */
ace_in_8(struct ace_device * ace,int reg)231 static u16 ace_in_8(struct ace_device *ace, int reg)
232 {
233 void __iomem *r = ace->baseaddr + reg;
234 return in_8(r) | (in_8(r + 1) << 8);
235 }
236
ace_out_8(struct ace_device * ace,int reg,u16 val)237 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
238 {
239 void __iomem *r = ace->baseaddr + reg;
240 out_8(r, val);
241 out_8(r + 1, val >> 8);
242 }
243
ace_datain_8(struct ace_device * ace)244 static void ace_datain_8(struct ace_device *ace)
245 {
246 void __iomem *r = ace->baseaddr + 0x40;
247 u8 *dst = ace->data_ptr;
248 int i = ACE_FIFO_SIZE;
249 while (i--)
250 *dst++ = in_8(r++);
251 ace->data_ptr = dst;
252 }
253
ace_dataout_8(struct ace_device * ace)254 static void ace_dataout_8(struct ace_device *ace)
255 {
256 void __iomem *r = ace->baseaddr + 0x40;
257 u8 *src = ace->data_ptr;
258 int i = ACE_FIFO_SIZE;
259 while (i--)
260 out_8(r++, *src++);
261 ace->data_ptr = src;
262 }
263
264 static struct ace_reg_ops ace_reg_8_ops = {
265 .in = ace_in_8,
266 .out = ace_out_8,
267 .datain = ace_datain_8,
268 .dataout = ace_dataout_8,
269 };
270
271 /* 16 bit big endian bus attachment */
ace_in_be16(struct ace_device * ace,int reg)272 static u16 ace_in_be16(struct ace_device *ace, int reg)
273 {
274 return in_be16(ace->baseaddr + reg);
275 }
276
ace_out_be16(struct ace_device * ace,int reg,u16 val)277 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
278 {
279 out_be16(ace->baseaddr + reg, val);
280 }
281
ace_datain_be16(struct ace_device * ace)282 static void ace_datain_be16(struct ace_device *ace)
283 {
284 int i = ACE_FIFO_SIZE / 2;
285 u16 *dst = ace->data_ptr;
286 while (i--)
287 *dst++ = in_le16(ace->baseaddr + 0x40);
288 ace->data_ptr = dst;
289 }
290
ace_dataout_be16(struct ace_device * ace)291 static void ace_dataout_be16(struct ace_device *ace)
292 {
293 int i = ACE_FIFO_SIZE / 2;
294 u16 *src = ace->data_ptr;
295 while (i--)
296 out_le16(ace->baseaddr + 0x40, *src++);
297 ace->data_ptr = src;
298 }
299
300 /* 16 bit little endian bus attachment */
ace_in_le16(struct ace_device * ace,int reg)301 static u16 ace_in_le16(struct ace_device *ace, int reg)
302 {
303 return in_le16(ace->baseaddr + reg);
304 }
305
ace_out_le16(struct ace_device * ace,int reg,u16 val)306 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
307 {
308 out_le16(ace->baseaddr + reg, val);
309 }
310
ace_datain_le16(struct ace_device * ace)311 static void ace_datain_le16(struct ace_device *ace)
312 {
313 int i = ACE_FIFO_SIZE / 2;
314 u16 *dst = ace->data_ptr;
315 while (i--)
316 *dst++ = in_be16(ace->baseaddr + 0x40);
317 ace->data_ptr = dst;
318 }
319
ace_dataout_le16(struct ace_device * ace)320 static void ace_dataout_le16(struct ace_device *ace)
321 {
322 int i = ACE_FIFO_SIZE / 2;
323 u16 *src = ace->data_ptr;
324 while (i--)
325 out_be16(ace->baseaddr + 0x40, *src++);
326 ace->data_ptr = src;
327 }
328
329 static struct ace_reg_ops ace_reg_be16_ops = {
330 .in = ace_in_be16,
331 .out = ace_out_be16,
332 .datain = ace_datain_be16,
333 .dataout = ace_dataout_be16,
334 };
335
336 static struct ace_reg_ops ace_reg_le16_ops = {
337 .in = ace_in_le16,
338 .out = ace_out_le16,
339 .datain = ace_datain_le16,
340 .dataout = ace_dataout_le16,
341 };
342
ace_in(struct ace_device * ace,int reg)343 static inline u16 ace_in(struct ace_device *ace, int reg)
344 {
345 return ace->reg_ops->in(ace, reg);
346 }
347
ace_in32(struct ace_device * ace,int reg)348 static inline u32 ace_in32(struct ace_device *ace, int reg)
349 {
350 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
351 }
352
ace_out(struct ace_device * ace,int reg,u16 val)353 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
354 {
355 ace->reg_ops->out(ace, reg, val);
356 }
357
ace_out32(struct ace_device * ace,int reg,u32 val)358 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
359 {
360 ace_out(ace, reg, val);
361 ace_out(ace, reg + 2, val >> 16);
362 }
363
364 /* ---------------------------------------------------------------------
365 * Debug support functions
366 */
367
368 #if defined(DEBUG)
ace_dump_mem(void * base,int len)369 static void ace_dump_mem(void *base, int len)
370 {
371 const char *ptr = base;
372 int i, j;
373
374 for (i = 0; i < len; i += 16) {
375 printk(KERN_INFO "%.8x:", i);
376 for (j = 0; j < 16; j++) {
377 if (!(j % 4))
378 printk(" ");
379 printk("%.2x", ptr[i + j]);
380 }
381 printk(" ");
382 for (j = 0; j < 16; j++)
383 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
384 printk("\n");
385 }
386 }
387 #else
ace_dump_mem(void * base,int len)388 static inline void ace_dump_mem(void *base, int len)
389 {
390 }
391 #endif
392
ace_dump_regs(struct ace_device * ace)393 static void ace_dump_regs(struct ace_device *ace)
394 {
395 dev_info(ace->dev,
396 " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
397 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
398 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
399 ace_in32(ace, ACE_CTRL),
400 ace_in(ace, ACE_SECCNTCMD),
401 ace_in(ace, ACE_VERSION),
402 ace_in32(ace, ACE_STATUS),
403 ace_in32(ace, ACE_MPULBA),
404 ace_in(ace, ACE_BUSMODE),
405 ace_in32(ace, ACE_ERROR),
406 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
407 }
408
ace_fix_driveid(u16 * id)409 static void ace_fix_driveid(u16 *id)
410 {
411 #if defined(__BIG_ENDIAN)
412 int i;
413
414 /* All half words have wrong byte order; swap the bytes */
415 for (i = 0; i < ATA_ID_WORDS; i++, id++)
416 *id = le16_to_cpu(*id);
417 #endif
418 }
419
420 /* ---------------------------------------------------------------------
421 * Finite State Machine (FSM) implementation
422 */
423
424 /* FSM tasks; used to direct state transitions */
425 #define ACE_TASK_IDLE 0
426 #define ACE_TASK_IDENTIFY 1
427 #define ACE_TASK_READ 2
428 #define ACE_TASK_WRITE 3
429 #define ACE_FSM_NUM_TASKS 4
430
431 /* FSM state definitions */
432 #define ACE_FSM_STATE_IDLE 0
433 #define ACE_FSM_STATE_REQ_LOCK 1
434 #define ACE_FSM_STATE_WAIT_LOCK 2
435 #define ACE_FSM_STATE_WAIT_CFREADY 3
436 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
437 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
438 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
439 #define ACE_FSM_STATE_REQ_PREPARE 7
440 #define ACE_FSM_STATE_REQ_TRANSFER 8
441 #define ACE_FSM_STATE_REQ_COMPLETE 9
442 #define ACE_FSM_STATE_ERROR 10
443 #define ACE_FSM_NUM_STATES 11
444
445 /* Set flag to exit FSM loop and reschedule tasklet */
ace_fsm_yield(struct ace_device * ace)446 static inline void ace_fsm_yield(struct ace_device *ace)
447 {
448 dev_dbg(ace->dev, "ace_fsm_yield()\n");
449 tasklet_schedule(&ace->fsm_tasklet);
450 ace->fsm_continue_flag = 0;
451 }
452
453 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
ace_fsm_yieldirq(struct ace_device * ace)454 static inline void ace_fsm_yieldirq(struct ace_device *ace)
455 {
456 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
457
458 if (!ace->irq)
459 /* No IRQ assigned, so need to poll */
460 tasklet_schedule(&ace->fsm_tasklet);
461 ace->fsm_continue_flag = 0;
462 }
463
ace_has_next_request(struct request_queue * q)464 static bool ace_has_next_request(struct request_queue *q)
465 {
466 struct ace_device *ace = q->queuedata;
467
468 return !list_empty(&ace->rq_list);
469 }
470
471 /* Get the next read/write request; ending requests that we don't handle */
ace_get_next_request(struct request_queue * q)472 static struct request *ace_get_next_request(struct request_queue *q)
473 {
474 struct ace_device *ace = q->queuedata;
475 struct request *rq;
476
477 rq = list_first_entry_or_null(&ace->rq_list, struct request, queuelist);
478 if (rq) {
479 list_del_init(&rq->queuelist);
480 blk_mq_start_request(rq);
481 }
482
483 return NULL;
484 }
485
ace_fsm_dostate(struct ace_device * ace)486 static void ace_fsm_dostate(struct ace_device *ace)
487 {
488 struct request *req;
489 u32 status;
490 u16 val;
491 int count;
492
493 #if defined(DEBUG)
494 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
495 ace->fsm_state, ace->id_req_count);
496 #endif
497
498 /* Verify that there is actually a CF in the slot. If not, then
499 * bail out back to the idle state and wake up all the waiters */
500 status = ace_in32(ace, ACE_STATUS);
501 if ((status & ACE_STATUS_CFDETECT) == 0) {
502 ace->fsm_state = ACE_FSM_STATE_IDLE;
503 ace->media_change = 1;
504 set_capacity(ace->gd, 0);
505 dev_info(ace->dev, "No CF in slot\n");
506
507 /* Drop all in-flight and pending requests */
508 if (ace->req) {
509 blk_mq_end_request(ace->req, BLK_STS_IOERR);
510 ace->req = NULL;
511 }
512 while ((req = ace_get_next_request(ace->queue)) != NULL)
513 blk_mq_end_request(req, BLK_STS_IOERR);
514
515 /* Drop back to IDLE state and notify waiters */
516 ace->fsm_state = ACE_FSM_STATE_IDLE;
517 ace->id_result = -EIO;
518 while (ace->id_req_count) {
519 complete(&ace->id_completion);
520 ace->id_req_count--;
521 }
522 }
523
524 switch (ace->fsm_state) {
525 case ACE_FSM_STATE_IDLE:
526 /* See if there is anything to do */
527 if (ace->id_req_count || ace_has_next_request(ace->queue)) {
528 ace->fsm_iter_num++;
529 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
530 mod_timer(&ace->stall_timer, jiffies + HZ);
531 if (!timer_pending(&ace->stall_timer))
532 add_timer(&ace->stall_timer);
533 break;
534 }
535 del_timer(&ace->stall_timer);
536 ace->fsm_continue_flag = 0;
537 break;
538
539 case ACE_FSM_STATE_REQ_LOCK:
540 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
541 /* Already have the lock, jump to next state */
542 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
543 break;
544 }
545
546 /* Request the lock */
547 val = ace_in(ace, ACE_CTRL);
548 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
549 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
550 break;
551
552 case ACE_FSM_STATE_WAIT_LOCK:
553 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
554 /* got the lock; move to next state */
555 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
556 break;
557 }
558
559 /* wait a bit for the lock */
560 ace_fsm_yield(ace);
561 break;
562
563 case ACE_FSM_STATE_WAIT_CFREADY:
564 status = ace_in32(ace, ACE_STATUS);
565 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
566 (status & ACE_STATUS_CFBSY)) {
567 /* CF card isn't ready; it needs to be polled */
568 ace_fsm_yield(ace);
569 break;
570 }
571
572 /* Device is ready for command; determine what to do next */
573 if (ace->id_req_count)
574 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
575 else
576 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
577 break;
578
579 case ACE_FSM_STATE_IDENTIFY_PREPARE:
580 /* Send identify command */
581 ace->fsm_task = ACE_TASK_IDENTIFY;
582 ace->data_ptr = ace->cf_id;
583 ace->data_count = ACE_BUF_PER_SECTOR;
584 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
585
586 /* As per datasheet, put config controller in reset */
587 val = ace_in(ace, ACE_CTRL);
588 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
589
590 /* irq handler takes over from this point; wait for the
591 * transfer to complete */
592 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
593 ace_fsm_yieldirq(ace);
594 break;
595
596 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
597 /* Check that the sysace is ready to receive data */
598 status = ace_in32(ace, ACE_STATUS);
599 if (status & ACE_STATUS_CFBSY) {
600 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
601 ace->fsm_task, ace->fsm_iter_num,
602 ace->data_count);
603 ace_fsm_yield(ace);
604 break;
605 }
606 if (!(status & ACE_STATUS_DATABUFRDY)) {
607 ace_fsm_yield(ace);
608 break;
609 }
610
611 /* Transfer the next buffer */
612 ace->reg_ops->datain(ace);
613 ace->data_count--;
614
615 /* If there are still buffers to be transfers; jump out here */
616 if (ace->data_count != 0) {
617 ace_fsm_yieldirq(ace);
618 break;
619 }
620
621 /* transfer finished; kick state machine */
622 dev_dbg(ace->dev, "identify finished\n");
623 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
624 break;
625
626 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
627 ace_fix_driveid(ace->cf_id);
628 ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
629
630 if (ace->data_result) {
631 /* Error occurred, disable the disk */
632 ace->media_change = 1;
633 set_capacity(ace->gd, 0);
634 dev_err(ace->dev, "error fetching CF id (%i)\n",
635 ace->data_result);
636 } else {
637 ace->media_change = 0;
638
639 /* Record disk parameters */
640 set_capacity(ace->gd,
641 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
642 dev_info(ace->dev, "capacity: %i sectors\n",
643 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
644 }
645
646 /* We're done, drop to IDLE state and notify waiters */
647 ace->fsm_state = ACE_FSM_STATE_IDLE;
648 ace->id_result = ace->data_result;
649 while (ace->id_req_count) {
650 complete(&ace->id_completion);
651 ace->id_req_count--;
652 }
653 break;
654
655 case ACE_FSM_STATE_REQ_PREPARE:
656 req = ace_get_next_request(ace->queue);
657 if (!req) {
658 ace->fsm_state = ACE_FSM_STATE_IDLE;
659 break;
660 }
661
662 /* Okay, it's a data request, set it up for transfer */
663 dev_dbg(ace->dev,
664 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
665 (unsigned long long)blk_rq_pos(req),
666 blk_rq_sectors(req), blk_rq_cur_sectors(req),
667 rq_data_dir(req));
668
669 ace->req = req;
670 ace->data_ptr = bio_data(req->bio);
671 ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
672 ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
673
674 count = blk_rq_sectors(req);
675 if (rq_data_dir(req)) {
676 /* Kick off write request */
677 dev_dbg(ace->dev, "write data\n");
678 ace->fsm_task = ACE_TASK_WRITE;
679 ace_out(ace, ACE_SECCNTCMD,
680 count | ACE_SECCNTCMD_WRITE_DATA);
681 } else {
682 /* Kick off read request */
683 dev_dbg(ace->dev, "read data\n");
684 ace->fsm_task = ACE_TASK_READ;
685 ace_out(ace, ACE_SECCNTCMD,
686 count | ACE_SECCNTCMD_READ_DATA);
687 }
688
689 /* As per datasheet, put config controller in reset */
690 val = ace_in(ace, ACE_CTRL);
691 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
692
693 /* Move to the transfer state. The systemace will raise
694 * an interrupt once there is something to do
695 */
696 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
697 if (ace->fsm_task == ACE_TASK_READ)
698 ace_fsm_yieldirq(ace); /* wait for data ready */
699 break;
700
701 case ACE_FSM_STATE_REQ_TRANSFER:
702 /* Check that the sysace is ready to receive data */
703 status = ace_in32(ace, ACE_STATUS);
704 if (status & ACE_STATUS_CFBSY) {
705 dev_dbg(ace->dev,
706 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
707 ace->fsm_task, ace->fsm_iter_num,
708 blk_rq_cur_sectors(ace->req) * 16,
709 ace->data_count, ace->in_irq);
710 ace_fsm_yield(ace); /* need to poll CFBSY bit */
711 break;
712 }
713 if (!(status & ACE_STATUS_DATABUFRDY)) {
714 dev_dbg(ace->dev,
715 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
716 ace->fsm_task, ace->fsm_iter_num,
717 blk_rq_cur_sectors(ace->req) * 16,
718 ace->data_count, ace->in_irq);
719 ace_fsm_yieldirq(ace);
720 break;
721 }
722
723 /* Transfer the next buffer */
724 if (ace->fsm_task == ACE_TASK_WRITE)
725 ace->reg_ops->dataout(ace);
726 else
727 ace->reg_ops->datain(ace);
728 ace->data_count--;
729
730 /* If there are still buffers to be transfers; jump out here */
731 if (ace->data_count != 0) {
732 ace_fsm_yieldirq(ace);
733 break;
734 }
735
736 /* bio finished; is there another one? */
737 if (blk_update_request(ace->req, BLK_STS_OK,
738 blk_rq_cur_bytes(ace->req))) {
739 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
740 * blk_rq_sectors(ace->req),
741 * blk_rq_cur_sectors(ace->req));
742 */
743 ace->data_ptr = bio_data(ace->req->bio);
744 ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
745 ace_fsm_yieldirq(ace);
746 break;
747 }
748
749 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
750 break;
751
752 case ACE_FSM_STATE_REQ_COMPLETE:
753 ace->req = NULL;
754
755 /* Finished request; go to idle state */
756 ace->fsm_state = ACE_FSM_STATE_IDLE;
757 break;
758
759 default:
760 ace->fsm_state = ACE_FSM_STATE_IDLE;
761 break;
762 }
763 }
764
ace_fsm_tasklet(unsigned long data)765 static void ace_fsm_tasklet(unsigned long data)
766 {
767 struct ace_device *ace = (void *)data;
768 unsigned long flags;
769
770 spin_lock_irqsave(&ace->lock, flags);
771
772 /* Loop over state machine until told to stop */
773 ace->fsm_continue_flag = 1;
774 while (ace->fsm_continue_flag)
775 ace_fsm_dostate(ace);
776
777 spin_unlock_irqrestore(&ace->lock, flags);
778 }
779
ace_stall_timer(struct timer_list * t)780 static void ace_stall_timer(struct timer_list *t)
781 {
782 struct ace_device *ace = from_timer(ace, t, stall_timer);
783 unsigned long flags;
784
785 dev_warn(ace->dev,
786 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
787 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
788 ace->data_count);
789 spin_lock_irqsave(&ace->lock, flags);
790
791 /* Rearm the stall timer *before* entering FSM (which may then
792 * delete the timer) */
793 mod_timer(&ace->stall_timer, jiffies + HZ);
794
795 /* Loop over state machine until told to stop */
796 ace->fsm_continue_flag = 1;
797 while (ace->fsm_continue_flag)
798 ace_fsm_dostate(ace);
799
800 spin_unlock_irqrestore(&ace->lock, flags);
801 }
802
803 /* ---------------------------------------------------------------------
804 * Interrupt handling routines
805 */
ace_interrupt_checkstate(struct ace_device * ace)806 static int ace_interrupt_checkstate(struct ace_device *ace)
807 {
808 u32 sreg = ace_in32(ace, ACE_STATUS);
809 u16 creg = ace_in(ace, ACE_CTRL);
810
811 /* Check for error occurrence */
812 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
813 (creg & ACE_CTRL_ERRORIRQ)) {
814 dev_err(ace->dev, "transfer failure\n");
815 ace_dump_regs(ace);
816 return -EIO;
817 }
818
819 return 0;
820 }
821
ace_interrupt(int irq,void * dev_id)822 static irqreturn_t ace_interrupt(int irq, void *dev_id)
823 {
824 u16 creg;
825 struct ace_device *ace = dev_id;
826
827 /* be safe and get the lock */
828 spin_lock(&ace->lock);
829 ace->in_irq = 1;
830
831 /* clear the interrupt */
832 creg = ace_in(ace, ACE_CTRL);
833 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
834 ace_out(ace, ACE_CTRL, creg);
835
836 /* check for IO failures */
837 if (ace_interrupt_checkstate(ace))
838 ace->data_result = -EIO;
839
840 if (ace->fsm_task == 0) {
841 dev_err(ace->dev,
842 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
843 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
844 ace_in(ace, ACE_SECCNTCMD));
845 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
846 ace->fsm_task, ace->fsm_state, ace->data_count);
847 }
848
849 /* Loop over state machine until told to stop */
850 ace->fsm_continue_flag = 1;
851 while (ace->fsm_continue_flag)
852 ace_fsm_dostate(ace);
853
854 /* done with interrupt; drop the lock */
855 ace->in_irq = 0;
856 spin_unlock(&ace->lock);
857
858 return IRQ_HANDLED;
859 }
860
861 /* ---------------------------------------------------------------------
862 * Block ops
863 */
ace_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)864 static blk_status_t ace_queue_rq(struct blk_mq_hw_ctx *hctx,
865 const struct blk_mq_queue_data *bd)
866 {
867 struct ace_device *ace = hctx->queue->queuedata;
868 struct request *req = bd->rq;
869
870 if (blk_rq_is_passthrough(req)) {
871 blk_mq_start_request(req);
872 return BLK_STS_IOERR;
873 }
874
875 spin_lock_irq(&ace->lock);
876 list_add_tail(&req->queuelist, &ace->rq_list);
877 spin_unlock_irq(&ace->lock);
878
879 tasklet_schedule(&ace->fsm_tasklet);
880 return BLK_STS_OK;
881 }
882
ace_check_events(struct gendisk * gd,unsigned int clearing)883 static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
884 {
885 struct ace_device *ace = gd->private_data;
886 dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
887
888 return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
889 }
890
ace_revalidate_disk(struct gendisk * gd)891 static int ace_revalidate_disk(struct gendisk *gd)
892 {
893 struct ace_device *ace = gd->private_data;
894 unsigned long flags;
895
896 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
897
898 if (ace->media_change) {
899 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
900
901 spin_lock_irqsave(&ace->lock, flags);
902 ace->id_req_count++;
903 spin_unlock_irqrestore(&ace->lock, flags);
904
905 tasklet_schedule(&ace->fsm_tasklet);
906 wait_for_completion(&ace->id_completion);
907 }
908
909 dev_dbg(ace->dev, "revalidate complete\n");
910 return ace->id_result;
911 }
912
ace_open(struct block_device * bdev,fmode_t mode)913 static int ace_open(struct block_device *bdev, fmode_t mode)
914 {
915 struct ace_device *ace = bdev->bd_disk->private_data;
916 unsigned long flags;
917
918 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
919
920 mutex_lock(&xsysace_mutex);
921 spin_lock_irqsave(&ace->lock, flags);
922 ace->users++;
923 spin_unlock_irqrestore(&ace->lock, flags);
924
925 check_disk_change(bdev);
926 mutex_unlock(&xsysace_mutex);
927
928 return 0;
929 }
930
ace_release(struct gendisk * disk,fmode_t mode)931 static void ace_release(struct gendisk *disk, fmode_t mode)
932 {
933 struct ace_device *ace = disk->private_data;
934 unsigned long flags;
935 u16 val;
936
937 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
938
939 mutex_lock(&xsysace_mutex);
940 spin_lock_irqsave(&ace->lock, flags);
941 ace->users--;
942 if (ace->users == 0) {
943 val = ace_in(ace, ACE_CTRL);
944 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
945 }
946 spin_unlock_irqrestore(&ace->lock, flags);
947 mutex_unlock(&xsysace_mutex);
948 }
949
ace_getgeo(struct block_device * bdev,struct hd_geometry * geo)950 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
951 {
952 struct ace_device *ace = bdev->bd_disk->private_data;
953 u16 *cf_id = ace->cf_id;
954
955 dev_dbg(ace->dev, "ace_getgeo()\n");
956
957 geo->heads = cf_id[ATA_ID_HEADS];
958 geo->sectors = cf_id[ATA_ID_SECTORS];
959 geo->cylinders = cf_id[ATA_ID_CYLS];
960
961 return 0;
962 }
963
964 static const struct block_device_operations ace_fops = {
965 .owner = THIS_MODULE,
966 .open = ace_open,
967 .release = ace_release,
968 .check_events = ace_check_events,
969 .revalidate_disk = ace_revalidate_disk,
970 .getgeo = ace_getgeo,
971 };
972
973 static const struct blk_mq_ops ace_mq_ops = {
974 .queue_rq = ace_queue_rq,
975 };
976
977 /* --------------------------------------------------------------------
978 * SystemACE device setup/teardown code
979 */
ace_setup(struct ace_device * ace)980 static int ace_setup(struct ace_device *ace)
981 {
982 u16 version;
983 u16 val;
984 int rc;
985
986 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
987 dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
988 (unsigned long long)ace->physaddr, ace->irq);
989
990 spin_lock_init(&ace->lock);
991 init_completion(&ace->id_completion);
992 INIT_LIST_HEAD(&ace->rq_list);
993
994 /*
995 * Map the device
996 */
997 ace->baseaddr = ioremap(ace->physaddr, 0x80);
998 if (!ace->baseaddr)
999 goto err_ioremap;
1000
1001 /*
1002 * Initialize the state machine tasklet and stall timer
1003 */
1004 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
1005 timer_setup(&ace->stall_timer, ace_stall_timer, 0);
1006
1007 /*
1008 * Initialize the request queue
1009 */
1010 ace->queue = blk_mq_init_sq_queue(&ace->tag_set, &ace_mq_ops, 2,
1011 BLK_MQ_F_SHOULD_MERGE);
1012 if (IS_ERR(ace->queue)) {
1013 rc = PTR_ERR(ace->queue);
1014 ace->queue = NULL;
1015 goto err_blk_initq;
1016 }
1017 ace->queue->queuedata = ace;
1018
1019 blk_queue_logical_block_size(ace->queue, 512);
1020 blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
1021
1022 /*
1023 * Allocate and initialize GD structure
1024 */
1025 ace->gd = alloc_disk(ACE_NUM_MINORS);
1026 if (!ace->gd)
1027 goto err_alloc_disk;
1028
1029 ace->gd->major = ace_major;
1030 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1031 ace->gd->fops = &ace_fops;
1032 ace->gd->events = DISK_EVENT_MEDIA_CHANGE;
1033 ace->gd->queue = ace->queue;
1034 ace->gd->private_data = ace;
1035 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1036
1037 /* set bus width */
1038 if (ace->bus_width == ACE_BUS_WIDTH_16) {
1039 /* 0x0101 should work regardless of endianess */
1040 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1041
1042 /* read it back to determine endianess */
1043 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1044 ace->reg_ops = &ace_reg_le16_ops;
1045 else
1046 ace->reg_ops = &ace_reg_be16_ops;
1047 } else {
1048 ace_out_8(ace, ACE_BUSMODE, 0x00);
1049 ace->reg_ops = &ace_reg_8_ops;
1050 }
1051
1052 /* Make sure version register is sane */
1053 version = ace_in(ace, ACE_VERSION);
1054 if ((version == 0) || (version == 0xFFFF))
1055 goto err_read;
1056
1057 /* Put sysace in a sane state by clearing most control reg bits */
1058 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1059 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1060
1061 /* Now we can hook up the irq handler */
1062 if (ace->irq) {
1063 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1064 if (rc) {
1065 /* Failure - fall back to polled mode */
1066 dev_err(ace->dev, "request_irq failed\n");
1067 ace->irq = 0;
1068 }
1069 }
1070
1071 /* Enable interrupts */
1072 val = ace_in(ace, ACE_CTRL);
1073 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1074 ace_out(ace, ACE_CTRL, val);
1075
1076 /* Print the identification */
1077 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1078 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1079 dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1080 (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1081
1082 ace->media_change = 1;
1083 ace_revalidate_disk(ace->gd);
1084
1085 /* Make the sysace device 'live' */
1086 add_disk(ace->gd);
1087
1088 return 0;
1089
1090 err_read:
1091 /* prevent double queue cleanup */
1092 ace->gd->queue = NULL;
1093 put_disk(ace->gd);
1094 err_alloc_disk:
1095 blk_cleanup_queue(ace->queue);
1096 blk_mq_free_tag_set(&ace->tag_set);
1097 err_blk_initq:
1098 iounmap(ace->baseaddr);
1099 err_ioremap:
1100 dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1101 (unsigned long long) ace->physaddr);
1102 return -ENOMEM;
1103 }
1104
ace_teardown(struct ace_device * ace)1105 static void ace_teardown(struct ace_device *ace)
1106 {
1107 if (ace->gd) {
1108 del_gendisk(ace->gd);
1109 put_disk(ace->gd);
1110 }
1111
1112 if (ace->queue) {
1113 blk_cleanup_queue(ace->queue);
1114 blk_mq_free_tag_set(&ace->tag_set);
1115 }
1116
1117 tasklet_kill(&ace->fsm_tasklet);
1118
1119 if (ace->irq)
1120 free_irq(ace->irq, ace);
1121
1122 iounmap(ace->baseaddr);
1123 }
1124
ace_alloc(struct device * dev,int id,resource_size_t physaddr,int irq,int bus_width)1125 static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1126 int irq, int bus_width)
1127 {
1128 struct ace_device *ace;
1129 int rc;
1130 dev_dbg(dev, "ace_alloc(%p)\n", dev);
1131
1132 if (!physaddr) {
1133 rc = -ENODEV;
1134 goto err_noreg;
1135 }
1136
1137 /* Allocate and initialize the ace device structure */
1138 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1139 if (!ace) {
1140 rc = -ENOMEM;
1141 goto err_alloc;
1142 }
1143
1144 ace->dev = dev;
1145 ace->id = id;
1146 ace->physaddr = physaddr;
1147 ace->irq = irq;
1148 ace->bus_width = bus_width;
1149
1150 /* Call the setup code */
1151 rc = ace_setup(ace);
1152 if (rc)
1153 goto err_setup;
1154
1155 dev_set_drvdata(dev, ace);
1156 return 0;
1157
1158 err_setup:
1159 dev_set_drvdata(dev, NULL);
1160 kfree(ace);
1161 err_alloc:
1162 err_noreg:
1163 dev_err(dev, "could not initialize device, err=%i\n", rc);
1164 return rc;
1165 }
1166
ace_free(struct device * dev)1167 static void ace_free(struct device *dev)
1168 {
1169 struct ace_device *ace = dev_get_drvdata(dev);
1170 dev_dbg(dev, "ace_free(%p)\n", dev);
1171
1172 if (ace) {
1173 ace_teardown(ace);
1174 dev_set_drvdata(dev, NULL);
1175 kfree(ace);
1176 }
1177 }
1178
1179 /* ---------------------------------------------------------------------
1180 * Platform Bus Support
1181 */
1182
ace_probe(struct platform_device * dev)1183 static int ace_probe(struct platform_device *dev)
1184 {
1185 resource_size_t physaddr = 0;
1186 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1187 u32 id = dev->id;
1188 int irq = 0;
1189 int i;
1190
1191 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1192
1193 /* device id and bus width */
1194 if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1195 id = 0;
1196 if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1197 bus_width = ACE_BUS_WIDTH_8;
1198
1199 for (i = 0; i < dev->num_resources; i++) {
1200 if (dev->resource[i].flags & IORESOURCE_MEM)
1201 physaddr = dev->resource[i].start;
1202 if (dev->resource[i].flags & IORESOURCE_IRQ)
1203 irq = dev->resource[i].start;
1204 }
1205
1206 /* Call the bus-independent setup code */
1207 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1208 }
1209
1210 /*
1211 * Platform bus remove() method
1212 */
ace_remove(struct platform_device * dev)1213 static int ace_remove(struct platform_device *dev)
1214 {
1215 ace_free(&dev->dev);
1216 return 0;
1217 }
1218
1219 #if defined(CONFIG_OF)
1220 /* Match table for of_platform binding */
1221 static const struct of_device_id ace_of_match[] = {
1222 { .compatible = "xlnx,opb-sysace-1.00.b", },
1223 { .compatible = "xlnx,opb-sysace-1.00.c", },
1224 { .compatible = "xlnx,xps-sysace-1.00.a", },
1225 { .compatible = "xlnx,sysace", },
1226 {},
1227 };
1228 MODULE_DEVICE_TABLE(of, ace_of_match);
1229 #else /* CONFIG_OF */
1230 #define ace_of_match NULL
1231 #endif /* CONFIG_OF */
1232
1233 static struct platform_driver ace_platform_driver = {
1234 .probe = ace_probe,
1235 .remove = ace_remove,
1236 .driver = {
1237 .name = "xsysace",
1238 .of_match_table = ace_of_match,
1239 },
1240 };
1241
1242 /* ---------------------------------------------------------------------
1243 * Module init/exit routines
1244 */
ace_init(void)1245 static int __init ace_init(void)
1246 {
1247 int rc;
1248
1249 ace_major = register_blkdev(ace_major, "xsysace");
1250 if (ace_major <= 0) {
1251 rc = -ENOMEM;
1252 goto err_blk;
1253 }
1254
1255 rc = platform_driver_register(&ace_platform_driver);
1256 if (rc)
1257 goto err_plat;
1258
1259 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1260 return 0;
1261
1262 err_plat:
1263 unregister_blkdev(ace_major, "xsysace");
1264 err_blk:
1265 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1266 return rc;
1267 }
1268 module_init(ace_init);
1269
ace_exit(void)1270 static void __exit ace_exit(void)
1271 {
1272 pr_debug("Unregistering Xilinx SystemACE driver\n");
1273 platform_driver_unregister(&ace_platform_driver);
1274 unregister_blkdev(ace_major, "xsysace");
1275 }
1276 module_exit(ace_exit);
1277