1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/backing-dev.h>
50 #include <linux/compat.h>
51 #include <linux/debugfs.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/file.h>
55 #include <linux/freezer.h>
56 #include <linux/kernel.h>
57 #include <linux/kthread.h>
58 #include <linux/miscdevice.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/nospec.h>
62 #include <linux/pktcdvd.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/uaccess.h>
69 
70 #include <scsi/scsi.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_ioctl.h>
73 
74 #include <asm/unaligned.h>
75 
76 #define DRIVER_NAME	"pktcdvd"
77 
78 #define MAX_SPEED 0xffff
79 
80 static DEFINE_MUTEX(pktcdvd_mutex);
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pktdev_major;
84 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
87 static mempool_t psd_pool;
88 static struct bio_set pkt_bio_set;
89 
90 /* /sys/class/pktcdvd */
91 static struct class	class_pktcdvd;
92 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93 
94 /* forward declaration */
95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96 static int pkt_remove_dev(dev_t pkt_dev);
97 
get_zone(sector_t sector,struct pktcdvd_device * pd)98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99 {
100 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101 }
102 
103 /**********************************************************
104  * sysfs interface for pktcdvd
105  * by (C) 2006  Thomas Maier <balagi@justmail.de>
106 
107   /sys/class/pktcdvd/pktcdvd[0-7]/
108                      stat/reset
109                      stat/packets_started
110                      stat/packets_finished
111                      stat/kb_written
112                      stat/kb_read
113                      stat/kb_read_gather
114                      write_queue/size
115                      write_queue/congestion_off
116                      write_queue/congestion_on
117  **********************************************************/
118 
packets_started_show(struct device * dev,struct device_attribute * attr,char * buf)119 static ssize_t packets_started_show(struct device *dev,
120 				    struct device_attribute *attr, char *buf)
121 {
122 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
123 
124 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125 }
126 static DEVICE_ATTR_RO(packets_started);
127 
packets_finished_show(struct device * dev,struct device_attribute * attr,char * buf)128 static ssize_t packets_finished_show(struct device *dev,
129 				     struct device_attribute *attr, char *buf)
130 {
131 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
132 
133 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134 }
135 static DEVICE_ATTR_RO(packets_finished);
136 
kb_written_show(struct device * dev,struct device_attribute * attr,char * buf)137 static ssize_t kb_written_show(struct device *dev,
138 			       struct device_attribute *attr, char *buf)
139 {
140 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
141 
142 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143 }
144 static DEVICE_ATTR_RO(kb_written);
145 
kb_read_show(struct device * dev,struct device_attribute * attr,char * buf)146 static ssize_t kb_read_show(struct device *dev,
147 			    struct device_attribute *attr, char *buf)
148 {
149 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
150 
151 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152 }
153 static DEVICE_ATTR_RO(kb_read);
154 
kb_read_gather_show(struct device * dev,struct device_attribute * attr,char * buf)155 static ssize_t kb_read_gather_show(struct device *dev,
156 				   struct device_attribute *attr, char *buf)
157 {
158 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
159 
160 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161 }
162 static DEVICE_ATTR_RO(kb_read_gather);
163 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165 			   const char *buf, size_t len)
166 {
167 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
168 
169 	if (len > 0) {
170 		pd->stats.pkt_started = 0;
171 		pd->stats.pkt_ended = 0;
172 		pd->stats.secs_w = 0;
173 		pd->stats.secs_rg = 0;
174 		pd->stats.secs_r = 0;
175 	}
176 	return len;
177 }
178 static DEVICE_ATTR_WO(reset);
179 
180 static struct attribute *pkt_stat_attrs[] = {
181 	&dev_attr_packets_finished.attr,
182 	&dev_attr_packets_started.attr,
183 	&dev_attr_kb_read.attr,
184 	&dev_attr_kb_written.attr,
185 	&dev_attr_kb_read_gather.attr,
186 	&dev_attr_reset.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group pkt_stat_group = {
191 	.name = "stat",
192 	.attrs = pkt_stat_attrs,
193 };
194 
size_show(struct device * dev,struct device_attribute * attr,char * buf)195 static ssize_t size_show(struct device *dev,
196 			 struct device_attribute *attr, char *buf)
197 {
198 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
199 	int n;
200 
201 	spin_lock(&pd->lock);
202 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203 	spin_unlock(&pd->lock);
204 	return n;
205 }
206 static DEVICE_ATTR_RO(size);
207 
init_write_congestion_marks(int * lo,int * hi)208 static void init_write_congestion_marks(int* lo, int* hi)
209 {
210 	if (*hi > 0) {
211 		*hi = max(*hi, 500);
212 		*hi = min(*hi, 1000000);
213 		if (*lo <= 0)
214 			*lo = *hi - 100;
215 		else {
216 			*lo = min(*lo, *hi - 100);
217 			*lo = max(*lo, 100);
218 		}
219 	} else {
220 		*hi = -1;
221 		*lo = -1;
222 	}
223 }
224 
congestion_off_show(struct device * dev,struct device_attribute * attr,char * buf)225 static ssize_t congestion_off_show(struct device *dev,
226 				   struct device_attribute *attr, char *buf)
227 {
228 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
229 	int n;
230 
231 	spin_lock(&pd->lock);
232 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233 	spin_unlock(&pd->lock);
234 	return n;
235 }
236 
congestion_off_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)237 static ssize_t congestion_off_store(struct device *dev,
238 				    struct device_attribute *attr,
239 				    const char *buf, size_t len)
240 {
241 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 	int val, ret;
243 
244 	ret = kstrtoint(buf, 10, &val);
245 	if (ret)
246 		return ret;
247 
248 	spin_lock(&pd->lock);
249 	pd->write_congestion_off = val;
250 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251 	spin_unlock(&pd->lock);
252 	return len;
253 }
254 static DEVICE_ATTR_RW(congestion_off);
255 
congestion_on_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t congestion_on_show(struct device *dev,
257 				  struct device_attribute *attr, char *buf)
258 {
259 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
260 	int n;
261 
262 	spin_lock(&pd->lock);
263 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264 	spin_unlock(&pd->lock);
265 	return n;
266 }
267 
congestion_on_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)268 static ssize_t congestion_on_store(struct device *dev,
269 				   struct device_attribute *attr,
270 				   const char *buf, size_t len)
271 {
272 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
273 	int val, ret;
274 
275 	ret = kstrtoint(buf, 10, &val);
276 	if (ret)
277 		return ret;
278 
279 	spin_lock(&pd->lock);
280 	pd->write_congestion_on = val;
281 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282 	spin_unlock(&pd->lock);
283 	return len;
284 }
285 static DEVICE_ATTR_RW(congestion_on);
286 
287 static struct attribute *pkt_wq_attrs[] = {
288 	&dev_attr_congestion_on.attr,
289 	&dev_attr_congestion_off.attr,
290 	&dev_attr_size.attr,
291 	NULL,
292 };
293 
294 static const struct attribute_group pkt_wq_group = {
295 	.name = "write_queue",
296 	.attrs = pkt_wq_attrs,
297 };
298 
299 static const struct attribute_group *pkt_groups[] = {
300 	&pkt_stat_group,
301 	&pkt_wq_group,
302 	NULL,
303 };
304 
pkt_sysfs_dev_new(struct pktcdvd_device * pd)305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 	if (class_is_registered(&class_pktcdvd)) {
308 		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309 						    MKDEV(0, 0), pd, pkt_groups,
310 						    "%s", pd->disk->disk_name);
311 		if (IS_ERR(pd->dev))
312 			pd->dev = NULL;
313 	}
314 }
315 
pkt_sysfs_dev_remove(struct pktcdvd_device * pd)316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317 {
318 	if (class_is_registered(&class_pktcdvd))
319 		device_unregister(pd->dev);
320 }
321 
322 
323 /********************************************************************
324   /sys/class/pktcdvd/
325                      add            map block device
326                      remove         unmap packet dev
327                      device_map     show mappings
328  *******************************************************************/
329 
device_map_show(const struct class * c,const struct class_attribute * attr,char * data)330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331 			       char *data)
332 {
333 	int n = 0;
334 	int idx;
335 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336 	for (idx = 0; idx < MAX_WRITERS; idx++) {
337 		struct pktcdvd_device *pd = pkt_devs[idx];
338 		if (!pd)
339 			continue;
340 		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341 			pd->disk->disk_name,
342 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343 			MAJOR(pd->bdev->bd_dev),
344 			MINOR(pd->bdev->bd_dev));
345 	}
346 	mutex_unlock(&ctl_mutex);
347 	return n;
348 }
349 static CLASS_ATTR_RO(device_map);
350 
add_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352 			 const char *buf, size_t count)
353 {
354 	unsigned int major, minor;
355 
356 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357 		/* pkt_setup_dev() expects caller to hold reference to self */
358 		if (!try_module_get(THIS_MODULE))
359 			return -ENODEV;
360 
361 		pkt_setup_dev(MKDEV(major, minor), NULL);
362 
363 		module_put(THIS_MODULE);
364 
365 		return count;
366 	}
367 
368 	return -EINVAL;
369 }
370 static CLASS_ATTR_WO(add);
371 
remove_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373 			    const char *buf, size_t count)
374 {
375 	unsigned int major, minor;
376 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 		pkt_remove_dev(MKDEV(major, minor));
378 		return count;
379 	}
380 	return -EINVAL;
381 }
382 static CLASS_ATTR_WO(remove);
383 
384 static struct attribute *class_pktcdvd_attrs[] = {
385 	&class_attr_add.attr,
386 	&class_attr_remove.attr,
387 	&class_attr_device_map.attr,
388 	NULL,
389 };
390 ATTRIBUTE_GROUPS(class_pktcdvd);
391 
392 static struct class class_pktcdvd = {
393 	.name		= DRIVER_NAME,
394 	.class_groups	= class_pktcdvd_groups,
395 };
396 
pkt_sysfs_init(void)397 static int pkt_sysfs_init(void)
398 {
399 	/*
400 	 * create control files in sysfs
401 	 * /sys/class/pktcdvd/...
402 	 */
403 	return class_register(&class_pktcdvd);
404 }
405 
pkt_sysfs_cleanup(void)406 static void pkt_sysfs_cleanup(void)
407 {
408 	class_unregister(&class_pktcdvd);
409 }
410 
411 /********************************************************************
412   entries in debugfs
413 
414   /sys/kernel/debug/pktcdvd[0-7]/
415 			info
416 
417  *******************************************************************/
418 
pkt_count_states(struct pktcdvd_device * pd,int * states)419 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420 {
421 	struct packet_data *pkt;
422 	int i;
423 
424 	for (i = 0; i < PACKET_NUM_STATES; i++)
425 		states[i] = 0;
426 
427 	spin_lock(&pd->cdrw.active_list_lock);
428 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429 		states[pkt->state]++;
430 	}
431 	spin_unlock(&pd->cdrw.active_list_lock);
432 }
433 
pkt_seq_show(struct seq_file * m,void * p)434 static int pkt_seq_show(struct seq_file *m, void *p)
435 {
436 	struct pktcdvd_device *pd = m->private;
437 	char *msg;
438 	int states[PACKET_NUM_STATES];
439 
440 	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name, pd->bdev);
441 
442 	seq_printf(m, "\nSettings:\n");
443 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
444 
445 	if (pd->settings.write_type == 0)
446 		msg = "Packet";
447 	else
448 		msg = "Unknown";
449 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
450 
451 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
452 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
453 
454 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
455 
456 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
457 		msg = "Mode 1";
458 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
459 		msg = "Mode 2";
460 	else
461 		msg = "Unknown";
462 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
463 
464 	seq_printf(m, "\nStatistics:\n");
465 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
466 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
467 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
468 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
469 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
470 
471 	seq_printf(m, "\nMisc:\n");
472 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
473 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
474 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
475 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
476 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
477 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
478 
479 	seq_printf(m, "\nQueue state:\n");
480 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
481 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
482 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
483 
484 	pkt_count_states(pd, states);
485 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
486 		   states[0], states[1], states[2], states[3], states[4], states[5]);
487 
488 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
489 			pd->write_congestion_off,
490 			pd->write_congestion_on);
491 	return 0;
492 }
493 DEFINE_SHOW_ATTRIBUTE(pkt_seq);
494 
pkt_debugfs_dev_new(struct pktcdvd_device * pd)495 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
496 {
497 	if (!pkt_debugfs_root)
498 		return;
499 	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
500 	if (!pd->dfs_d_root)
501 		return;
502 
503 	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
504 					     pd, &pkt_seq_fops);
505 }
506 
pkt_debugfs_dev_remove(struct pktcdvd_device * pd)507 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
508 {
509 	if (!pkt_debugfs_root)
510 		return;
511 	debugfs_remove(pd->dfs_f_info);
512 	debugfs_remove(pd->dfs_d_root);
513 	pd->dfs_f_info = NULL;
514 	pd->dfs_d_root = NULL;
515 }
516 
pkt_debugfs_init(void)517 static void pkt_debugfs_init(void)
518 {
519 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
520 }
521 
pkt_debugfs_cleanup(void)522 static void pkt_debugfs_cleanup(void)
523 {
524 	debugfs_remove(pkt_debugfs_root);
525 	pkt_debugfs_root = NULL;
526 }
527 
528 /* ----------------------------------------------------------*/
529 
530 
pkt_bio_finished(struct pktcdvd_device * pd)531 static void pkt_bio_finished(struct pktcdvd_device *pd)
532 {
533 	struct device *ddev = disk_to_dev(pd->disk);
534 
535 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
536 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
537 		dev_dbg(ddev, "queue empty\n");
538 		atomic_set(&pd->iosched.attention, 1);
539 		wake_up(&pd->wqueue);
540 	}
541 }
542 
543 /*
544  * Allocate a packet_data struct
545  */
pkt_alloc_packet_data(int frames)546 static struct packet_data *pkt_alloc_packet_data(int frames)
547 {
548 	int i;
549 	struct packet_data *pkt;
550 
551 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
552 	if (!pkt)
553 		goto no_pkt;
554 
555 	pkt->frames = frames;
556 	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
557 	if (!pkt->w_bio)
558 		goto no_bio;
559 
560 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
561 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
562 		if (!pkt->pages[i])
563 			goto no_page;
564 	}
565 
566 	spin_lock_init(&pkt->lock);
567 	bio_list_init(&pkt->orig_bios);
568 
569 	for (i = 0; i < frames; i++) {
570 		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
571 		if (!pkt->r_bios[i])
572 			goto no_rd_bio;
573 	}
574 
575 	return pkt;
576 
577 no_rd_bio:
578 	for (i = 0; i < frames; i++)
579 		kfree(pkt->r_bios[i]);
580 no_page:
581 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
582 		if (pkt->pages[i])
583 			__free_page(pkt->pages[i]);
584 	kfree(pkt->w_bio);
585 no_bio:
586 	kfree(pkt);
587 no_pkt:
588 	return NULL;
589 }
590 
591 /*
592  * Free a packet_data struct
593  */
pkt_free_packet_data(struct packet_data * pkt)594 static void pkt_free_packet_data(struct packet_data *pkt)
595 {
596 	int i;
597 
598 	for (i = 0; i < pkt->frames; i++)
599 		kfree(pkt->r_bios[i]);
600 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
601 		__free_page(pkt->pages[i]);
602 	kfree(pkt->w_bio);
603 	kfree(pkt);
604 }
605 
pkt_shrink_pktlist(struct pktcdvd_device * pd)606 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
607 {
608 	struct packet_data *pkt, *next;
609 
610 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
611 
612 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
613 		pkt_free_packet_data(pkt);
614 	}
615 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
616 }
617 
pkt_grow_pktlist(struct pktcdvd_device * pd,int nr_packets)618 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
619 {
620 	struct packet_data *pkt;
621 
622 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
623 
624 	while (nr_packets > 0) {
625 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
626 		if (!pkt) {
627 			pkt_shrink_pktlist(pd);
628 			return 0;
629 		}
630 		pkt->id = nr_packets;
631 		pkt->pd = pd;
632 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
633 		nr_packets--;
634 	}
635 	return 1;
636 }
637 
pkt_rbtree_next(struct pkt_rb_node * node)638 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
639 {
640 	struct rb_node *n = rb_next(&node->rb_node);
641 	if (!n)
642 		return NULL;
643 	return rb_entry(n, struct pkt_rb_node, rb_node);
644 }
645 
pkt_rbtree_erase(struct pktcdvd_device * pd,struct pkt_rb_node * node)646 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
647 {
648 	rb_erase(&node->rb_node, &pd->bio_queue);
649 	mempool_free(node, &pd->rb_pool);
650 	pd->bio_queue_size--;
651 	BUG_ON(pd->bio_queue_size < 0);
652 }
653 
654 /*
655  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
656  */
pkt_rbtree_find(struct pktcdvd_device * pd,sector_t s)657 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
658 {
659 	struct rb_node *n = pd->bio_queue.rb_node;
660 	struct rb_node *next;
661 	struct pkt_rb_node *tmp;
662 
663 	if (!n) {
664 		BUG_ON(pd->bio_queue_size > 0);
665 		return NULL;
666 	}
667 
668 	for (;;) {
669 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
670 		if (s <= tmp->bio->bi_iter.bi_sector)
671 			next = n->rb_left;
672 		else
673 			next = n->rb_right;
674 		if (!next)
675 			break;
676 		n = next;
677 	}
678 
679 	if (s > tmp->bio->bi_iter.bi_sector) {
680 		tmp = pkt_rbtree_next(tmp);
681 		if (!tmp)
682 			return NULL;
683 	}
684 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
685 	return tmp;
686 }
687 
688 /*
689  * Insert a node into the pd->bio_queue rb tree.
690  */
pkt_rbtree_insert(struct pktcdvd_device * pd,struct pkt_rb_node * node)691 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
692 {
693 	struct rb_node **p = &pd->bio_queue.rb_node;
694 	struct rb_node *parent = NULL;
695 	sector_t s = node->bio->bi_iter.bi_sector;
696 	struct pkt_rb_node *tmp;
697 
698 	while (*p) {
699 		parent = *p;
700 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
701 		if (s < tmp->bio->bi_iter.bi_sector)
702 			p = &(*p)->rb_left;
703 		else
704 			p = &(*p)->rb_right;
705 	}
706 	rb_link_node(&node->rb_node, parent, p);
707 	rb_insert_color(&node->rb_node, &pd->bio_queue);
708 	pd->bio_queue_size++;
709 }
710 
711 /*
712  * Send a packet_command to the underlying block device and
713  * wait for completion.
714  */
pkt_generic_packet(struct pktcdvd_device * pd,struct packet_command * cgc)715 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
716 {
717 	struct request_queue *q = bdev_get_queue(pd->bdev);
718 	struct scsi_cmnd *scmd;
719 	struct request *rq;
720 	int ret = 0;
721 
722 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
723 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724 	if (IS_ERR(rq))
725 		return PTR_ERR(rq);
726 	scmd = blk_mq_rq_to_pdu(rq);
727 
728 	if (cgc->buflen) {
729 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
730 				      GFP_NOIO);
731 		if (ret)
732 			goto out;
733 	}
734 
735 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
736 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
737 
738 	rq->timeout = 60*HZ;
739 	if (cgc->quiet)
740 		rq->rq_flags |= RQF_QUIET;
741 
742 	blk_execute_rq(rq, false);
743 	if (scmd->result)
744 		ret = -EIO;
745 out:
746 	blk_mq_free_request(rq);
747 	return ret;
748 }
749 
sense_key_string(__u8 index)750 static const char *sense_key_string(__u8 index)
751 {
752 	static const char * const info[] = {
753 		"No sense", "Recovered error", "Not ready",
754 		"Medium error", "Hardware error", "Illegal request",
755 		"Unit attention", "Data protect", "Blank check",
756 	};
757 
758 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
759 }
760 
761 /*
762  * A generic sense dump / resolve mechanism should be implemented across
763  * all ATAPI + SCSI devices.
764  */
pkt_dump_sense(struct pktcdvd_device * pd,struct packet_command * cgc)765 static void pkt_dump_sense(struct pktcdvd_device *pd,
766 			   struct packet_command *cgc)
767 {
768 	struct device *ddev = disk_to_dev(pd->disk);
769 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
770 
771 	if (sshdr)
772 		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
773 			CDROM_PACKET_SIZE, cgc->cmd,
774 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
775 			sense_key_string(sshdr->sense_key));
776 	else
777 		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
778 }
779 
780 /*
781  * flush the drive cache to media
782  */
pkt_flush_cache(struct pktcdvd_device * pd)783 static int pkt_flush_cache(struct pktcdvd_device *pd)
784 {
785 	struct packet_command cgc;
786 
787 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
788 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
789 	cgc.quiet = 1;
790 
791 	/*
792 	 * the IMMED bit -- we default to not setting it, although that
793 	 * would allow a much faster close, this is safer
794 	 */
795 #if 0
796 	cgc.cmd[1] = 1 << 1;
797 #endif
798 	return pkt_generic_packet(pd, &cgc);
799 }
800 
801 /*
802  * speed is given as the normal factor, e.g. 4 for 4x
803  */
pkt_set_speed(struct pktcdvd_device * pd,unsigned write_speed,unsigned read_speed)804 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
805 				unsigned write_speed, unsigned read_speed)
806 {
807 	struct packet_command cgc;
808 	struct scsi_sense_hdr sshdr;
809 	int ret;
810 
811 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
812 	cgc.sshdr = &sshdr;
813 	cgc.cmd[0] = GPCMD_SET_SPEED;
814 	put_unaligned_be16(read_speed, &cgc.cmd[2]);
815 	put_unaligned_be16(write_speed, &cgc.cmd[4]);
816 
817 	ret = pkt_generic_packet(pd, &cgc);
818 	if (ret)
819 		pkt_dump_sense(pd, &cgc);
820 
821 	return ret;
822 }
823 
824 /*
825  * Queue a bio for processing by the low-level CD device. Must be called
826  * from process context.
827  */
pkt_queue_bio(struct pktcdvd_device * pd,struct bio * bio)828 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
829 {
830 	spin_lock(&pd->iosched.lock);
831 	if (bio_data_dir(bio) == READ)
832 		bio_list_add(&pd->iosched.read_queue, bio);
833 	else
834 		bio_list_add(&pd->iosched.write_queue, bio);
835 	spin_unlock(&pd->iosched.lock);
836 
837 	atomic_set(&pd->iosched.attention, 1);
838 	wake_up(&pd->wqueue);
839 }
840 
841 /*
842  * Process the queued read/write requests. This function handles special
843  * requirements for CDRW drives:
844  * - A cache flush command must be inserted before a read request if the
845  *   previous request was a write.
846  * - Switching between reading and writing is slow, so don't do it more often
847  *   than necessary.
848  * - Optimize for throughput at the expense of latency. This means that streaming
849  *   writes will never be interrupted by a read, but if the drive has to seek
850  *   before the next write, switch to reading instead if there are any pending
851  *   read requests.
852  * - Set the read speed according to current usage pattern. When only reading
853  *   from the device, it's best to use the highest possible read speed, but
854  *   when switching often between reading and writing, it's better to have the
855  *   same read and write speeds.
856  */
pkt_iosched_process_queue(struct pktcdvd_device * pd)857 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
858 {
859 	struct device *ddev = disk_to_dev(pd->disk);
860 
861 	if (atomic_read(&pd->iosched.attention) == 0)
862 		return;
863 	atomic_set(&pd->iosched.attention, 0);
864 
865 	for (;;) {
866 		struct bio *bio;
867 		int reads_queued, writes_queued;
868 
869 		spin_lock(&pd->iosched.lock);
870 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
871 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
872 		spin_unlock(&pd->iosched.lock);
873 
874 		if (!reads_queued && !writes_queued)
875 			break;
876 
877 		if (pd->iosched.writing) {
878 			int need_write_seek = 1;
879 			spin_lock(&pd->iosched.lock);
880 			bio = bio_list_peek(&pd->iosched.write_queue);
881 			spin_unlock(&pd->iosched.lock);
882 			if (bio && (bio->bi_iter.bi_sector ==
883 				    pd->iosched.last_write))
884 				need_write_seek = 0;
885 			if (need_write_seek && reads_queued) {
886 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
887 					dev_dbg(ddev, "write, waiting\n");
888 					break;
889 				}
890 				pkt_flush_cache(pd);
891 				pd->iosched.writing = 0;
892 			}
893 		} else {
894 			if (!reads_queued && writes_queued) {
895 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
896 					dev_dbg(ddev, "read, waiting\n");
897 					break;
898 				}
899 				pd->iosched.writing = 1;
900 			}
901 		}
902 
903 		spin_lock(&pd->iosched.lock);
904 		if (pd->iosched.writing)
905 			bio = bio_list_pop(&pd->iosched.write_queue);
906 		else
907 			bio = bio_list_pop(&pd->iosched.read_queue);
908 		spin_unlock(&pd->iosched.lock);
909 
910 		if (!bio)
911 			continue;
912 
913 		if (bio_data_dir(bio) == READ)
914 			pd->iosched.successive_reads +=
915 				bio->bi_iter.bi_size >> 10;
916 		else {
917 			pd->iosched.successive_reads = 0;
918 			pd->iosched.last_write = bio_end_sector(bio);
919 		}
920 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
921 			if (pd->read_speed == pd->write_speed) {
922 				pd->read_speed = MAX_SPEED;
923 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
924 			}
925 		} else {
926 			if (pd->read_speed != pd->write_speed) {
927 				pd->read_speed = pd->write_speed;
928 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
929 			}
930 		}
931 
932 		atomic_inc(&pd->cdrw.pending_bios);
933 		submit_bio_noacct(bio);
934 	}
935 }
936 
937 /*
938  * Special care is needed if the underlying block device has a small
939  * max_phys_segments value.
940  */
pkt_set_segment_merging(struct pktcdvd_device * pd,struct request_queue * q)941 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
942 {
943 	struct device *ddev = disk_to_dev(pd->disk);
944 
945 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
946 		/*
947 		 * The cdrom device can handle one segment/frame
948 		 */
949 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
950 		return 0;
951 	}
952 
953 	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
954 		/*
955 		 * We can handle this case at the expense of some extra memory
956 		 * copies during write operations
957 		 */
958 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
959 		return 0;
960 	}
961 
962 	dev_err(ddev, "cdrom max_phys_segments too small\n");
963 	return -EIO;
964 }
965 
pkt_end_io_read(struct bio * bio)966 static void pkt_end_io_read(struct bio *bio)
967 {
968 	struct packet_data *pkt = bio->bi_private;
969 	struct pktcdvd_device *pd = pkt->pd;
970 	BUG_ON(!pd);
971 
972 	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
973 		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
974 
975 	if (bio->bi_status)
976 		atomic_inc(&pkt->io_errors);
977 	bio_uninit(bio);
978 	if (atomic_dec_and_test(&pkt->io_wait)) {
979 		atomic_inc(&pkt->run_sm);
980 		wake_up(&pd->wqueue);
981 	}
982 	pkt_bio_finished(pd);
983 }
984 
pkt_end_io_packet_write(struct bio * bio)985 static void pkt_end_io_packet_write(struct bio *bio)
986 {
987 	struct packet_data *pkt = bio->bi_private;
988 	struct pktcdvd_device *pd = pkt->pd;
989 	BUG_ON(!pd);
990 
991 	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
992 
993 	pd->stats.pkt_ended++;
994 
995 	bio_uninit(bio);
996 	pkt_bio_finished(pd);
997 	atomic_dec(&pkt->io_wait);
998 	atomic_inc(&pkt->run_sm);
999 	wake_up(&pd->wqueue);
1000 }
1001 
1002 /*
1003  * Schedule reads for the holes in a packet
1004  */
pkt_gather_data(struct pktcdvd_device * pd,struct packet_data * pkt)1005 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1006 {
1007 	struct device *ddev = disk_to_dev(pd->disk);
1008 	int frames_read = 0;
1009 	struct bio *bio;
1010 	int f;
1011 	char written[PACKET_MAX_SIZE];
1012 
1013 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1014 
1015 	atomic_set(&pkt->io_wait, 0);
1016 	atomic_set(&pkt->io_errors, 0);
1017 
1018 	/*
1019 	 * Figure out which frames we need to read before we can write.
1020 	 */
1021 	memset(written, 0, sizeof(written));
1022 	spin_lock(&pkt->lock);
1023 	bio_list_for_each(bio, &pkt->orig_bios) {
1024 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1025 			(CD_FRAMESIZE >> 9);
1026 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1027 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1028 		BUG_ON(first_frame < 0);
1029 		BUG_ON(first_frame + num_frames > pkt->frames);
1030 		for (f = first_frame; f < first_frame + num_frames; f++)
1031 			written[f] = 1;
1032 	}
1033 	spin_unlock(&pkt->lock);
1034 
1035 	if (pkt->cache_valid) {
1036 		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1037 		goto out_account;
1038 	}
1039 
1040 	/*
1041 	 * Schedule reads for missing parts of the packet.
1042 	 */
1043 	for (f = 0; f < pkt->frames; f++) {
1044 		int p, offset;
1045 
1046 		if (written[f])
1047 			continue;
1048 
1049 		bio = pkt->r_bios[f];
1050 		bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ);
1051 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1052 		bio->bi_end_io = pkt_end_io_read;
1053 		bio->bi_private = pkt;
1054 
1055 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1056 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1057 		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1058 			pkt->pages[p], offset);
1059 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1060 			BUG();
1061 
1062 		atomic_inc(&pkt->io_wait);
1063 		pkt_queue_bio(pd, bio);
1064 		frames_read++;
1065 	}
1066 
1067 out_account:
1068 	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1069 	pd->stats.pkt_started++;
1070 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1071 }
1072 
1073 /*
1074  * Find a packet matching zone, or the least recently used packet if
1075  * there is no match.
1076  */
pkt_get_packet_data(struct pktcdvd_device * pd,int zone)1077 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1078 {
1079 	struct packet_data *pkt;
1080 
1081 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1082 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1083 			list_del_init(&pkt->list);
1084 			if (pkt->sector != zone)
1085 				pkt->cache_valid = 0;
1086 			return pkt;
1087 		}
1088 	}
1089 	BUG();
1090 	return NULL;
1091 }
1092 
pkt_put_packet_data(struct pktcdvd_device * pd,struct packet_data * pkt)1093 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1094 {
1095 	if (pkt->cache_valid) {
1096 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1097 	} else {
1098 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1099 	}
1100 }
1101 
pkt_set_state(struct device * ddev,struct packet_data * pkt,enum packet_data_state state)1102 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1103 				 enum packet_data_state state)
1104 {
1105 	static const char *state_name[] = {
1106 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1107 	};
1108 	enum packet_data_state old_state = pkt->state;
1109 
1110 	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1111 		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1112 
1113 	pkt->state = state;
1114 }
1115 
1116 /*
1117  * Scan the work queue to see if we can start a new packet.
1118  * returns non-zero if any work was done.
1119  */
pkt_handle_queue(struct pktcdvd_device * pd)1120 static int pkt_handle_queue(struct pktcdvd_device *pd)
1121 {
1122 	struct device *ddev = disk_to_dev(pd->disk);
1123 	struct packet_data *pkt, *p;
1124 	struct bio *bio = NULL;
1125 	sector_t zone = 0; /* Suppress gcc warning */
1126 	struct pkt_rb_node *node, *first_node;
1127 	struct rb_node *n;
1128 
1129 	atomic_set(&pd->scan_queue, 0);
1130 
1131 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1132 		dev_dbg(ddev, "no pkt\n");
1133 		return 0;
1134 	}
1135 
1136 	/*
1137 	 * Try to find a zone we are not already working on.
1138 	 */
1139 	spin_lock(&pd->lock);
1140 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1141 	if (!first_node) {
1142 		n = rb_first(&pd->bio_queue);
1143 		if (n)
1144 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1145 	}
1146 	node = first_node;
1147 	while (node) {
1148 		bio = node->bio;
1149 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1150 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1151 			if (p->sector == zone) {
1152 				bio = NULL;
1153 				goto try_next_bio;
1154 			}
1155 		}
1156 		break;
1157 try_next_bio:
1158 		node = pkt_rbtree_next(node);
1159 		if (!node) {
1160 			n = rb_first(&pd->bio_queue);
1161 			if (n)
1162 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1163 		}
1164 		if (node == first_node)
1165 			node = NULL;
1166 	}
1167 	spin_unlock(&pd->lock);
1168 	if (!bio) {
1169 		dev_dbg(ddev, "no bio\n");
1170 		return 0;
1171 	}
1172 
1173 	pkt = pkt_get_packet_data(pd, zone);
1174 
1175 	pd->current_sector = zone + pd->settings.size;
1176 	pkt->sector = zone;
1177 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1178 	pkt->write_size = 0;
1179 
1180 	/*
1181 	 * Scan work queue for bios in the same zone and link them
1182 	 * to this packet.
1183 	 */
1184 	spin_lock(&pd->lock);
1185 	dev_dbg(ddev, "looking for zone %llx\n", zone);
1186 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1187 		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1188 
1189 		bio = node->bio;
1190 		dev_dbg(ddev, "found zone=%llx\n", tmp);
1191 		if (tmp != zone)
1192 			break;
1193 		pkt_rbtree_erase(pd, node);
1194 		spin_lock(&pkt->lock);
1195 		bio_list_add(&pkt->orig_bios, bio);
1196 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1197 		spin_unlock(&pkt->lock);
1198 	}
1199 	/* check write congestion marks, and if bio_queue_size is
1200 	 * below, wake up any waiters
1201 	 */
1202 	if (pd->congested &&
1203 	    pd->bio_queue_size <= pd->write_congestion_off) {
1204 		pd->congested = false;
1205 		wake_up_var(&pd->congested);
1206 	}
1207 	spin_unlock(&pd->lock);
1208 
1209 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1210 	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1211 	atomic_set(&pkt->run_sm, 1);
1212 
1213 	spin_lock(&pd->cdrw.active_list_lock);
1214 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1215 	spin_unlock(&pd->cdrw.active_list_lock);
1216 
1217 	return 1;
1218 }
1219 
1220 /**
1221  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1222  * another
1223  * @src: source bio list
1224  * @dst: destination bio list
1225  *
1226  * Stops when it reaches the end of either the @src list or @dst list - that is,
1227  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1228  * bios).
1229  */
bio_list_copy_data(struct bio * dst,struct bio * src)1230 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1231 {
1232 	struct bvec_iter src_iter = src->bi_iter;
1233 	struct bvec_iter dst_iter = dst->bi_iter;
1234 
1235 	while (1) {
1236 		if (!src_iter.bi_size) {
1237 			src = src->bi_next;
1238 			if (!src)
1239 				break;
1240 
1241 			src_iter = src->bi_iter;
1242 		}
1243 
1244 		if (!dst_iter.bi_size) {
1245 			dst = dst->bi_next;
1246 			if (!dst)
1247 				break;
1248 
1249 			dst_iter = dst->bi_iter;
1250 		}
1251 
1252 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1253 	}
1254 }
1255 
1256 /*
1257  * Assemble a bio to write one packet and queue the bio for processing
1258  * by the underlying block device.
1259  */
pkt_start_write(struct pktcdvd_device * pd,struct packet_data * pkt)1260 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1261 {
1262 	struct device *ddev = disk_to_dev(pd->disk);
1263 	int f;
1264 
1265 	bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames,
1266 		 REQ_OP_WRITE);
1267 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1268 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1269 	pkt->w_bio->bi_private = pkt;
1270 
1271 	/* XXX: locking? */
1272 	for (f = 0; f < pkt->frames; f++) {
1273 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1274 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1275 
1276 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1277 			BUG();
1278 	}
1279 	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1280 
1281 	/*
1282 	 * Fill-in bvec with data from orig_bios.
1283 	 */
1284 	spin_lock(&pkt->lock);
1285 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1286 
1287 	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1288 	spin_unlock(&pkt->lock);
1289 
1290 	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1291 
1292 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1293 		pkt->cache_valid = 1;
1294 	else
1295 		pkt->cache_valid = 0;
1296 
1297 	/* Start the write request */
1298 	atomic_set(&pkt->io_wait, 1);
1299 	pkt_queue_bio(pd, pkt->w_bio);
1300 }
1301 
pkt_finish_packet(struct packet_data * pkt,blk_status_t status)1302 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1303 {
1304 	struct bio *bio;
1305 
1306 	if (status)
1307 		pkt->cache_valid = 0;
1308 
1309 	/* Finish all bios corresponding to this packet */
1310 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1311 		bio->bi_status = status;
1312 		bio_endio(bio);
1313 	}
1314 }
1315 
pkt_run_state_machine(struct pktcdvd_device * pd,struct packet_data * pkt)1316 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1317 {
1318 	struct device *ddev = disk_to_dev(pd->disk);
1319 
1320 	dev_dbg(ddev, "pkt %d\n", pkt->id);
1321 
1322 	for (;;) {
1323 		switch (pkt->state) {
1324 		case PACKET_WAITING_STATE:
1325 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1326 				return;
1327 
1328 			pkt->sleep_time = 0;
1329 			pkt_gather_data(pd, pkt);
1330 			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1331 			break;
1332 
1333 		case PACKET_READ_WAIT_STATE:
1334 			if (atomic_read(&pkt->io_wait) > 0)
1335 				return;
1336 
1337 			if (atomic_read(&pkt->io_errors) > 0) {
1338 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1339 			} else {
1340 				pkt_start_write(pd, pkt);
1341 			}
1342 			break;
1343 
1344 		case PACKET_WRITE_WAIT_STATE:
1345 			if (atomic_read(&pkt->io_wait) > 0)
1346 				return;
1347 
1348 			if (!pkt->w_bio->bi_status) {
1349 				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1350 			} else {
1351 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1352 			}
1353 			break;
1354 
1355 		case PACKET_RECOVERY_STATE:
1356 			dev_dbg(ddev, "No recovery possible\n");
1357 			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1358 			break;
1359 
1360 		case PACKET_FINISHED_STATE:
1361 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1362 			return;
1363 
1364 		default:
1365 			BUG();
1366 			break;
1367 		}
1368 	}
1369 }
1370 
pkt_handle_packets(struct pktcdvd_device * pd)1371 static void pkt_handle_packets(struct pktcdvd_device *pd)
1372 {
1373 	struct device *ddev = disk_to_dev(pd->disk);
1374 	struct packet_data *pkt, *next;
1375 
1376 	/*
1377 	 * Run state machine for active packets
1378 	 */
1379 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1380 		if (atomic_read(&pkt->run_sm) > 0) {
1381 			atomic_set(&pkt->run_sm, 0);
1382 			pkt_run_state_machine(pd, pkt);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * Move no longer active packets to the free list
1388 	 */
1389 	spin_lock(&pd->cdrw.active_list_lock);
1390 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1391 		if (pkt->state == PACKET_FINISHED_STATE) {
1392 			list_del(&pkt->list);
1393 			pkt_put_packet_data(pd, pkt);
1394 			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1395 			atomic_set(&pd->scan_queue, 1);
1396 		}
1397 	}
1398 	spin_unlock(&pd->cdrw.active_list_lock);
1399 }
1400 
1401 /*
1402  * kcdrwd is woken up when writes have been queued for one of our
1403  * registered devices
1404  */
kcdrwd(void * foobar)1405 static int kcdrwd(void *foobar)
1406 {
1407 	struct pktcdvd_device *pd = foobar;
1408 	struct device *ddev = disk_to_dev(pd->disk);
1409 	struct packet_data *pkt;
1410 	int states[PACKET_NUM_STATES];
1411 	long min_sleep_time, residue;
1412 
1413 	set_user_nice(current, MIN_NICE);
1414 	set_freezable();
1415 
1416 	for (;;) {
1417 		DECLARE_WAITQUEUE(wait, current);
1418 
1419 		/*
1420 		 * Wait until there is something to do
1421 		 */
1422 		add_wait_queue(&pd->wqueue, &wait);
1423 		for (;;) {
1424 			set_current_state(TASK_INTERRUPTIBLE);
1425 
1426 			/* Check if we need to run pkt_handle_queue */
1427 			if (atomic_read(&pd->scan_queue) > 0)
1428 				goto work_to_do;
1429 
1430 			/* Check if we need to run the state machine for some packet */
1431 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1432 				if (atomic_read(&pkt->run_sm) > 0)
1433 					goto work_to_do;
1434 			}
1435 
1436 			/* Check if we need to process the iosched queues */
1437 			if (atomic_read(&pd->iosched.attention) != 0)
1438 				goto work_to_do;
1439 
1440 			/* Otherwise, go to sleep */
1441 			pkt_count_states(pd, states);
1442 			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1443 				states[0], states[1], states[2], states[3], states[4], states[5]);
1444 
1445 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1446 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1447 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1448 					min_sleep_time = pkt->sleep_time;
1449 			}
1450 
1451 			dev_dbg(ddev, "sleeping\n");
1452 			residue = schedule_timeout(min_sleep_time);
1453 			dev_dbg(ddev, "wake up\n");
1454 
1455 			/* make swsusp happy with our thread */
1456 			try_to_freeze();
1457 
1458 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1459 				if (!pkt->sleep_time)
1460 					continue;
1461 				pkt->sleep_time -= min_sleep_time - residue;
1462 				if (pkt->sleep_time <= 0) {
1463 					pkt->sleep_time = 0;
1464 					atomic_inc(&pkt->run_sm);
1465 				}
1466 			}
1467 
1468 			if (kthread_should_stop())
1469 				break;
1470 		}
1471 work_to_do:
1472 		set_current_state(TASK_RUNNING);
1473 		remove_wait_queue(&pd->wqueue, &wait);
1474 
1475 		if (kthread_should_stop())
1476 			break;
1477 
1478 		/*
1479 		 * if pkt_handle_queue returns true, we can queue
1480 		 * another request.
1481 		 */
1482 		while (pkt_handle_queue(pd))
1483 			;
1484 
1485 		/*
1486 		 * Handle packet state machine
1487 		 */
1488 		pkt_handle_packets(pd);
1489 
1490 		/*
1491 		 * Handle iosched queues
1492 		 */
1493 		pkt_iosched_process_queue(pd);
1494 	}
1495 
1496 	return 0;
1497 }
1498 
pkt_print_settings(struct pktcdvd_device * pd)1499 static void pkt_print_settings(struct pktcdvd_device *pd)
1500 {
1501 	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1502 		 pd->settings.fp ? "Fixed" : "Variable",
1503 		 pd->settings.size >> 2,
1504 		 pd->settings.block_mode == 8 ? '1' : '2');
1505 }
1506 
pkt_mode_sense(struct pktcdvd_device * pd,struct packet_command * cgc,int page_code,int page_control)1507 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1508 {
1509 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1510 
1511 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1512 	cgc->cmd[2] = page_code | (page_control << 6);
1513 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1514 	cgc->data_direction = CGC_DATA_READ;
1515 	return pkt_generic_packet(pd, cgc);
1516 }
1517 
pkt_mode_select(struct pktcdvd_device * pd,struct packet_command * cgc)1518 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1519 {
1520 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1521 	memset(cgc->buffer, 0, 2);
1522 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1523 	cgc->cmd[1] = 0x10;		/* PF */
1524 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1525 	cgc->data_direction = CGC_DATA_WRITE;
1526 	return pkt_generic_packet(pd, cgc);
1527 }
1528 
pkt_get_disc_info(struct pktcdvd_device * pd,disc_information * di)1529 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1530 {
1531 	struct packet_command cgc;
1532 	int ret;
1533 
1534 	/* set up command and get the disc info */
1535 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1536 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1537 	cgc.cmd[8] = cgc.buflen = 2;
1538 	cgc.quiet = 1;
1539 
1540 	ret = pkt_generic_packet(pd, &cgc);
1541 	if (ret)
1542 		return ret;
1543 
1544 	/* not all drives have the same disc_info length, so requeue
1545 	 * packet with the length the drive tells us it can supply
1546 	 */
1547 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1548 		     sizeof(di->disc_information_length);
1549 
1550 	if (cgc.buflen > sizeof(disc_information))
1551 		cgc.buflen = sizeof(disc_information);
1552 
1553 	cgc.cmd[8] = cgc.buflen;
1554 	return pkt_generic_packet(pd, &cgc);
1555 }
1556 
pkt_get_track_info(struct pktcdvd_device * pd,__u16 track,__u8 type,track_information * ti)1557 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1558 {
1559 	struct packet_command cgc;
1560 	int ret;
1561 
1562 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1563 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1564 	cgc.cmd[1] = type & 3;
1565 	put_unaligned_be16(track, &cgc.cmd[4]);
1566 	cgc.cmd[8] = 8;
1567 	cgc.quiet = 1;
1568 
1569 	ret = pkt_generic_packet(pd, &cgc);
1570 	if (ret)
1571 		return ret;
1572 
1573 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1574 		     sizeof(ti->track_information_length);
1575 
1576 	if (cgc.buflen > sizeof(track_information))
1577 		cgc.buflen = sizeof(track_information);
1578 
1579 	cgc.cmd[8] = cgc.buflen;
1580 	return pkt_generic_packet(pd, &cgc);
1581 }
1582 
pkt_get_last_written(struct pktcdvd_device * pd,long * last_written)1583 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1584 						long *last_written)
1585 {
1586 	disc_information di;
1587 	track_information ti;
1588 	__u32 last_track;
1589 	int ret;
1590 
1591 	ret = pkt_get_disc_info(pd, &di);
1592 	if (ret)
1593 		return ret;
1594 
1595 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1596 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1597 	if (ret)
1598 		return ret;
1599 
1600 	/* if this track is blank, try the previous. */
1601 	if (ti.blank) {
1602 		last_track--;
1603 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1604 		if (ret)
1605 			return ret;
1606 	}
1607 
1608 	/* if last recorded field is valid, return it. */
1609 	if (ti.lra_v) {
1610 		*last_written = be32_to_cpu(ti.last_rec_address);
1611 	} else {
1612 		/* make it up instead */
1613 		*last_written = be32_to_cpu(ti.track_start) +
1614 				be32_to_cpu(ti.track_size);
1615 		if (ti.free_blocks)
1616 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1617 	}
1618 	return 0;
1619 }
1620 
1621 /*
1622  * write mode select package based on pd->settings
1623  */
pkt_set_write_settings(struct pktcdvd_device * pd)1624 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1625 {
1626 	struct device *ddev = disk_to_dev(pd->disk);
1627 	struct packet_command cgc;
1628 	struct scsi_sense_hdr sshdr;
1629 	write_param_page *wp;
1630 	char buffer[128];
1631 	int ret, size;
1632 
1633 	/* doesn't apply to DVD+RW or DVD-RAM */
1634 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1635 		return 0;
1636 
1637 	memset(buffer, 0, sizeof(buffer));
1638 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1639 	cgc.sshdr = &sshdr;
1640 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1641 	if (ret) {
1642 		pkt_dump_sense(pd, &cgc);
1643 		return ret;
1644 	}
1645 
1646 	size = 2 + get_unaligned_be16(&buffer[0]);
1647 	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1648 	if (size > sizeof(buffer))
1649 		size = sizeof(buffer);
1650 
1651 	/*
1652 	 * now get it all
1653 	 */
1654 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1655 	cgc.sshdr = &sshdr;
1656 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1657 	if (ret) {
1658 		pkt_dump_sense(pd, &cgc);
1659 		return ret;
1660 	}
1661 
1662 	/*
1663 	 * write page is offset header + block descriptor length
1664 	 */
1665 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1666 
1667 	wp->fp = pd->settings.fp;
1668 	wp->track_mode = pd->settings.track_mode;
1669 	wp->write_type = pd->settings.write_type;
1670 	wp->data_block_type = pd->settings.block_mode;
1671 
1672 	wp->multi_session = 0;
1673 
1674 #ifdef PACKET_USE_LS
1675 	wp->link_size = 7;
1676 	wp->ls_v = 1;
1677 #endif
1678 
1679 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1680 		wp->session_format = 0;
1681 		wp->subhdr2 = 0x20;
1682 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1683 		wp->session_format = 0x20;
1684 		wp->subhdr2 = 8;
1685 #if 0
1686 		wp->mcn[0] = 0x80;
1687 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1688 #endif
1689 	} else {
1690 		/*
1691 		 * paranoia
1692 		 */
1693 		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1694 		return 1;
1695 	}
1696 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1697 
1698 	cgc.buflen = cgc.cmd[8] = size;
1699 	ret = pkt_mode_select(pd, &cgc);
1700 	if (ret) {
1701 		pkt_dump_sense(pd, &cgc);
1702 		return ret;
1703 	}
1704 
1705 	pkt_print_settings(pd);
1706 	return 0;
1707 }
1708 
1709 /*
1710  * 1 -- we can write to this track, 0 -- we can't
1711  */
pkt_writable_track(struct pktcdvd_device * pd,track_information * ti)1712 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1713 {
1714 	struct device *ddev = disk_to_dev(pd->disk);
1715 
1716 	switch (pd->mmc3_profile) {
1717 		case 0x1a: /* DVD+RW */
1718 		case 0x12: /* DVD-RAM */
1719 			/* The track is always writable on DVD+RW/DVD-RAM */
1720 			return 1;
1721 		default:
1722 			break;
1723 	}
1724 
1725 	if (!ti->packet || !ti->fp)
1726 		return 0;
1727 
1728 	/*
1729 	 * "good" settings as per Mt Fuji.
1730 	 */
1731 	if (ti->rt == 0 && ti->blank == 0)
1732 		return 1;
1733 
1734 	if (ti->rt == 0 && ti->blank == 1)
1735 		return 1;
1736 
1737 	if (ti->rt == 1 && ti->blank == 0)
1738 		return 1;
1739 
1740 	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1741 	return 0;
1742 }
1743 
1744 /*
1745  * 1 -- we can write to this disc, 0 -- we can't
1746  */
pkt_writable_disc(struct pktcdvd_device * pd,disc_information * di)1747 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1748 {
1749 	struct device *ddev = disk_to_dev(pd->disk);
1750 
1751 	switch (pd->mmc3_profile) {
1752 		case 0x0a: /* CD-RW */
1753 		case 0xffff: /* MMC3 not supported */
1754 			break;
1755 		case 0x1a: /* DVD+RW */
1756 		case 0x13: /* DVD-RW */
1757 		case 0x12: /* DVD-RAM */
1758 			return 1;
1759 		default:
1760 			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1761 			return 0;
1762 	}
1763 
1764 	/*
1765 	 * for disc type 0xff we should probably reserve a new track.
1766 	 * but i'm not sure, should we leave this to user apps? probably.
1767 	 */
1768 	if (di->disc_type == 0xff) {
1769 		dev_notice(ddev, "unknown disc - no track?\n");
1770 		return 0;
1771 	}
1772 
1773 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1774 		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1775 		return 0;
1776 	}
1777 
1778 	if (di->erasable == 0) {
1779 		dev_err(ddev, "disc not erasable\n");
1780 		return 0;
1781 	}
1782 
1783 	if (di->border_status == PACKET_SESSION_RESERVED) {
1784 		dev_err(ddev, "can't write to last track (reserved)\n");
1785 		return 0;
1786 	}
1787 
1788 	return 1;
1789 }
1790 
pkt_probe_settings(struct pktcdvd_device * pd)1791 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1792 {
1793 	struct device *ddev = disk_to_dev(pd->disk);
1794 	struct packet_command cgc;
1795 	unsigned char buf[12];
1796 	disc_information di;
1797 	track_information ti;
1798 	int ret, track;
1799 
1800 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1801 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1802 	cgc.cmd[8] = 8;
1803 	ret = pkt_generic_packet(pd, &cgc);
1804 	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1805 
1806 	memset(&di, 0, sizeof(disc_information));
1807 	memset(&ti, 0, sizeof(track_information));
1808 
1809 	ret = pkt_get_disc_info(pd, &di);
1810 	if (ret) {
1811 		dev_err(ddev, "failed get_disc\n");
1812 		return ret;
1813 	}
1814 
1815 	if (!pkt_writable_disc(pd, &di))
1816 		return -EROFS;
1817 
1818 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1819 
1820 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1821 	ret = pkt_get_track_info(pd, track, 1, &ti);
1822 	if (ret) {
1823 		dev_err(ddev, "failed get_track\n");
1824 		return ret;
1825 	}
1826 
1827 	if (!pkt_writable_track(pd, &ti)) {
1828 		dev_err(ddev, "can't write to this track\n");
1829 		return -EROFS;
1830 	}
1831 
1832 	/*
1833 	 * we keep packet size in 512 byte units, makes it easier to
1834 	 * deal with request calculations.
1835 	 */
1836 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1837 	if (pd->settings.size == 0) {
1838 		dev_notice(ddev, "detected zero packet size!\n");
1839 		return -ENXIO;
1840 	}
1841 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1842 		dev_err(ddev, "packet size is too big\n");
1843 		return -EROFS;
1844 	}
1845 	pd->settings.fp = ti.fp;
1846 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1847 
1848 	if (ti.nwa_v) {
1849 		pd->nwa = be32_to_cpu(ti.next_writable);
1850 		set_bit(PACKET_NWA_VALID, &pd->flags);
1851 	}
1852 
1853 	/*
1854 	 * in theory we could use lra on -RW media as well and just zero
1855 	 * blocks that haven't been written yet, but in practice that
1856 	 * is just a no-go. we'll use that for -R, naturally.
1857 	 */
1858 	if (ti.lra_v) {
1859 		pd->lra = be32_to_cpu(ti.last_rec_address);
1860 		set_bit(PACKET_LRA_VALID, &pd->flags);
1861 	} else {
1862 		pd->lra = 0xffffffff;
1863 		set_bit(PACKET_LRA_VALID, &pd->flags);
1864 	}
1865 
1866 	/*
1867 	 * fine for now
1868 	 */
1869 	pd->settings.link_loss = 7;
1870 	pd->settings.write_type = 0;	/* packet */
1871 	pd->settings.track_mode = ti.track_mode;
1872 
1873 	/*
1874 	 * mode1 or mode2 disc
1875 	 */
1876 	switch (ti.data_mode) {
1877 		case PACKET_MODE1:
1878 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1879 			break;
1880 		case PACKET_MODE2:
1881 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1882 			break;
1883 		default:
1884 			dev_err(ddev, "unknown data mode\n");
1885 			return -EROFS;
1886 	}
1887 	return 0;
1888 }
1889 
1890 /*
1891  * enable/disable write caching on drive
1892  */
pkt_write_caching(struct pktcdvd_device * pd)1893 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1894 {
1895 	struct device *ddev = disk_to_dev(pd->disk);
1896 	struct packet_command cgc;
1897 	struct scsi_sense_hdr sshdr;
1898 	unsigned char buf[64];
1899 	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1900 	int ret;
1901 
1902 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1903 	cgc.sshdr = &sshdr;
1904 	cgc.buflen = pd->mode_offset + 12;
1905 
1906 	/*
1907 	 * caching mode page might not be there, so quiet this command
1908 	 */
1909 	cgc.quiet = 1;
1910 
1911 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1912 	if (ret)
1913 		return ret;
1914 
1915 	/*
1916 	 * use drive write caching -- we need deferred error handling to be
1917 	 * able to successfully recover with this option (drive will return good
1918 	 * status as soon as the cdb is validated).
1919 	 */
1920 	buf[pd->mode_offset + 10] |= (set << 2);
1921 
1922 	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1923 	ret = pkt_mode_select(pd, &cgc);
1924 	if (ret) {
1925 		dev_err(ddev, "write caching control failed\n");
1926 		pkt_dump_sense(pd, &cgc);
1927 	} else if (!ret && set)
1928 		dev_notice(ddev, "enabled write caching\n");
1929 	return ret;
1930 }
1931 
pkt_lock_door(struct pktcdvd_device * pd,int lockflag)1932 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1933 {
1934 	struct packet_command cgc;
1935 
1936 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1937 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1938 	cgc.cmd[4] = lockflag ? 1 : 0;
1939 	return pkt_generic_packet(pd, &cgc);
1940 }
1941 
1942 /*
1943  * Returns drive maximum write speed
1944  */
pkt_get_max_speed(struct pktcdvd_device * pd,unsigned * write_speed)1945 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1946 						unsigned *write_speed)
1947 {
1948 	struct packet_command cgc;
1949 	struct scsi_sense_hdr sshdr;
1950 	unsigned char buf[256+18];
1951 	unsigned char *cap_buf;
1952 	int ret, offset;
1953 
1954 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1955 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1956 	cgc.sshdr = &sshdr;
1957 
1958 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1959 	if (ret) {
1960 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1961 			     sizeof(struct mode_page_header);
1962 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1963 		if (ret) {
1964 			pkt_dump_sense(pd, &cgc);
1965 			return ret;
1966 		}
1967 	}
1968 
1969 	offset = 20;			    /* Obsoleted field, used by older drives */
1970 	if (cap_buf[1] >= 28)
1971 		offset = 28;		    /* Current write speed selected */
1972 	if (cap_buf[1] >= 30) {
1973 		/* If the drive reports at least one "Logical Unit Write
1974 		 * Speed Performance Descriptor Block", use the information
1975 		 * in the first block. (contains the highest speed)
1976 		 */
1977 		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1978 		if (num_spdb > 0)
1979 			offset = 34;
1980 	}
1981 
1982 	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1983 	return 0;
1984 }
1985 
1986 /* These tables from cdrecord - I don't have orange book */
1987 /* standard speed CD-RW (1-4x) */
1988 static char clv_to_speed[16] = {
1989 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1990 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1991 };
1992 /* high speed CD-RW (-10x) */
1993 static char hs_clv_to_speed[16] = {
1994 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1995 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1996 };
1997 /* ultra high speed CD-RW */
1998 static char us_clv_to_speed[16] = {
1999 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2000 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2001 };
2002 
2003 /*
2004  * reads the maximum media speed from ATIP
2005  */
pkt_media_speed(struct pktcdvd_device * pd,unsigned * speed)2006 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2007 						unsigned *speed)
2008 {
2009 	struct device *ddev = disk_to_dev(pd->disk);
2010 	struct packet_command cgc;
2011 	struct scsi_sense_hdr sshdr;
2012 	unsigned char buf[64];
2013 	unsigned int size, st, sp;
2014 	int ret;
2015 
2016 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2017 	cgc.sshdr = &sshdr;
2018 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2019 	cgc.cmd[1] = 2;
2020 	cgc.cmd[2] = 4; /* READ ATIP */
2021 	cgc.cmd[8] = 2;
2022 	ret = pkt_generic_packet(pd, &cgc);
2023 	if (ret) {
2024 		pkt_dump_sense(pd, &cgc);
2025 		return ret;
2026 	}
2027 	size = 2 + get_unaligned_be16(&buf[0]);
2028 	if (size > sizeof(buf))
2029 		size = sizeof(buf);
2030 
2031 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2032 	cgc.sshdr = &sshdr;
2033 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2034 	cgc.cmd[1] = 2;
2035 	cgc.cmd[2] = 4;
2036 	cgc.cmd[8] = size;
2037 	ret = pkt_generic_packet(pd, &cgc);
2038 	if (ret) {
2039 		pkt_dump_sense(pd, &cgc);
2040 		return ret;
2041 	}
2042 
2043 	if (!(buf[6] & 0x40)) {
2044 		dev_notice(ddev, "disc type is not CD-RW\n");
2045 		return 1;
2046 	}
2047 	if (!(buf[6] & 0x4)) {
2048 		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2049 		return 1;
2050 	}
2051 
2052 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2053 
2054 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2055 
2056 	/* Info from cdrecord */
2057 	switch (st) {
2058 		case 0: /* standard speed */
2059 			*speed = clv_to_speed[sp];
2060 			break;
2061 		case 1: /* high speed */
2062 			*speed = hs_clv_to_speed[sp];
2063 			break;
2064 		case 2: /* ultra high speed */
2065 			*speed = us_clv_to_speed[sp];
2066 			break;
2067 		default:
2068 			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2069 			return 1;
2070 	}
2071 	if (*speed) {
2072 		dev_info(ddev, "maximum media speed: %d\n", *speed);
2073 		return 0;
2074 	} else {
2075 		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2076 		return 1;
2077 	}
2078 }
2079 
pkt_perform_opc(struct pktcdvd_device * pd)2080 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2081 {
2082 	struct device *ddev = disk_to_dev(pd->disk);
2083 	struct packet_command cgc;
2084 	struct scsi_sense_hdr sshdr;
2085 	int ret;
2086 
2087 	dev_dbg(ddev, "Performing OPC\n");
2088 
2089 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2090 	cgc.sshdr = &sshdr;
2091 	cgc.timeout = 60*HZ;
2092 	cgc.cmd[0] = GPCMD_SEND_OPC;
2093 	cgc.cmd[1] = 1;
2094 	ret = pkt_generic_packet(pd, &cgc);
2095 	if (ret)
2096 		pkt_dump_sense(pd, &cgc);
2097 	return ret;
2098 }
2099 
pkt_open_write(struct pktcdvd_device * pd)2100 static int pkt_open_write(struct pktcdvd_device *pd)
2101 {
2102 	struct device *ddev = disk_to_dev(pd->disk);
2103 	int ret;
2104 	unsigned int write_speed, media_write_speed, read_speed;
2105 
2106 	ret = pkt_probe_settings(pd);
2107 	if (ret) {
2108 		dev_dbg(ddev, "failed probe\n");
2109 		return ret;
2110 	}
2111 
2112 	ret = pkt_set_write_settings(pd);
2113 	if (ret) {
2114 		dev_notice(ddev, "failed saving write settings\n");
2115 		return -EIO;
2116 	}
2117 
2118 	pkt_write_caching(pd);
2119 
2120 	ret = pkt_get_max_speed(pd, &write_speed);
2121 	if (ret)
2122 		write_speed = 16 * 177;
2123 	switch (pd->mmc3_profile) {
2124 		case 0x13: /* DVD-RW */
2125 		case 0x1a: /* DVD+RW */
2126 		case 0x12: /* DVD-RAM */
2127 			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2128 			break;
2129 		default:
2130 			ret = pkt_media_speed(pd, &media_write_speed);
2131 			if (ret)
2132 				media_write_speed = 16;
2133 			write_speed = min(write_speed, media_write_speed * 177);
2134 			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2135 			break;
2136 	}
2137 	read_speed = write_speed;
2138 
2139 	ret = pkt_set_speed(pd, write_speed, read_speed);
2140 	if (ret) {
2141 		dev_notice(ddev, "couldn't set write speed\n");
2142 		return -EIO;
2143 	}
2144 	pd->write_speed = write_speed;
2145 	pd->read_speed = read_speed;
2146 
2147 	ret = pkt_perform_opc(pd);
2148 	if (ret)
2149 		dev_notice(ddev, "Optimum Power Calibration failed\n");
2150 
2151 	return 0;
2152 }
2153 
2154 /*
2155  * called at open time.
2156  */
pkt_open_dev(struct pktcdvd_device * pd,bool write)2157 static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2158 {
2159 	struct device *ddev = disk_to_dev(pd->disk);
2160 	int ret;
2161 	long lba;
2162 	struct request_queue *q;
2163 	struct block_device *bdev;
2164 
2165 	/*
2166 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2167 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2168 	 * so open should not fail.
2169 	 */
2170 	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, BLK_OPEN_READ, pd, NULL);
2171 	if (IS_ERR(bdev)) {
2172 		ret = PTR_ERR(bdev);
2173 		goto out;
2174 	}
2175 
2176 	ret = pkt_get_last_written(pd, &lba);
2177 	if (ret) {
2178 		dev_err(ddev, "pkt_get_last_written failed\n");
2179 		goto out_putdev;
2180 	}
2181 
2182 	set_capacity(pd->disk, lba << 2);
2183 	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2184 
2185 	q = bdev_get_queue(pd->bdev);
2186 	if (write) {
2187 		ret = pkt_open_write(pd);
2188 		if (ret)
2189 			goto out_putdev;
2190 		/*
2191 		 * Some CDRW drives can not handle writes larger than one packet,
2192 		 * even if the size is a multiple of the packet size.
2193 		 */
2194 		blk_queue_max_hw_sectors(q, pd->settings.size);
2195 		set_bit(PACKET_WRITABLE, &pd->flags);
2196 	} else {
2197 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2198 		clear_bit(PACKET_WRITABLE, &pd->flags);
2199 	}
2200 
2201 	ret = pkt_set_segment_merging(pd, q);
2202 	if (ret)
2203 		goto out_putdev;
2204 
2205 	if (write) {
2206 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2207 			dev_err(ddev, "not enough memory for buffers\n");
2208 			ret = -ENOMEM;
2209 			goto out_putdev;
2210 		}
2211 		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2212 	}
2213 
2214 	return 0;
2215 
2216 out_putdev:
2217 	blkdev_put(bdev, pd);
2218 out:
2219 	return ret;
2220 }
2221 
2222 /*
2223  * called when the device is closed. makes sure that the device flushes
2224  * the internal cache before we close.
2225  */
pkt_release_dev(struct pktcdvd_device * pd,int flush)2226 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2227 {
2228 	struct device *ddev = disk_to_dev(pd->disk);
2229 
2230 	if (flush && pkt_flush_cache(pd))
2231 		dev_notice(ddev, "not flushing cache\n");
2232 
2233 	pkt_lock_door(pd, 0);
2234 
2235 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2236 	blkdev_put(pd->bdev, pd);
2237 
2238 	pkt_shrink_pktlist(pd);
2239 }
2240 
pkt_find_dev_from_minor(unsigned int dev_minor)2241 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2242 {
2243 	if (dev_minor >= MAX_WRITERS)
2244 		return NULL;
2245 
2246 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2247 	return pkt_devs[dev_minor];
2248 }
2249 
pkt_open(struct gendisk * disk,blk_mode_t mode)2250 static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2251 {
2252 	struct pktcdvd_device *pd = NULL;
2253 	int ret;
2254 
2255 	mutex_lock(&pktcdvd_mutex);
2256 	mutex_lock(&ctl_mutex);
2257 	pd = pkt_find_dev_from_minor(disk->first_minor);
2258 	if (!pd) {
2259 		ret = -ENODEV;
2260 		goto out;
2261 	}
2262 	BUG_ON(pd->refcnt < 0);
2263 
2264 	pd->refcnt++;
2265 	if (pd->refcnt > 1) {
2266 		if ((mode & BLK_OPEN_WRITE) &&
2267 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2268 			ret = -EBUSY;
2269 			goto out_dec;
2270 		}
2271 	} else {
2272 		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2273 		if (ret)
2274 			goto out_dec;
2275 		/*
2276 		 * needed here as well, since ext2 (among others) may change
2277 		 * the blocksize at mount time
2278 		 */
2279 		set_blocksize(disk->part0, CD_FRAMESIZE);
2280 	}
2281 	mutex_unlock(&ctl_mutex);
2282 	mutex_unlock(&pktcdvd_mutex);
2283 	return 0;
2284 
2285 out_dec:
2286 	pd->refcnt--;
2287 out:
2288 	mutex_unlock(&ctl_mutex);
2289 	mutex_unlock(&pktcdvd_mutex);
2290 	return ret;
2291 }
2292 
pkt_release(struct gendisk * disk)2293 static void pkt_release(struct gendisk *disk)
2294 {
2295 	struct pktcdvd_device *pd = disk->private_data;
2296 
2297 	mutex_lock(&pktcdvd_mutex);
2298 	mutex_lock(&ctl_mutex);
2299 	pd->refcnt--;
2300 	BUG_ON(pd->refcnt < 0);
2301 	if (pd->refcnt == 0) {
2302 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2303 		pkt_release_dev(pd, flush);
2304 	}
2305 	mutex_unlock(&ctl_mutex);
2306 	mutex_unlock(&pktcdvd_mutex);
2307 }
2308 
2309 
pkt_end_io_read_cloned(struct bio * bio)2310 static void pkt_end_io_read_cloned(struct bio *bio)
2311 {
2312 	struct packet_stacked_data *psd = bio->bi_private;
2313 	struct pktcdvd_device *pd = psd->pd;
2314 
2315 	psd->bio->bi_status = bio->bi_status;
2316 	bio_put(bio);
2317 	bio_endio(psd->bio);
2318 	mempool_free(psd, &psd_pool);
2319 	pkt_bio_finished(pd);
2320 }
2321 
pkt_make_request_read(struct pktcdvd_device * pd,struct bio * bio)2322 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2323 {
2324 	struct bio *cloned_bio =
2325 		bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2326 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2327 
2328 	psd->pd = pd;
2329 	psd->bio = bio;
2330 	cloned_bio->bi_private = psd;
2331 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2332 	pd->stats.secs_r += bio_sectors(bio);
2333 	pkt_queue_bio(pd, cloned_bio);
2334 }
2335 
pkt_make_request_write(struct request_queue * q,struct bio * bio)2336 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2337 {
2338 	struct pktcdvd_device *pd = q->queuedata;
2339 	sector_t zone;
2340 	struct packet_data *pkt;
2341 	int was_empty, blocked_bio;
2342 	struct pkt_rb_node *node;
2343 
2344 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2345 
2346 	/*
2347 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2348 	 * just append this bio to that packet.
2349 	 */
2350 	spin_lock(&pd->cdrw.active_list_lock);
2351 	blocked_bio = 0;
2352 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2353 		if (pkt->sector == zone) {
2354 			spin_lock(&pkt->lock);
2355 			if ((pkt->state == PACKET_WAITING_STATE) ||
2356 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2357 				bio_list_add(&pkt->orig_bios, bio);
2358 				pkt->write_size +=
2359 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2360 				if ((pkt->write_size >= pkt->frames) &&
2361 				    (pkt->state == PACKET_WAITING_STATE)) {
2362 					atomic_inc(&pkt->run_sm);
2363 					wake_up(&pd->wqueue);
2364 				}
2365 				spin_unlock(&pkt->lock);
2366 				spin_unlock(&pd->cdrw.active_list_lock);
2367 				return;
2368 			} else {
2369 				blocked_bio = 1;
2370 			}
2371 			spin_unlock(&pkt->lock);
2372 		}
2373 	}
2374 	spin_unlock(&pd->cdrw.active_list_lock);
2375 
2376 	/*
2377 	 * Test if there is enough room left in the bio work queue
2378 	 * (queue size >= congestion on mark).
2379 	 * If not, wait till the work queue size is below the congestion off mark.
2380 	 */
2381 	spin_lock(&pd->lock);
2382 	if (pd->write_congestion_on > 0
2383 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2384 		struct wait_bit_queue_entry wqe;
2385 
2386 		init_wait_var_entry(&wqe, &pd->congested, 0);
2387 		for (;;) {
2388 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2389 					      &wqe.wq_entry,
2390 					      TASK_UNINTERRUPTIBLE);
2391 			if (pd->bio_queue_size <= pd->write_congestion_off)
2392 				break;
2393 			pd->congested = true;
2394 			spin_unlock(&pd->lock);
2395 			schedule();
2396 			spin_lock(&pd->lock);
2397 		}
2398 	}
2399 	spin_unlock(&pd->lock);
2400 
2401 	/*
2402 	 * No matching packet found. Store the bio in the work queue.
2403 	 */
2404 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2405 	node->bio = bio;
2406 	spin_lock(&pd->lock);
2407 	BUG_ON(pd->bio_queue_size < 0);
2408 	was_empty = (pd->bio_queue_size == 0);
2409 	pkt_rbtree_insert(pd, node);
2410 	spin_unlock(&pd->lock);
2411 
2412 	/*
2413 	 * Wake up the worker thread.
2414 	 */
2415 	atomic_set(&pd->scan_queue, 1);
2416 	if (was_empty) {
2417 		/* This wake_up is required for correct operation */
2418 		wake_up(&pd->wqueue);
2419 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2420 		/*
2421 		 * This wake up is not required for correct operation,
2422 		 * but improves performance in some cases.
2423 		 */
2424 		wake_up(&pd->wqueue);
2425 	}
2426 }
2427 
pkt_submit_bio(struct bio * bio)2428 static void pkt_submit_bio(struct bio *bio)
2429 {
2430 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2431 	struct device *ddev = disk_to_dev(pd->disk);
2432 	struct bio *split;
2433 
2434 	bio = bio_split_to_limits(bio);
2435 	if (!bio)
2436 		return;
2437 
2438 	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2439 		bio->bi_iter.bi_sector, bio_end_sector(bio));
2440 
2441 	/*
2442 	 * Clone READ bios so we can have our own bi_end_io callback.
2443 	 */
2444 	if (bio_data_dir(bio) == READ) {
2445 		pkt_make_request_read(pd, bio);
2446 		return;
2447 	}
2448 
2449 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2450 		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2451 		goto end_io;
2452 	}
2453 
2454 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2455 		dev_err(ddev, "wrong bio size\n");
2456 		goto end_io;
2457 	}
2458 
2459 	do {
2460 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2461 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2462 
2463 		if (last_zone != zone) {
2464 			BUG_ON(last_zone != zone + pd->settings.size);
2465 
2466 			split = bio_split(bio, last_zone -
2467 					  bio->bi_iter.bi_sector,
2468 					  GFP_NOIO, &pkt_bio_set);
2469 			bio_chain(split, bio);
2470 		} else {
2471 			split = bio;
2472 		}
2473 
2474 		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2475 	} while (split != bio);
2476 
2477 	return;
2478 end_io:
2479 	bio_io_error(bio);
2480 }
2481 
pkt_init_queue(struct pktcdvd_device * pd)2482 static void pkt_init_queue(struct pktcdvd_device *pd)
2483 {
2484 	struct request_queue *q = pd->disk->queue;
2485 
2486 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2487 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2488 	q->queuedata = pd;
2489 }
2490 
pkt_new_dev(struct pktcdvd_device * pd,dev_t dev)2491 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2492 {
2493 	struct device *ddev = disk_to_dev(pd->disk);
2494 	int i;
2495 	struct block_device *bdev;
2496 	struct scsi_device *sdev;
2497 
2498 	if (pd->pkt_dev == dev) {
2499 		dev_err(ddev, "recursive setup not allowed\n");
2500 		return -EBUSY;
2501 	}
2502 	for (i = 0; i < MAX_WRITERS; i++) {
2503 		struct pktcdvd_device *pd2 = pkt_devs[i];
2504 		if (!pd2)
2505 			continue;
2506 		if (pd2->bdev->bd_dev == dev) {
2507 			dev_err(ddev, "%pg already setup\n", pd2->bdev);
2508 			return -EBUSY;
2509 		}
2510 		if (pd2->pkt_dev == dev) {
2511 			dev_err(ddev, "can't chain pktcdvd devices\n");
2512 			return -EBUSY;
2513 		}
2514 	}
2515 
2516 	bdev = blkdev_get_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY, NULL,
2517 				 NULL);
2518 	if (IS_ERR(bdev))
2519 		return PTR_ERR(bdev);
2520 	sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2521 	if (!sdev) {
2522 		blkdev_put(bdev, NULL);
2523 		return -EINVAL;
2524 	}
2525 	put_device(&sdev->sdev_gendev);
2526 
2527 	/* This is safe, since we have a reference from open(). */
2528 	__module_get(THIS_MODULE);
2529 
2530 	pd->bdev = bdev;
2531 	set_blocksize(bdev, CD_FRAMESIZE);
2532 
2533 	pkt_init_queue(pd);
2534 
2535 	atomic_set(&pd->cdrw.pending_bios, 0);
2536 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2537 	if (IS_ERR(pd->cdrw.thread)) {
2538 		dev_err(ddev, "can't start kernel thread\n");
2539 		goto out_mem;
2540 	}
2541 
2542 	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2543 	dev_notice(ddev, "writer mapped to %pg\n", bdev);
2544 	return 0;
2545 
2546 out_mem:
2547 	blkdev_put(bdev, NULL);
2548 	/* This is safe: open() is still holding a reference. */
2549 	module_put(THIS_MODULE);
2550 	return -ENOMEM;
2551 }
2552 
pkt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)2553 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2554 		unsigned int cmd, unsigned long arg)
2555 {
2556 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2557 	struct device *ddev = disk_to_dev(pd->disk);
2558 	int ret;
2559 
2560 	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2561 
2562 	mutex_lock(&pktcdvd_mutex);
2563 	switch (cmd) {
2564 	case CDROMEJECT:
2565 		/*
2566 		 * The door gets locked when the device is opened, so we
2567 		 * have to unlock it or else the eject command fails.
2568 		 */
2569 		if (pd->refcnt == 1)
2570 			pkt_lock_door(pd, 0);
2571 		fallthrough;
2572 	/*
2573 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2574 	 */
2575 	case CDROMMULTISESSION:
2576 	case CDROMREADTOCENTRY:
2577 	case CDROM_LAST_WRITTEN:
2578 	case CDROM_SEND_PACKET:
2579 	case SCSI_IOCTL_SEND_COMMAND:
2580 		if (!bdev->bd_disk->fops->ioctl)
2581 			ret = -ENOTTY;
2582 		else
2583 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2584 		break;
2585 	default:
2586 		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2587 		ret = -ENOTTY;
2588 	}
2589 	mutex_unlock(&pktcdvd_mutex);
2590 
2591 	return ret;
2592 }
2593 
pkt_check_events(struct gendisk * disk,unsigned int clearing)2594 static unsigned int pkt_check_events(struct gendisk *disk,
2595 				     unsigned int clearing)
2596 {
2597 	struct pktcdvd_device *pd = disk->private_data;
2598 	struct gendisk *attached_disk;
2599 
2600 	if (!pd)
2601 		return 0;
2602 	if (!pd->bdev)
2603 		return 0;
2604 	attached_disk = pd->bdev->bd_disk;
2605 	if (!attached_disk || !attached_disk->fops->check_events)
2606 		return 0;
2607 	return attached_disk->fops->check_events(attached_disk, clearing);
2608 }
2609 
pkt_devnode(struct gendisk * disk,umode_t * mode)2610 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2611 {
2612 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2613 }
2614 
2615 static const struct block_device_operations pktcdvd_ops = {
2616 	.owner =		THIS_MODULE,
2617 	.submit_bio =		pkt_submit_bio,
2618 	.open =			pkt_open,
2619 	.release =		pkt_release,
2620 	.ioctl =		pkt_ioctl,
2621 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2622 	.check_events =		pkt_check_events,
2623 	.devnode =		pkt_devnode,
2624 };
2625 
2626 /*
2627  * Set up mapping from pktcdvd device to CD-ROM device.
2628  */
pkt_setup_dev(dev_t dev,dev_t * pkt_dev)2629 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2630 {
2631 	int idx;
2632 	int ret = -ENOMEM;
2633 	struct pktcdvd_device *pd;
2634 	struct gendisk *disk;
2635 
2636 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2637 
2638 	for (idx = 0; idx < MAX_WRITERS; idx++)
2639 		if (!pkt_devs[idx])
2640 			break;
2641 	if (idx == MAX_WRITERS) {
2642 		pr_err("max %d writers supported\n", MAX_WRITERS);
2643 		ret = -EBUSY;
2644 		goto out_mutex;
2645 	}
2646 
2647 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2648 	if (!pd)
2649 		goto out_mutex;
2650 
2651 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2652 					sizeof(struct pkt_rb_node));
2653 	if (ret)
2654 		goto out_mem;
2655 
2656 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2657 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2658 	spin_lock_init(&pd->cdrw.active_list_lock);
2659 
2660 	spin_lock_init(&pd->lock);
2661 	spin_lock_init(&pd->iosched.lock);
2662 	bio_list_init(&pd->iosched.read_queue);
2663 	bio_list_init(&pd->iosched.write_queue);
2664 	init_waitqueue_head(&pd->wqueue);
2665 	pd->bio_queue = RB_ROOT;
2666 
2667 	pd->write_congestion_on  = write_congestion_on;
2668 	pd->write_congestion_off = write_congestion_off;
2669 
2670 	ret = -ENOMEM;
2671 	disk = blk_alloc_disk(NUMA_NO_NODE);
2672 	if (!disk)
2673 		goto out_mem;
2674 	pd->disk = disk;
2675 	disk->major = pktdev_major;
2676 	disk->first_minor = idx;
2677 	disk->minors = 1;
2678 	disk->fops = &pktcdvd_ops;
2679 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2680 	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2681 	disk->private_data = pd;
2682 
2683 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2684 	ret = pkt_new_dev(pd, dev);
2685 	if (ret)
2686 		goto out_mem2;
2687 
2688 	/* inherit events of the host device */
2689 	disk->events = pd->bdev->bd_disk->events;
2690 
2691 	ret = add_disk(disk);
2692 	if (ret)
2693 		goto out_mem2;
2694 
2695 	pkt_sysfs_dev_new(pd);
2696 	pkt_debugfs_dev_new(pd);
2697 
2698 	pkt_devs[idx] = pd;
2699 	if (pkt_dev)
2700 		*pkt_dev = pd->pkt_dev;
2701 
2702 	mutex_unlock(&ctl_mutex);
2703 	return 0;
2704 
2705 out_mem2:
2706 	put_disk(disk);
2707 out_mem:
2708 	mempool_exit(&pd->rb_pool);
2709 	kfree(pd);
2710 out_mutex:
2711 	mutex_unlock(&ctl_mutex);
2712 	pr_err("setup of pktcdvd device failed\n");
2713 	return ret;
2714 }
2715 
2716 /*
2717  * Tear down mapping from pktcdvd device to CD-ROM device.
2718  */
pkt_remove_dev(dev_t pkt_dev)2719 static int pkt_remove_dev(dev_t pkt_dev)
2720 {
2721 	struct pktcdvd_device *pd;
2722 	struct device *ddev;
2723 	int idx;
2724 	int ret = 0;
2725 
2726 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2727 
2728 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2729 		pd = pkt_devs[idx];
2730 		if (pd && (pd->pkt_dev == pkt_dev))
2731 			break;
2732 	}
2733 	if (idx == MAX_WRITERS) {
2734 		pr_debug("dev not setup\n");
2735 		ret = -ENXIO;
2736 		goto out;
2737 	}
2738 
2739 	if (pd->refcnt > 0) {
2740 		ret = -EBUSY;
2741 		goto out;
2742 	}
2743 
2744 	ddev = disk_to_dev(pd->disk);
2745 
2746 	if (!IS_ERR(pd->cdrw.thread))
2747 		kthread_stop(pd->cdrw.thread);
2748 
2749 	pkt_devs[idx] = NULL;
2750 
2751 	pkt_debugfs_dev_remove(pd);
2752 	pkt_sysfs_dev_remove(pd);
2753 
2754 	blkdev_put(pd->bdev, NULL);
2755 
2756 	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2757 	dev_notice(ddev, "writer unmapped\n");
2758 
2759 	del_gendisk(pd->disk);
2760 	put_disk(pd->disk);
2761 
2762 	mempool_exit(&pd->rb_pool);
2763 	kfree(pd);
2764 
2765 	/* This is safe: open() is still holding a reference. */
2766 	module_put(THIS_MODULE);
2767 
2768 out:
2769 	mutex_unlock(&ctl_mutex);
2770 	return ret;
2771 }
2772 
pkt_get_status(struct pkt_ctrl_command * ctrl_cmd)2773 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2774 {
2775 	struct pktcdvd_device *pd;
2776 
2777 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2778 
2779 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2780 	if (pd) {
2781 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2782 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2783 	} else {
2784 		ctrl_cmd->dev = 0;
2785 		ctrl_cmd->pkt_dev = 0;
2786 	}
2787 	ctrl_cmd->num_devices = MAX_WRITERS;
2788 
2789 	mutex_unlock(&ctl_mutex);
2790 }
2791 
pkt_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2792 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2793 {
2794 	void __user *argp = (void __user *)arg;
2795 	struct pkt_ctrl_command ctrl_cmd;
2796 	int ret = 0;
2797 	dev_t pkt_dev = 0;
2798 
2799 	if (cmd != PACKET_CTRL_CMD)
2800 		return -ENOTTY;
2801 
2802 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2803 		return -EFAULT;
2804 
2805 	switch (ctrl_cmd.command) {
2806 	case PKT_CTRL_CMD_SETUP:
2807 		if (!capable(CAP_SYS_ADMIN))
2808 			return -EPERM;
2809 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2810 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2811 		break;
2812 	case PKT_CTRL_CMD_TEARDOWN:
2813 		if (!capable(CAP_SYS_ADMIN))
2814 			return -EPERM;
2815 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2816 		break;
2817 	case PKT_CTRL_CMD_STATUS:
2818 		pkt_get_status(&ctrl_cmd);
2819 		break;
2820 	default:
2821 		return -ENOTTY;
2822 	}
2823 
2824 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2825 		return -EFAULT;
2826 	return ret;
2827 }
2828 
2829 #ifdef CONFIG_COMPAT
pkt_ctl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2830 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2831 {
2832 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2833 }
2834 #endif
2835 
2836 static const struct file_operations pkt_ctl_fops = {
2837 	.open		= nonseekable_open,
2838 	.unlocked_ioctl	= pkt_ctl_ioctl,
2839 #ifdef CONFIG_COMPAT
2840 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2841 #endif
2842 	.owner		= THIS_MODULE,
2843 	.llseek		= no_llseek,
2844 };
2845 
2846 static struct miscdevice pkt_misc = {
2847 	.minor 		= MISC_DYNAMIC_MINOR,
2848 	.name  		= DRIVER_NAME,
2849 	.nodename	= "pktcdvd/control",
2850 	.fops  		= &pkt_ctl_fops
2851 };
2852 
pkt_init(void)2853 static int __init pkt_init(void)
2854 {
2855 	int ret;
2856 
2857 	mutex_init(&ctl_mutex);
2858 
2859 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2860 				    sizeof(struct packet_stacked_data));
2861 	if (ret)
2862 		return ret;
2863 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2864 	if (ret) {
2865 		mempool_exit(&psd_pool);
2866 		return ret;
2867 	}
2868 
2869 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2870 	if (ret < 0) {
2871 		pr_err("unable to register block device\n");
2872 		goto out2;
2873 	}
2874 	if (!pktdev_major)
2875 		pktdev_major = ret;
2876 
2877 	ret = pkt_sysfs_init();
2878 	if (ret)
2879 		goto out;
2880 
2881 	pkt_debugfs_init();
2882 
2883 	ret = misc_register(&pkt_misc);
2884 	if (ret) {
2885 		pr_err("unable to register misc device\n");
2886 		goto out_misc;
2887 	}
2888 
2889 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2890 
2891 	return 0;
2892 
2893 out_misc:
2894 	pkt_debugfs_cleanup();
2895 	pkt_sysfs_cleanup();
2896 out:
2897 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2898 out2:
2899 	mempool_exit(&psd_pool);
2900 	bioset_exit(&pkt_bio_set);
2901 	return ret;
2902 }
2903 
pkt_exit(void)2904 static void __exit pkt_exit(void)
2905 {
2906 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2907 	misc_deregister(&pkt_misc);
2908 
2909 	pkt_debugfs_cleanup();
2910 	pkt_sysfs_cleanup();
2911 
2912 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2913 	mempool_exit(&psd_pool);
2914 	bioset_exit(&pkt_bio_set);
2915 }
2916 
2917 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2918 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2919 MODULE_LICENSE("GPL");
2920 
2921 module_init(pkt_init);
2922 module_exit(pkt_exit);
2923