1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18 #define pr_fmt(fmt) "PM: " fmt
19
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 /*
44 * The entries in the dpm_list list are in a depth first order, simply
45 * because children are guaranteed to be discovered after parents, and
46 * are inserted at the back of the list on discovery.
47 *
48 * Since device_pm_add() may be called with a device lock held,
49 * we must never try to acquire a device lock while holding
50 * dpm_list_mutex.
51 */
52
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62
63 static int async_error;
64
pm_verb(int event)65 static const char *pm_verb(int event)
66 {
67 switch (event) {
68 case PM_EVENT_SUSPEND:
69 return "suspend";
70 case PM_EVENT_RESUME:
71 return "resume";
72 case PM_EVENT_FREEZE:
73 return "freeze";
74 case PM_EVENT_QUIESCE:
75 return "quiesce";
76 case PM_EVENT_HIBERNATE:
77 return "hibernate";
78 case PM_EVENT_THAW:
79 return "thaw";
80 case PM_EVENT_RESTORE:
81 return "restore";
82 case PM_EVENT_RECOVER:
83 return "recover";
84 default:
85 return "(unknown PM event)";
86 }
87 }
88
89 /**
90 * device_pm_sleep_init - Initialize system suspend-related device fields.
91 * @dev: Device object being initialized.
92 */
device_pm_sleep_init(struct device * dev)93 void device_pm_sleep_init(struct device *dev)
94 {
95 dev->power.is_prepared = false;
96 dev->power.is_suspended = false;
97 dev->power.is_noirq_suspended = false;
98 dev->power.is_late_suspended = false;
99 init_completion(&dev->power.completion);
100 complete_all(&dev->power.completion);
101 dev->power.wakeup = NULL;
102 INIT_LIST_HEAD(&dev->power.entry);
103 }
104
105 /**
106 * device_pm_lock - Lock the list of active devices used by the PM core.
107 */
device_pm_lock(void)108 void device_pm_lock(void)
109 {
110 mutex_lock(&dpm_list_mtx);
111 }
112
113 /**
114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 */
device_pm_unlock(void)116 void device_pm_unlock(void)
117 {
118 mutex_unlock(&dpm_list_mtx);
119 }
120
121 /**
122 * device_pm_add - Add a device to the PM core's list of active devices.
123 * @dev: Device to add to the list.
124 */
device_pm_add(struct device * dev)125 void device_pm_add(struct device *dev)
126 {
127 /* Skip PM setup/initialization. */
128 if (device_pm_not_required(dev))
129 return;
130
131 pr_debug("Adding info for %s:%s\n",
132 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
133 device_pm_check_callbacks(dev);
134 mutex_lock(&dpm_list_mtx);
135 if (dev->parent && dev->parent->power.is_prepared)
136 dev_warn(dev, "parent %s should not be sleeping\n",
137 dev_name(dev->parent));
138 list_add_tail(&dev->power.entry, &dpm_list);
139 dev->power.in_dpm_list = true;
140 mutex_unlock(&dpm_list_mtx);
141 }
142
143 /**
144 * device_pm_remove - Remove a device from the PM core's list of active devices.
145 * @dev: Device to be removed from the list.
146 */
device_pm_remove(struct device * dev)147 void device_pm_remove(struct device *dev)
148 {
149 if (device_pm_not_required(dev))
150 return;
151
152 pr_debug("Removing info for %s:%s\n",
153 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
154 complete_all(&dev->power.completion);
155 mutex_lock(&dpm_list_mtx);
156 list_del_init(&dev->power.entry);
157 dev->power.in_dpm_list = false;
158 mutex_unlock(&dpm_list_mtx);
159 device_wakeup_disable(dev);
160 pm_runtime_remove(dev);
161 device_pm_check_callbacks(dev);
162 }
163
164 /**
165 * device_pm_move_before - Move device in the PM core's list of active devices.
166 * @deva: Device to move in dpm_list.
167 * @devb: Device @deva should come before.
168 */
device_pm_move_before(struct device * deva,struct device * devb)169 void device_pm_move_before(struct device *deva, struct device *devb)
170 {
171 pr_debug("Moving %s:%s before %s:%s\n",
172 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
173 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
174 /* Delete deva from dpm_list and reinsert before devb. */
175 list_move_tail(&deva->power.entry, &devb->power.entry);
176 }
177
178 /**
179 * device_pm_move_after - Move device in the PM core's list of active devices.
180 * @deva: Device to move in dpm_list.
181 * @devb: Device @deva should come after.
182 */
device_pm_move_after(struct device * deva,struct device * devb)183 void device_pm_move_after(struct device *deva, struct device *devb)
184 {
185 pr_debug("Moving %s:%s after %s:%s\n",
186 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
187 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
188 /* Delete deva from dpm_list and reinsert after devb. */
189 list_move(&deva->power.entry, &devb->power.entry);
190 }
191
192 /**
193 * device_pm_move_last - Move device to end of the PM core's list of devices.
194 * @dev: Device to move in dpm_list.
195 */
device_pm_move_last(struct device * dev)196 void device_pm_move_last(struct device *dev)
197 {
198 pr_debug("Moving %s:%s to end of list\n",
199 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
200 list_move_tail(&dev->power.entry, &dpm_list);
201 }
202
initcall_debug_start(struct device * dev,void * cb)203 static ktime_t initcall_debug_start(struct device *dev, void *cb)
204 {
205 if (!pm_print_times_enabled)
206 return 0;
207
208 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
209 task_pid_nr(current),
210 dev->parent ? dev_name(dev->parent) : "none");
211 return ktime_get();
212 }
213
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)214 static void initcall_debug_report(struct device *dev, ktime_t calltime,
215 void *cb, int error)
216 {
217 ktime_t rettime;
218 s64 nsecs;
219
220 if (!pm_print_times_enabled)
221 return;
222
223 rettime = ktime_get();
224 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
225
226 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
227 (unsigned long long)nsecs >> 10);
228 }
229
230 /**
231 * dpm_wait - Wait for a PM operation to complete.
232 * @dev: Device to wait for.
233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
234 */
dpm_wait(struct device * dev,bool async)235 static void dpm_wait(struct device *dev, bool async)
236 {
237 if (!dev)
238 return;
239
240 if (async || (pm_async_enabled && dev->power.async_suspend))
241 wait_for_completion(&dev->power.completion);
242 }
243
dpm_wait_fn(struct device * dev,void * async_ptr)244 static int dpm_wait_fn(struct device *dev, void *async_ptr)
245 {
246 dpm_wait(dev, *((bool *)async_ptr));
247 return 0;
248 }
249
dpm_wait_for_children(struct device * dev,bool async)250 static void dpm_wait_for_children(struct device *dev, bool async)
251 {
252 device_for_each_child(dev, &async, dpm_wait_fn);
253 }
254
dpm_wait_for_suppliers(struct device * dev,bool async)255 static void dpm_wait_for_suppliers(struct device *dev, bool async)
256 {
257 struct device_link *link;
258 int idx;
259
260 idx = device_links_read_lock();
261
262 /*
263 * If the supplier goes away right after we've checked the link to it,
264 * we'll wait for its completion to change the state, but that's fine,
265 * because the only things that will block as a result are the SRCU
266 * callbacks freeing the link objects for the links in the list we're
267 * walking.
268 */
269 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
270 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
271 dpm_wait(link->supplier, async);
272
273 device_links_read_unlock(idx);
274 }
275
dpm_wait_for_superior(struct device * dev,bool async)276 static void dpm_wait_for_superior(struct device *dev, bool async)
277 {
278 dpm_wait(dev->parent, async);
279 dpm_wait_for_suppliers(dev, async);
280 }
281
dpm_wait_for_consumers(struct device * dev,bool async)282 static void dpm_wait_for_consumers(struct device *dev, bool async)
283 {
284 struct device_link *link;
285 int idx;
286
287 idx = device_links_read_lock();
288
289 /*
290 * The status of a device link can only be changed from "dormant" by a
291 * probe, but that cannot happen during system suspend/resume. In
292 * theory it can change to "dormant" at that time, but then it is
293 * reasonable to wait for the target device anyway (eg. if it goes
294 * away, it's better to wait for it to go away completely and then
295 * continue instead of trying to continue in parallel with its
296 * unregistration).
297 */
298 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
299 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
300 dpm_wait(link->consumer, async);
301
302 device_links_read_unlock(idx);
303 }
304
dpm_wait_for_subordinate(struct device * dev,bool async)305 static void dpm_wait_for_subordinate(struct device *dev, bool async)
306 {
307 dpm_wait_for_children(dev, async);
308 dpm_wait_for_consumers(dev, async);
309 }
310
311 /**
312 * pm_op - Return the PM operation appropriate for given PM event.
313 * @ops: PM operations to choose from.
314 * @state: PM transition of the system being carried out.
315 */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)316 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
317 {
318 switch (state.event) {
319 #ifdef CONFIG_SUSPEND
320 case PM_EVENT_SUSPEND:
321 return ops->suspend;
322 case PM_EVENT_RESUME:
323 return ops->resume;
324 #endif /* CONFIG_SUSPEND */
325 #ifdef CONFIG_HIBERNATE_CALLBACKS
326 case PM_EVENT_FREEZE:
327 case PM_EVENT_QUIESCE:
328 return ops->freeze;
329 case PM_EVENT_HIBERNATE:
330 return ops->poweroff;
331 case PM_EVENT_THAW:
332 case PM_EVENT_RECOVER:
333 return ops->thaw;
334 break;
335 case PM_EVENT_RESTORE:
336 return ops->restore;
337 #endif /* CONFIG_HIBERNATE_CALLBACKS */
338 }
339
340 return NULL;
341 }
342
343 /**
344 * pm_late_early_op - Return the PM operation appropriate for given PM event.
345 * @ops: PM operations to choose from.
346 * @state: PM transition of the system being carried out.
347 *
348 * Runtime PM is disabled for @dev while this function is being executed.
349 */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)350 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
351 pm_message_t state)
352 {
353 switch (state.event) {
354 #ifdef CONFIG_SUSPEND
355 case PM_EVENT_SUSPEND:
356 return ops->suspend_late;
357 case PM_EVENT_RESUME:
358 return ops->resume_early;
359 #endif /* CONFIG_SUSPEND */
360 #ifdef CONFIG_HIBERNATE_CALLBACKS
361 case PM_EVENT_FREEZE:
362 case PM_EVENT_QUIESCE:
363 return ops->freeze_late;
364 case PM_EVENT_HIBERNATE:
365 return ops->poweroff_late;
366 case PM_EVENT_THAW:
367 case PM_EVENT_RECOVER:
368 return ops->thaw_early;
369 case PM_EVENT_RESTORE:
370 return ops->restore_early;
371 #endif /* CONFIG_HIBERNATE_CALLBACKS */
372 }
373
374 return NULL;
375 }
376
377 /**
378 * pm_noirq_op - Return the PM operation appropriate for given PM event.
379 * @ops: PM operations to choose from.
380 * @state: PM transition of the system being carried out.
381 *
382 * The driver of @dev will not receive interrupts while this function is being
383 * executed.
384 */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)385 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
386 {
387 switch (state.event) {
388 #ifdef CONFIG_SUSPEND
389 case PM_EVENT_SUSPEND:
390 return ops->suspend_noirq;
391 case PM_EVENT_RESUME:
392 return ops->resume_noirq;
393 #endif /* CONFIG_SUSPEND */
394 #ifdef CONFIG_HIBERNATE_CALLBACKS
395 case PM_EVENT_FREEZE:
396 case PM_EVENT_QUIESCE:
397 return ops->freeze_noirq;
398 case PM_EVENT_HIBERNATE:
399 return ops->poweroff_noirq;
400 case PM_EVENT_THAW:
401 case PM_EVENT_RECOVER:
402 return ops->thaw_noirq;
403 case PM_EVENT_RESTORE:
404 return ops->restore_noirq;
405 #endif /* CONFIG_HIBERNATE_CALLBACKS */
406 }
407
408 return NULL;
409 }
410
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)411 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
412 {
413 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
414 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
415 ", may wakeup" : "");
416 }
417
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)418 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
419 int error)
420 {
421 pr_err("Device %s failed to %s%s: error %d\n",
422 dev_name(dev), pm_verb(state.event), info, error);
423 }
424
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)425 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
426 const char *info)
427 {
428 ktime_t calltime;
429 u64 usecs64;
430 int usecs;
431
432 calltime = ktime_get();
433 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
434 do_div(usecs64, NSEC_PER_USEC);
435 usecs = usecs64;
436 if (usecs == 0)
437 usecs = 1;
438
439 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
440 info ?: "", info ? " " : "", pm_verb(state.event),
441 error ? "aborted" : "complete",
442 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
443 }
444
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)445 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
446 pm_message_t state, const char *info)
447 {
448 ktime_t calltime;
449 int error;
450
451 if (!cb)
452 return 0;
453
454 calltime = initcall_debug_start(dev, cb);
455
456 pm_dev_dbg(dev, state, info);
457 trace_device_pm_callback_start(dev, info, state.event);
458 error = cb(dev);
459 trace_device_pm_callback_end(dev, error);
460 suspend_report_result(cb, error);
461
462 initcall_debug_report(dev, calltime, cb, error);
463
464 return error;
465 }
466
467 #ifdef CONFIG_DPM_WATCHDOG
468 struct dpm_watchdog {
469 struct device *dev;
470 struct task_struct *tsk;
471 struct timer_list timer;
472 };
473
474 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
475 struct dpm_watchdog wd
476
477 /**
478 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
479 * @t: The timer that PM watchdog depends on.
480 *
481 * Called when a driver has timed out suspending or resuming.
482 * There's not much we can do here to recover so panic() to
483 * capture a crash-dump in pstore.
484 */
dpm_watchdog_handler(struct timer_list * t)485 static void dpm_watchdog_handler(struct timer_list *t)
486 {
487 struct dpm_watchdog *wd = from_timer(wd, t, timer);
488
489 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
490 show_stack(wd->tsk, NULL);
491 panic("%s %s: unrecoverable failure\n",
492 dev_driver_string(wd->dev), dev_name(wd->dev));
493 }
494
495 /**
496 * dpm_watchdog_set - Enable pm watchdog for given device.
497 * @wd: Watchdog. Must be allocated on the stack.
498 * @dev: Device to handle.
499 */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)500 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
501 {
502 struct timer_list *timer = &wd->timer;
503
504 wd->dev = dev;
505 wd->tsk = current;
506
507 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
508 /* use same timeout value for both suspend and resume */
509 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
510 add_timer(timer);
511 }
512
513 /**
514 * dpm_watchdog_clear - Disable suspend/resume watchdog.
515 * @wd: Watchdog to disable.
516 */
dpm_watchdog_clear(struct dpm_watchdog * wd)517 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
518 {
519 struct timer_list *timer = &wd->timer;
520
521 del_timer_sync(timer);
522 destroy_timer_on_stack(timer);
523 }
524 #else
525 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
526 #define dpm_watchdog_set(x, y)
527 #define dpm_watchdog_clear(x)
528 #endif
529
530 /*------------------------- Resume routines -------------------------*/
531
532 /**
533 * suspend_event - Return a "suspend" message for given "resume" one.
534 * @resume_msg: PM message representing a system-wide resume transition.
535 */
suspend_event(pm_message_t resume_msg)536 static pm_message_t suspend_event(pm_message_t resume_msg)
537 {
538 switch (resume_msg.event) {
539 case PM_EVENT_RESUME:
540 return PMSG_SUSPEND;
541 case PM_EVENT_THAW:
542 case PM_EVENT_RESTORE:
543 return PMSG_FREEZE;
544 case PM_EVENT_RECOVER:
545 return PMSG_HIBERNATE;
546 }
547 return PMSG_ON;
548 }
549
550 /**
551 * dev_pm_may_skip_resume - System-wide device resume optimization check.
552 * @dev: Target device.
553 *
554 * Checks whether or not the device may be left in suspend after a system-wide
555 * transition to the working state.
556 */
dev_pm_may_skip_resume(struct device * dev)557 bool dev_pm_may_skip_resume(struct device *dev)
558 {
559 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
560 }
561
dpm_subsys_resume_noirq_cb(struct device * dev,pm_message_t state,const char ** info_p)562 static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
563 pm_message_t state,
564 const char **info_p)
565 {
566 pm_callback_t callback;
567 const char *info;
568
569 if (dev->pm_domain) {
570 info = "noirq power domain ";
571 callback = pm_noirq_op(&dev->pm_domain->ops, state);
572 } else if (dev->type && dev->type->pm) {
573 info = "noirq type ";
574 callback = pm_noirq_op(dev->type->pm, state);
575 } else if (dev->class && dev->class->pm) {
576 info = "noirq class ";
577 callback = pm_noirq_op(dev->class->pm, state);
578 } else if (dev->bus && dev->bus->pm) {
579 info = "noirq bus ";
580 callback = pm_noirq_op(dev->bus->pm, state);
581 } else {
582 return NULL;
583 }
584
585 if (info_p)
586 *info_p = info;
587
588 return callback;
589 }
590
591 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
592 pm_message_t state,
593 const char **info_p);
594
595 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
596 pm_message_t state,
597 const char **info_p);
598
599 /**
600 * device_resume_noirq - Execute a "noirq resume" callback for given device.
601 * @dev: Device to handle.
602 * @state: PM transition of the system being carried out.
603 * @async: If true, the device is being resumed asynchronously.
604 *
605 * The driver of @dev will not receive interrupts while this function is being
606 * executed.
607 */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)608 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
609 {
610 pm_callback_t callback;
611 const char *info;
612 bool skip_resume;
613 int error = 0;
614
615 TRACE_DEVICE(dev);
616 TRACE_RESUME(0);
617
618 if (dev->power.syscore || dev->power.direct_complete)
619 goto Out;
620
621 if (!dev->power.is_noirq_suspended)
622 goto Out;
623
624 dpm_wait_for_superior(dev, async);
625
626 skip_resume = dev_pm_may_skip_resume(dev);
627
628 callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
629 if (callback)
630 goto Run;
631
632 if (skip_resume)
633 goto Skip;
634
635 if (dev_pm_smart_suspend_and_suspended(dev)) {
636 pm_message_t suspend_msg = suspend_event(state);
637
638 /*
639 * If "freeze" callbacks have been skipped during a transition
640 * related to hibernation, the subsequent "thaw" callbacks must
641 * be skipped too or bad things may happen. Otherwise, resume
642 * callbacks are going to be run for the device, so its runtime
643 * PM status must be changed to reflect the new state after the
644 * transition under way.
645 */
646 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
647 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
648 if (state.event == PM_EVENT_THAW) {
649 skip_resume = true;
650 goto Skip;
651 } else {
652 pm_runtime_set_active(dev);
653 }
654 }
655 }
656
657 if (dev->driver && dev->driver->pm) {
658 info = "noirq driver ";
659 callback = pm_noirq_op(dev->driver->pm, state);
660 }
661
662 Run:
663 error = dpm_run_callback(callback, dev, state, info);
664
665 Skip:
666 dev->power.is_noirq_suspended = false;
667
668 if (skip_resume) {
669 /* Make the next phases of resume skip the device. */
670 dev->power.is_late_suspended = false;
671 dev->power.is_suspended = false;
672 /*
673 * The device is going to be left in suspend, but it might not
674 * have been in runtime suspend before the system suspended, so
675 * its runtime PM status needs to be updated to avoid confusing
676 * the runtime PM framework when runtime PM is enabled for the
677 * device again.
678 */
679 pm_runtime_set_suspended(dev);
680 }
681
682 Out:
683 complete_all(&dev->power.completion);
684 TRACE_RESUME(error);
685 return error;
686 }
687
is_async(struct device * dev)688 static bool is_async(struct device *dev)
689 {
690 return dev->power.async_suspend && pm_async_enabled
691 && !pm_trace_is_enabled();
692 }
693
dpm_async_fn(struct device * dev,async_func_t func)694 static bool dpm_async_fn(struct device *dev, async_func_t func)
695 {
696 reinit_completion(&dev->power.completion);
697
698 if (is_async(dev)) {
699 get_device(dev);
700 async_schedule(func, dev);
701 return true;
702 }
703
704 return false;
705 }
706
async_resume_noirq(void * data,async_cookie_t cookie)707 static void async_resume_noirq(void *data, async_cookie_t cookie)
708 {
709 struct device *dev = (struct device *)data;
710 int error;
711
712 error = device_resume_noirq(dev, pm_transition, true);
713 if (error)
714 pm_dev_err(dev, pm_transition, " async", error);
715
716 put_device(dev);
717 }
718
dpm_noirq_resume_devices(pm_message_t state)719 static void dpm_noirq_resume_devices(pm_message_t state)
720 {
721 struct device *dev;
722 ktime_t starttime = ktime_get();
723
724 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
725 mutex_lock(&dpm_list_mtx);
726 pm_transition = state;
727
728 /*
729 * Advanced the async threads upfront,
730 * in case the starting of async threads is
731 * delayed by non-async resuming devices.
732 */
733 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
734 dpm_async_fn(dev, async_resume_noirq);
735
736 while (!list_empty(&dpm_noirq_list)) {
737 dev = to_device(dpm_noirq_list.next);
738 get_device(dev);
739 list_move_tail(&dev->power.entry, &dpm_late_early_list);
740 mutex_unlock(&dpm_list_mtx);
741
742 if (!is_async(dev)) {
743 int error;
744
745 error = device_resume_noirq(dev, state, false);
746 if (error) {
747 suspend_stats.failed_resume_noirq++;
748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749 dpm_save_failed_dev(dev_name(dev));
750 pm_dev_err(dev, state, " noirq", error);
751 }
752 }
753
754 mutex_lock(&dpm_list_mtx);
755 put_device(dev);
756 }
757 mutex_unlock(&dpm_list_mtx);
758 async_synchronize_full();
759 dpm_show_time(starttime, state, 0, "noirq");
760 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
761 }
762
763 /**
764 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
765 * @state: PM transition of the system being carried out.
766 *
767 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
768 * allow device drivers' interrupt handlers to be called.
769 */
dpm_resume_noirq(pm_message_t state)770 void dpm_resume_noirq(pm_message_t state)
771 {
772 dpm_noirq_resume_devices(state);
773
774 resume_device_irqs();
775 device_wakeup_disarm_wake_irqs();
776
777 cpuidle_resume();
778 }
779
dpm_subsys_resume_early_cb(struct device * dev,pm_message_t state,const char ** info_p)780 static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
781 pm_message_t state,
782 const char **info_p)
783 {
784 pm_callback_t callback;
785 const char *info;
786
787 if (dev->pm_domain) {
788 info = "early power domain ";
789 callback = pm_late_early_op(&dev->pm_domain->ops, state);
790 } else if (dev->type && dev->type->pm) {
791 info = "early type ";
792 callback = pm_late_early_op(dev->type->pm, state);
793 } else if (dev->class && dev->class->pm) {
794 info = "early class ";
795 callback = pm_late_early_op(dev->class->pm, state);
796 } else if (dev->bus && dev->bus->pm) {
797 info = "early bus ";
798 callback = pm_late_early_op(dev->bus->pm, state);
799 } else {
800 return NULL;
801 }
802
803 if (info_p)
804 *info_p = info;
805
806 return callback;
807 }
808
809 /**
810 * device_resume_early - Execute an "early resume" callback for given device.
811 * @dev: Device to handle.
812 * @state: PM transition of the system being carried out.
813 * @async: If true, the device is being resumed asynchronously.
814 *
815 * Runtime PM is disabled for @dev while this function is being executed.
816 */
device_resume_early(struct device * dev,pm_message_t state,bool async)817 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
818 {
819 pm_callback_t callback;
820 const char *info;
821 int error = 0;
822
823 TRACE_DEVICE(dev);
824 TRACE_RESUME(0);
825
826 if (dev->power.syscore || dev->power.direct_complete)
827 goto Out;
828
829 if (!dev->power.is_late_suspended)
830 goto Out;
831
832 dpm_wait_for_superior(dev, async);
833
834 callback = dpm_subsys_resume_early_cb(dev, state, &info);
835
836 if (!callback && dev->driver && dev->driver->pm) {
837 info = "early driver ";
838 callback = pm_late_early_op(dev->driver->pm, state);
839 }
840
841 error = dpm_run_callback(callback, dev, state, info);
842 dev->power.is_late_suspended = false;
843
844 Out:
845 TRACE_RESUME(error);
846
847 pm_runtime_enable(dev);
848 complete_all(&dev->power.completion);
849 return error;
850 }
851
async_resume_early(void * data,async_cookie_t cookie)852 static void async_resume_early(void *data, async_cookie_t cookie)
853 {
854 struct device *dev = (struct device *)data;
855 int error;
856
857 error = device_resume_early(dev, pm_transition, true);
858 if (error)
859 pm_dev_err(dev, pm_transition, " async", error);
860
861 put_device(dev);
862 }
863
864 /**
865 * dpm_resume_early - Execute "early resume" callbacks for all devices.
866 * @state: PM transition of the system being carried out.
867 */
dpm_resume_early(pm_message_t state)868 void dpm_resume_early(pm_message_t state)
869 {
870 struct device *dev;
871 ktime_t starttime = ktime_get();
872
873 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
874 mutex_lock(&dpm_list_mtx);
875 pm_transition = state;
876
877 /*
878 * Advanced the async threads upfront,
879 * in case the starting of async threads is
880 * delayed by non-async resuming devices.
881 */
882 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
883 dpm_async_fn(dev, async_resume_early);
884
885 while (!list_empty(&dpm_late_early_list)) {
886 dev = to_device(dpm_late_early_list.next);
887 get_device(dev);
888 list_move_tail(&dev->power.entry, &dpm_suspended_list);
889 mutex_unlock(&dpm_list_mtx);
890
891 if (!is_async(dev)) {
892 int error;
893
894 error = device_resume_early(dev, state, false);
895 if (error) {
896 suspend_stats.failed_resume_early++;
897 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
898 dpm_save_failed_dev(dev_name(dev));
899 pm_dev_err(dev, state, " early", error);
900 }
901 }
902 mutex_lock(&dpm_list_mtx);
903 put_device(dev);
904 }
905 mutex_unlock(&dpm_list_mtx);
906 async_synchronize_full();
907 dpm_show_time(starttime, state, 0, "early");
908 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
909 }
910
911 /**
912 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
913 * @state: PM transition of the system being carried out.
914 */
dpm_resume_start(pm_message_t state)915 void dpm_resume_start(pm_message_t state)
916 {
917 dpm_resume_noirq(state);
918 dpm_resume_early(state);
919 }
920 EXPORT_SYMBOL_GPL(dpm_resume_start);
921
922 /**
923 * device_resume - Execute "resume" callbacks for given device.
924 * @dev: Device to handle.
925 * @state: PM transition of the system being carried out.
926 * @async: If true, the device is being resumed asynchronously.
927 */
device_resume(struct device * dev,pm_message_t state,bool async)928 static int device_resume(struct device *dev, pm_message_t state, bool async)
929 {
930 pm_callback_t callback = NULL;
931 const char *info = NULL;
932 int error = 0;
933 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
934
935 TRACE_DEVICE(dev);
936 TRACE_RESUME(0);
937
938 if (dev->power.syscore)
939 goto Complete;
940
941 if (dev->power.direct_complete) {
942 /* Match the pm_runtime_disable() in __device_suspend(). */
943 pm_runtime_enable(dev);
944 goto Complete;
945 }
946
947 dpm_wait_for_superior(dev, async);
948 dpm_watchdog_set(&wd, dev);
949 device_lock(dev);
950
951 /*
952 * This is a fib. But we'll allow new children to be added below
953 * a resumed device, even if the device hasn't been completed yet.
954 */
955 dev->power.is_prepared = false;
956
957 if (!dev->power.is_suspended)
958 goto Unlock;
959
960 if (dev->pm_domain) {
961 info = "power domain ";
962 callback = pm_op(&dev->pm_domain->ops, state);
963 goto Driver;
964 }
965
966 if (dev->type && dev->type->pm) {
967 info = "type ";
968 callback = pm_op(dev->type->pm, state);
969 goto Driver;
970 }
971
972 if (dev->class && dev->class->pm) {
973 info = "class ";
974 callback = pm_op(dev->class->pm, state);
975 goto Driver;
976 }
977
978 if (dev->bus) {
979 if (dev->bus->pm) {
980 info = "bus ";
981 callback = pm_op(dev->bus->pm, state);
982 } else if (dev->bus->resume) {
983 info = "legacy bus ";
984 callback = dev->bus->resume;
985 goto End;
986 }
987 }
988
989 Driver:
990 if (!callback && dev->driver && dev->driver->pm) {
991 info = "driver ";
992 callback = pm_op(dev->driver->pm, state);
993 }
994
995 End:
996 error = dpm_run_callback(callback, dev, state, info);
997 dev->power.is_suspended = false;
998
999 Unlock:
1000 device_unlock(dev);
1001 dpm_watchdog_clear(&wd);
1002
1003 Complete:
1004 complete_all(&dev->power.completion);
1005
1006 TRACE_RESUME(error);
1007
1008 return error;
1009 }
1010
async_resume(void * data,async_cookie_t cookie)1011 static void async_resume(void *data, async_cookie_t cookie)
1012 {
1013 struct device *dev = (struct device *)data;
1014 int error;
1015
1016 error = device_resume(dev, pm_transition, true);
1017 if (error)
1018 pm_dev_err(dev, pm_transition, " async", error);
1019 put_device(dev);
1020 }
1021
1022 /**
1023 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1024 * @state: PM transition of the system being carried out.
1025 *
1026 * Execute the appropriate "resume" callback for all devices whose status
1027 * indicates that they are suspended.
1028 */
dpm_resume(pm_message_t state)1029 void dpm_resume(pm_message_t state)
1030 {
1031 struct device *dev;
1032 ktime_t starttime = ktime_get();
1033
1034 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1035 might_sleep();
1036
1037 mutex_lock(&dpm_list_mtx);
1038 pm_transition = state;
1039 async_error = 0;
1040
1041 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1042 dpm_async_fn(dev, async_resume);
1043
1044 while (!list_empty(&dpm_suspended_list)) {
1045 dev = to_device(dpm_suspended_list.next);
1046 get_device(dev);
1047 if (!is_async(dev)) {
1048 int error;
1049
1050 mutex_unlock(&dpm_list_mtx);
1051
1052 error = device_resume(dev, state, false);
1053 if (error) {
1054 suspend_stats.failed_resume++;
1055 dpm_save_failed_step(SUSPEND_RESUME);
1056 dpm_save_failed_dev(dev_name(dev));
1057 pm_dev_err(dev, state, "", error);
1058 }
1059
1060 mutex_lock(&dpm_list_mtx);
1061 }
1062 if (!list_empty(&dev->power.entry))
1063 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1064 put_device(dev);
1065 }
1066 mutex_unlock(&dpm_list_mtx);
1067 async_synchronize_full();
1068 dpm_show_time(starttime, state, 0, NULL);
1069
1070 cpufreq_resume();
1071 devfreq_resume();
1072 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1073 }
1074
1075 /**
1076 * device_complete - Complete a PM transition for given device.
1077 * @dev: Device to handle.
1078 * @state: PM transition of the system being carried out.
1079 */
device_complete(struct device * dev,pm_message_t state)1080 static void device_complete(struct device *dev, pm_message_t state)
1081 {
1082 void (*callback)(struct device *) = NULL;
1083 const char *info = NULL;
1084
1085 if (dev->power.syscore)
1086 return;
1087
1088 device_lock(dev);
1089
1090 if (dev->pm_domain) {
1091 info = "completing power domain ";
1092 callback = dev->pm_domain->ops.complete;
1093 } else if (dev->type && dev->type->pm) {
1094 info = "completing type ";
1095 callback = dev->type->pm->complete;
1096 } else if (dev->class && dev->class->pm) {
1097 info = "completing class ";
1098 callback = dev->class->pm->complete;
1099 } else if (dev->bus && dev->bus->pm) {
1100 info = "completing bus ";
1101 callback = dev->bus->pm->complete;
1102 }
1103
1104 if (!callback && dev->driver && dev->driver->pm) {
1105 info = "completing driver ";
1106 callback = dev->driver->pm->complete;
1107 }
1108
1109 if (callback) {
1110 pm_dev_dbg(dev, state, info);
1111 callback(dev);
1112 }
1113
1114 device_unlock(dev);
1115
1116 pm_runtime_put(dev);
1117 }
1118
1119 /**
1120 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1121 * @state: PM transition of the system being carried out.
1122 *
1123 * Execute the ->complete() callbacks for all devices whose PM status is not
1124 * DPM_ON (this allows new devices to be registered).
1125 */
dpm_complete(pm_message_t state)1126 void dpm_complete(pm_message_t state)
1127 {
1128 struct list_head list;
1129
1130 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1131 might_sleep();
1132
1133 INIT_LIST_HEAD(&list);
1134 mutex_lock(&dpm_list_mtx);
1135 while (!list_empty(&dpm_prepared_list)) {
1136 struct device *dev = to_device(dpm_prepared_list.prev);
1137
1138 get_device(dev);
1139 dev->power.is_prepared = false;
1140 list_move(&dev->power.entry, &list);
1141 mutex_unlock(&dpm_list_mtx);
1142
1143 trace_device_pm_callback_start(dev, "", state.event);
1144 device_complete(dev, state);
1145 trace_device_pm_callback_end(dev, 0);
1146
1147 mutex_lock(&dpm_list_mtx);
1148 put_device(dev);
1149 }
1150 list_splice(&list, &dpm_list);
1151 mutex_unlock(&dpm_list_mtx);
1152
1153 /* Allow device probing and trigger re-probing of deferred devices */
1154 device_unblock_probing();
1155 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1156 }
1157
1158 /**
1159 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Execute "resume" callbacks for all devices and complete the PM transition of
1163 * the system.
1164 */
dpm_resume_end(pm_message_t state)1165 void dpm_resume_end(pm_message_t state)
1166 {
1167 dpm_resume(state);
1168 dpm_complete(state);
1169 }
1170 EXPORT_SYMBOL_GPL(dpm_resume_end);
1171
1172
1173 /*------------------------- Suspend routines -------------------------*/
1174
1175 /**
1176 * resume_event - Return a "resume" message for given "suspend" sleep state.
1177 * @sleep_state: PM message representing a sleep state.
1178 *
1179 * Return a PM message representing the resume event corresponding to given
1180 * sleep state.
1181 */
resume_event(pm_message_t sleep_state)1182 static pm_message_t resume_event(pm_message_t sleep_state)
1183 {
1184 switch (sleep_state.event) {
1185 case PM_EVENT_SUSPEND:
1186 return PMSG_RESUME;
1187 case PM_EVENT_FREEZE:
1188 case PM_EVENT_QUIESCE:
1189 return PMSG_RECOVER;
1190 case PM_EVENT_HIBERNATE:
1191 return PMSG_RESTORE;
1192 }
1193 return PMSG_ON;
1194 }
1195
dpm_superior_set_must_resume(struct device * dev)1196 static void dpm_superior_set_must_resume(struct device *dev)
1197 {
1198 struct device_link *link;
1199 int idx;
1200
1201 if (dev->parent)
1202 dev->parent->power.must_resume = true;
1203
1204 idx = device_links_read_lock();
1205
1206 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1207 link->supplier->power.must_resume = true;
1208
1209 device_links_read_unlock(idx);
1210 }
1211
dpm_subsys_suspend_noirq_cb(struct device * dev,pm_message_t state,const char ** info_p)1212 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1213 pm_message_t state,
1214 const char **info_p)
1215 {
1216 pm_callback_t callback;
1217 const char *info;
1218
1219 if (dev->pm_domain) {
1220 info = "noirq power domain ";
1221 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1222 } else if (dev->type && dev->type->pm) {
1223 info = "noirq type ";
1224 callback = pm_noirq_op(dev->type->pm, state);
1225 } else if (dev->class && dev->class->pm) {
1226 info = "noirq class ";
1227 callback = pm_noirq_op(dev->class->pm, state);
1228 } else if (dev->bus && dev->bus->pm) {
1229 info = "noirq bus ";
1230 callback = pm_noirq_op(dev->bus->pm, state);
1231 } else {
1232 return NULL;
1233 }
1234
1235 if (info_p)
1236 *info_p = info;
1237
1238 return callback;
1239 }
1240
device_must_resume(struct device * dev,pm_message_t state,bool no_subsys_suspend_noirq)1241 static bool device_must_resume(struct device *dev, pm_message_t state,
1242 bool no_subsys_suspend_noirq)
1243 {
1244 pm_message_t resume_msg = resume_event(state);
1245
1246 /*
1247 * If all of the device driver's "noirq", "late" and "early" callbacks
1248 * are invoked directly by the core, the decision to allow the device to
1249 * stay in suspend can be based on its current runtime PM status and its
1250 * wakeup settings.
1251 */
1252 if (no_subsys_suspend_noirq &&
1253 !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1254 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1255 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1256 return !pm_runtime_status_suspended(dev) &&
1257 (resume_msg.event != PM_EVENT_RESUME ||
1258 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1259
1260 /*
1261 * The only safe strategy here is to require that if the device may not
1262 * be left in suspend, resume callbacks must be invoked for it.
1263 */
1264 return !dev->power.may_skip_resume;
1265 }
1266
1267 /**
1268 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1269 * @dev: Device to handle.
1270 * @state: PM transition of the system being carried out.
1271 * @async: If true, the device is being suspended asynchronously.
1272 *
1273 * The driver of @dev will not receive interrupts while this function is being
1274 * executed.
1275 */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1276 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1277 {
1278 pm_callback_t callback;
1279 const char *info;
1280 bool no_subsys_cb = false;
1281 int error = 0;
1282
1283 TRACE_DEVICE(dev);
1284 TRACE_SUSPEND(0);
1285
1286 dpm_wait_for_subordinate(dev, async);
1287
1288 if (async_error)
1289 goto Complete;
1290
1291 if (dev->power.syscore || dev->power.direct_complete)
1292 goto Complete;
1293
1294 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1295 if (callback)
1296 goto Run;
1297
1298 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1299
1300 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1301 goto Skip;
1302
1303 if (dev->driver && dev->driver->pm) {
1304 info = "noirq driver ";
1305 callback = pm_noirq_op(dev->driver->pm, state);
1306 }
1307
1308 Run:
1309 error = dpm_run_callback(callback, dev, state, info);
1310 if (error) {
1311 async_error = error;
1312 goto Complete;
1313 }
1314
1315 Skip:
1316 dev->power.is_noirq_suspended = true;
1317
1318 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1319 dev->power.must_resume = dev->power.must_resume ||
1320 atomic_read(&dev->power.usage_count) > 1 ||
1321 device_must_resume(dev, state, no_subsys_cb);
1322 } else {
1323 dev->power.must_resume = true;
1324 }
1325
1326 if (dev->power.must_resume)
1327 dpm_superior_set_must_resume(dev);
1328
1329 Complete:
1330 complete_all(&dev->power.completion);
1331 TRACE_SUSPEND(error);
1332 return error;
1333 }
1334
async_suspend_noirq(void * data,async_cookie_t cookie)1335 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1336 {
1337 struct device *dev = (struct device *)data;
1338 int error;
1339
1340 error = __device_suspend_noirq(dev, pm_transition, true);
1341 if (error) {
1342 dpm_save_failed_dev(dev_name(dev));
1343 pm_dev_err(dev, pm_transition, " async", error);
1344 }
1345
1346 put_device(dev);
1347 }
1348
device_suspend_noirq(struct device * dev)1349 static int device_suspend_noirq(struct device *dev)
1350 {
1351 if (dpm_async_fn(dev, async_suspend_noirq))
1352 return 0;
1353
1354 return __device_suspend_noirq(dev, pm_transition, false);
1355 }
1356
dpm_noirq_suspend_devices(pm_message_t state)1357 static int dpm_noirq_suspend_devices(pm_message_t state)
1358 {
1359 ktime_t starttime = ktime_get();
1360 int error = 0;
1361
1362 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1363 mutex_lock(&dpm_list_mtx);
1364 pm_transition = state;
1365 async_error = 0;
1366
1367 while (!list_empty(&dpm_late_early_list)) {
1368 struct device *dev = to_device(dpm_late_early_list.prev);
1369
1370 get_device(dev);
1371 mutex_unlock(&dpm_list_mtx);
1372
1373 error = device_suspend_noirq(dev);
1374
1375 mutex_lock(&dpm_list_mtx);
1376 if (error) {
1377 pm_dev_err(dev, state, " noirq", error);
1378 dpm_save_failed_dev(dev_name(dev));
1379 put_device(dev);
1380 break;
1381 }
1382 if (!list_empty(&dev->power.entry))
1383 list_move(&dev->power.entry, &dpm_noirq_list);
1384 put_device(dev);
1385
1386 if (async_error)
1387 break;
1388 }
1389 mutex_unlock(&dpm_list_mtx);
1390 async_synchronize_full();
1391 if (!error)
1392 error = async_error;
1393
1394 if (error) {
1395 suspend_stats.failed_suspend_noirq++;
1396 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1397 }
1398 dpm_show_time(starttime, state, error, "noirq");
1399 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1400 return error;
1401 }
1402
1403 /**
1404 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1405 * @state: PM transition of the system being carried out.
1406 *
1407 * Prevent device drivers' interrupt handlers from being called and invoke
1408 * "noirq" suspend callbacks for all non-sysdev devices.
1409 */
dpm_suspend_noirq(pm_message_t state)1410 int dpm_suspend_noirq(pm_message_t state)
1411 {
1412 int ret;
1413
1414 cpuidle_pause();
1415
1416 device_wakeup_arm_wake_irqs();
1417 suspend_device_irqs();
1418
1419 ret = dpm_noirq_suspend_devices(state);
1420 if (ret)
1421 dpm_resume_noirq(resume_event(state));
1422
1423 return ret;
1424 }
1425
dpm_propagate_wakeup_to_parent(struct device * dev)1426 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1427 {
1428 struct device *parent = dev->parent;
1429
1430 if (!parent)
1431 return;
1432
1433 spin_lock_irq(&parent->power.lock);
1434
1435 if (dev->power.wakeup_path && !parent->power.ignore_children)
1436 parent->power.wakeup_path = true;
1437
1438 spin_unlock_irq(&parent->power.lock);
1439 }
1440
dpm_subsys_suspend_late_cb(struct device * dev,pm_message_t state,const char ** info_p)1441 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1442 pm_message_t state,
1443 const char **info_p)
1444 {
1445 pm_callback_t callback;
1446 const char *info;
1447
1448 if (dev->pm_domain) {
1449 info = "late power domain ";
1450 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1451 } else if (dev->type && dev->type->pm) {
1452 info = "late type ";
1453 callback = pm_late_early_op(dev->type->pm, state);
1454 } else if (dev->class && dev->class->pm) {
1455 info = "late class ";
1456 callback = pm_late_early_op(dev->class->pm, state);
1457 } else if (dev->bus && dev->bus->pm) {
1458 info = "late bus ";
1459 callback = pm_late_early_op(dev->bus->pm, state);
1460 } else {
1461 return NULL;
1462 }
1463
1464 if (info_p)
1465 *info_p = info;
1466
1467 return callback;
1468 }
1469
1470 /**
1471 * __device_suspend_late - Execute a "late suspend" callback for given device.
1472 * @dev: Device to handle.
1473 * @state: PM transition of the system being carried out.
1474 * @async: If true, the device is being suspended asynchronously.
1475 *
1476 * Runtime PM is disabled for @dev while this function is being executed.
1477 */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1478 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1479 {
1480 pm_callback_t callback;
1481 const char *info;
1482 int error = 0;
1483
1484 TRACE_DEVICE(dev);
1485 TRACE_SUSPEND(0);
1486
1487 __pm_runtime_disable(dev, false);
1488
1489 dpm_wait_for_subordinate(dev, async);
1490
1491 if (async_error)
1492 goto Complete;
1493
1494 if (pm_wakeup_pending()) {
1495 async_error = -EBUSY;
1496 goto Complete;
1497 }
1498
1499 if (dev->power.syscore || dev->power.direct_complete)
1500 goto Complete;
1501
1502 callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1503 if (callback)
1504 goto Run;
1505
1506 if (dev_pm_smart_suspend_and_suspended(dev) &&
1507 !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1508 goto Skip;
1509
1510 if (dev->driver && dev->driver->pm) {
1511 info = "late driver ";
1512 callback = pm_late_early_op(dev->driver->pm, state);
1513 }
1514
1515 Run:
1516 error = dpm_run_callback(callback, dev, state, info);
1517 if (error) {
1518 async_error = error;
1519 goto Complete;
1520 }
1521 dpm_propagate_wakeup_to_parent(dev);
1522
1523 Skip:
1524 dev->power.is_late_suspended = true;
1525
1526 Complete:
1527 TRACE_SUSPEND(error);
1528 complete_all(&dev->power.completion);
1529 return error;
1530 }
1531
async_suspend_late(void * data,async_cookie_t cookie)1532 static void async_suspend_late(void *data, async_cookie_t cookie)
1533 {
1534 struct device *dev = (struct device *)data;
1535 int error;
1536
1537 error = __device_suspend_late(dev, pm_transition, true);
1538 if (error) {
1539 dpm_save_failed_dev(dev_name(dev));
1540 pm_dev_err(dev, pm_transition, " async", error);
1541 }
1542 put_device(dev);
1543 }
1544
device_suspend_late(struct device * dev)1545 static int device_suspend_late(struct device *dev)
1546 {
1547 if (dpm_async_fn(dev, async_suspend_late))
1548 return 0;
1549
1550 return __device_suspend_late(dev, pm_transition, false);
1551 }
1552
1553 /**
1554 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1555 * @state: PM transition of the system being carried out.
1556 */
dpm_suspend_late(pm_message_t state)1557 int dpm_suspend_late(pm_message_t state)
1558 {
1559 ktime_t starttime = ktime_get();
1560 int error = 0;
1561
1562 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1563 mutex_lock(&dpm_list_mtx);
1564 pm_transition = state;
1565 async_error = 0;
1566
1567 while (!list_empty(&dpm_suspended_list)) {
1568 struct device *dev = to_device(dpm_suspended_list.prev);
1569
1570 get_device(dev);
1571 mutex_unlock(&dpm_list_mtx);
1572
1573 error = device_suspend_late(dev);
1574
1575 mutex_lock(&dpm_list_mtx);
1576 if (!list_empty(&dev->power.entry))
1577 list_move(&dev->power.entry, &dpm_late_early_list);
1578
1579 if (error) {
1580 pm_dev_err(dev, state, " late", error);
1581 dpm_save_failed_dev(dev_name(dev));
1582 put_device(dev);
1583 break;
1584 }
1585 put_device(dev);
1586
1587 if (async_error)
1588 break;
1589 }
1590 mutex_unlock(&dpm_list_mtx);
1591 async_synchronize_full();
1592 if (!error)
1593 error = async_error;
1594 if (error) {
1595 suspend_stats.failed_suspend_late++;
1596 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1597 dpm_resume_early(resume_event(state));
1598 }
1599 dpm_show_time(starttime, state, error, "late");
1600 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1601 return error;
1602 }
1603
1604 /**
1605 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1606 * @state: PM transition of the system being carried out.
1607 */
dpm_suspend_end(pm_message_t state)1608 int dpm_suspend_end(pm_message_t state)
1609 {
1610 ktime_t starttime = ktime_get();
1611 int error;
1612
1613 error = dpm_suspend_late(state);
1614 if (error)
1615 goto out;
1616
1617 error = dpm_suspend_noirq(state);
1618 if (error)
1619 dpm_resume_early(resume_event(state));
1620
1621 out:
1622 dpm_show_time(starttime, state, error, "end");
1623 return error;
1624 }
1625 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1626
1627 /**
1628 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1629 * @dev: Device to suspend.
1630 * @state: PM transition of the system being carried out.
1631 * @cb: Suspend callback to execute.
1632 * @info: string description of caller.
1633 */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1634 static int legacy_suspend(struct device *dev, pm_message_t state,
1635 int (*cb)(struct device *dev, pm_message_t state),
1636 const char *info)
1637 {
1638 int error;
1639 ktime_t calltime;
1640
1641 calltime = initcall_debug_start(dev, cb);
1642
1643 trace_device_pm_callback_start(dev, info, state.event);
1644 error = cb(dev, state);
1645 trace_device_pm_callback_end(dev, error);
1646 suspend_report_result(cb, error);
1647
1648 initcall_debug_report(dev, calltime, cb, error);
1649
1650 return error;
1651 }
1652
dpm_clear_superiors_direct_complete(struct device * dev)1653 static void dpm_clear_superiors_direct_complete(struct device *dev)
1654 {
1655 struct device_link *link;
1656 int idx;
1657
1658 if (dev->parent) {
1659 spin_lock_irq(&dev->parent->power.lock);
1660 dev->parent->power.direct_complete = false;
1661 spin_unlock_irq(&dev->parent->power.lock);
1662 }
1663
1664 idx = device_links_read_lock();
1665
1666 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1667 spin_lock_irq(&link->supplier->power.lock);
1668 link->supplier->power.direct_complete = false;
1669 spin_unlock_irq(&link->supplier->power.lock);
1670 }
1671
1672 device_links_read_unlock(idx);
1673 }
1674
1675 /**
1676 * __device_suspend - Execute "suspend" callbacks for given device.
1677 * @dev: Device to handle.
1678 * @state: PM transition of the system being carried out.
1679 * @async: If true, the device is being suspended asynchronously.
1680 */
__device_suspend(struct device * dev,pm_message_t state,bool async)1681 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1682 {
1683 pm_callback_t callback = NULL;
1684 const char *info = NULL;
1685 int error = 0;
1686 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1687
1688 TRACE_DEVICE(dev);
1689 TRACE_SUSPEND(0);
1690
1691 dpm_wait_for_subordinate(dev, async);
1692
1693 if (async_error) {
1694 dev->power.direct_complete = false;
1695 goto Complete;
1696 }
1697
1698 /*
1699 * If a device configured to wake up the system from sleep states
1700 * has been suspended at run time and there's a resume request pending
1701 * for it, this is equivalent to the device signaling wakeup, so the
1702 * system suspend operation should be aborted.
1703 */
1704 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1705 pm_wakeup_event(dev, 0);
1706
1707 if (pm_wakeup_pending()) {
1708 dev->power.direct_complete = false;
1709 async_error = -EBUSY;
1710 goto Complete;
1711 }
1712
1713 if (dev->power.syscore)
1714 goto Complete;
1715
1716 /* Avoid direct_complete to let wakeup_path propagate. */
1717 if (device_may_wakeup(dev) || dev->power.wakeup_path)
1718 dev->power.direct_complete = false;
1719
1720 if (dev->power.direct_complete) {
1721 if (pm_runtime_status_suspended(dev)) {
1722 pm_runtime_disable(dev);
1723 if (pm_runtime_status_suspended(dev)) {
1724 pm_dev_dbg(dev, state, "direct-complete ");
1725 goto Complete;
1726 }
1727
1728 pm_runtime_enable(dev);
1729 }
1730 dev->power.direct_complete = false;
1731 }
1732
1733 dev->power.may_skip_resume = false;
1734 dev->power.must_resume = false;
1735
1736 dpm_watchdog_set(&wd, dev);
1737 device_lock(dev);
1738
1739 if (dev->pm_domain) {
1740 info = "power domain ";
1741 callback = pm_op(&dev->pm_domain->ops, state);
1742 goto Run;
1743 }
1744
1745 if (dev->type && dev->type->pm) {
1746 info = "type ";
1747 callback = pm_op(dev->type->pm, state);
1748 goto Run;
1749 }
1750
1751 if (dev->class && dev->class->pm) {
1752 info = "class ";
1753 callback = pm_op(dev->class->pm, state);
1754 goto Run;
1755 }
1756
1757 if (dev->bus) {
1758 if (dev->bus->pm) {
1759 info = "bus ";
1760 callback = pm_op(dev->bus->pm, state);
1761 } else if (dev->bus->suspend) {
1762 pm_dev_dbg(dev, state, "legacy bus ");
1763 error = legacy_suspend(dev, state, dev->bus->suspend,
1764 "legacy bus ");
1765 goto End;
1766 }
1767 }
1768
1769 Run:
1770 if (!callback && dev->driver && dev->driver->pm) {
1771 info = "driver ";
1772 callback = pm_op(dev->driver->pm, state);
1773 }
1774
1775 error = dpm_run_callback(callback, dev, state, info);
1776
1777 End:
1778 if (!error) {
1779 dev->power.is_suspended = true;
1780 if (device_may_wakeup(dev))
1781 dev->power.wakeup_path = true;
1782
1783 dpm_propagate_wakeup_to_parent(dev);
1784 dpm_clear_superiors_direct_complete(dev);
1785 }
1786
1787 device_unlock(dev);
1788 dpm_watchdog_clear(&wd);
1789
1790 Complete:
1791 if (error)
1792 async_error = error;
1793
1794 complete_all(&dev->power.completion);
1795 TRACE_SUSPEND(error);
1796 return error;
1797 }
1798
async_suspend(void * data,async_cookie_t cookie)1799 static void async_suspend(void *data, async_cookie_t cookie)
1800 {
1801 struct device *dev = (struct device *)data;
1802 int error;
1803
1804 error = __device_suspend(dev, pm_transition, true);
1805 if (error) {
1806 dpm_save_failed_dev(dev_name(dev));
1807 pm_dev_err(dev, pm_transition, " async", error);
1808 }
1809
1810 put_device(dev);
1811 }
1812
device_suspend(struct device * dev)1813 static int device_suspend(struct device *dev)
1814 {
1815 if (dpm_async_fn(dev, async_suspend))
1816 return 0;
1817
1818 return __device_suspend(dev, pm_transition, false);
1819 }
1820
1821 /**
1822 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1823 * @state: PM transition of the system being carried out.
1824 */
dpm_suspend(pm_message_t state)1825 int dpm_suspend(pm_message_t state)
1826 {
1827 ktime_t starttime = ktime_get();
1828 int error = 0;
1829
1830 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1831 might_sleep();
1832
1833 devfreq_suspend();
1834 cpufreq_suspend();
1835
1836 mutex_lock(&dpm_list_mtx);
1837 pm_transition = state;
1838 async_error = 0;
1839 while (!list_empty(&dpm_prepared_list)) {
1840 struct device *dev = to_device(dpm_prepared_list.prev);
1841
1842 get_device(dev);
1843 mutex_unlock(&dpm_list_mtx);
1844
1845 error = device_suspend(dev);
1846
1847 mutex_lock(&dpm_list_mtx);
1848 if (error) {
1849 pm_dev_err(dev, state, "", error);
1850 dpm_save_failed_dev(dev_name(dev));
1851 put_device(dev);
1852 break;
1853 }
1854 if (!list_empty(&dev->power.entry))
1855 list_move(&dev->power.entry, &dpm_suspended_list);
1856 put_device(dev);
1857 if (async_error)
1858 break;
1859 }
1860 mutex_unlock(&dpm_list_mtx);
1861 async_synchronize_full();
1862 if (!error)
1863 error = async_error;
1864 if (error) {
1865 suspend_stats.failed_suspend++;
1866 dpm_save_failed_step(SUSPEND_SUSPEND);
1867 }
1868 dpm_show_time(starttime, state, error, NULL);
1869 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1870 return error;
1871 }
1872
1873 /**
1874 * device_prepare - Prepare a device for system power transition.
1875 * @dev: Device to handle.
1876 * @state: PM transition of the system being carried out.
1877 *
1878 * Execute the ->prepare() callback(s) for given device. No new children of the
1879 * device may be registered after this function has returned.
1880 */
device_prepare(struct device * dev,pm_message_t state)1881 static int device_prepare(struct device *dev, pm_message_t state)
1882 {
1883 int (*callback)(struct device *) = NULL;
1884 int ret = 0;
1885
1886 if (dev->power.syscore)
1887 return 0;
1888
1889 WARN_ON(!pm_runtime_enabled(dev) &&
1890 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1891 DPM_FLAG_LEAVE_SUSPENDED));
1892
1893 /*
1894 * If a device's parent goes into runtime suspend at the wrong time,
1895 * it won't be possible to resume the device. To prevent this we
1896 * block runtime suspend here, during the prepare phase, and allow
1897 * it again during the complete phase.
1898 */
1899 pm_runtime_get_noresume(dev);
1900
1901 device_lock(dev);
1902
1903 dev->power.wakeup_path = false;
1904
1905 if (dev->power.no_pm_callbacks)
1906 goto unlock;
1907
1908 if (dev->pm_domain)
1909 callback = dev->pm_domain->ops.prepare;
1910 else if (dev->type && dev->type->pm)
1911 callback = dev->type->pm->prepare;
1912 else if (dev->class && dev->class->pm)
1913 callback = dev->class->pm->prepare;
1914 else if (dev->bus && dev->bus->pm)
1915 callback = dev->bus->pm->prepare;
1916
1917 if (!callback && dev->driver && dev->driver->pm)
1918 callback = dev->driver->pm->prepare;
1919
1920 if (callback)
1921 ret = callback(dev);
1922
1923 unlock:
1924 device_unlock(dev);
1925
1926 if (ret < 0) {
1927 suspend_report_result(callback, ret);
1928 pm_runtime_put(dev);
1929 return ret;
1930 }
1931 /*
1932 * A positive return value from ->prepare() means "this device appears
1933 * to be runtime-suspended and its state is fine, so if it really is
1934 * runtime-suspended, you can leave it in that state provided that you
1935 * will do the same thing with all of its descendants". This only
1936 * applies to suspend transitions, however.
1937 */
1938 spin_lock_irq(&dev->power.lock);
1939 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1940 ((pm_runtime_suspended(dev) && ret > 0) ||
1941 dev->power.no_pm_callbacks) &&
1942 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1943 spin_unlock_irq(&dev->power.lock);
1944 return 0;
1945 }
1946
1947 /**
1948 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1949 * @state: PM transition of the system being carried out.
1950 *
1951 * Execute the ->prepare() callback(s) for all devices.
1952 */
dpm_prepare(pm_message_t state)1953 int dpm_prepare(pm_message_t state)
1954 {
1955 int error = 0;
1956
1957 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1958 might_sleep();
1959
1960 /*
1961 * Give a chance for the known devices to complete their probes, before
1962 * disable probing of devices. This sync point is important at least
1963 * at boot time + hibernation restore.
1964 */
1965 wait_for_device_probe();
1966 /*
1967 * It is unsafe if probing of devices will happen during suspend or
1968 * hibernation and system behavior will be unpredictable in this case.
1969 * So, let's prohibit device's probing here and defer their probes
1970 * instead. The normal behavior will be restored in dpm_complete().
1971 */
1972 device_block_probing();
1973
1974 mutex_lock(&dpm_list_mtx);
1975 while (!list_empty(&dpm_list)) {
1976 struct device *dev = to_device(dpm_list.next);
1977
1978 get_device(dev);
1979 mutex_unlock(&dpm_list_mtx);
1980
1981 trace_device_pm_callback_start(dev, "", state.event);
1982 error = device_prepare(dev, state);
1983 trace_device_pm_callback_end(dev, error);
1984
1985 mutex_lock(&dpm_list_mtx);
1986 if (error) {
1987 if (error == -EAGAIN) {
1988 put_device(dev);
1989 error = 0;
1990 continue;
1991 }
1992 pr_info("Device %s not prepared for power transition: code %d\n",
1993 dev_name(dev), error);
1994 put_device(dev);
1995 break;
1996 }
1997 dev->power.is_prepared = true;
1998 if (!list_empty(&dev->power.entry))
1999 list_move_tail(&dev->power.entry, &dpm_prepared_list);
2000 put_device(dev);
2001 }
2002 mutex_unlock(&dpm_list_mtx);
2003 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2004 return error;
2005 }
2006
2007 /**
2008 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2009 * @state: PM transition of the system being carried out.
2010 *
2011 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2012 * callbacks for them.
2013 */
dpm_suspend_start(pm_message_t state)2014 int dpm_suspend_start(pm_message_t state)
2015 {
2016 ktime_t starttime = ktime_get();
2017 int error;
2018
2019 error = dpm_prepare(state);
2020 if (error) {
2021 suspend_stats.failed_prepare++;
2022 dpm_save_failed_step(SUSPEND_PREPARE);
2023 } else
2024 error = dpm_suspend(state);
2025 dpm_show_time(starttime, state, error, "start");
2026 return error;
2027 }
2028 EXPORT_SYMBOL_GPL(dpm_suspend_start);
2029
__suspend_report_result(const char * function,void * fn,int ret)2030 void __suspend_report_result(const char *function, void *fn, int ret)
2031 {
2032 if (ret)
2033 pr_err("%s(): %pS returns %d\n", function, fn, ret);
2034 }
2035 EXPORT_SYMBOL_GPL(__suspend_report_result);
2036
2037 /**
2038 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2039 * @subordinate: Device that needs to wait for @dev.
2040 * @dev: Device to wait for.
2041 */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)2042 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2043 {
2044 dpm_wait(dev, subordinate->power.async_suspend);
2045 return async_error;
2046 }
2047 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2048
2049 /**
2050 * dpm_for_each_dev - device iterator.
2051 * @data: data for the callback.
2052 * @fn: function to be called for each device.
2053 *
2054 * Iterate over devices in dpm_list, and call @fn for each device,
2055 * passing it @data.
2056 */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))2057 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2058 {
2059 struct device *dev;
2060
2061 if (!fn)
2062 return;
2063
2064 device_pm_lock();
2065 list_for_each_entry(dev, &dpm_list, power.entry)
2066 fn(dev, data);
2067 device_pm_unlock();
2068 }
2069 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2070
pm_ops_is_empty(const struct dev_pm_ops * ops)2071 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2072 {
2073 if (!ops)
2074 return true;
2075
2076 return !ops->prepare &&
2077 !ops->suspend &&
2078 !ops->suspend_late &&
2079 !ops->suspend_noirq &&
2080 !ops->resume_noirq &&
2081 !ops->resume_early &&
2082 !ops->resume &&
2083 !ops->complete;
2084 }
2085
device_pm_check_callbacks(struct device * dev)2086 void device_pm_check_callbacks(struct device *dev)
2087 {
2088 spin_lock_irq(&dev->power.lock);
2089 dev->power.no_pm_callbacks =
2090 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2091 !dev->bus->suspend && !dev->bus->resume)) &&
2092 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2093 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2094 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2095 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2096 !dev->driver->suspend && !dev->driver->resume));
2097 spin_unlock_irq(&dev->power.lock);
2098 }
2099
dev_pm_smart_suspend_and_suspended(struct device * dev)2100 bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2101 {
2102 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2103 pm_runtime_status_suspended(dev);
2104 }
2105