1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #undef pr_fmt
15 #define pr_fmt(fmt) "null_blk: " fmt
16
17 #define FREE_BATCH 16
18
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27
mb_per_tick(int mbps)28 static inline u64 mb_per_tick(int mbps)
29 {
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41 enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46 };
47
48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61 struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78 };
79
80 static bool g_virt_boundary = false;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117
118 static int g_queue_mode = NULL_Q_MQ;
119
null_param_store_val(const char * str,int * val,int min,int max)120 static int null_param_store_val(const char *str, int *val, int min, int max)
121 {
122 int ret, new_val;
123
124 ret = kstrtoint(str, 10, &new_val);
125 if (ret)
126 return -EINVAL;
127
128 if (new_val < min || new_val > max)
129 return -EINVAL;
130
131 *val = new_val;
132 return 0;
133 }
134
null_set_queue_mode(const char * str,const struct kernel_param * kp)135 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
136 {
137 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
138 }
139
140 static const struct kernel_param_ops null_queue_mode_param_ops = {
141 .set = null_set_queue_mode,
142 .get = param_get_int,
143 };
144
145 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
146 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
147
148 static int g_gb = 250;
149 module_param_named(gb, g_gb, int, 0444);
150 MODULE_PARM_DESC(gb, "Size in GB");
151
152 static int g_bs = 512;
153 module_param_named(bs, g_bs, int, 0444);
154 MODULE_PARM_DESC(bs, "Block size (in bytes)");
155
156 static int g_max_sectors;
157 module_param_named(max_sectors, g_max_sectors, int, 0444);
158 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
159
160 static unsigned int nr_devices = 1;
161 module_param(nr_devices, uint, 0444);
162 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
163
164 static bool g_blocking;
165 module_param_named(blocking, g_blocking, bool, 0444);
166 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
167
168 static bool shared_tags;
169 module_param(shared_tags, bool, 0444);
170 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
171
172 static bool g_shared_tag_bitmap;
173 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
174 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
175
176 static int g_irqmode = NULL_IRQ_SOFTIRQ;
177
null_set_irqmode(const char * str,const struct kernel_param * kp)178 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
179 {
180 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
181 NULL_IRQ_TIMER);
182 }
183
184 static const struct kernel_param_ops null_irqmode_param_ops = {
185 .set = null_set_irqmode,
186 .get = param_get_int,
187 };
188
189 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
190 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
191
192 static unsigned long g_completion_nsec = 10000;
193 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
194 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
195
196 static int g_hw_queue_depth = 64;
197 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
198 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
199
200 static bool g_use_per_node_hctx;
201 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
202 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
203
204 static bool g_memory_backed;
205 module_param_named(memory_backed, g_memory_backed, bool, 0444);
206 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
207
208 static bool g_discard;
209 module_param_named(discard, g_discard, bool, 0444);
210 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
211
212 static unsigned long g_cache_size;
213 module_param_named(cache_size, g_cache_size, ulong, 0444);
214 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
215
216 static unsigned int g_mbps;
217 module_param_named(mbps, g_mbps, uint, 0444);
218 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
219
220 static bool g_zoned;
221 module_param_named(zoned, g_zoned, bool, S_IRUGO);
222 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
223
224 static unsigned long g_zone_size = 256;
225 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
226 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
227
228 static unsigned long g_zone_capacity;
229 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
230 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
231
232 static unsigned int g_zone_nr_conv;
233 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
234 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
235
236 static unsigned int g_zone_max_open;
237 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
238 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
239
240 static unsigned int g_zone_max_active;
241 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
242 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
243
244 static struct nullb_device *null_alloc_dev(void);
245 static void null_free_dev(struct nullb_device *dev);
246 static void null_del_dev(struct nullb *nullb);
247 static int null_add_dev(struct nullb_device *dev);
248 static struct nullb *null_find_dev_by_name(const char *name);
249 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
250
to_nullb_device(struct config_item * item)251 static inline struct nullb_device *to_nullb_device(struct config_item *item)
252 {
253 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
254 }
255
nullb_device_uint_attr_show(unsigned int val,char * page)256 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
257 {
258 return snprintf(page, PAGE_SIZE, "%u\n", val);
259 }
260
nullb_device_ulong_attr_show(unsigned long val,char * page)261 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
262 char *page)
263 {
264 return snprintf(page, PAGE_SIZE, "%lu\n", val);
265 }
266
nullb_device_bool_attr_show(bool val,char * page)267 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
268 {
269 return snprintf(page, PAGE_SIZE, "%u\n", val);
270 }
271
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)272 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
273 const char *page, size_t count)
274 {
275 unsigned int tmp;
276 int result;
277
278 result = kstrtouint(page, 0, &tmp);
279 if (result < 0)
280 return result;
281
282 *val = tmp;
283 return count;
284 }
285
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)286 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
287 const char *page, size_t count)
288 {
289 int result;
290 unsigned long tmp;
291
292 result = kstrtoul(page, 0, &tmp);
293 if (result < 0)
294 return result;
295
296 *val = tmp;
297 return count;
298 }
299
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)300 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
301 size_t count)
302 {
303 bool tmp;
304 int result;
305
306 result = kstrtobool(page, &tmp);
307 if (result < 0)
308 return result;
309
310 *val = tmp;
311 return count;
312 }
313
314 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
315 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
316 static ssize_t \
317 nullb_device_##NAME##_show(struct config_item *item, char *page) \
318 { \
319 return nullb_device_##TYPE##_attr_show( \
320 to_nullb_device(item)->NAME, page); \
321 } \
322 static ssize_t \
323 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
324 size_t count) \
325 { \
326 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
327 struct nullb_device *dev = to_nullb_device(item); \
328 TYPE new_value = 0; \
329 int ret; \
330 \
331 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
332 if (ret < 0) \
333 return ret; \
334 if (apply_fn) \
335 ret = apply_fn(dev, new_value); \
336 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
337 ret = -EBUSY; \
338 if (ret < 0) \
339 return ret; \
340 dev->NAME = new_value; \
341 return count; \
342 } \
343 CONFIGFS_ATTR(nullb_device_, NAME);
344
nullb_update_nr_hw_queues(struct nullb_device * dev,unsigned int submit_queues,unsigned int poll_queues)345 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
346 unsigned int submit_queues,
347 unsigned int poll_queues)
348
349 {
350 struct blk_mq_tag_set *set;
351 int ret, nr_hw_queues;
352
353 if (!dev->nullb)
354 return 0;
355
356 /*
357 * Make sure at least one submit queue exists.
358 */
359 if (!submit_queues)
360 return -EINVAL;
361
362 /*
363 * Make sure that null_init_hctx() does not access nullb->queues[] past
364 * the end of that array.
365 */
366 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
367 return -EINVAL;
368
369 /*
370 * Keep previous and new queue numbers in nullb_device for reference in
371 * the call back function null_map_queues().
372 */
373 dev->prev_submit_queues = dev->submit_queues;
374 dev->prev_poll_queues = dev->poll_queues;
375 dev->submit_queues = submit_queues;
376 dev->poll_queues = poll_queues;
377
378 set = dev->nullb->tag_set;
379 nr_hw_queues = submit_queues + poll_queues;
380 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
381 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
382
383 if (ret) {
384 /* on error, revert the queue numbers */
385 dev->submit_queues = dev->prev_submit_queues;
386 dev->poll_queues = dev->prev_poll_queues;
387 }
388
389 return ret;
390 }
391
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)392 static int nullb_apply_submit_queues(struct nullb_device *dev,
393 unsigned int submit_queues)
394 {
395 return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
396 }
397
nullb_apply_poll_queues(struct nullb_device * dev,unsigned int poll_queues)398 static int nullb_apply_poll_queues(struct nullb_device *dev,
399 unsigned int poll_queues)
400 {
401 return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
402 }
403
404 NULLB_DEVICE_ATTR(size, ulong, NULL);
405 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
406 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
407 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
408 NULLB_DEVICE_ATTR(home_node, uint, NULL);
409 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
410 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
411 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
412 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
413 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
414 NULLB_DEVICE_ATTR(index, uint, NULL);
415 NULLB_DEVICE_ATTR(blocking, bool, NULL);
416 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
417 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
418 NULLB_DEVICE_ATTR(discard, bool, NULL);
419 NULLB_DEVICE_ATTR(mbps, uint, NULL);
420 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
421 NULLB_DEVICE_ATTR(zoned, bool, NULL);
422 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
423 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
424 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
425 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
426 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
427 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
428 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
429 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
430
nullb_device_power_show(struct config_item * item,char * page)431 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
432 {
433 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
434 }
435
nullb_device_power_store(struct config_item * item,const char * page,size_t count)436 static ssize_t nullb_device_power_store(struct config_item *item,
437 const char *page, size_t count)
438 {
439 struct nullb_device *dev = to_nullb_device(item);
440 bool newp = false;
441 ssize_t ret;
442
443 ret = nullb_device_bool_attr_store(&newp, page, count);
444 if (ret < 0)
445 return ret;
446
447 if (!dev->power && newp) {
448 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
449 return count;
450 ret = null_add_dev(dev);
451 if (ret) {
452 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
453 return ret;
454 }
455
456 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
457 dev->power = newp;
458 } else if (dev->power && !newp) {
459 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
460 mutex_lock(&lock);
461 dev->power = newp;
462 null_del_dev(dev->nullb);
463 mutex_unlock(&lock);
464 }
465 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
466 }
467
468 return count;
469 }
470
471 CONFIGFS_ATTR(nullb_device_, power);
472
nullb_device_badblocks_show(struct config_item * item,char * page)473 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
474 {
475 struct nullb_device *t_dev = to_nullb_device(item);
476
477 return badblocks_show(&t_dev->badblocks, page, 0);
478 }
479
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)480 static ssize_t nullb_device_badblocks_store(struct config_item *item,
481 const char *page, size_t count)
482 {
483 struct nullb_device *t_dev = to_nullb_device(item);
484 char *orig, *buf, *tmp;
485 u64 start, end;
486 int ret;
487
488 orig = kstrndup(page, count, GFP_KERNEL);
489 if (!orig)
490 return -ENOMEM;
491
492 buf = strstrip(orig);
493
494 ret = -EINVAL;
495 if (buf[0] != '+' && buf[0] != '-')
496 goto out;
497 tmp = strchr(&buf[1], '-');
498 if (!tmp)
499 goto out;
500 *tmp = '\0';
501 ret = kstrtoull(buf + 1, 0, &start);
502 if (ret)
503 goto out;
504 ret = kstrtoull(tmp + 1, 0, &end);
505 if (ret)
506 goto out;
507 ret = -EINVAL;
508 if (start > end)
509 goto out;
510 /* enable badblocks */
511 cmpxchg(&t_dev->badblocks.shift, -1, 0);
512 if (buf[0] == '+')
513 ret = badblocks_set(&t_dev->badblocks, start,
514 end - start + 1, 1);
515 else
516 ret = badblocks_clear(&t_dev->badblocks, start,
517 end - start + 1);
518 if (ret == 0)
519 ret = count;
520 out:
521 kfree(orig);
522 return ret;
523 }
524 CONFIGFS_ATTR(nullb_device_, badblocks);
525
nullb_device_zone_readonly_store(struct config_item * item,const char * page,size_t count)526 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
527 const char *page, size_t count)
528 {
529 struct nullb_device *dev = to_nullb_device(item);
530
531 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
532 }
533 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
534
nullb_device_zone_offline_store(struct config_item * item,const char * page,size_t count)535 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
536 const char *page, size_t count)
537 {
538 struct nullb_device *dev = to_nullb_device(item);
539
540 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
541 }
542 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
543
544 static struct configfs_attribute *nullb_device_attrs[] = {
545 &nullb_device_attr_size,
546 &nullb_device_attr_completion_nsec,
547 &nullb_device_attr_submit_queues,
548 &nullb_device_attr_poll_queues,
549 &nullb_device_attr_home_node,
550 &nullb_device_attr_queue_mode,
551 &nullb_device_attr_blocksize,
552 &nullb_device_attr_max_sectors,
553 &nullb_device_attr_irqmode,
554 &nullb_device_attr_hw_queue_depth,
555 &nullb_device_attr_index,
556 &nullb_device_attr_blocking,
557 &nullb_device_attr_use_per_node_hctx,
558 &nullb_device_attr_power,
559 &nullb_device_attr_memory_backed,
560 &nullb_device_attr_discard,
561 &nullb_device_attr_mbps,
562 &nullb_device_attr_cache_size,
563 &nullb_device_attr_badblocks,
564 &nullb_device_attr_zoned,
565 &nullb_device_attr_zone_size,
566 &nullb_device_attr_zone_capacity,
567 &nullb_device_attr_zone_nr_conv,
568 &nullb_device_attr_zone_max_open,
569 &nullb_device_attr_zone_max_active,
570 &nullb_device_attr_zone_readonly,
571 &nullb_device_attr_zone_offline,
572 &nullb_device_attr_virt_boundary,
573 &nullb_device_attr_no_sched,
574 &nullb_device_attr_shared_tag_bitmap,
575 NULL,
576 };
577
nullb_device_release(struct config_item * item)578 static void nullb_device_release(struct config_item *item)
579 {
580 struct nullb_device *dev = to_nullb_device(item);
581
582 null_free_device_storage(dev, false);
583 null_free_dev(dev);
584 }
585
586 static struct configfs_item_operations nullb_device_ops = {
587 .release = nullb_device_release,
588 };
589
590 static const struct config_item_type nullb_device_type = {
591 .ct_item_ops = &nullb_device_ops,
592 .ct_attrs = nullb_device_attrs,
593 .ct_owner = THIS_MODULE,
594 };
595
596 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
597
nullb_add_fault_config(struct nullb_device * dev)598 static void nullb_add_fault_config(struct nullb_device *dev)
599 {
600 fault_config_init(&dev->timeout_config, "timeout_inject");
601 fault_config_init(&dev->requeue_config, "requeue_inject");
602 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
603
604 configfs_add_default_group(&dev->timeout_config.group, &dev->group);
605 configfs_add_default_group(&dev->requeue_config.group, &dev->group);
606 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
607 }
608
609 #else
610
nullb_add_fault_config(struct nullb_device * dev)611 static void nullb_add_fault_config(struct nullb_device *dev)
612 {
613 }
614
615 #endif
616
617 static struct
nullb_group_make_group(struct config_group * group,const char * name)618 config_group *nullb_group_make_group(struct config_group *group, const char *name)
619 {
620 struct nullb_device *dev;
621
622 if (null_find_dev_by_name(name))
623 return ERR_PTR(-EEXIST);
624
625 dev = null_alloc_dev();
626 if (!dev)
627 return ERR_PTR(-ENOMEM);
628
629 config_group_init_type_name(&dev->group, name, &nullb_device_type);
630 nullb_add_fault_config(dev);
631
632 return &dev->group;
633 }
634
635 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)636 nullb_group_drop_item(struct config_group *group, struct config_item *item)
637 {
638 struct nullb_device *dev = to_nullb_device(item);
639
640 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
641 mutex_lock(&lock);
642 dev->power = false;
643 null_del_dev(dev->nullb);
644 mutex_unlock(&lock);
645 }
646
647 config_item_put(item);
648 }
649
memb_group_features_show(struct config_item * item,char * page)650 static ssize_t memb_group_features_show(struct config_item *item, char *page)
651 {
652 return snprintf(page, PAGE_SIZE,
653 "badblocks,blocking,blocksize,cache_size,"
654 "completion_nsec,discard,home_node,hw_queue_depth,"
655 "irqmode,max_sectors,mbps,memory_backed,no_sched,"
656 "poll_queues,power,queue_mode,shared_tag_bitmap,size,"
657 "submit_queues,use_per_node_hctx,virt_boundary,zoned,"
658 "zone_capacity,zone_max_active,zone_max_open,"
659 "zone_nr_conv,zone_offline,zone_readonly,zone_size\n");
660 }
661
662 CONFIGFS_ATTR_RO(memb_group_, features);
663
664 static struct configfs_attribute *nullb_group_attrs[] = {
665 &memb_group_attr_features,
666 NULL,
667 };
668
669 static struct configfs_group_operations nullb_group_ops = {
670 .make_group = nullb_group_make_group,
671 .drop_item = nullb_group_drop_item,
672 };
673
674 static const struct config_item_type nullb_group_type = {
675 .ct_group_ops = &nullb_group_ops,
676 .ct_attrs = nullb_group_attrs,
677 .ct_owner = THIS_MODULE,
678 };
679
680 static struct configfs_subsystem nullb_subsys = {
681 .su_group = {
682 .cg_item = {
683 .ci_namebuf = "nullb",
684 .ci_type = &nullb_group_type,
685 },
686 },
687 };
688
null_cache_active(struct nullb * nullb)689 static inline int null_cache_active(struct nullb *nullb)
690 {
691 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
692 }
693
null_alloc_dev(void)694 static struct nullb_device *null_alloc_dev(void)
695 {
696 struct nullb_device *dev;
697
698 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
699 if (!dev)
700 return NULL;
701
702 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
703 dev->timeout_config.attr = null_timeout_attr;
704 dev->requeue_config.attr = null_requeue_attr;
705 dev->init_hctx_fault_config.attr = null_init_hctx_attr;
706 #endif
707
708 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
709 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
710 if (badblocks_init(&dev->badblocks, 0)) {
711 kfree(dev);
712 return NULL;
713 }
714
715 dev->size = g_gb * 1024;
716 dev->completion_nsec = g_completion_nsec;
717 dev->submit_queues = g_submit_queues;
718 dev->prev_submit_queues = g_submit_queues;
719 dev->poll_queues = g_poll_queues;
720 dev->prev_poll_queues = g_poll_queues;
721 dev->home_node = g_home_node;
722 dev->queue_mode = g_queue_mode;
723 dev->blocksize = g_bs;
724 dev->max_sectors = g_max_sectors;
725 dev->irqmode = g_irqmode;
726 dev->hw_queue_depth = g_hw_queue_depth;
727 dev->blocking = g_blocking;
728 dev->memory_backed = g_memory_backed;
729 dev->discard = g_discard;
730 dev->cache_size = g_cache_size;
731 dev->mbps = g_mbps;
732 dev->use_per_node_hctx = g_use_per_node_hctx;
733 dev->zoned = g_zoned;
734 dev->zone_size = g_zone_size;
735 dev->zone_capacity = g_zone_capacity;
736 dev->zone_nr_conv = g_zone_nr_conv;
737 dev->zone_max_open = g_zone_max_open;
738 dev->zone_max_active = g_zone_max_active;
739 dev->virt_boundary = g_virt_boundary;
740 dev->no_sched = g_no_sched;
741 dev->shared_tag_bitmap = g_shared_tag_bitmap;
742 return dev;
743 }
744
null_free_dev(struct nullb_device * dev)745 static void null_free_dev(struct nullb_device *dev)
746 {
747 if (!dev)
748 return;
749
750 null_free_zoned_dev(dev);
751 badblocks_exit(&dev->badblocks);
752 kfree(dev);
753 }
754
put_tag(struct nullb_queue * nq,unsigned int tag)755 static void put_tag(struct nullb_queue *nq, unsigned int tag)
756 {
757 clear_bit_unlock(tag, nq->tag_map);
758
759 if (waitqueue_active(&nq->wait))
760 wake_up(&nq->wait);
761 }
762
get_tag(struct nullb_queue * nq)763 static unsigned int get_tag(struct nullb_queue *nq)
764 {
765 unsigned int tag;
766
767 do {
768 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
769 if (tag >= nq->queue_depth)
770 return -1U;
771 } while (test_and_set_bit_lock(tag, nq->tag_map));
772
773 return tag;
774 }
775
free_cmd(struct nullb_cmd * cmd)776 static void free_cmd(struct nullb_cmd *cmd)
777 {
778 put_tag(cmd->nq, cmd->tag);
779 }
780
781 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
782
__alloc_cmd(struct nullb_queue * nq)783 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
784 {
785 struct nullb_cmd *cmd;
786 unsigned int tag;
787
788 tag = get_tag(nq);
789 if (tag != -1U) {
790 cmd = &nq->cmds[tag];
791 cmd->tag = tag;
792 cmd->error = BLK_STS_OK;
793 cmd->nq = nq;
794 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
795 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
796 HRTIMER_MODE_REL);
797 cmd->timer.function = null_cmd_timer_expired;
798 }
799 return cmd;
800 }
801
802 return NULL;
803 }
804
alloc_cmd(struct nullb_queue * nq,struct bio * bio)805 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
806 {
807 struct nullb_cmd *cmd;
808 DEFINE_WAIT(wait);
809
810 do {
811 /*
812 * This avoids multiple return statements, multiple calls to
813 * __alloc_cmd() and a fast path call to prepare_to_wait().
814 */
815 cmd = __alloc_cmd(nq);
816 if (cmd) {
817 cmd->bio = bio;
818 return cmd;
819 }
820 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
821 io_schedule();
822 finish_wait(&nq->wait, &wait);
823 } while (1);
824 }
825
end_cmd(struct nullb_cmd * cmd)826 static void end_cmd(struct nullb_cmd *cmd)
827 {
828 int queue_mode = cmd->nq->dev->queue_mode;
829
830 switch (queue_mode) {
831 case NULL_Q_MQ:
832 blk_mq_end_request(cmd->rq, cmd->error);
833 return;
834 case NULL_Q_BIO:
835 cmd->bio->bi_status = cmd->error;
836 bio_endio(cmd->bio);
837 break;
838 }
839
840 free_cmd(cmd);
841 }
842
null_cmd_timer_expired(struct hrtimer * timer)843 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
844 {
845 end_cmd(container_of(timer, struct nullb_cmd, timer));
846
847 return HRTIMER_NORESTART;
848 }
849
null_cmd_end_timer(struct nullb_cmd * cmd)850 static void null_cmd_end_timer(struct nullb_cmd *cmd)
851 {
852 ktime_t kt = cmd->nq->dev->completion_nsec;
853
854 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
855 }
856
null_complete_rq(struct request * rq)857 static void null_complete_rq(struct request *rq)
858 {
859 end_cmd(blk_mq_rq_to_pdu(rq));
860 }
861
null_alloc_page(void)862 static struct nullb_page *null_alloc_page(void)
863 {
864 struct nullb_page *t_page;
865
866 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
867 if (!t_page)
868 return NULL;
869
870 t_page->page = alloc_pages(GFP_NOIO, 0);
871 if (!t_page->page) {
872 kfree(t_page);
873 return NULL;
874 }
875
876 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
877 return t_page;
878 }
879
null_free_page(struct nullb_page * t_page)880 static void null_free_page(struct nullb_page *t_page)
881 {
882 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
883 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
884 return;
885 __free_page(t_page->page);
886 kfree(t_page);
887 }
888
null_page_empty(struct nullb_page * page)889 static bool null_page_empty(struct nullb_page *page)
890 {
891 int size = MAP_SZ - 2;
892
893 return find_first_bit(page->bitmap, size) == size;
894 }
895
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)896 static void null_free_sector(struct nullb *nullb, sector_t sector,
897 bool is_cache)
898 {
899 unsigned int sector_bit;
900 u64 idx;
901 struct nullb_page *t_page, *ret;
902 struct radix_tree_root *root;
903
904 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
905 idx = sector >> PAGE_SECTORS_SHIFT;
906 sector_bit = (sector & SECTOR_MASK);
907
908 t_page = radix_tree_lookup(root, idx);
909 if (t_page) {
910 __clear_bit(sector_bit, t_page->bitmap);
911
912 if (null_page_empty(t_page)) {
913 ret = radix_tree_delete_item(root, idx, t_page);
914 WARN_ON(ret != t_page);
915 null_free_page(ret);
916 if (is_cache)
917 nullb->dev->curr_cache -= PAGE_SIZE;
918 }
919 }
920 }
921
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)922 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
923 struct nullb_page *t_page, bool is_cache)
924 {
925 struct radix_tree_root *root;
926
927 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
928
929 if (radix_tree_insert(root, idx, t_page)) {
930 null_free_page(t_page);
931 t_page = radix_tree_lookup(root, idx);
932 WARN_ON(!t_page || t_page->page->index != idx);
933 } else if (is_cache)
934 nullb->dev->curr_cache += PAGE_SIZE;
935
936 return t_page;
937 }
938
null_free_device_storage(struct nullb_device * dev,bool is_cache)939 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
940 {
941 unsigned long pos = 0;
942 int nr_pages;
943 struct nullb_page *ret, *t_pages[FREE_BATCH];
944 struct radix_tree_root *root;
945
946 root = is_cache ? &dev->cache : &dev->data;
947
948 do {
949 int i;
950
951 nr_pages = radix_tree_gang_lookup(root,
952 (void **)t_pages, pos, FREE_BATCH);
953
954 for (i = 0; i < nr_pages; i++) {
955 pos = t_pages[i]->page->index;
956 ret = radix_tree_delete_item(root, pos, t_pages[i]);
957 WARN_ON(ret != t_pages[i]);
958 null_free_page(ret);
959 }
960
961 pos++;
962 } while (nr_pages == FREE_BATCH);
963
964 if (is_cache)
965 dev->curr_cache = 0;
966 }
967
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)968 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
969 sector_t sector, bool for_write, bool is_cache)
970 {
971 unsigned int sector_bit;
972 u64 idx;
973 struct nullb_page *t_page;
974 struct radix_tree_root *root;
975
976 idx = sector >> PAGE_SECTORS_SHIFT;
977 sector_bit = (sector & SECTOR_MASK);
978
979 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
980 t_page = radix_tree_lookup(root, idx);
981 WARN_ON(t_page && t_page->page->index != idx);
982
983 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
984 return t_page;
985
986 return NULL;
987 }
988
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)989 static struct nullb_page *null_lookup_page(struct nullb *nullb,
990 sector_t sector, bool for_write, bool ignore_cache)
991 {
992 struct nullb_page *page = NULL;
993
994 if (!ignore_cache)
995 page = __null_lookup_page(nullb, sector, for_write, true);
996 if (page)
997 return page;
998 return __null_lookup_page(nullb, sector, for_write, false);
999 }
1000
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)1001 static struct nullb_page *null_insert_page(struct nullb *nullb,
1002 sector_t sector, bool ignore_cache)
1003 __releases(&nullb->lock)
1004 __acquires(&nullb->lock)
1005 {
1006 u64 idx;
1007 struct nullb_page *t_page;
1008
1009 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1010 if (t_page)
1011 return t_page;
1012
1013 spin_unlock_irq(&nullb->lock);
1014
1015 t_page = null_alloc_page();
1016 if (!t_page)
1017 goto out_lock;
1018
1019 if (radix_tree_preload(GFP_NOIO))
1020 goto out_freepage;
1021
1022 spin_lock_irq(&nullb->lock);
1023 idx = sector >> PAGE_SECTORS_SHIFT;
1024 t_page->page->index = idx;
1025 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1026 radix_tree_preload_end();
1027
1028 return t_page;
1029 out_freepage:
1030 null_free_page(t_page);
1031 out_lock:
1032 spin_lock_irq(&nullb->lock);
1033 return null_lookup_page(nullb, sector, true, ignore_cache);
1034 }
1035
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)1036 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1037 {
1038 int i;
1039 unsigned int offset;
1040 u64 idx;
1041 struct nullb_page *t_page, *ret;
1042 void *dst, *src;
1043
1044 idx = c_page->page->index;
1045
1046 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1047
1048 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1049 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1050 null_free_page(c_page);
1051 if (t_page && null_page_empty(t_page)) {
1052 ret = radix_tree_delete_item(&nullb->dev->data,
1053 idx, t_page);
1054 null_free_page(t_page);
1055 }
1056 return 0;
1057 }
1058
1059 if (!t_page)
1060 return -ENOMEM;
1061
1062 src = kmap_local_page(c_page->page);
1063 dst = kmap_local_page(t_page->page);
1064
1065 for (i = 0; i < PAGE_SECTORS;
1066 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1067 if (test_bit(i, c_page->bitmap)) {
1068 offset = (i << SECTOR_SHIFT);
1069 memcpy(dst + offset, src + offset,
1070 nullb->dev->blocksize);
1071 __set_bit(i, t_page->bitmap);
1072 }
1073 }
1074
1075 kunmap_local(dst);
1076 kunmap_local(src);
1077
1078 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1079 null_free_page(ret);
1080 nullb->dev->curr_cache -= PAGE_SIZE;
1081
1082 return 0;
1083 }
1084
null_make_cache_space(struct nullb * nullb,unsigned long n)1085 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1086 {
1087 int i, err, nr_pages;
1088 struct nullb_page *c_pages[FREE_BATCH];
1089 unsigned long flushed = 0, one_round;
1090
1091 again:
1092 if ((nullb->dev->cache_size * 1024 * 1024) >
1093 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1094 return 0;
1095
1096 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1097 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1098 /*
1099 * nullb_flush_cache_page could unlock before using the c_pages. To
1100 * avoid race, we don't allow page free
1101 */
1102 for (i = 0; i < nr_pages; i++) {
1103 nullb->cache_flush_pos = c_pages[i]->page->index;
1104 /*
1105 * We found the page which is being flushed to disk by other
1106 * threads
1107 */
1108 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1109 c_pages[i] = NULL;
1110 else
1111 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1112 }
1113
1114 one_round = 0;
1115 for (i = 0; i < nr_pages; i++) {
1116 if (c_pages[i] == NULL)
1117 continue;
1118 err = null_flush_cache_page(nullb, c_pages[i]);
1119 if (err)
1120 return err;
1121 one_round++;
1122 }
1123 flushed += one_round << PAGE_SHIFT;
1124
1125 if (n > flushed) {
1126 if (nr_pages == 0)
1127 nullb->cache_flush_pos = 0;
1128 if (one_round == 0) {
1129 /* give other threads a chance */
1130 spin_unlock_irq(&nullb->lock);
1131 spin_lock_irq(&nullb->lock);
1132 }
1133 goto again;
1134 }
1135 return 0;
1136 }
1137
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)1138 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1139 unsigned int off, sector_t sector, size_t n, bool is_fua)
1140 {
1141 size_t temp, count = 0;
1142 unsigned int offset;
1143 struct nullb_page *t_page;
1144
1145 while (count < n) {
1146 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1147
1148 if (null_cache_active(nullb) && !is_fua)
1149 null_make_cache_space(nullb, PAGE_SIZE);
1150
1151 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1152 t_page = null_insert_page(nullb, sector,
1153 !null_cache_active(nullb) || is_fua);
1154 if (!t_page)
1155 return -ENOSPC;
1156
1157 memcpy_page(t_page->page, offset, source, off + count, temp);
1158
1159 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1160
1161 if (is_fua)
1162 null_free_sector(nullb, sector, true);
1163
1164 count += temp;
1165 sector += temp >> SECTOR_SHIFT;
1166 }
1167 return 0;
1168 }
1169
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)1170 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1171 unsigned int off, sector_t sector, size_t n)
1172 {
1173 size_t temp, count = 0;
1174 unsigned int offset;
1175 struct nullb_page *t_page;
1176
1177 while (count < n) {
1178 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1179
1180 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1181 t_page = null_lookup_page(nullb, sector, false,
1182 !null_cache_active(nullb));
1183
1184 if (t_page)
1185 memcpy_page(dest, off + count, t_page->page, offset,
1186 temp);
1187 else
1188 zero_user(dest, off + count, temp);
1189
1190 count += temp;
1191 sector += temp >> SECTOR_SHIFT;
1192 }
1193 return 0;
1194 }
1195
nullb_fill_pattern(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off)1196 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1197 unsigned int len, unsigned int off)
1198 {
1199 memset_page(page, off, 0xff, len);
1200 }
1201
null_handle_discard(struct nullb_device * dev,sector_t sector,sector_t nr_sectors)1202 blk_status_t null_handle_discard(struct nullb_device *dev,
1203 sector_t sector, sector_t nr_sectors)
1204 {
1205 struct nullb *nullb = dev->nullb;
1206 size_t n = nr_sectors << SECTOR_SHIFT;
1207 size_t temp;
1208
1209 spin_lock_irq(&nullb->lock);
1210 while (n > 0) {
1211 temp = min_t(size_t, n, dev->blocksize);
1212 null_free_sector(nullb, sector, false);
1213 if (null_cache_active(nullb))
1214 null_free_sector(nullb, sector, true);
1215 sector += temp >> SECTOR_SHIFT;
1216 n -= temp;
1217 }
1218 spin_unlock_irq(&nullb->lock);
1219
1220 return BLK_STS_OK;
1221 }
1222
null_handle_flush(struct nullb * nullb)1223 static int null_handle_flush(struct nullb *nullb)
1224 {
1225 int err;
1226
1227 if (!null_cache_active(nullb))
1228 return 0;
1229
1230 spin_lock_irq(&nullb->lock);
1231 while (true) {
1232 err = null_make_cache_space(nullb,
1233 nullb->dev->cache_size * 1024 * 1024);
1234 if (err || nullb->dev->curr_cache == 0)
1235 break;
1236 }
1237
1238 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1239 spin_unlock_irq(&nullb->lock);
1240 return err;
1241 }
1242
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1243 static int null_transfer(struct nullb *nullb, struct page *page,
1244 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1245 bool is_fua)
1246 {
1247 struct nullb_device *dev = nullb->dev;
1248 unsigned int valid_len = len;
1249 int err = 0;
1250
1251 if (!is_write) {
1252 if (dev->zoned)
1253 valid_len = null_zone_valid_read_len(nullb,
1254 sector, len);
1255
1256 if (valid_len) {
1257 err = copy_from_nullb(nullb, page, off,
1258 sector, valid_len);
1259 off += valid_len;
1260 len -= valid_len;
1261 }
1262
1263 if (len)
1264 nullb_fill_pattern(nullb, page, len, off);
1265 flush_dcache_page(page);
1266 } else {
1267 flush_dcache_page(page);
1268 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1269 }
1270
1271 return err;
1272 }
1273
null_handle_rq(struct nullb_cmd * cmd)1274 static int null_handle_rq(struct nullb_cmd *cmd)
1275 {
1276 struct request *rq = cmd->rq;
1277 struct nullb *nullb = cmd->nq->dev->nullb;
1278 int err;
1279 unsigned int len;
1280 sector_t sector = blk_rq_pos(rq);
1281 struct req_iterator iter;
1282 struct bio_vec bvec;
1283
1284 spin_lock_irq(&nullb->lock);
1285 rq_for_each_segment(bvec, rq, iter) {
1286 len = bvec.bv_len;
1287 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1288 op_is_write(req_op(rq)), sector,
1289 rq->cmd_flags & REQ_FUA);
1290 if (err) {
1291 spin_unlock_irq(&nullb->lock);
1292 return err;
1293 }
1294 sector += len >> SECTOR_SHIFT;
1295 }
1296 spin_unlock_irq(&nullb->lock);
1297
1298 return 0;
1299 }
1300
null_handle_bio(struct nullb_cmd * cmd)1301 static int null_handle_bio(struct nullb_cmd *cmd)
1302 {
1303 struct bio *bio = cmd->bio;
1304 struct nullb *nullb = cmd->nq->dev->nullb;
1305 int err;
1306 unsigned int len;
1307 sector_t sector = bio->bi_iter.bi_sector;
1308 struct bio_vec bvec;
1309 struct bvec_iter iter;
1310
1311 spin_lock_irq(&nullb->lock);
1312 bio_for_each_segment(bvec, bio, iter) {
1313 len = bvec.bv_len;
1314 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1315 op_is_write(bio_op(bio)), sector,
1316 bio->bi_opf & REQ_FUA);
1317 if (err) {
1318 spin_unlock_irq(&nullb->lock);
1319 return err;
1320 }
1321 sector += len >> SECTOR_SHIFT;
1322 }
1323 spin_unlock_irq(&nullb->lock);
1324 return 0;
1325 }
1326
null_stop_queue(struct nullb * nullb)1327 static void null_stop_queue(struct nullb *nullb)
1328 {
1329 struct request_queue *q = nullb->q;
1330
1331 if (nullb->dev->queue_mode == NULL_Q_MQ)
1332 blk_mq_stop_hw_queues(q);
1333 }
1334
null_restart_queue_async(struct nullb * nullb)1335 static void null_restart_queue_async(struct nullb *nullb)
1336 {
1337 struct request_queue *q = nullb->q;
1338
1339 if (nullb->dev->queue_mode == NULL_Q_MQ)
1340 blk_mq_start_stopped_hw_queues(q, true);
1341 }
1342
null_handle_throttled(struct nullb_cmd * cmd)1343 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1344 {
1345 struct nullb_device *dev = cmd->nq->dev;
1346 struct nullb *nullb = dev->nullb;
1347 blk_status_t sts = BLK_STS_OK;
1348 struct request *rq = cmd->rq;
1349
1350 if (!hrtimer_active(&nullb->bw_timer))
1351 hrtimer_restart(&nullb->bw_timer);
1352
1353 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1354 null_stop_queue(nullb);
1355 /* race with timer */
1356 if (atomic_long_read(&nullb->cur_bytes) > 0)
1357 null_restart_queue_async(nullb);
1358 /* requeue request */
1359 sts = BLK_STS_DEV_RESOURCE;
1360 }
1361 return sts;
1362 }
1363
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors)1364 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1365 sector_t sector,
1366 sector_t nr_sectors)
1367 {
1368 struct badblocks *bb = &cmd->nq->dev->badblocks;
1369 sector_t first_bad;
1370 int bad_sectors;
1371
1372 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1373 return BLK_STS_IOERR;
1374
1375 return BLK_STS_OK;
1376 }
1377
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_op op,sector_t sector,sector_t nr_sectors)1378 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1379 enum req_op op,
1380 sector_t sector,
1381 sector_t nr_sectors)
1382 {
1383 struct nullb_device *dev = cmd->nq->dev;
1384 int err;
1385
1386 if (op == REQ_OP_DISCARD)
1387 return null_handle_discard(dev, sector, nr_sectors);
1388
1389 if (dev->queue_mode == NULL_Q_BIO)
1390 err = null_handle_bio(cmd);
1391 else
1392 err = null_handle_rq(cmd);
1393
1394 return errno_to_blk_status(err);
1395 }
1396
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1397 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1398 {
1399 struct nullb_device *dev = cmd->nq->dev;
1400 struct bio *bio;
1401
1402 if (dev->memory_backed)
1403 return;
1404
1405 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1406 zero_fill_bio(cmd->bio);
1407 } else if (req_op(cmd->rq) == REQ_OP_READ) {
1408 __rq_for_each_bio(bio, cmd->rq)
1409 zero_fill_bio(bio);
1410 }
1411 }
1412
nullb_complete_cmd(struct nullb_cmd * cmd)1413 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1414 {
1415 /*
1416 * Since root privileges are required to configure the null_blk
1417 * driver, it is fine that this driver does not initialize the
1418 * data buffers of read commands. Zero-initialize these buffers
1419 * anyway if KMSAN is enabled to prevent that KMSAN complains
1420 * about null_blk not initializing read data buffers.
1421 */
1422 if (IS_ENABLED(CONFIG_KMSAN))
1423 nullb_zero_read_cmd_buffer(cmd);
1424
1425 /* Complete IO by inline, softirq or timer */
1426 switch (cmd->nq->dev->irqmode) {
1427 case NULL_IRQ_SOFTIRQ:
1428 switch (cmd->nq->dev->queue_mode) {
1429 case NULL_Q_MQ:
1430 blk_mq_complete_request(cmd->rq);
1431 break;
1432 case NULL_Q_BIO:
1433 /*
1434 * XXX: no proper submitting cpu information available.
1435 */
1436 end_cmd(cmd);
1437 break;
1438 }
1439 break;
1440 case NULL_IRQ_NONE:
1441 end_cmd(cmd);
1442 break;
1443 case NULL_IRQ_TIMER:
1444 null_cmd_end_timer(cmd);
1445 break;
1446 }
1447 }
1448
null_process_cmd(struct nullb_cmd * cmd,enum req_op op,sector_t sector,unsigned int nr_sectors)1449 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1450 sector_t sector, unsigned int nr_sectors)
1451 {
1452 struct nullb_device *dev = cmd->nq->dev;
1453 blk_status_t ret;
1454
1455 if (dev->badblocks.shift != -1) {
1456 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1457 if (ret != BLK_STS_OK)
1458 return ret;
1459 }
1460
1461 if (dev->memory_backed)
1462 return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1463
1464 return BLK_STS_OK;
1465 }
1466
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_op op)1467 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1468 sector_t nr_sectors, enum req_op op)
1469 {
1470 struct nullb_device *dev = cmd->nq->dev;
1471 struct nullb *nullb = dev->nullb;
1472 blk_status_t sts;
1473
1474 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1475 sts = null_handle_throttled(cmd);
1476 if (sts != BLK_STS_OK)
1477 return sts;
1478 }
1479
1480 if (op == REQ_OP_FLUSH) {
1481 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1482 goto out;
1483 }
1484
1485 if (dev->zoned)
1486 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1487 else
1488 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1489
1490 /* Do not overwrite errors (e.g. timeout errors) */
1491 if (cmd->error == BLK_STS_OK)
1492 cmd->error = sts;
1493
1494 out:
1495 nullb_complete_cmd(cmd);
1496 return BLK_STS_OK;
1497 }
1498
nullb_bwtimer_fn(struct hrtimer * timer)1499 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1500 {
1501 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1502 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1503 unsigned int mbps = nullb->dev->mbps;
1504
1505 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1506 return HRTIMER_NORESTART;
1507
1508 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1509 null_restart_queue_async(nullb);
1510
1511 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1512
1513 return HRTIMER_RESTART;
1514 }
1515
nullb_setup_bwtimer(struct nullb * nullb)1516 static void nullb_setup_bwtimer(struct nullb *nullb)
1517 {
1518 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1519
1520 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1521 nullb->bw_timer.function = nullb_bwtimer_fn;
1522 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1523 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1524 }
1525
nullb_to_queue(struct nullb * nullb)1526 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1527 {
1528 int index = 0;
1529
1530 if (nullb->nr_queues != 1)
1531 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1532
1533 return &nullb->queues[index];
1534 }
1535
null_submit_bio(struct bio * bio)1536 static void null_submit_bio(struct bio *bio)
1537 {
1538 sector_t sector = bio->bi_iter.bi_sector;
1539 sector_t nr_sectors = bio_sectors(bio);
1540 struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1541 struct nullb_queue *nq = nullb_to_queue(nullb);
1542
1543 null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1544 }
1545
1546 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1547
should_timeout_request(struct request * rq)1548 static bool should_timeout_request(struct request *rq)
1549 {
1550 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1551 struct nullb_device *dev = cmd->nq->dev;
1552
1553 return should_fail(&dev->timeout_config.attr, 1);
1554 }
1555
should_requeue_request(struct request * rq)1556 static bool should_requeue_request(struct request *rq)
1557 {
1558 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1559 struct nullb_device *dev = cmd->nq->dev;
1560
1561 return should_fail(&dev->requeue_config.attr, 1);
1562 }
1563
should_init_hctx_fail(struct nullb_device * dev)1564 static bool should_init_hctx_fail(struct nullb_device *dev)
1565 {
1566 return should_fail(&dev->init_hctx_fault_config.attr, 1);
1567 }
1568
1569 #else
1570
should_timeout_request(struct request * rq)1571 static bool should_timeout_request(struct request *rq)
1572 {
1573 return false;
1574 }
1575
should_requeue_request(struct request * rq)1576 static bool should_requeue_request(struct request *rq)
1577 {
1578 return false;
1579 }
1580
should_init_hctx_fail(struct nullb_device * dev)1581 static bool should_init_hctx_fail(struct nullb_device *dev)
1582 {
1583 return false;
1584 }
1585
1586 #endif
1587
null_map_queues(struct blk_mq_tag_set * set)1588 static void null_map_queues(struct blk_mq_tag_set *set)
1589 {
1590 struct nullb *nullb = set->driver_data;
1591 int i, qoff;
1592 unsigned int submit_queues = g_submit_queues;
1593 unsigned int poll_queues = g_poll_queues;
1594
1595 if (nullb) {
1596 struct nullb_device *dev = nullb->dev;
1597
1598 /*
1599 * Refer nr_hw_queues of the tag set to check if the expected
1600 * number of hardware queues are prepared. If block layer failed
1601 * to prepare them, use previous numbers of submit queues and
1602 * poll queues to map queues.
1603 */
1604 if (set->nr_hw_queues ==
1605 dev->submit_queues + dev->poll_queues) {
1606 submit_queues = dev->submit_queues;
1607 poll_queues = dev->poll_queues;
1608 } else if (set->nr_hw_queues ==
1609 dev->prev_submit_queues + dev->prev_poll_queues) {
1610 submit_queues = dev->prev_submit_queues;
1611 poll_queues = dev->prev_poll_queues;
1612 } else {
1613 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1614 set->nr_hw_queues);
1615 WARN_ON_ONCE(true);
1616 submit_queues = 1;
1617 poll_queues = 0;
1618 }
1619 }
1620
1621 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1622 struct blk_mq_queue_map *map = &set->map[i];
1623
1624 switch (i) {
1625 case HCTX_TYPE_DEFAULT:
1626 map->nr_queues = submit_queues;
1627 break;
1628 case HCTX_TYPE_READ:
1629 map->nr_queues = 0;
1630 continue;
1631 case HCTX_TYPE_POLL:
1632 map->nr_queues = poll_queues;
1633 break;
1634 }
1635 map->queue_offset = qoff;
1636 qoff += map->nr_queues;
1637 blk_mq_map_queues(map);
1638 }
1639 }
1640
null_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1641 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1642 {
1643 struct nullb_queue *nq = hctx->driver_data;
1644 LIST_HEAD(list);
1645 int nr = 0;
1646 struct request *rq;
1647
1648 spin_lock(&nq->poll_lock);
1649 list_splice_init(&nq->poll_list, &list);
1650 list_for_each_entry(rq, &list, queuelist)
1651 blk_mq_set_request_complete(rq);
1652 spin_unlock(&nq->poll_lock);
1653
1654 while (!list_empty(&list)) {
1655 struct nullb_cmd *cmd;
1656 struct request *req;
1657
1658 req = list_first_entry(&list, struct request, queuelist);
1659 list_del_init(&req->queuelist);
1660 cmd = blk_mq_rq_to_pdu(req);
1661 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1662 blk_rq_sectors(req));
1663 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1664 blk_mq_end_request_batch))
1665 end_cmd(cmd);
1666 nr++;
1667 }
1668
1669 return nr;
1670 }
1671
null_timeout_rq(struct request * rq)1672 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1673 {
1674 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1675 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1676
1677 if (hctx->type == HCTX_TYPE_POLL) {
1678 struct nullb_queue *nq = hctx->driver_data;
1679
1680 spin_lock(&nq->poll_lock);
1681 /* The request may have completed meanwhile. */
1682 if (blk_mq_request_completed(rq)) {
1683 spin_unlock(&nq->poll_lock);
1684 return BLK_EH_DONE;
1685 }
1686 list_del_init(&rq->queuelist);
1687 spin_unlock(&nq->poll_lock);
1688 }
1689
1690 pr_info("rq %p timed out\n", rq);
1691
1692 /*
1693 * If the device is marked as blocking (i.e. memory backed or zoned
1694 * device), the submission path may be blocked waiting for resources
1695 * and cause real timeouts. For these real timeouts, the submission
1696 * path will complete the request using blk_mq_complete_request().
1697 * Only fake timeouts need to execute blk_mq_complete_request() here.
1698 */
1699 cmd->error = BLK_STS_TIMEOUT;
1700 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1701 blk_mq_complete_request(rq);
1702 return BLK_EH_DONE;
1703 }
1704
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1705 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1706 const struct blk_mq_queue_data *bd)
1707 {
1708 struct request *rq = bd->rq;
1709 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1710 struct nullb_queue *nq = hctx->driver_data;
1711 sector_t nr_sectors = blk_rq_sectors(rq);
1712 sector_t sector = blk_rq_pos(rq);
1713 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1714
1715 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1716
1717 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1718 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1719 cmd->timer.function = null_cmd_timer_expired;
1720 }
1721 cmd->rq = rq;
1722 cmd->error = BLK_STS_OK;
1723 cmd->nq = nq;
1724 cmd->fake_timeout = should_timeout_request(rq) ||
1725 blk_should_fake_timeout(rq->q);
1726
1727 blk_mq_start_request(rq);
1728
1729 if (should_requeue_request(rq)) {
1730 /*
1731 * Alternate between hitting the core BUSY path, and the
1732 * driver driven requeue path
1733 */
1734 nq->requeue_selection++;
1735 if (nq->requeue_selection & 1)
1736 return BLK_STS_RESOURCE;
1737 blk_mq_requeue_request(rq, true);
1738 return BLK_STS_OK;
1739 }
1740
1741 if (is_poll) {
1742 spin_lock(&nq->poll_lock);
1743 list_add_tail(&rq->queuelist, &nq->poll_list);
1744 spin_unlock(&nq->poll_lock);
1745 return BLK_STS_OK;
1746 }
1747 if (cmd->fake_timeout)
1748 return BLK_STS_OK;
1749
1750 return null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1751 }
1752
cleanup_queue(struct nullb_queue * nq)1753 static void cleanup_queue(struct nullb_queue *nq)
1754 {
1755 bitmap_free(nq->tag_map);
1756 kfree(nq->cmds);
1757 }
1758
cleanup_queues(struct nullb * nullb)1759 static void cleanup_queues(struct nullb *nullb)
1760 {
1761 int i;
1762
1763 for (i = 0; i < nullb->nr_queues; i++)
1764 cleanup_queue(&nullb->queues[i]);
1765
1766 kfree(nullb->queues);
1767 }
1768
null_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)1769 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1770 {
1771 struct nullb_queue *nq = hctx->driver_data;
1772 struct nullb *nullb = nq->dev->nullb;
1773
1774 nullb->nr_queues--;
1775 }
1776
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1777 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1778 {
1779 init_waitqueue_head(&nq->wait);
1780 nq->queue_depth = nullb->queue_depth;
1781 nq->dev = nullb->dev;
1782 INIT_LIST_HEAD(&nq->poll_list);
1783 spin_lock_init(&nq->poll_lock);
1784 }
1785
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1786 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1787 unsigned int hctx_idx)
1788 {
1789 struct nullb *nullb = hctx->queue->queuedata;
1790 struct nullb_queue *nq;
1791
1792 if (should_init_hctx_fail(nullb->dev))
1793 return -EFAULT;
1794
1795 nq = &nullb->queues[hctx_idx];
1796 hctx->driver_data = nq;
1797 null_init_queue(nullb, nq);
1798 nullb->nr_queues++;
1799
1800 return 0;
1801 }
1802
1803 static const struct blk_mq_ops null_mq_ops = {
1804 .queue_rq = null_queue_rq,
1805 .complete = null_complete_rq,
1806 .timeout = null_timeout_rq,
1807 .poll = null_poll,
1808 .map_queues = null_map_queues,
1809 .init_hctx = null_init_hctx,
1810 .exit_hctx = null_exit_hctx,
1811 };
1812
null_del_dev(struct nullb * nullb)1813 static void null_del_dev(struct nullb *nullb)
1814 {
1815 struct nullb_device *dev;
1816
1817 if (!nullb)
1818 return;
1819
1820 dev = nullb->dev;
1821
1822 ida_simple_remove(&nullb_indexes, nullb->index);
1823
1824 list_del_init(&nullb->list);
1825
1826 del_gendisk(nullb->disk);
1827
1828 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1829 hrtimer_cancel(&nullb->bw_timer);
1830 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1831 null_restart_queue_async(nullb);
1832 }
1833
1834 put_disk(nullb->disk);
1835 if (dev->queue_mode == NULL_Q_MQ &&
1836 nullb->tag_set == &nullb->__tag_set)
1837 blk_mq_free_tag_set(nullb->tag_set);
1838 cleanup_queues(nullb);
1839 if (null_cache_active(nullb))
1840 null_free_device_storage(nullb->dev, true);
1841 kfree(nullb);
1842 dev->nullb = NULL;
1843 }
1844
null_config_discard(struct nullb * nullb)1845 static void null_config_discard(struct nullb *nullb)
1846 {
1847 if (nullb->dev->discard == false)
1848 return;
1849
1850 if (!nullb->dev->memory_backed) {
1851 nullb->dev->discard = false;
1852 pr_info("discard option is ignored without memory backing\n");
1853 return;
1854 }
1855
1856 if (nullb->dev->zoned) {
1857 nullb->dev->discard = false;
1858 pr_info("discard option is ignored in zoned mode\n");
1859 return;
1860 }
1861
1862 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1863 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1864 }
1865
1866 static const struct block_device_operations null_bio_ops = {
1867 .owner = THIS_MODULE,
1868 .submit_bio = null_submit_bio,
1869 .report_zones = null_report_zones,
1870 };
1871
1872 static const struct block_device_operations null_rq_ops = {
1873 .owner = THIS_MODULE,
1874 .report_zones = null_report_zones,
1875 };
1876
setup_commands(struct nullb_queue * nq)1877 static int setup_commands(struct nullb_queue *nq)
1878 {
1879 struct nullb_cmd *cmd;
1880 int i;
1881
1882 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1883 if (!nq->cmds)
1884 return -ENOMEM;
1885
1886 nq->tag_map = bitmap_zalloc(nq->queue_depth, GFP_KERNEL);
1887 if (!nq->tag_map) {
1888 kfree(nq->cmds);
1889 return -ENOMEM;
1890 }
1891
1892 for (i = 0; i < nq->queue_depth; i++) {
1893 cmd = &nq->cmds[i];
1894 cmd->tag = -1U;
1895 }
1896
1897 return 0;
1898 }
1899
setup_queues(struct nullb * nullb)1900 static int setup_queues(struct nullb *nullb)
1901 {
1902 int nqueues = nr_cpu_ids;
1903
1904 if (g_poll_queues)
1905 nqueues += g_poll_queues;
1906
1907 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1908 GFP_KERNEL);
1909 if (!nullb->queues)
1910 return -ENOMEM;
1911
1912 nullb->queue_depth = nullb->dev->hw_queue_depth;
1913 return 0;
1914 }
1915
init_driver_queues(struct nullb * nullb)1916 static int init_driver_queues(struct nullb *nullb)
1917 {
1918 struct nullb_queue *nq;
1919 int i, ret = 0;
1920
1921 for (i = 0; i < nullb->dev->submit_queues; i++) {
1922 nq = &nullb->queues[i];
1923
1924 null_init_queue(nullb, nq);
1925
1926 ret = setup_commands(nq);
1927 if (ret)
1928 return ret;
1929 nullb->nr_queues++;
1930 }
1931 return 0;
1932 }
1933
null_gendisk_register(struct nullb * nullb)1934 static int null_gendisk_register(struct nullb *nullb)
1935 {
1936 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1937 struct gendisk *disk = nullb->disk;
1938
1939 set_capacity(disk, size);
1940
1941 disk->major = null_major;
1942 disk->first_minor = nullb->index;
1943 disk->minors = 1;
1944 if (queue_is_mq(nullb->q))
1945 disk->fops = &null_rq_ops;
1946 else
1947 disk->fops = &null_bio_ops;
1948 disk->private_data = nullb;
1949 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1950
1951 if (nullb->dev->zoned) {
1952 int ret = null_register_zoned_dev(nullb);
1953
1954 if (ret)
1955 return ret;
1956 }
1957
1958 return add_disk(disk);
1959 }
1960
null_init_tag_set(struct nullb * nullb,struct blk_mq_tag_set * set)1961 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1962 {
1963 unsigned int flags = BLK_MQ_F_SHOULD_MERGE;
1964 int hw_queues, numa_node;
1965 unsigned int queue_depth;
1966 int poll_queues;
1967
1968 if (nullb) {
1969 hw_queues = nullb->dev->submit_queues;
1970 poll_queues = nullb->dev->poll_queues;
1971 queue_depth = nullb->dev->hw_queue_depth;
1972 numa_node = nullb->dev->home_node;
1973 if (nullb->dev->no_sched)
1974 flags |= BLK_MQ_F_NO_SCHED;
1975 if (nullb->dev->shared_tag_bitmap)
1976 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1977 if (nullb->dev->blocking)
1978 flags |= BLK_MQ_F_BLOCKING;
1979 } else {
1980 hw_queues = g_submit_queues;
1981 poll_queues = g_poll_queues;
1982 queue_depth = g_hw_queue_depth;
1983 numa_node = g_home_node;
1984 if (g_no_sched)
1985 flags |= BLK_MQ_F_NO_SCHED;
1986 if (g_shared_tag_bitmap)
1987 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1988 if (g_blocking)
1989 flags |= BLK_MQ_F_BLOCKING;
1990 }
1991
1992 set->ops = &null_mq_ops;
1993 set->cmd_size = sizeof(struct nullb_cmd);
1994 set->flags = flags;
1995 set->driver_data = nullb;
1996 set->nr_hw_queues = hw_queues;
1997 set->queue_depth = queue_depth;
1998 set->numa_node = numa_node;
1999 if (poll_queues) {
2000 set->nr_hw_queues += poll_queues;
2001 set->nr_maps = 3;
2002 } else {
2003 set->nr_maps = 1;
2004 }
2005
2006 return blk_mq_alloc_tag_set(set);
2007 }
2008
null_validate_conf(struct nullb_device * dev)2009 static int null_validate_conf(struct nullb_device *dev)
2010 {
2011 if (dev->queue_mode == NULL_Q_RQ) {
2012 pr_err("legacy IO path is no longer available\n");
2013 return -EINVAL;
2014 }
2015
2016 dev->blocksize = round_down(dev->blocksize, 512);
2017 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
2018
2019 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
2020 if (dev->submit_queues != nr_online_nodes)
2021 dev->submit_queues = nr_online_nodes;
2022 } else if (dev->submit_queues > nr_cpu_ids)
2023 dev->submit_queues = nr_cpu_ids;
2024 else if (dev->submit_queues == 0)
2025 dev->submit_queues = 1;
2026 dev->prev_submit_queues = dev->submit_queues;
2027
2028 if (dev->poll_queues > g_poll_queues)
2029 dev->poll_queues = g_poll_queues;
2030 dev->prev_poll_queues = dev->poll_queues;
2031
2032 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
2033 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
2034
2035 /* Do memory allocation, so set blocking */
2036 if (dev->memory_backed)
2037 dev->blocking = true;
2038 else /* cache is meaningless */
2039 dev->cache_size = 0;
2040 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
2041 dev->cache_size);
2042 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
2043 /* can not stop a queue */
2044 if (dev->queue_mode == NULL_Q_BIO)
2045 dev->mbps = 0;
2046
2047 if (dev->zoned &&
2048 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
2049 pr_err("zone_size must be power-of-two\n");
2050 return -EINVAL;
2051 }
2052
2053 return 0;
2054 }
2055
2056 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)2057 static bool __null_setup_fault(struct fault_attr *attr, char *str)
2058 {
2059 if (!str[0])
2060 return true;
2061
2062 if (!setup_fault_attr(attr, str))
2063 return false;
2064
2065 attr->verbose = 0;
2066 return true;
2067 }
2068 #endif
2069
null_setup_fault(void)2070 static bool null_setup_fault(void)
2071 {
2072 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2073 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
2074 return false;
2075 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
2076 return false;
2077 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
2078 return false;
2079 #endif
2080 return true;
2081 }
2082
null_add_dev(struct nullb_device * dev)2083 static int null_add_dev(struct nullb_device *dev)
2084 {
2085 struct nullb *nullb;
2086 int rv;
2087
2088 rv = null_validate_conf(dev);
2089 if (rv)
2090 return rv;
2091
2092 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
2093 if (!nullb) {
2094 rv = -ENOMEM;
2095 goto out;
2096 }
2097 nullb->dev = dev;
2098 dev->nullb = nullb;
2099
2100 spin_lock_init(&nullb->lock);
2101
2102 rv = setup_queues(nullb);
2103 if (rv)
2104 goto out_free_nullb;
2105
2106 if (dev->queue_mode == NULL_Q_MQ) {
2107 if (shared_tags) {
2108 nullb->tag_set = &tag_set;
2109 rv = 0;
2110 } else {
2111 nullb->tag_set = &nullb->__tag_set;
2112 rv = null_init_tag_set(nullb, nullb->tag_set);
2113 }
2114
2115 if (rv)
2116 goto out_cleanup_queues;
2117
2118 nullb->tag_set->timeout = 5 * HZ;
2119 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2120 if (IS_ERR(nullb->disk)) {
2121 rv = PTR_ERR(nullb->disk);
2122 goto out_cleanup_tags;
2123 }
2124 nullb->q = nullb->disk->queue;
2125 } else if (dev->queue_mode == NULL_Q_BIO) {
2126 rv = -ENOMEM;
2127 nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2128 if (!nullb->disk)
2129 goto out_cleanup_queues;
2130
2131 nullb->q = nullb->disk->queue;
2132 rv = init_driver_queues(nullb);
2133 if (rv)
2134 goto out_cleanup_disk;
2135 }
2136
2137 if (dev->mbps) {
2138 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2139 nullb_setup_bwtimer(nullb);
2140 }
2141
2142 if (dev->cache_size > 0) {
2143 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2144 blk_queue_write_cache(nullb->q, true, true);
2145 }
2146
2147 if (dev->zoned) {
2148 rv = null_init_zoned_dev(dev, nullb->q);
2149 if (rv)
2150 goto out_cleanup_disk;
2151 }
2152
2153 nullb->q->queuedata = nullb;
2154 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2155
2156 mutex_lock(&lock);
2157 rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2158 if (rv < 0) {
2159 mutex_unlock(&lock);
2160 goto out_cleanup_zone;
2161 }
2162 nullb->index = rv;
2163 dev->index = rv;
2164 mutex_unlock(&lock);
2165
2166 blk_queue_logical_block_size(nullb->q, dev->blocksize);
2167 blk_queue_physical_block_size(nullb->q, dev->blocksize);
2168 if (!dev->max_sectors)
2169 dev->max_sectors = queue_max_hw_sectors(nullb->q);
2170 dev->max_sectors = min(dev->max_sectors, BLK_DEF_MAX_SECTORS);
2171 blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2172
2173 if (dev->virt_boundary)
2174 blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2175
2176 null_config_discard(nullb);
2177
2178 if (config_item_name(&dev->group.cg_item)) {
2179 /* Use configfs dir name as the device name */
2180 snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2181 "%s", config_item_name(&dev->group.cg_item));
2182 } else {
2183 sprintf(nullb->disk_name, "nullb%d", nullb->index);
2184 }
2185
2186 rv = null_gendisk_register(nullb);
2187 if (rv)
2188 goto out_ida_free;
2189
2190 mutex_lock(&lock);
2191 list_add_tail(&nullb->list, &nullb_list);
2192 mutex_unlock(&lock);
2193
2194 pr_info("disk %s created\n", nullb->disk_name);
2195
2196 return 0;
2197
2198 out_ida_free:
2199 ida_free(&nullb_indexes, nullb->index);
2200 out_cleanup_zone:
2201 null_free_zoned_dev(dev);
2202 out_cleanup_disk:
2203 put_disk(nullb->disk);
2204 out_cleanup_tags:
2205 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2206 blk_mq_free_tag_set(nullb->tag_set);
2207 out_cleanup_queues:
2208 cleanup_queues(nullb);
2209 out_free_nullb:
2210 kfree(nullb);
2211 dev->nullb = NULL;
2212 out:
2213 return rv;
2214 }
2215
null_find_dev_by_name(const char * name)2216 static struct nullb *null_find_dev_by_name(const char *name)
2217 {
2218 struct nullb *nullb = NULL, *nb;
2219
2220 mutex_lock(&lock);
2221 list_for_each_entry(nb, &nullb_list, list) {
2222 if (strcmp(nb->disk_name, name) == 0) {
2223 nullb = nb;
2224 break;
2225 }
2226 }
2227 mutex_unlock(&lock);
2228
2229 return nullb;
2230 }
2231
null_create_dev(void)2232 static int null_create_dev(void)
2233 {
2234 struct nullb_device *dev;
2235 int ret;
2236
2237 dev = null_alloc_dev();
2238 if (!dev)
2239 return -ENOMEM;
2240
2241 ret = null_add_dev(dev);
2242 if (ret) {
2243 null_free_dev(dev);
2244 return ret;
2245 }
2246
2247 return 0;
2248 }
2249
null_destroy_dev(struct nullb * nullb)2250 static void null_destroy_dev(struct nullb *nullb)
2251 {
2252 struct nullb_device *dev = nullb->dev;
2253
2254 null_del_dev(nullb);
2255 null_free_device_storage(dev, false);
2256 null_free_dev(dev);
2257 }
2258
null_init(void)2259 static int __init null_init(void)
2260 {
2261 int ret = 0;
2262 unsigned int i;
2263 struct nullb *nullb;
2264
2265 if (g_bs > PAGE_SIZE) {
2266 pr_warn("invalid block size\n");
2267 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2268 g_bs = PAGE_SIZE;
2269 }
2270
2271 if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
2272 pr_warn("invalid max sectors\n");
2273 pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
2274 g_max_sectors = BLK_DEF_MAX_SECTORS;
2275 }
2276
2277 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2278 pr_err("invalid home_node value\n");
2279 g_home_node = NUMA_NO_NODE;
2280 }
2281
2282 if (!null_setup_fault())
2283 return -EINVAL;
2284
2285 if (g_queue_mode == NULL_Q_RQ) {
2286 pr_err("legacy IO path is no longer available\n");
2287 return -EINVAL;
2288 }
2289
2290 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2291 if (g_submit_queues != nr_online_nodes) {
2292 pr_warn("submit_queues param is set to %u.\n",
2293 nr_online_nodes);
2294 g_submit_queues = nr_online_nodes;
2295 }
2296 } else if (g_submit_queues > nr_cpu_ids) {
2297 g_submit_queues = nr_cpu_ids;
2298 } else if (g_submit_queues <= 0) {
2299 g_submit_queues = 1;
2300 }
2301
2302 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2303 ret = null_init_tag_set(NULL, &tag_set);
2304 if (ret)
2305 return ret;
2306 }
2307
2308 config_group_init(&nullb_subsys.su_group);
2309 mutex_init(&nullb_subsys.su_mutex);
2310
2311 ret = configfs_register_subsystem(&nullb_subsys);
2312 if (ret)
2313 goto err_tagset;
2314
2315 mutex_init(&lock);
2316
2317 null_major = register_blkdev(0, "nullb");
2318 if (null_major < 0) {
2319 ret = null_major;
2320 goto err_conf;
2321 }
2322
2323 for (i = 0; i < nr_devices; i++) {
2324 ret = null_create_dev();
2325 if (ret)
2326 goto err_dev;
2327 }
2328
2329 pr_info("module loaded\n");
2330 return 0;
2331
2332 err_dev:
2333 while (!list_empty(&nullb_list)) {
2334 nullb = list_entry(nullb_list.next, struct nullb, list);
2335 null_destroy_dev(nullb);
2336 }
2337 unregister_blkdev(null_major, "nullb");
2338 err_conf:
2339 configfs_unregister_subsystem(&nullb_subsys);
2340 err_tagset:
2341 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2342 blk_mq_free_tag_set(&tag_set);
2343 return ret;
2344 }
2345
null_exit(void)2346 static void __exit null_exit(void)
2347 {
2348 struct nullb *nullb;
2349
2350 configfs_unregister_subsystem(&nullb_subsys);
2351
2352 unregister_blkdev(null_major, "nullb");
2353
2354 mutex_lock(&lock);
2355 while (!list_empty(&nullb_list)) {
2356 nullb = list_entry(nullb_list.next, struct nullb, list);
2357 null_destroy_dev(nullb);
2358 }
2359 mutex_unlock(&lock);
2360
2361 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2362 blk_mq_free_tag_set(&tag_set);
2363 }
2364
2365 module_init(null_init);
2366 module_exit(null_exit);
2367
2368 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2369 MODULE_LICENSE("GPL");
2370