1 /*
2  * Xilinx SystemACE device driver
3  *
4  * Copyright 2007 Secret Lab Technologies Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10 
11 /*
12  * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13  * bitstream from a file on a CF card and squirting it into FPGAs connected
14  * to the SystemACE JTAG chain.  It also has the advantage of providing an
15  * MPU interface which can be used to control the FPGA configuration process
16  * and to use the attached CF card for general purpose storage.
17  *
18  * This driver is a block device driver for the SystemACE.
19  *
20  * Initialization:
21  *    The driver registers itself as a platform_device driver at module
22  *    load time.  The platform bus will take care of calling the
23  *    ace_probe() method for all SystemACE instances in the system.  Any
24  *    number of SystemACE instances are supported.  ace_probe() calls
25  *    ace_setup() which initialized all data structures, reads the CF
26  *    id structure and registers the device.
27  *
28  * Processing:
29  *    Just about all of the heavy lifting in this driver is performed by
30  *    a Finite State Machine (FSM).  The driver needs to wait on a number
31  *    of events; some raised by interrupts, some which need to be polled
32  *    for.  Describing all of the behaviour in a FSM seems to be the
33  *    easiest way to keep the complexity low and make it easy to
34  *    understand what the driver is doing.  If the block ops or the
35  *    request function need to interact with the hardware, then they
36  *    simply need to flag the request and kick of FSM processing.
37  *
38  *    The FSM itself is atomic-safe code which can be run from any
39  *    context.  The general process flow is:
40  *    1. obtain the ace->lock spinlock.
41  *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42  *       cleared.
43  *    3. release the lock.
44  *
45  *    Individual states do not sleep in any way.  If a condition needs to
46  *    be waited for then the state much clear the fsm_continue flag and
47  *    either schedule the FSM to be run again at a later time, or expect
48  *    an interrupt to call the FSM when the desired condition is met.
49  *
50  *    In normal operation, the FSM is processed at interrupt context
51  *    either when the driver's tasklet is scheduled, or when an irq is
52  *    raised by the hardware.  The tasklet can be scheduled at any time.
53  *    The request method in particular schedules the tasklet when a new
54  *    request has been indicated by the block layer.  Once started, the
55  *    FSM proceeds as far as it can processing the request until it
56  *    needs on a hardware event.  At this point, it must yield execution.
57  *
58  *    A state has two options when yielding execution:
59  *    1. ace_fsm_yield()
60  *       - Call if need to poll for event.
61  *       - clears the fsm_continue flag to exit the processing loop
62  *       - reschedules the tasklet to run again as soon as possible
63  *    2. ace_fsm_yieldirq()
64  *       - Call if an irq is expected from the HW
65  *       - clears the fsm_continue flag to exit the processing loop
66  *       - does not reschedule the tasklet so the FSM will not be processed
67  *         again until an irq is received.
68  *    After calling a yield function, the state must return control back
69  *    to the FSM main loop.
70  *
71  *    Additionally, the driver maintains a kernel timer which can process
72  *    the FSM.  If the FSM gets stalled, typically due to a missed
73  *    interrupt, then the kernel timer will expire and the driver can
74  *    continue where it left off.
75  *
76  * To Do:
77  *    - Add FPGA configuration control interface.
78  *    - Request major number from lanana
79  */
80 
81 #undef DEBUG
82 
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/mutex.h>
93 #include <linux/ata.h>
94 #include <linux/hdreg.h>
95 #include <linux/platform_device.h>
96 #if defined(CONFIG_OF)
97 #include <linux/of_address.h>
98 #include <linux/of_device.h>
99 #include <linux/of_platform.h>
100 #endif
101 
102 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
103 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
104 MODULE_LICENSE("GPL");
105 
106 /* SystemACE register definitions */
107 #define ACE_BUSMODE (0x00)
108 
109 #define ACE_STATUS (0x04)
110 #define ACE_STATUS_CFGLOCK      (0x00000001)
111 #define ACE_STATUS_MPULOCK      (0x00000002)
112 #define ACE_STATUS_CFGERROR     (0x00000004)	/* config controller error */
113 #define ACE_STATUS_CFCERROR     (0x00000008)	/* CF controller error */
114 #define ACE_STATUS_CFDETECT     (0x00000010)
115 #define ACE_STATUS_DATABUFRDY   (0x00000020)
116 #define ACE_STATUS_DATABUFMODE  (0x00000040)
117 #define ACE_STATUS_CFGDONE      (0x00000080)
118 #define ACE_STATUS_RDYFORCFCMD  (0x00000100)
119 #define ACE_STATUS_CFGMODEPIN   (0x00000200)
120 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
121 #define ACE_STATUS_CFBSY        (0x00020000)
122 #define ACE_STATUS_CFRDY        (0x00040000)
123 #define ACE_STATUS_CFDWF        (0x00080000)
124 #define ACE_STATUS_CFDSC        (0x00100000)
125 #define ACE_STATUS_CFDRQ        (0x00200000)
126 #define ACE_STATUS_CFCORR       (0x00400000)
127 #define ACE_STATUS_CFERR        (0x00800000)
128 
129 #define ACE_ERROR (0x08)
130 #define ACE_CFGLBA (0x0c)
131 #define ACE_MPULBA (0x10)
132 
133 #define ACE_SECCNTCMD (0x14)
134 #define ACE_SECCNTCMD_RESET      (0x0100)
135 #define ACE_SECCNTCMD_IDENTIFY   (0x0200)
136 #define ACE_SECCNTCMD_READ_DATA  (0x0300)
137 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
138 #define ACE_SECCNTCMD_ABORT      (0x0600)
139 
140 #define ACE_VERSION (0x16)
141 #define ACE_VERSION_REVISION_MASK (0x00FF)
142 #define ACE_VERSION_MINOR_MASK    (0x0F00)
143 #define ACE_VERSION_MAJOR_MASK    (0xF000)
144 
145 #define ACE_CTRL (0x18)
146 #define ACE_CTRL_FORCELOCKREQ   (0x0001)
147 #define ACE_CTRL_LOCKREQ        (0x0002)
148 #define ACE_CTRL_FORCECFGADDR   (0x0004)
149 #define ACE_CTRL_FORCECFGMODE   (0x0008)
150 #define ACE_CTRL_CFGMODE        (0x0010)
151 #define ACE_CTRL_CFGSTART       (0x0020)
152 #define ACE_CTRL_CFGSEL         (0x0040)
153 #define ACE_CTRL_CFGRESET       (0x0080)
154 #define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
155 #define ACE_CTRL_ERRORIRQ       (0x0200)
156 #define ACE_CTRL_CFGDONEIRQ     (0x0400)
157 #define ACE_CTRL_RESETIRQ       (0x0800)
158 #define ACE_CTRL_CFGPROG        (0x1000)
159 #define ACE_CTRL_CFGADDR_MASK   (0xe000)
160 
161 #define ACE_FATSTAT (0x1c)
162 
163 #define ACE_NUM_MINORS 16
164 #define ACE_SECTOR_SIZE (512)
165 #define ACE_FIFO_SIZE (32)
166 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
167 
168 #define ACE_BUS_WIDTH_8  0
169 #define ACE_BUS_WIDTH_16 1
170 
171 struct ace_reg_ops;
172 
173 struct ace_device {
174 	/* driver state data */
175 	int id;
176 	int media_change;
177 	int users;
178 	struct list_head list;
179 
180 	/* finite state machine data */
181 	struct tasklet_struct fsm_tasklet;
182 	uint fsm_task;		/* Current activity (ACE_TASK_*) */
183 	uint fsm_state;		/* Current state (ACE_FSM_STATE_*) */
184 	uint fsm_continue_flag;	/* cleared to exit FSM mainloop */
185 	uint fsm_iter_num;
186 	struct timer_list stall_timer;
187 
188 	/* Transfer state/result, use for both id and block request */
189 	struct request *req;	/* request being processed */
190 	void *data_ptr;		/* pointer to I/O buffer */
191 	int data_count;		/* number of buffers remaining */
192 	int data_result;	/* Result of transfer; 0 := success */
193 
194 	int id_req_count;	/* count of id requests */
195 	int id_result;
196 	struct completion id_completion;	/* used when id req finishes */
197 	int in_irq;
198 
199 	/* Details of hardware device */
200 	resource_size_t physaddr;
201 	void __iomem *baseaddr;
202 	int irq;
203 	int bus_width;		/* 0 := 8 bit; 1 := 16 bit */
204 	struct ace_reg_ops *reg_ops;
205 	int lock_count;
206 
207 	/* Block device data structures */
208 	spinlock_t lock;
209 	struct device *dev;
210 	struct request_queue *queue;
211 	struct gendisk *gd;
212 
213 	/* Inserted CF card parameters */
214 	u16 cf_id[ATA_ID_WORDS];
215 };
216 
217 static DEFINE_MUTEX(xsysace_mutex);
218 static int ace_major;
219 
220 /* ---------------------------------------------------------------------
221  * Low level register access
222  */
223 
224 struct ace_reg_ops {
225 	u16(*in) (struct ace_device * ace, int reg);
226 	void (*out) (struct ace_device * ace, int reg, u16 val);
227 	void (*datain) (struct ace_device * ace);
228 	void (*dataout) (struct ace_device * ace);
229 };
230 
231 /* 8 Bit bus width */
ace_in_8(struct ace_device * ace,int reg)232 static u16 ace_in_8(struct ace_device *ace, int reg)
233 {
234 	void __iomem *r = ace->baseaddr + reg;
235 	return in_8(r) | (in_8(r + 1) << 8);
236 }
237 
ace_out_8(struct ace_device * ace,int reg,u16 val)238 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
239 {
240 	void __iomem *r = ace->baseaddr + reg;
241 	out_8(r, val);
242 	out_8(r + 1, val >> 8);
243 }
244 
ace_datain_8(struct ace_device * ace)245 static void ace_datain_8(struct ace_device *ace)
246 {
247 	void __iomem *r = ace->baseaddr + 0x40;
248 	u8 *dst = ace->data_ptr;
249 	int i = ACE_FIFO_SIZE;
250 	while (i--)
251 		*dst++ = in_8(r++);
252 	ace->data_ptr = dst;
253 }
254 
ace_dataout_8(struct ace_device * ace)255 static void ace_dataout_8(struct ace_device *ace)
256 {
257 	void __iomem *r = ace->baseaddr + 0x40;
258 	u8 *src = ace->data_ptr;
259 	int i = ACE_FIFO_SIZE;
260 	while (i--)
261 		out_8(r++, *src++);
262 	ace->data_ptr = src;
263 }
264 
265 static struct ace_reg_ops ace_reg_8_ops = {
266 	.in = ace_in_8,
267 	.out = ace_out_8,
268 	.datain = ace_datain_8,
269 	.dataout = ace_dataout_8,
270 };
271 
272 /* 16 bit big endian bus attachment */
ace_in_be16(struct ace_device * ace,int reg)273 static u16 ace_in_be16(struct ace_device *ace, int reg)
274 {
275 	return in_be16(ace->baseaddr + reg);
276 }
277 
ace_out_be16(struct ace_device * ace,int reg,u16 val)278 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
279 {
280 	out_be16(ace->baseaddr + reg, val);
281 }
282 
ace_datain_be16(struct ace_device * ace)283 static void ace_datain_be16(struct ace_device *ace)
284 {
285 	int i = ACE_FIFO_SIZE / 2;
286 	u16 *dst = ace->data_ptr;
287 	while (i--)
288 		*dst++ = in_le16(ace->baseaddr + 0x40);
289 	ace->data_ptr = dst;
290 }
291 
ace_dataout_be16(struct ace_device * ace)292 static void ace_dataout_be16(struct ace_device *ace)
293 {
294 	int i = ACE_FIFO_SIZE / 2;
295 	u16 *src = ace->data_ptr;
296 	while (i--)
297 		out_le16(ace->baseaddr + 0x40, *src++);
298 	ace->data_ptr = src;
299 }
300 
301 /* 16 bit little endian bus attachment */
ace_in_le16(struct ace_device * ace,int reg)302 static u16 ace_in_le16(struct ace_device *ace, int reg)
303 {
304 	return in_le16(ace->baseaddr + reg);
305 }
306 
ace_out_le16(struct ace_device * ace,int reg,u16 val)307 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
308 {
309 	out_le16(ace->baseaddr + reg, val);
310 }
311 
ace_datain_le16(struct ace_device * ace)312 static void ace_datain_le16(struct ace_device *ace)
313 {
314 	int i = ACE_FIFO_SIZE / 2;
315 	u16 *dst = ace->data_ptr;
316 	while (i--)
317 		*dst++ = in_be16(ace->baseaddr + 0x40);
318 	ace->data_ptr = dst;
319 }
320 
ace_dataout_le16(struct ace_device * ace)321 static void ace_dataout_le16(struct ace_device *ace)
322 {
323 	int i = ACE_FIFO_SIZE / 2;
324 	u16 *src = ace->data_ptr;
325 	while (i--)
326 		out_be16(ace->baseaddr + 0x40, *src++);
327 	ace->data_ptr = src;
328 }
329 
330 static struct ace_reg_ops ace_reg_be16_ops = {
331 	.in = ace_in_be16,
332 	.out = ace_out_be16,
333 	.datain = ace_datain_be16,
334 	.dataout = ace_dataout_be16,
335 };
336 
337 static struct ace_reg_ops ace_reg_le16_ops = {
338 	.in = ace_in_le16,
339 	.out = ace_out_le16,
340 	.datain = ace_datain_le16,
341 	.dataout = ace_dataout_le16,
342 };
343 
ace_in(struct ace_device * ace,int reg)344 static inline u16 ace_in(struct ace_device *ace, int reg)
345 {
346 	return ace->reg_ops->in(ace, reg);
347 }
348 
ace_in32(struct ace_device * ace,int reg)349 static inline u32 ace_in32(struct ace_device *ace, int reg)
350 {
351 	return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
352 }
353 
ace_out(struct ace_device * ace,int reg,u16 val)354 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
355 {
356 	ace->reg_ops->out(ace, reg, val);
357 }
358 
ace_out32(struct ace_device * ace,int reg,u32 val)359 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
360 {
361 	ace_out(ace, reg, val);
362 	ace_out(ace, reg + 2, val >> 16);
363 }
364 
365 /* ---------------------------------------------------------------------
366  * Debug support functions
367  */
368 
369 #if defined(DEBUG)
ace_dump_mem(void * base,int len)370 static void ace_dump_mem(void *base, int len)
371 {
372 	const char *ptr = base;
373 	int i, j;
374 
375 	for (i = 0; i < len; i += 16) {
376 		printk(KERN_INFO "%.8x:", i);
377 		for (j = 0; j < 16; j++) {
378 			if (!(j % 4))
379 				printk(" ");
380 			printk("%.2x", ptr[i + j]);
381 		}
382 		printk(" ");
383 		for (j = 0; j < 16; j++)
384 			printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
385 		printk("\n");
386 	}
387 }
388 #else
ace_dump_mem(void * base,int len)389 static inline void ace_dump_mem(void *base, int len)
390 {
391 }
392 #endif
393 
ace_dump_regs(struct ace_device * ace)394 static void ace_dump_regs(struct ace_device *ace)
395 {
396 	dev_info(ace->dev,
397 		 "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
398 		 "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
399 		 "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
400 		 ace_in32(ace, ACE_CTRL),
401 		 ace_in(ace, ACE_SECCNTCMD),
402 		 ace_in(ace, ACE_VERSION),
403 		 ace_in32(ace, ACE_STATUS),
404 		 ace_in32(ace, ACE_MPULBA),
405 		 ace_in(ace, ACE_BUSMODE),
406 		 ace_in32(ace, ACE_ERROR),
407 		 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
408 }
409 
ace_fix_driveid(u16 * id)410 static void ace_fix_driveid(u16 *id)
411 {
412 #if defined(__BIG_ENDIAN)
413 	int i;
414 
415 	/* All half words have wrong byte order; swap the bytes */
416 	for (i = 0; i < ATA_ID_WORDS; i++, id++)
417 		*id = le16_to_cpu(*id);
418 #endif
419 }
420 
421 /* ---------------------------------------------------------------------
422  * Finite State Machine (FSM) implementation
423  */
424 
425 /* FSM tasks; used to direct state transitions */
426 #define ACE_TASK_IDLE      0
427 #define ACE_TASK_IDENTIFY  1
428 #define ACE_TASK_READ      2
429 #define ACE_TASK_WRITE     3
430 #define ACE_FSM_NUM_TASKS  4
431 
432 /* FSM state definitions */
433 #define ACE_FSM_STATE_IDLE               0
434 #define ACE_FSM_STATE_REQ_LOCK           1
435 #define ACE_FSM_STATE_WAIT_LOCK          2
436 #define ACE_FSM_STATE_WAIT_CFREADY       3
437 #define ACE_FSM_STATE_IDENTIFY_PREPARE   4
438 #define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
439 #define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
440 #define ACE_FSM_STATE_REQ_PREPARE        7
441 #define ACE_FSM_STATE_REQ_TRANSFER       8
442 #define ACE_FSM_STATE_REQ_COMPLETE       9
443 #define ACE_FSM_STATE_ERROR             10
444 #define ACE_FSM_NUM_STATES              11
445 
446 /* Set flag to exit FSM loop and reschedule tasklet */
ace_fsm_yield(struct ace_device * ace)447 static inline void ace_fsm_yield(struct ace_device *ace)
448 {
449 	dev_dbg(ace->dev, "ace_fsm_yield()\n");
450 	tasklet_schedule(&ace->fsm_tasklet);
451 	ace->fsm_continue_flag = 0;
452 }
453 
454 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
ace_fsm_yieldirq(struct ace_device * ace)455 static inline void ace_fsm_yieldirq(struct ace_device *ace)
456 {
457 	dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
458 
459 	if (!ace->irq)
460 		/* No IRQ assigned, so need to poll */
461 		tasklet_schedule(&ace->fsm_tasklet);
462 	ace->fsm_continue_flag = 0;
463 }
464 
465 /* Get the next read/write request; ending requests that we don't handle */
ace_get_next_request(struct request_queue * q)466 static struct request *ace_get_next_request(struct request_queue *q)
467 {
468 	struct request *req;
469 
470 	while ((req = blk_peek_request(q)) != NULL) {
471 		if (!blk_rq_is_passthrough(req))
472 			break;
473 		blk_start_request(req);
474 		__blk_end_request_all(req, BLK_STS_IOERR);
475 	}
476 	return req;
477 }
478 
ace_fsm_dostate(struct ace_device * ace)479 static void ace_fsm_dostate(struct ace_device *ace)
480 {
481 	struct request *req;
482 	u32 status;
483 	u16 val;
484 	int count;
485 
486 #if defined(DEBUG)
487 	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
488 		ace->fsm_state, ace->id_req_count);
489 #endif
490 
491 	/* Verify that there is actually a CF in the slot. If not, then
492 	 * bail out back to the idle state and wake up all the waiters */
493 	status = ace_in32(ace, ACE_STATUS);
494 	if ((status & ACE_STATUS_CFDETECT) == 0) {
495 		ace->fsm_state = ACE_FSM_STATE_IDLE;
496 		ace->media_change = 1;
497 		set_capacity(ace->gd, 0);
498 		dev_info(ace->dev, "No CF in slot\n");
499 
500 		/* Drop all in-flight and pending requests */
501 		if (ace->req) {
502 			__blk_end_request_all(ace->req, BLK_STS_IOERR);
503 			ace->req = NULL;
504 		}
505 		while ((req = blk_fetch_request(ace->queue)) != NULL)
506 			__blk_end_request_all(req, BLK_STS_IOERR);
507 
508 		/* Drop back to IDLE state and notify waiters */
509 		ace->fsm_state = ACE_FSM_STATE_IDLE;
510 		ace->id_result = -EIO;
511 		while (ace->id_req_count) {
512 			complete(&ace->id_completion);
513 			ace->id_req_count--;
514 		}
515 	}
516 
517 	switch (ace->fsm_state) {
518 	case ACE_FSM_STATE_IDLE:
519 		/* See if there is anything to do */
520 		if (ace->id_req_count || ace_get_next_request(ace->queue)) {
521 			ace->fsm_iter_num++;
522 			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
523 			mod_timer(&ace->stall_timer, jiffies + HZ);
524 			if (!timer_pending(&ace->stall_timer))
525 				add_timer(&ace->stall_timer);
526 			break;
527 		}
528 		del_timer(&ace->stall_timer);
529 		ace->fsm_continue_flag = 0;
530 		break;
531 
532 	case ACE_FSM_STATE_REQ_LOCK:
533 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
534 			/* Already have the lock, jump to next state */
535 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
536 			break;
537 		}
538 
539 		/* Request the lock */
540 		val = ace_in(ace, ACE_CTRL);
541 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
542 		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
543 		break;
544 
545 	case ACE_FSM_STATE_WAIT_LOCK:
546 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
547 			/* got the lock; move to next state */
548 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
549 			break;
550 		}
551 
552 		/* wait a bit for the lock */
553 		ace_fsm_yield(ace);
554 		break;
555 
556 	case ACE_FSM_STATE_WAIT_CFREADY:
557 		status = ace_in32(ace, ACE_STATUS);
558 		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
559 		    (status & ACE_STATUS_CFBSY)) {
560 			/* CF card isn't ready; it needs to be polled */
561 			ace_fsm_yield(ace);
562 			break;
563 		}
564 
565 		/* Device is ready for command; determine what to do next */
566 		if (ace->id_req_count)
567 			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
568 		else
569 			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
570 		break;
571 
572 	case ACE_FSM_STATE_IDENTIFY_PREPARE:
573 		/* Send identify command */
574 		ace->fsm_task = ACE_TASK_IDENTIFY;
575 		ace->data_ptr = ace->cf_id;
576 		ace->data_count = ACE_BUF_PER_SECTOR;
577 		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
578 
579 		/* As per datasheet, put config controller in reset */
580 		val = ace_in(ace, ACE_CTRL);
581 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
582 
583 		/* irq handler takes over from this point; wait for the
584 		 * transfer to complete */
585 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
586 		ace_fsm_yieldirq(ace);
587 		break;
588 
589 	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
590 		/* Check that the sysace is ready to receive data */
591 		status = ace_in32(ace, ACE_STATUS);
592 		if (status & ACE_STATUS_CFBSY) {
593 			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
594 				ace->fsm_task, ace->fsm_iter_num,
595 				ace->data_count);
596 			ace_fsm_yield(ace);
597 			break;
598 		}
599 		if (!(status & ACE_STATUS_DATABUFRDY)) {
600 			ace_fsm_yield(ace);
601 			break;
602 		}
603 
604 		/* Transfer the next buffer */
605 		ace->reg_ops->datain(ace);
606 		ace->data_count--;
607 
608 		/* If there are still buffers to be transfers; jump out here */
609 		if (ace->data_count != 0) {
610 			ace_fsm_yieldirq(ace);
611 			break;
612 		}
613 
614 		/* transfer finished; kick state machine */
615 		dev_dbg(ace->dev, "identify finished\n");
616 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
617 		break;
618 
619 	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
620 		ace_fix_driveid(ace->cf_id);
621 		ace_dump_mem(ace->cf_id, 512);	/* Debug: Dump out disk ID */
622 
623 		if (ace->data_result) {
624 			/* Error occurred, disable the disk */
625 			ace->media_change = 1;
626 			set_capacity(ace->gd, 0);
627 			dev_err(ace->dev, "error fetching CF id (%i)\n",
628 				ace->data_result);
629 		} else {
630 			ace->media_change = 0;
631 
632 			/* Record disk parameters */
633 			set_capacity(ace->gd,
634 				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
635 			dev_info(ace->dev, "capacity: %i sectors\n",
636 				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
637 		}
638 
639 		/* We're done, drop to IDLE state and notify waiters */
640 		ace->fsm_state = ACE_FSM_STATE_IDLE;
641 		ace->id_result = ace->data_result;
642 		while (ace->id_req_count) {
643 			complete(&ace->id_completion);
644 			ace->id_req_count--;
645 		}
646 		break;
647 
648 	case ACE_FSM_STATE_REQ_PREPARE:
649 		req = ace_get_next_request(ace->queue);
650 		if (!req) {
651 			ace->fsm_state = ACE_FSM_STATE_IDLE;
652 			break;
653 		}
654 		blk_start_request(req);
655 
656 		/* Okay, it's a data request, set it up for transfer */
657 		dev_dbg(ace->dev,
658 			"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
659 			(unsigned long long)blk_rq_pos(req),
660 			blk_rq_sectors(req), blk_rq_cur_sectors(req),
661 			rq_data_dir(req));
662 
663 		ace->req = req;
664 		ace->data_ptr = bio_data(req->bio);
665 		ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
666 		ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
667 
668 		count = blk_rq_sectors(req);
669 		if (rq_data_dir(req)) {
670 			/* Kick off write request */
671 			dev_dbg(ace->dev, "write data\n");
672 			ace->fsm_task = ACE_TASK_WRITE;
673 			ace_out(ace, ACE_SECCNTCMD,
674 				count | ACE_SECCNTCMD_WRITE_DATA);
675 		} else {
676 			/* Kick off read request */
677 			dev_dbg(ace->dev, "read data\n");
678 			ace->fsm_task = ACE_TASK_READ;
679 			ace_out(ace, ACE_SECCNTCMD,
680 				count | ACE_SECCNTCMD_READ_DATA);
681 		}
682 
683 		/* As per datasheet, put config controller in reset */
684 		val = ace_in(ace, ACE_CTRL);
685 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
686 
687 		/* Move to the transfer state.  The systemace will raise
688 		 * an interrupt once there is something to do
689 		 */
690 		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
691 		if (ace->fsm_task == ACE_TASK_READ)
692 			ace_fsm_yieldirq(ace);	/* wait for data ready */
693 		break;
694 
695 	case ACE_FSM_STATE_REQ_TRANSFER:
696 		/* Check that the sysace is ready to receive data */
697 		status = ace_in32(ace, ACE_STATUS);
698 		if (status & ACE_STATUS_CFBSY) {
699 			dev_dbg(ace->dev,
700 				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
701 				ace->fsm_task, ace->fsm_iter_num,
702 				blk_rq_cur_sectors(ace->req) * 16,
703 				ace->data_count, ace->in_irq);
704 			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
705 			break;
706 		}
707 		if (!(status & ACE_STATUS_DATABUFRDY)) {
708 			dev_dbg(ace->dev,
709 				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
710 				ace->fsm_task, ace->fsm_iter_num,
711 				blk_rq_cur_sectors(ace->req) * 16,
712 				ace->data_count, ace->in_irq);
713 			ace_fsm_yieldirq(ace);
714 			break;
715 		}
716 
717 		/* Transfer the next buffer */
718 		if (ace->fsm_task == ACE_TASK_WRITE)
719 			ace->reg_ops->dataout(ace);
720 		else
721 			ace->reg_ops->datain(ace);
722 		ace->data_count--;
723 
724 		/* If there are still buffers to be transfers; jump out here */
725 		if (ace->data_count != 0) {
726 			ace_fsm_yieldirq(ace);
727 			break;
728 		}
729 
730 		/* bio finished; is there another one? */
731 		if (__blk_end_request_cur(ace->req, BLK_STS_OK)) {
732 			/* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
733 			 *      blk_rq_sectors(ace->req),
734 			 *      blk_rq_cur_sectors(ace->req));
735 			 */
736 			ace->data_ptr = bio_data(ace->req->bio);
737 			ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
738 			ace_fsm_yieldirq(ace);
739 			break;
740 		}
741 
742 		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
743 		break;
744 
745 	case ACE_FSM_STATE_REQ_COMPLETE:
746 		ace->req = NULL;
747 
748 		/* Finished request; go to idle state */
749 		ace->fsm_state = ACE_FSM_STATE_IDLE;
750 		break;
751 
752 	default:
753 		ace->fsm_state = ACE_FSM_STATE_IDLE;
754 		break;
755 	}
756 }
757 
ace_fsm_tasklet(unsigned long data)758 static void ace_fsm_tasklet(unsigned long data)
759 {
760 	struct ace_device *ace = (void *)data;
761 	unsigned long flags;
762 
763 	spin_lock_irqsave(&ace->lock, flags);
764 
765 	/* Loop over state machine until told to stop */
766 	ace->fsm_continue_flag = 1;
767 	while (ace->fsm_continue_flag)
768 		ace_fsm_dostate(ace);
769 
770 	spin_unlock_irqrestore(&ace->lock, flags);
771 }
772 
ace_stall_timer(struct timer_list * t)773 static void ace_stall_timer(struct timer_list *t)
774 {
775 	struct ace_device *ace = from_timer(ace, t, stall_timer);
776 	unsigned long flags;
777 
778 	dev_warn(ace->dev,
779 		 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
780 		 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
781 		 ace->data_count);
782 	spin_lock_irqsave(&ace->lock, flags);
783 
784 	/* Rearm the stall timer *before* entering FSM (which may then
785 	 * delete the timer) */
786 	mod_timer(&ace->stall_timer, jiffies + HZ);
787 
788 	/* Loop over state machine until told to stop */
789 	ace->fsm_continue_flag = 1;
790 	while (ace->fsm_continue_flag)
791 		ace_fsm_dostate(ace);
792 
793 	spin_unlock_irqrestore(&ace->lock, flags);
794 }
795 
796 /* ---------------------------------------------------------------------
797  * Interrupt handling routines
798  */
ace_interrupt_checkstate(struct ace_device * ace)799 static int ace_interrupt_checkstate(struct ace_device *ace)
800 {
801 	u32 sreg = ace_in32(ace, ACE_STATUS);
802 	u16 creg = ace_in(ace, ACE_CTRL);
803 
804 	/* Check for error occurrence */
805 	if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
806 	    (creg & ACE_CTRL_ERRORIRQ)) {
807 		dev_err(ace->dev, "transfer failure\n");
808 		ace_dump_regs(ace);
809 		return -EIO;
810 	}
811 
812 	return 0;
813 }
814 
ace_interrupt(int irq,void * dev_id)815 static irqreturn_t ace_interrupt(int irq, void *dev_id)
816 {
817 	u16 creg;
818 	struct ace_device *ace = dev_id;
819 
820 	/* be safe and get the lock */
821 	spin_lock(&ace->lock);
822 	ace->in_irq = 1;
823 
824 	/* clear the interrupt */
825 	creg = ace_in(ace, ACE_CTRL);
826 	ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
827 	ace_out(ace, ACE_CTRL, creg);
828 
829 	/* check for IO failures */
830 	if (ace_interrupt_checkstate(ace))
831 		ace->data_result = -EIO;
832 
833 	if (ace->fsm_task == 0) {
834 		dev_err(ace->dev,
835 			"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
836 			ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
837 			ace_in(ace, ACE_SECCNTCMD));
838 		dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
839 			ace->fsm_task, ace->fsm_state, ace->data_count);
840 	}
841 
842 	/* Loop over state machine until told to stop */
843 	ace->fsm_continue_flag = 1;
844 	while (ace->fsm_continue_flag)
845 		ace_fsm_dostate(ace);
846 
847 	/* done with interrupt; drop the lock */
848 	ace->in_irq = 0;
849 	spin_unlock(&ace->lock);
850 
851 	return IRQ_HANDLED;
852 }
853 
854 /* ---------------------------------------------------------------------
855  * Block ops
856  */
ace_request(struct request_queue * q)857 static void ace_request(struct request_queue * q)
858 {
859 	struct request *req;
860 	struct ace_device *ace;
861 
862 	req = ace_get_next_request(q);
863 
864 	if (req) {
865 		ace = req->rq_disk->private_data;
866 		tasklet_schedule(&ace->fsm_tasklet);
867 	}
868 }
869 
ace_check_events(struct gendisk * gd,unsigned int clearing)870 static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
871 {
872 	struct ace_device *ace = gd->private_data;
873 	dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
874 
875 	return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
876 }
877 
ace_revalidate_disk(struct gendisk * gd)878 static int ace_revalidate_disk(struct gendisk *gd)
879 {
880 	struct ace_device *ace = gd->private_data;
881 	unsigned long flags;
882 
883 	dev_dbg(ace->dev, "ace_revalidate_disk()\n");
884 
885 	if (ace->media_change) {
886 		dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
887 
888 		spin_lock_irqsave(&ace->lock, flags);
889 		ace->id_req_count++;
890 		spin_unlock_irqrestore(&ace->lock, flags);
891 
892 		tasklet_schedule(&ace->fsm_tasklet);
893 		wait_for_completion(&ace->id_completion);
894 	}
895 
896 	dev_dbg(ace->dev, "revalidate complete\n");
897 	return ace->id_result;
898 }
899 
ace_open(struct block_device * bdev,fmode_t mode)900 static int ace_open(struct block_device *bdev, fmode_t mode)
901 {
902 	struct ace_device *ace = bdev->bd_disk->private_data;
903 	unsigned long flags;
904 
905 	dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
906 
907 	mutex_lock(&xsysace_mutex);
908 	spin_lock_irqsave(&ace->lock, flags);
909 	ace->users++;
910 	spin_unlock_irqrestore(&ace->lock, flags);
911 
912 	check_disk_change(bdev);
913 	mutex_unlock(&xsysace_mutex);
914 
915 	return 0;
916 }
917 
ace_release(struct gendisk * disk,fmode_t mode)918 static void ace_release(struct gendisk *disk, fmode_t mode)
919 {
920 	struct ace_device *ace = disk->private_data;
921 	unsigned long flags;
922 	u16 val;
923 
924 	dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
925 
926 	mutex_lock(&xsysace_mutex);
927 	spin_lock_irqsave(&ace->lock, flags);
928 	ace->users--;
929 	if (ace->users == 0) {
930 		val = ace_in(ace, ACE_CTRL);
931 		ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
932 	}
933 	spin_unlock_irqrestore(&ace->lock, flags);
934 	mutex_unlock(&xsysace_mutex);
935 }
936 
ace_getgeo(struct block_device * bdev,struct hd_geometry * geo)937 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
938 {
939 	struct ace_device *ace = bdev->bd_disk->private_data;
940 	u16 *cf_id = ace->cf_id;
941 
942 	dev_dbg(ace->dev, "ace_getgeo()\n");
943 
944 	geo->heads	= cf_id[ATA_ID_HEADS];
945 	geo->sectors	= cf_id[ATA_ID_SECTORS];
946 	geo->cylinders	= cf_id[ATA_ID_CYLS];
947 
948 	return 0;
949 }
950 
951 static const struct block_device_operations ace_fops = {
952 	.owner = THIS_MODULE,
953 	.open = ace_open,
954 	.release = ace_release,
955 	.check_events = ace_check_events,
956 	.revalidate_disk = ace_revalidate_disk,
957 	.getgeo = ace_getgeo,
958 };
959 
960 /* --------------------------------------------------------------------
961  * SystemACE device setup/teardown code
962  */
ace_setup(struct ace_device * ace)963 static int ace_setup(struct ace_device *ace)
964 {
965 	u16 version;
966 	u16 val;
967 	int rc;
968 
969 	dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
970 	dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
971 		(unsigned long long)ace->physaddr, ace->irq);
972 
973 	spin_lock_init(&ace->lock);
974 	init_completion(&ace->id_completion);
975 
976 	/*
977 	 * Map the device
978 	 */
979 	ace->baseaddr = ioremap(ace->physaddr, 0x80);
980 	if (!ace->baseaddr)
981 		goto err_ioremap;
982 
983 	/*
984 	 * Initialize the state machine tasklet and stall timer
985 	 */
986 	tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
987 	timer_setup(&ace->stall_timer, ace_stall_timer, 0);
988 
989 	/*
990 	 * Initialize the request queue
991 	 */
992 	ace->queue = blk_init_queue(ace_request, &ace->lock);
993 	if (ace->queue == NULL)
994 		goto err_blk_initq;
995 	blk_queue_logical_block_size(ace->queue, 512);
996 	blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
997 
998 	/*
999 	 * Allocate and initialize GD structure
1000 	 */
1001 	ace->gd = alloc_disk(ACE_NUM_MINORS);
1002 	if (!ace->gd)
1003 		goto err_alloc_disk;
1004 
1005 	ace->gd->major = ace_major;
1006 	ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1007 	ace->gd->fops = &ace_fops;
1008 	ace->gd->queue = ace->queue;
1009 	ace->gd->private_data = ace;
1010 	snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1011 
1012 	/* set bus width */
1013 	if (ace->bus_width == ACE_BUS_WIDTH_16) {
1014 		/* 0x0101 should work regardless of endianess */
1015 		ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1016 
1017 		/* read it back to determine endianess */
1018 		if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1019 			ace->reg_ops = &ace_reg_le16_ops;
1020 		else
1021 			ace->reg_ops = &ace_reg_be16_ops;
1022 	} else {
1023 		ace_out_8(ace, ACE_BUSMODE, 0x00);
1024 		ace->reg_ops = &ace_reg_8_ops;
1025 	}
1026 
1027 	/* Make sure version register is sane */
1028 	version = ace_in(ace, ACE_VERSION);
1029 	if ((version == 0) || (version == 0xFFFF))
1030 		goto err_read;
1031 
1032 	/* Put sysace in a sane state by clearing most control reg bits */
1033 	ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1034 		ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1035 
1036 	/* Now we can hook up the irq handler */
1037 	if (ace->irq) {
1038 		rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1039 		if (rc) {
1040 			/* Failure - fall back to polled mode */
1041 			dev_err(ace->dev, "request_irq failed\n");
1042 			ace->irq = 0;
1043 		}
1044 	}
1045 
1046 	/* Enable interrupts */
1047 	val = ace_in(ace, ACE_CTRL);
1048 	val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1049 	ace_out(ace, ACE_CTRL, val);
1050 
1051 	/* Print the identification */
1052 	dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1053 		 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1054 	dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1055 		(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1056 
1057 	ace->media_change = 1;
1058 	ace_revalidate_disk(ace->gd);
1059 
1060 	/* Make the sysace device 'live' */
1061 	add_disk(ace->gd);
1062 
1063 	return 0;
1064 
1065 err_read:
1066 	put_disk(ace->gd);
1067 err_alloc_disk:
1068 	blk_cleanup_queue(ace->queue);
1069 err_blk_initq:
1070 	iounmap(ace->baseaddr);
1071 err_ioremap:
1072 	dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1073 		 (unsigned long long) ace->physaddr);
1074 	return -ENOMEM;
1075 }
1076 
ace_teardown(struct ace_device * ace)1077 static void ace_teardown(struct ace_device *ace)
1078 {
1079 	if (ace->gd) {
1080 		del_gendisk(ace->gd);
1081 		put_disk(ace->gd);
1082 	}
1083 
1084 	if (ace->queue)
1085 		blk_cleanup_queue(ace->queue);
1086 
1087 	tasklet_kill(&ace->fsm_tasklet);
1088 
1089 	if (ace->irq)
1090 		free_irq(ace->irq, ace);
1091 
1092 	iounmap(ace->baseaddr);
1093 }
1094 
ace_alloc(struct device * dev,int id,resource_size_t physaddr,int irq,int bus_width)1095 static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1096 		     int irq, int bus_width)
1097 {
1098 	struct ace_device *ace;
1099 	int rc;
1100 	dev_dbg(dev, "ace_alloc(%p)\n", dev);
1101 
1102 	if (!physaddr) {
1103 		rc = -ENODEV;
1104 		goto err_noreg;
1105 	}
1106 
1107 	/* Allocate and initialize the ace device structure */
1108 	ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1109 	if (!ace) {
1110 		rc = -ENOMEM;
1111 		goto err_alloc;
1112 	}
1113 
1114 	ace->dev = dev;
1115 	ace->id = id;
1116 	ace->physaddr = physaddr;
1117 	ace->irq = irq;
1118 	ace->bus_width = bus_width;
1119 
1120 	/* Call the setup code */
1121 	rc = ace_setup(ace);
1122 	if (rc)
1123 		goto err_setup;
1124 
1125 	dev_set_drvdata(dev, ace);
1126 	return 0;
1127 
1128 err_setup:
1129 	dev_set_drvdata(dev, NULL);
1130 	kfree(ace);
1131 err_alloc:
1132 err_noreg:
1133 	dev_err(dev, "could not initialize device, err=%i\n", rc);
1134 	return rc;
1135 }
1136 
ace_free(struct device * dev)1137 static void ace_free(struct device *dev)
1138 {
1139 	struct ace_device *ace = dev_get_drvdata(dev);
1140 	dev_dbg(dev, "ace_free(%p)\n", dev);
1141 
1142 	if (ace) {
1143 		ace_teardown(ace);
1144 		dev_set_drvdata(dev, NULL);
1145 		kfree(ace);
1146 	}
1147 }
1148 
1149 /* ---------------------------------------------------------------------
1150  * Platform Bus Support
1151  */
1152 
ace_probe(struct platform_device * dev)1153 static int ace_probe(struct platform_device *dev)
1154 {
1155 	resource_size_t physaddr = 0;
1156 	int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1157 	u32 id = dev->id;
1158 	int irq = 0;
1159 	int i;
1160 
1161 	dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1162 
1163 	/* device id and bus width */
1164 	if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1165 		id = 0;
1166 	if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1167 		bus_width = ACE_BUS_WIDTH_8;
1168 
1169 	for (i = 0; i < dev->num_resources; i++) {
1170 		if (dev->resource[i].flags & IORESOURCE_MEM)
1171 			physaddr = dev->resource[i].start;
1172 		if (dev->resource[i].flags & IORESOURCE_IRQ)
1173 			irq = dev->resource[i].start;
1174 	}
1175 
1176 	/* Call the bus-independent setup code */
1177 	return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1178 }
1179 
1180 /*
1181  * Platform bus remove() method
1182  */
ace_remove(struct platform_device * dev)1183 static int ace_remove(struct platform_device *dev)
1184 {
1185 	ace_free(&dev->dev);
1186 	return 0;
1187 }
1188 
1189 #if defined(CONFIG_OF)
1190 /* Match table for of_platform binding */
1191 static const struct of_device_id ace_of_match[] = {
1192 	{ .compatible = "xlnx,opb-sysace-1.00.b", },
1193 	{ .compatible = "xlnx,opb-sysace-1.00.c", },
1194 	{ .compatible = "xlnx,xps-sysace-1.00.a", },
1195 	{ .compatible = "xlnx,sysace", },
1196 	{},
1197 };
1198 MODULE_DEVICE_TABLE(of, ace_of_match);
1199 #else /* CONFIG_OF */
1200 #define ace_of_match NULL
1201 #endif /* CONFIG_OF */
1202 
1203 static struct platform_driver ace_platform_driver = {
1204 	.probe = ace_probe,
1205 	.remove = ace_remove,
1206 	.driver = {
1207 		.name = "xsysace",
1208 		.of_match_table = ace_of_match,
1209 	},
1210 };
1211 
1212 /* ---------------------------------------------------------------------
1213  * Module init/exit routines
1214  */
ace_init(void)1215 static int __init ace_init(void)
1216 {
1217 	int rc;
1218 
1219 	ace_major = register_blkdev(ace_major, "xsysace");
1220 	if (ace_major <= 0) {
1221 		rc = -ENOMEM;
1222 		goto err_blk;
1223 	}
1224 
1225 	rc = platform_driver_register(&ace_platform_driver);
1226 	if (rc)
1227 		goto err_plat;
1228 
1229 	pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1230 	return 0;
1231 
1232 err_plat:
1233 	unregister_blkdev(ace_major, "xsysace");
1234 err_blk:
1235 	printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1236 	return rc;
1237 }
1238 module_init(ace_init);
1239 
ace_exit(void)1240 static void __exit ace_exit(void)
1241 {
1242 	pr_debug("Unregistering Xilinx SystemACE driver\n");
1243 	platform_driver_unregister(&ace_platform_driver);
1244 	unregister_blkdev(ace_major, "xsysace");
1245 }
1246 module_exit(ace_exit);
1247