1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Front panel driver for Linux
4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5 * Copyright (C) 2016-2017 Glider bvba
6 *
7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8 * connected to a parallel printer port.
9 *
10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11 * serial module compatible with Samsung's KS0074. The pins may be connected in
12 * any combination, everything is programmable.
13 *
14 * The keypad consists in a matrix of push buttons connecting input pins to
15 * data output pins or to the ground. The combinations have to be hard-coded
16 * in the driver, though several profiles exist and adding new ones is easy.
17 *
18 * Several profiles are provided for commonly found LCD+keypad modules on the
19 * market, such as those found in Nexcom's appliances.
20 *
21 * FIXME:
22 * - the initialization/deinitialization process is very dirty and should
23 * be rewritten. It may even be buggy.
24 *
25 * TODO:
26 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27 * - make the LCD a part of a virtual screen of Vx*Vy
28 * - make the inputs list smp-safe
29 * - change the keyboard to a double mapping : signals -> key_id -> values
30 * so that applications can change values without knowing signals
31 *
32 */
33
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36 #include <linux/module.h>
37
38 #include <linux/types.h>
39 #include <linux/errno.h>
40 #include <linux/signal.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/miscdevice.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/fcntl.h>
48 #include <linux/init.h>
49 #include <linux/delay.h>
50 #include <linux/kernel.h>
51 #include <linux/ctype.h>
52 #include <linux/parport.h>
53 #include <linux/list.h>
54
55 #include <linux/io.h>
56 #include <linux/uaccess.h>
57
58 #include <misc/charlcd.h>
59
60 #define KEYPAD_MINOR 185
61
62 #define LCD_MAXBYTES 256 /* max burst write */
63
64 #define KEYPAD_BUFFER 64
65
66 /* poll the keyboard this every second */
67 #define INPUT_POLL_TIME (HZ / 50)
68 /* a key starts to repeat after this times INPUT_POLL_TIME */
69 #define KEYPAD_REP_START (10)
70 /* a key repeats this times INPUT_POLL_TIME */
71 #define KEYPAD_REP_DELAY (2)
72
73 /* converts an r_str() input to an active high, bits string : 000BAOSE */
74 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
75
76 #define PNL_PBUSY 0x80 /* inverted input, active low */
77 #define PNL_PACK 0x40 /* direct input, active low */
78 #define PNL_POUTPA 0x20 /* direct input, active high */
79 #define PNL_PSELECD 0x10 /* direct input, active high */
80 #define PNL_PERRORP 0x08 /* direct input, active low */
81
82 #define PNL_PBIDIR 0x20 /* bi-directional ports */
83 /* high to read data in or-ed with data out */
84 #define PNL_PINTEN 0x10
85 #define PNL_PSELECP 0x08 /* inverted output, active low */
86 #define PNL_PINITP 0x04 /* direct output, active low */
87 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
88 #define PNL_PSTROBE 0x01 /* inverted output */
89
90 #define PNL_PD0 0x01
91 #define PNL_PD1 0x02
92 #define PNL_PD2 0x04
93 #define PNL_PD3 0x08
94 #define PNL_PD4 0x10
95 #define PNL_PD5 0x20
96 #define PNL_PD6 0x40
97 #define PNL_PD7 0x80
98
99 #define PIN_NONE 0
100 #define PIN_STROBE 1
101 #define PIN_D0 2
102 #define PIN_D1 3
103 #define PIN_D2 4
104 #define PIN_D3 5
105 #define PIN_D4 6
106 #define PIN_D5 7
107 #define PIN_D6 8
108 #define PIN_D7 9
109 #define PIN_AUTOLF 14
110 #define PIN_INITP 16
111 #define PIN_SELECP 17
112 #define PIN_NOT_SET 127
113
114 #define NOT_SET -1
115
116 /* macros to simplify use of the parallel port */
117 #define r_ctr(x) (parport_read_control((x)->port))
118 #define r_dtr(x) (parport_read_data((x)->port))
119 #define r_str(x) (parport_read_status((x)->port))
120 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
121 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
122
123 /* this defines which bits are to be used and which ones to be ignored */
124 /* logical or of the output bits involved in the scan matrix */
125 static __u8 scan_mask_o;
126 /* logical or of the input bits involved in the scan matrix */
127 static __u8 scan_mask_i;
128
129 enum input_type {
130 INPUT_TYPE_STD,
131 INPUT_TYPE_KBD,
132 };
133
134 enum input_state {
135 INPUT_ST_LOW,
136 INPUT_ST_RISING,
137 INPUT_ST_HIGH,
138 INPUT_ST_FALLING,
139 };
140
141 struct logical_input {
142 struct list_head list;
143 __u64 mask;
144 __u64 value;
145 enum input_type type;
146 enum input_state state;
147 __u8 rise_time, fall_time;
148 __u8 rise_timer, fall_timer, high_timer;
149
150 union {
151 struct { /* valid when type == INPUT_TYPE_STD */
152 void (*press_fct)(int);
153 void (*release_fct)(int);
154 int press_data;
155 int release_data;
156 } std;
157 struct { /* valid when type == INPUT_TYPE_KBD */
158 /* strings can be non null-terminated */
159 char press_str[sizeof(void *) + sizeof(int)];
160 char repeat_str[sizeof(void *) + sizeof(int)];
161 char release_str[sizeof(void *) + sizeof(int)];
162 } kbd;
163 } u;
164 };
165
166 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
167
168 /* physical contacts history
169 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
170 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
171 * corresponds to the ground.
172 * Within each group, bits are stored in the same order as read on the port :
173 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
174 * So, each __u64 is represented like this :
175 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
176 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
177 */
178
179 /* what has just been read from the I/O ports */
180 static __u64 phys_read;
181 /* previous phys_read */
182 static __u64 phys_read_prev;
183 /* stabilized phys_read (phys_read|phys_read_prev) */
184 static __u64 phys_curr;
185 /* previous phys_curr */
186 static __u64 phys_prev;
187 /* 0 means that at least one logical signal needs be computed */
188 static char inputs_stable;
189
190 /* these variables are specific to the keypad */
191 static struct {
192 bool enabled;
193 } keypad;
194
195 static char keypad_buffer[KEYPAD_BUFFER];
196 static int keypad_buflen;
197 static int keypad_start;
198 static char keypressed;
199 static wait_queue_head_t keypad_read_wait;
200
201 /* lcd-specific variables */
202 static struct {
203 bool enabled;
204 bool initialized;
205
206 int charset;
207 int proto;
208
209 /* TODO: use union here? */
210 struct {
211 int e;
212 int rs;
213 int rw;
214 int cl;
215 int da;
216 int bl;
217 } pins;
218
219 struct charlcd *charlcd;
220 } lcd;
221
222 /* Needed only for init */
223 static int selected_lcd_type = NOT_SET;
224
225 /*
226 * Bit masks to convert LCD signals to parallel port outputs.
227 * _d_ are values for data port, _c_ are for control port.
228 * [0] = signal OFF, [1] = signal ON, [2] = mask
229 */
230 #define BIT_CLR 0
231 #define BIT_SET 1
232 #define BIT_MSK 2
233 #define BIT_STATES 3
234 /*
235 * one entry for each bit on the LCD
236 */
237 #define LCD_BIT_E 0
238 #define LCD_BIT_RS 1
239 #define LCD_BIT_RW 2
240 #define LCD_BIT_BL 3
241 #define LCD_BIT_CL 4
242 #define LCD_BIT_DA 5
243 #define LCD_BITS 6
244
245 /*
246 * each bit can be either connected to a DATA or CTRL port
247 */
248 #define LCD_PORT_C 0
249 #define LCD_PORT_D 1
250 #define LCD_PORTS 2
251
252 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
253
254 /*
255 * LCD protocols
256 */
257 #define LCD_PROTO_PARALLEL 0
258 #define LCD_PROTO_SERIAL 1
259 #define LCD_PROTO_TI_DA8XX_LCD 2
260
261 /*
262 * LCD character sets
263 */
264 #define LCD_CHARSET_NORMAL 0
265 #define LCD_CHARSET_KS0074 1
266
267 /*
268 * LCD types
269 */
270 #define LCD_TYPE_NONE 0
271 #define LCD_TYPE_CUSTOM 1
272 #define LCD_TYPE_OLD 2
273 #define LCD_TYPE_KS0074 3
274 #define LCD_TYPE_HANTRONIX 4
275 #define LCD_TYPE_NEXCOM 5
276
277 /*
278 * keypad types
279 */
280 #define KEYPAD_TYPE_NONE 0
281 #define KEYPAD_TYPE_OLD 1
282 #define KEYPAD_TYPE_NEW 2
283 #define KEYPAD_TYPE_NEXCOM 3
284
285 /*
286 * panel profiles
287 */
288 #define PANEL_PROFILE_CUSTOM 0
289 #define PANEL_PROFILE_OLD 1
290 #define PANEL_PROFILE_NEW 2
291 #define PANEL_PROFILE_HANTRONIX 3
292 #define PANEL_PROFILE_NEXCOM 4
293 #define PANEL_PROFILE_LARGE 5
294
295 /*
296 * Construct custom config from the kernel's configuration
297 */
298 #define DEFAULT_PARPORT 0
299 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
300 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
301 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
302 #define DEFAULT_LCD_HEIGHT 2
303 #define DEFAULT_LCD_WIDTH 40
304 #define DEFAULT_LCD_BWIDTH 40
305 #define DEFAULT_LCD_HWIDTH 64
306 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
307 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
308
309 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
310 #define DEFAULT_LCD_PIN_RS PIN_SELECP
311 #define DEFAULT_LCD_PIN_RW PIN_INITP
312 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
313 #define DEFAULT_LCD_PIN_SDA PIN_D0
314 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
315
316 #ifdef CONFIG_PANEL_PARPORT
317 #undef DEFAULT_PARPORT
318 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
319 #endif
320
321 #ifdef CONFIG_PANEL_PROFILE
322 #undef DEFAULT_PROFILE
323 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
324 #endif
325
326 #if DEFAULT_PROFILE == 0 /* custom */
327 #ifdef CONFIG_PANEL_KEYPAD
328 #undef DEFAULT_KEYPAD_TYPE
329 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
330 #endif
331
332 #ifdef CONFIG_PANEL_LCD
333 #undef DEFAULT_LCD_TYPE
334 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
335 #endif
336
337 #ifdef CONFIG_PANEL_LCD_HEIGHT
338 #undef DEFAULT_LCD_HEIGHT
339 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
340 #endif
341
342 #ifdef CONFIG_PANEL_LCD_WIDTH
343 #undef DEFAULT_LCD_WIDTH
344 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
345 #endif
346
347 #ifdef CONFIG_PANEL_LCD_BWIDTH
348 #undef DEFAULT_LCD_BWIDTH
349 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
350 #endif
351
352 #ifdef CONFIG_PANEL_LCD_HWIDTH
353 #undef DEFAULT_LCD_HWIDTH
354 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
355 #endif
356
357 #ifdef CONFIG_PANEL_LCD_CHARSET
358 #undef DEFAULT_LCD_CHARSET
359 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
360 #endif
361
362 #ifdef CONFIG_PANEL_LCD_PROTO
363 #undef DEFAULT_LCD_PROTO
364 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
365 #endif
366
367 #ifdef CONFIG_PANEL_LCD_PIN_E
368 #undef DEFAULT_LCD_PIN_E
369 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
370 #endif
371
372 #ifdef CONFIG_PANEL_LCD_PIN_RS
373 #undef DEFAULT_LCD_PIN_RS
374 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
375 #endif
376
377 #ifdef CONFIG_PANEL_LCD_PIN_RW
378 #undef DEFAULT_LCD_PIN_RW
379 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
380 #endif
381
382 #ifdef CONFIG_PANEL_LCD_PIN_SCL
383 #undef DEFAULT_LCD_PIN_SCL
384 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
385 #endif
386
387 #ifdef CONFIG_PANEL_LCD_PIN_SDA
388 #undef DEFAULT_LCD_PIN_SDA
389 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
390 #endif
391
392 #ifdef CONFIG_PANEL_LCD_PIN_BL
393 #undef DEFAULT_LCD_PIN_BL
394 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
395 #endif
396
397 #endif /* DEFAULT_PROFILE == 0 */
398
399 /* global variables */
400
401 /* Device single-open policy control */
402 static atomic_t keypad_available = ATOMIC_INIT(1);
403
404 static struct pardevice *pprt;
405
406 static int keypad_initialized;
407
408 static DEFINE_SPINLOCK(pprt_lock);
409 static struct timer_list scan_timer;
410
411 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
412
413 static int parport = DEFAULT_PARPORT;
414 module_param(parport, int, 0000);
415 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
416
417 static int profile = DEFAULT_PROFILE;
418 module_param(profile, int, 0000);
419 MODULE_PARM_DESC(profile,
420 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
421 "4=16x2 nexcom; default=40x2, old kp");
422
423 static int keypad_type = NOT_SET;
424 module_param(keypad_type, int, 0000);
425 MODULE_PARM_DESC(keypad_type,
426 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
427
428 static int lcd_type = NOT_SET;
429 module_param(lcd_type, int, 0000);
430 MODULE_PARM_DESC(lcd_type,
431 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
432
433 static int lcd_height = NOT_SET;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436
437 static int lcd_width = NOT_SET;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440
441 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444
445 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448
449 static int lcd_charset = NOT_SET;
450 module_param(lcd_charset, int, 0000);
451 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
452
453 static int lcd_proto = NOT_SET;
454 module_param(lcd_proto, int, 0000);
455 MODULE_PARM_DESC(lcd_proto,
456 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
457
458 /*
459 * These are the parallel port pins the LCD control signals are connected to.
460 * Set this to 0 if the signal is not used. Set it to its opposite value
461 * (negative) if the signal is negated. -MAXINT is used to indicate that the
462 * pin has not been explicitly specified.
463 *
464 * WARNING! no check will be performed about collisions with keypad !
465 */
466
467 static int lcd_e_pin = PIN_NOT_SET;
468 module_param(lcd_e_pin, int, 0000);
469 MODULE_PARM_DESC(lcd_e_pin,
470 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
471
472 static int lcd_rs_pin = PIN_NOT_SET;
473 module_param(lcd_rs_pin, int, 0000);
474 MODULE_PARM_DESC(lcd_rs_pin,
475 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
476
477 static int lcd_rw_pin = PIN_NOT_SET;
478 module_param(lcd_rw_pin, int, 0000);
479 MODULE_PARM_DESC(lcd_rw_pin,
480 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
481
482 static int lcd_cl_pin = PIN_NOT_SET;
483 module_param(lcd_cl_pin, int, 0000);
484 MODULE_PARM_DESC(lcd_cl_pin,
485 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
486
487 static int lcd_da_pin = PIN_NOT_SET;
488 module_param(lcd_da_pin, int, 0000);
489 MODULE_PARM_DESC(lcd_da_pin,
490 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
491
492 static int lcd_bl_pin = PIN_NOT_SET;
493 module_param(lcd_bl_pin, int, 0000);
494 MODULE_PARM_DESC(lcd_bl_pin,
495 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
496
497 /* Deprecated module parameters - consider not using them anymore */
498
499 static int lcd_enabled = NOT_SET;
500 module_param(lcd_enabled, int, 0000);
501 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
502
503 static int keypad_enabled = NOT_SET;
504 module_param(keypad_enabled, int, 0000);
505 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
506
507 /* for some LCD drivers (ks0074) we need a charset conversion table. */
508 static const unsigned char lcd_char_conv_ks0074[256] = {
509 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
510 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
511 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
512 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
513 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
514 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
515 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
516 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
517 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
518 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
519 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
520 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
521 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
522 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
523 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
524 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
525 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
526 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
527 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
528 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
529 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
530 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
531 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
532 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
533 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
534 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
535 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
536 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
537 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
538 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
539 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
540 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
541 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
542 };
543
544 static const char old_keypad_profile[][4][9] = {
545 {"S0", "Left\n", "Left\n", ""},
546 {"S1", "Down\n", "Down\n", ""},
547 {"S2", "Up\n", "Up\n", ""},
548 {"S3", "Right\n", "Right\n", ""},
549 {"S4", "Esc\n", "Esc\n", ""},
550 {"S5", "Ret\n", "Ret\n", ""},
551 {"", "", "", ""}
552 };
553
554 /* signals, press, repeat, release */
555 static const char new_keypad_profile[][4][9] = {
556 {"S0", "Left\n", "Left\n", ""},
557 {"S1", "Down\n", "Down\n", ""},
558 {"S2", "Up\n", "Up\n", ""},
559 {"S3", "Right\n", "Right\n", ""},
560 {"S4s5", "", "Esc\n", "Esc\n"},
561 {"s4S5", "", "Ret\n", "Ret\n"},
562 {"S4S5", "Help\n", "", ""},
563 /* add new signals above this line */
564 {"", "", "", ""}
565 };
566
567 /* signals, press, repeat, release */
568 static const char nexcom_keypad_profile[][4][9] = {
569 {"a-p-e-", "Down\n", "Down\n", ""},
570 {"a-p-E-", "Ret\n", "Ret\n", ""},
571 {"a-P-E-", "Esc\n", "Esc\n", ""},
572 {"a-P-e-", "Up\n", "Up\n", ""},
573 /* add new signals above this line */
574 {"", "", "", ""}
575 };
576
577 static const char (*keypad_profile)[4][9] = old_keypad_profile;
578
579 static DECLARE_BITMAP(bits, LCD_BITS);
580
lcd_get_bits(unsigned int port,int * val)581 static void lcd_get_bits(unsigned int port, int *val)
582 {
583 unsigned int bit, state;
584
585 for (bit = 0; bit < LCD_BITS; bit++) {
586 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
587 *val &= lcd_bits[port][bit][BIT_MSK];
588 *val |= lcd_bits[port][bit][state];
589 }
590 }
591
592 /* sets data port bits according to current signals values */
set_data_bits(void)593 static int set_data_bits(void)
594 {
595 int val;
596
597 val = r_dtr(pprt);
598 lcd_get_bits(LCD_PORT_D, &val);
599 w_dtr(pprt, val);
600 return val;
601 }
602
603 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)604 static int set_ctrl_bits(void)
605 {
606 int val;
607
608 val = r_ctr(pprt);
609 lcd_get_bits(LCD_PORT_C, &val);
610 w_ctr(pprt, val);
611 return val;
612 }
613
614 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)615 static void panel_set_bits(void)
616 {
617 set_data_bits();
618 set_ctrl_bits();
619 }
620
621 /*
622 * Converts a parallel port pin (from -25 to 25) to data and control ports
623 * masks, and data and control port bits. The signal will be considered
624 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
625 *
626 * Result will be used this way :
627 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
628 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
629 */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)630 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
631 {
632 int d_bit, c_bit, inv;
633
634 d_val[0] = 0;
635 c_val[0] = 0;
636 d_val[1] = 0;
637 c_val[1] = 0;
638 d_val[2] = 0xFF;
639 c_val[2] = 0xFF;
640
641 if (pin == 0)
642 return;
643
644 inv = (pin < 0);
645 if (inv)
646 pin = -pin;
647
648 d_bit = 0;
649 c_bit = 0;
650
651 switch (pin) {
652 case PIN_STROBE: /* strobe, inverted */
653 c_bit = PNL_PSTROBE;
654 inv = !inv;
655 break;
656 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
657 d_bit = 1 << (pin - 2);
658 break;
659 case PIN_AUTOLF: /* autofeed, inverted */
660 c_bit = PNL_PAUTOLF;
661 inv = !inv;
662 break;
663 case PIN_INITP: /* init, direct */
664 c_bit = PNL_PINITP;
665 break;
666 case PIN_SELECP: /* select_in, inverted */
667 c_bit = PNL_PSELECP;
668 inv = !inv;
669 break;
670 default: /* unknown pin, ignore */
671 break;
672 }
673
674 if (c_bit) {
675 c_val[2] &= ~c_bit;
676 c_val[!inv] = c_bit;
677 } else if (d_bit) {
678 d_val[2] &= ~d_bit;
679 d_val[!inv] = d_bit;
680 }
681 }
682
683 /*
684 * send a serial byte to the LCD panel. The caller is responsible for locking
685 * if needed.
686 */
lcd_send_serial(int byte)687 static void lcd_send_serial(int byte)
688 {
689 int bit;
690
691 /*
692 * the data bit is set on D0, and the clock on STROBE.
693 * LCD reads D0 on STROBE's rising edge.
694 */
695 for (bit = 0; bit < 8; bit++) {
696 clear_bit(LCD_BIT_CL, bits); /* CLK low */
697 panel_set_bits();
698 if (byte & 1) {
699 set_bit(LCD_BIT_DA, bits);
700 } else {
701 clear_bit(LCD_BIT_DA, bits);
702 }
703
704 panel_set_bits();
705 udelay(2); /* maintain the data during 2 us before CLK up */
706 set_bit(LCD_BIT_CL, bits); /* CLK high */
707 panel_set_bits();
708 udelay(1); /* maintain the strobe during 1 us */
709 byte >>= 1;
710 }
711 }
712
713 /* turn the backlight on or off */
lcd_backlight(struct charlcd * charlcd,int on)714 static void lcd_backlight(struct charlcd *charlcd, int on)
715 {
716 if (lcd.pins.bl == PIN_NONE)
717 return;
718
719 /* The backlight is activated by setting the AUTOFEED line to +5V */
720 spin_lock_irq(&pprt_lock);
721 if (on)
722 set_bit(LCD_BIT_BL, bits);
723 else
724 clear_bit(LCD_BIT_BL, bits);
725 panel_set_bits();
726 spin_unlock_irq(&pprt_lock);
727 }
728
729 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(struct charlcd * charlcd,int cmd)730 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
731 {
732 spin_lock_irq(&pprt_lock);
733 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
734 lcd_send_serial(cmd & 0x0F);
735 lcd_send_serial((cmd >> 4) & 0x0F);
736 udelay(40); /* the shortest command takes at least 40 us */
737 spin_unlock_irq(&pprt_lock);
738 }
739
740 /* send data to the LCD panel in serial mode */
lcd_write_data_s(struct charlcd * charlcd,int data)741 static void lcd_write_data_s(struct charlcd *charlcd, int data)
742 {
743 spin_lock_irq(&pprt_lock);
744 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
745 lcd_send_serial(data & 0x0F);
746 lcd_send_serial((data >> 4) & 0x0F);
747 udelay(40); /* the shortest data takes at least 40 us */
748 spin_unlock_irq(&pprt_lock);
749 }
750
751 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(struct charlcd * charlcd,int cmd)752 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
753 {
754 spin_lock_irq(&pprt_lock);
755 /* present the data to the data port */
756 w_dtr(pprt, cmd);
757 udelay(20); /* maintain the data during 20 us before the strobe */
758
759 set_bit(LCD_BIT_E, bits);
760 clear_bit(LCD_BIT_RS, bits);
761 clear_bit(LCD_BIT_RW, bits);
762 set_ctrl_bits();
763
764 udelay(40); /* maintain the strobe during 40 us */
765
766 clear_bit(LCD_BIT_E, bits);
767 set_ctrl_bits();
768
769 udelay(120); /* the shortest command takes at least 120 us */
770 spin_unlock_irq(&pprt_lock);
771 }
772
773 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(struct charlcd * charlcd,int data)774 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
775 {
776 spin_lock_irq(&pprt_lock);
777 /* present the data to the data port */
778 w_dtr(pprt, data);
779 udelay(20); /* maintain the data during 20 us before the strobe */
780
781 set_bit(LCD_BIT_E, bits);
782 set_bit(LCD_BIT_RS, bits);
783 clear_bit(LCD_BIT_RW, bits);
784 set_ctrl_bits();
785
786 udelay(40); /* maintain the strobe during 40 us */
787
788 clear_bit(LCD_BIT_E, bits);
789 set_ctrl_bits();
790
791 udelay(45); /* the shortest data takes at least 45 us */
792 spin_unlock_irq(&pprt_lock);
793 }
794
795 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(struct charlcd * charlcd,int cmd)796 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
797 {
798 spin_lock_irq(&pprt_lock);
799 /* present the data to the control port */
800 w_ctr(pprt, cmd);
801 udelay(60);
802 spin_unlock_irq(&pprt_lock);
803 }
804
805 /* send data to the TI LCD panel */
lcd_write_data_tilcd(struct charlcd * charlcd,int data)806 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
807 {
808 spin_lock_irq(&pprt_lock);
809 /* present the data to the data port */
810 w_dtr(pprt, data);
811 udelay(60);
812 spin_unlock_irq(&pprt_lock);
813 }
814
815 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(struct charlcd * charlcd)816 static void lcd_clear_fast_s(struct charlcd *charlcd)
817 {
818 int pos;
819
820 spin_lock_irq(&pprt_lock);
821 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
822 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
823 lcd_send_serial(' ' & 0x0F);
824 lcd_send_serial((' ' >> 4) & 0x0F);
825 /* the shortest data takes at least 40 us */
826 udelay(40);
827 }
828 spin_unlock_irq(&pprt_lock);
829 }
830
831 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(struct charlcd * charlcd)832 static void lcd_clear_fast_p8(struct charlcd *charlcd)
833 {
834 int pos;
835
836 spin_lock_irq(&pprt_lock);
837 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
838 /* present the data to the data port */
839 w_dtr(pprt, ' ');
840
841 /* maintain the data during 20 us before the strobe */
842 udelay(20);
843
844 set_bit(LCD_BIT_E, bits);
845 set_bit(LCD_BIT_RS, bits);
846 clear_bit(LCD_BIT_RW, bits);
847 set_ctrl_bits();
848
849 /* maintain the strobe during 40 us */
850 udelay(40);
851
852 clear_bit(LCD_BIT_E, bits);
853 set_ctrl_bits();
854
855 /* the shortest data takes at least 45 us */
856 udelay(45);
857 }
858 spin_unlock_irq(&pprt_lock);
859 }
860
861 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(struct charlcd * charlcd)862 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
863 {
864 int pos;
865
866 spin_lock_irq(&pprt_lock);
867 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
868 /* present the data to the data port */
869 w_dtr(pprt, ' ');
870 udelay(60);
871 }
872
873 spin_unlock_irq(&pprt_lock);
874 }
875
876 static const struct charlcd_ops charlcd_serial_ops = {
877 .write_cmd = lcd_write_cmd_s,
878 .write_data = lcd_write_data_s,
879 .clear_fast = lcd_clear_fast_s,
880 .backlight = lcd_backlight,
881 };
882
883 static const struct charlcd_ops charlcd_parallel_ops = {
884 .write_cmd = lcd_write_cmd_p8,
885 .write_data = lcd_write_data_p8,
886 .clear_fast = lcd_clear_fast_p8,
887 .backlight = lcd_backlight,
888 };
889
890 static const struct charlcd_ops charlcd_tilcd_ops = {
891 .write_cmd = lcd_write_cmd_tilcd,
892 .write_data = lcd_write_data_tilcd,
893 .clear_fast = lcd_clear_fast_tilcd,
894 .backlight = lcd_backlight,
895 };
896
897 /* initialize the LCD driver */
lcd_init(void)898 static void lcd_init(void)
899 {
900 struct charlcd *charlcd;
901
902 charlcd = charlcd_alloc(0);
903 if (!charlcd)
904 return;
905
906 /*
907 * Init lcd struct with load-time values to preserve exact
908 * current functionality (at least for now).
909 */
910 charlcd->height = lcd_height;
911 charlcd->width = lcd_width;
912 charlcd->bwidth = lcd_bwidth;
913 charlcd->hwidth = lcd_hwidth;
914
915 switch (selected_lcd_type) {
916 case LCD_TYPE_OLD:
917 /* parallel mode, 8 bits */
918 lcd.proto = LCD_PROTO_PARALLEL;
919 lcd.charset = LCD_CHARSET_NORMAL;
920 lcd.pins.e = PIN_STROBE;
921 lcd.pins.rs = PIN_AUTOLF;
922
923 charlcd->width = 40;
924 charlcd->bwidth = 40;
925 charlcd->hwidth = 64;
926 charlcd->height = 2;
927 break;
928 case LCD_TYPE_KS0074:
929 /* serial mode, ks0074 */
930 lcd.proto = LCD_PROTO_SERIAL;
931 lcd.charset = LCD_CHARSET_KS0074;
932 lcd.pins.bl = PIN_AUTOLF;
933 lcd.pins.cl = PIN_STROBE;
934 lcd.pins.da = PIN_D0;
935
936 charlcd->width = 16;
937 charlcd->bwidth = 40;
938 charlcd->hwidth = 16;
939 charlcd->height = 2;
940 break;
941 case LCD_TYPE_NEXCOM:
942 /* parallel mode, 8 bits, generic */
943 lcd.proto = LCD_PROTO_PARALLEL;
944 lcd.charset = LCD_CHARSET_NORMAL;
945 lcd.pins.e = PIN_AUTOLF;
946 lcd.pins.rs = PIN_SELECP;
947 lcd.pins.rw = PIN_INITP;
948
949 charlcd->width = 16;
950 charlcd->bwidth = 40;
951 charlcd->hwidth = 64;
952 charlcd->height = 2;
953 break;
954 case LCD_TYPE_CUSTOM:
955 /* customer-defined */
956 lcd.proto = DEFAULT_LCD_PROTO;
957 lcd.charset = DEFAULT_LCD_CHARSET;
958 /* default geometry will be set later */
959 break;
960 case LCD_TYPE_HANTRONIX:
961 /* parallel mode, 8 bits, hantronix-like */
962 default:
963 lcd.proto = LCD_PROTO_PARALLEL;
964 lcd.charset = LCD_CHARSET_NORMAL;
965 lcd.pins.e = PIN_STROBE;
966 lcd.pins.rs = PIN_SELECP;
967
968 charlcd->width = 16;
969 charlcd->bwidth = 40;
970 charlcd->hwidth = 64;
971 charlcd->height = 2;
972 break;
973 }
974
975 /* Overwrite with module params set on loading */
976 if (lcd_height != NOT_SET)
977 charlcd->height = lcd_height;
978 if (lcd_width != NOT_SET)
979 charlcd->width = lcd_width;
980 if (lcd_bwidth != NOT_SET)
981 charlcd->bwidth = lcd_bwidth;
982 if (lcd_hwidth != NOT_SET)
983 charlcd->hwidth = lcd_hwidth;
984 if (lcd_charset != NOT_SET)
985 lcd.charset = lcd_charset;
986 if (lcd_proto != NOT_SET)
987 lcd.proto = lcd_proto;
988 if (lcd_e_pin != PIN_NOT_SET)
989 lcd.pins.e = lcd_e_pin;
990 if (lcd_rs_pin != PIN_NOT_SET)
991 lcd.pins.rs = lcd_rs_pin;
992 if (lcd_rw_pin != PIN_NOT_SET)
993 lcd.pins.rw = lcd_rw_pin;
994 if (lcd_cl_pin != PIN_NOT_SET)
995 lcd.pins.cl = lcd_cl_pin;
996 if (lcd_da_pin != PIN_NOT_SET)
997 lcd.pins.da = lcd_da_pin;
998 if (lcd_bl_pin != PIN_NOT_SET)
999 lcd.pins.bl = lcd_bl_pin;
1000
1001 /* this is used to catch wrong and default values */
1002 if (charlcd->width <= 0)
1003 charlcd->width = DEFAULT_LCD_WIDTH;
1004 if (charlcd->bwidth <= 0)
1005 charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1006 if (charlcd->hwidth <= 0)
1007 charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1008 if (charlcd->height <= 0)
1009 charlcd->height = DEFAULT_LCD_HEIGHT;
1010
1011 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1012 charlcd->ops = &charlcd_serial_ops;
1013
1014 if (lcd.pins.cl == PIN_NOT_SET)
1015 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1016 if (lcd.pins.da == PIN_NOT_SET)
1017 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1018
1019 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1020 charlcd->ops = &charlcd_parallel_ops;
1021
1022 if (lcd.pins.e == PIN_NOT_SET)
1023 lcd.pins.e = DEFAULT_LCD_PIN_E;
1024 if (lcd.pins.rs == PIN_NOT_SET)
1025 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1026 if (lcd.pins.rw == PIN_NOT_SET)
1027 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1028 } else {
1029 charlcd->ops = &charlcd_tilcd_ops;
1030 }
1031
1032 if (lcd.pins.bl == PIN_NOT_SET)
1033 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1034
1035 if (lcd.pins.e == PIN_NOT_SET)
1036 lcd.pins.e = PIN_NONE;
1037 if (lcd.pins.rs == PIN_NOT_SET)
1038 lcd.pins.rs = PIN_NONE;
1039 if (lcd.pins.rw == PIN_NOT_SET)
1040 lcd.pins.rw = PIN_NONE;
1041 if (lcd.pins.bl == PIN_NOT_SET)
1042 lcd.pins.bl = PIN_NONE;
1043 if (lcd.pins.cl == PIN_NOT_SET)
1044 lcd.pins.cl = PIN_NONE;
1045 if (lcd.pins.da == PIN_NOT_SET)
1046 lcd.pins.da = PIN_NONE;
1047
1048 if (lcd.charset == NOT_SET)
1049 lcd.charset = DEFAULT_LCD_CHARSET;
1050
1051 if (lcd.charset == LCD_CHARSET_KS0074)
1052 charlcd->char_conv = lcd_char_conv_ks0074;
1053 else
1054 charlcd->char_conv = NULL;
1055
1056 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1057 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1058 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1059 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1060 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1061 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1062 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1063 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1064 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1065 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1066 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1067 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1068
1069 lcd.charlcd = charlcd;
1070 lcd.initialized = true;
1071 }
1072
1073 /*
1074 * These are the file operation function for user access to /dev/keypad
1075 */
1076
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1077 static ssize_t keypad_read(struct file *file,
1078 char __user *buf, size_t count, loff_t *ppos)
1079 {
1080 unsigned i = *ppos;
1081 char __user *tmp = buf;
1082
1083 if (keypad_buflen == 0) {
1084 if (file->f_flags & O_NONBLOCK)
1085 return -EAGAIN;
1086
1087 if (wait_event_interruptible(keypad_read_wait,
1088 keypad_buflen != 0))
1089 return -EINTR;
1090 }
1091
1092 for (; count-- > 0 && (keypad_buflen > 0);
1093 ++i, ++tmp, --keypad_buflen) {
1094 put_user(keypad_buffer[keypad_start], tmp);
1095 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1096 }
1097 *ppos = i;
1098
1099 return tmp - buf;
1100 }
1101
keypad_open(struct inode * inode,struct file * file)1102 static int keypad_open(struct inode *inode, struct file *file)
1103 {
1104 int ret;
1105
1106 ret = -EBUSY;
1107 if (!atomic_dec_and_test(&keypad_available))
1108 goto fail; /* open only once at a time */
1109
1110 ret = -EPERM;
1111 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1112 goto fail;
1113
1114 keypad_buflen = 0; /* flush the buffer on opening */
1115 return 0;
1116 fail:
1117 atomic_inc(&keypad_available);
1118 return ret;
1119 }
1120
keypad_release(struct inode * inode,struct file * file)1121 static int keypad_release(struct inode *inode, struct file *file)
1122 {
1123 atomic_inc(&keypad_available);
1124 return 0;
1125 }
1126
1127 static const struct file_operations keypad_fops = {
1128 .read = keypad_read, /* read */
1129 .open = keypad_open, /* open */
1130 .release = keypad_release, /* close */
1131 .llseek = default_llseek,
1132 };
1133
1134 static struct miscdevice keypad_dev = {
1135 .minor = KEYPAD_MINOR,
1136 .name = "keypad",
1137 .fops = &keypad_fops,
1138 };
1139
keypad_send_key(const char * string,int max_len)1140 static void keypad_send_key(const char *string, int max_len)
1141 {
1142 /* send the key to the device only if a process is attached to it. */
1143 if (!atomic_read(&keypad_available)) {
1144 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1145 keypad_buffer[(keypad_start + keypad_buflen++) %
1146 KEYPAD_BUFFER] = *string++;
1147 }
1148 wake_up_interruptible(&keypad_read_wait);
1149 }
1150 }
1151
1152 /* this function scans all the bits involving at least one logical signal,
1153 * and puts the results in the bitfield "phys_read" (one bit per established
1154 * contact), and sets "phys_read_prev" to "phys_read".
1155 *
1156 * Note: to debounce input signals, we will only consider as switched a signal
1157 * which is stable across 2 measures. Signals which are different between two
1158 * reads will be kept as they previously were in their logical form (phys_prev).
1159 * A signal which has just switched will have a 1 in
1160 * (phys_read ^ phys_read_prev).
1161 */
phys_scan_contacts(void)1162 static void phys_scan_contacts(void)
1163 {
1164 int bit, bitval;
1165 char oldval;
1166 char bitmask;
1167 char gndmask;
1168
1169 phys_prev = phys_curr;
1170 phys_read_prev = phys_read;
1171 phys_read = 0; /* flush all signals */
1172
1173 /* keep track of old value, with all outputs disabled */
1174 oldval = r_dtr(pprt) | scan_mask_o;
1175 /* activate all keyboard outputs (active low) */
1176 w_dtr(pprt, oldval & ~scan_mask_o);
1177
1178 /* will have a 1 for each bit set to gnd */
1179 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1180 /* disable all matrix signals */
1181 w_dtr(pprt, oldval);
1182
1183 /* now that all outputs are cleared, the only active input bits are
1184 * directly connected to the ground
1185 */
1186
1187 /* 1 for each grounded input */
1188 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1189
1190 /* grounded inputs are signals 40-44 */
1191 phys_read |= (__u64)gndmask << 40;
1192
1193 if (bitmask != gndmask) {
1194 /*
1195 * since clearing the outputs changed some inputs, we know
1196 * that some input signals are currently tied to some outputs.
1197 * So we'll scan them.
1198 */
1199 for (bit = 0; bit < 8; bit++) {
1200 bitval = BIT(bit);
1201
1202 if (!(scan_mask_o & bitval)) /* skip unused bits */
1203 continue;
1204
1205 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1206 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1207 phys_read |= (__u64)bitmask << (5 * bit);
1208 }
1209 w_dtr(pprt, oldval); /* disable all outputs */
1210 }
1211 /*
1212 * this is easy: use old bits when they are flapping,
1213 * use new ones when stable
1214 */
1215 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1216 (phys_read & ~(phys_read ^ phys_read_prev));
1217 }
1218
input_state_high(struct logical_input * input)1219 static inline int input_state_high(struct logical_input *input)
1220 {
1221 #if 0
1222 /* FIXME:
1223 * this is an invalid test. It tries to catch
1224 * transitions from single-key to multiple-key, but
1225 * doesn't take into account the contacts polarity.
1226 * The only solution to the problem is to parse keys
1227 * from the most complex to the simplest combinations,
1228 * and mark them as 'caught' once a combination
1229 * matches, then unmatch it for all other ones.
1230 */
1231
1232 /* try to catch dangerous transitions cases :
1233 * someone adds a bit, so this signal was a false
1234 * positive resulting from a transition. We should
1235 * invalidate the signal immediately and not call the
1236 * release function.
1237 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1238 */
1239 if (((phys_prev & input->mask) == input->value) &&
1240 ((phys_curr & input->mask) > input->value)) {
1241 input->state = INPUT_ST_LOW; /* invalidate */
1242 return 1;
1243 }
1244 #endif
1245
1246 if ((phys_curr & input->mask) == input->value) {
1247 if ((input->type == INPUT_TYPE_STD) &&
1248 (input->high_timer == 0)) {
1249 input->high_timer++;
1250 if (input->u.std.press_fct)
1251 input->u.std.press_fct(input->u.std.press_data);
1252 } else if (input->type == INPUT_TYPE_KBD) {
1253 /* will turn on the light */
1254 keypressed = 1;
1255
1256 if (input->high_timer == 0) {
1257 char *press_str = input->u.kbd.press_str;
1258
1259 if (press_str[0]) {
1260 int s = sizeof(input->u.kbd.press_str);
1261
1262 keypad_send_key(press_str, s);
1263 }
1264 }
1265
1266 if (input->u.kbd.repeat_str[0]) {
1267 char *repeat_str = input->u.kbd.repeat_str;
1268
1269 if (input->high_timer >= KEYPAD_REP_START) {
1270 int s = sizeof(input->u.kbd.repeat_str);
1271
1272 input->high_timer -= KEYPAD_REP_DELAY;
1273 keypad_send_key(repeat_str, s);
1274 }
1275 /* we will need to come back here soon */
1276 inputs_stable = 0;
1277 }
1278
1279 if (input->high_timer < 255)
1280 input->high_timer++;
1281 }
1282 return 1;
1283 }
1284
1285 /* else signal falling down. Let's fall through. */
1286 input->state = INPUT_ST_FALLING;
1287 input->fall_timer = 0;
1288
1289 return 0;
1290 }
1291
input_state_falling(struct logical_input * input)1292 static inline void input_state_falling(struct logical_input *input)
1293 {
1294 #if 0
1295 /* FIXME !!! same comment as in input_state_high */
1296 if (((phys_prev & input->mask) == input->value) &&
1297 ((phys_curr & input->mask) > input->value)) {
1298 input->state = INPUT_ST_LOW; /* invalidate */
1299 return;
1300 }
1301 #endif
1302
1303 if ((phys_curr & input->mask) == input->value) {
1304 if (input->type == INPUT_TYPE_KBD) {
1305 /* will turn on the light */
1306 keypressed = 1;
1307
1308 if (input->u.kbd.repeat_str[0]) {
1309 char *repeat_str = input->u.kbd.repeat_str;
1310
1311 if (input->high_timer >= KEYPAD_REP_START) {
1312 int s = sizeof(input->u.kbd.repeat_str);
1313
1314 input->high_timer -= KEYPAD_REP_DELAY;
1315 keypad_send_key(repeat_str, s);
1316 }
1317 /* we will need to come back here soon */
1318 inputs_stable = 0;
1319 }
1320
1321 if (input->high_timer < 255)
1322 input->high_timer++;
1323 }
1324 input->state = INPUT_ST_HIGH;
1325 } else if (input->fall_timer >= input->fall_time) {
1326 /* call release event */
1327 if (input->type == INPUT_TYPE_STD) {
1328 void (*release_fct)(int) = input->u.std.release_fct;
1329
1330 if (release_fct)
1331 release_fct(input->u.std.release_data);
1332 } else if (input->type == INPUT_TYPE_KBD) {
1333 char *release_str = input->u.kbd.release_str;
1334
1335 if (release_str[0]) {
1336 int s = sizeof(input->u.kbd.release_str);
1337
1338 keypad_send_key(release_str, s);
1339 }
1340 }
1341
1342 input->state = INPUT_ST_LOW;
1343 } else {
1344 input->fall_timer++;
1345 inputs_stable = 0;
1346 }
1347 }
1348
panel_process_inputs(void)1349 static void panel_process_inputs(void)
1350 {
1351 struct logical_input *input;
1352
1353 keypressed = 0;
1354 inputs_stable = 1;
1355 list_for_each_entry(input, &logical_inputs, list) {
1356 switch (input->state) {
1357 case INPUT_ST_LOW:
1358 if ((phys_curr & input->mask) != input->value)
1359 break;
1360 /* if all needed ones were already set previously,
1361 * this means that this logical signal has been
1362 * activated by the releasing of another combined
1363 * signal, so we don't want to match.
1364 * eg: AB -(release B)-> A -(release A)-> 0 :
1365 * don't match A.
1366 */
1367 if ((phys_prev & input->mask) == input->value)
1368 break;
1369 input->rise_timer = 0;
1370 input->state = INPUT_ST_RISING;
1371 /* fall through */
1372 case INPUT_ST_RISING:
1373 if ((phys_curr & input->mask) != input->value) {
1374 input->state = INPUT_ST_LOW;
1375 break;
1376 }
1377 if (input->rise_timer < input->rise_time) {
1378 inputs_stable = 0;
1379 input->rise_timer++;
1380 break;
1381 }
1382 input->high_timer = 0;
1383 input->state = INPUT_ST_HIGH;
1384 /* fall through */
1385 case INPUT_ST_HIGH:
1386 if (input_state_high(input))
1387 break;
1388 /* fall through */
1389 case INPUT_ST_FALLING:
1390 input_state_falling(input);
1391 }
1392 }
1393 }
1394
panel_scan_timer(struct timer_list * unused)1395 static void panel_scan_timer(struct timer_list *unused)
1396 {
1397 if (keypad.enabled && keypad_initialized) {
1398 if (spin_trylock_irq(&pprt_lock)) {
1399 phys_scan_contacts();
1400
1401 /* no need for the parport anymore */
1402 spin_unlock_irq(&pprt_lock);
1403 }
1404
1405 if (!inputs_stable || phys_curr != phys_prev)
1406 panel_process_inputs();
1407 }
1408
1409 if (keypressed && lcd.enabled && lcd.initialized)
1410 charlcd_poke(lcd.charlcd);
1411
1412 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1413 }
1414
init_scan_timer(void)1415 static void init_scan_timer(void)
1416 {
1417 if (scan_timer.function)
1418 return; /* already started */
1419
1420 timer_setup(&scan_timer, panel_scan_timer, 0);
1421 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1422 add_timer(&scan_timer);
1423 }
1424
1425 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1426 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1427 * corresponding to out and in bits respectively.
1428 * returns 1 if ok, 0 if error (in which case, nothing is written).
1429 */
input_name2mask(const char * name,__u64 * mask,__u64 * value,u8 * imask,u8 * omask)1430 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1431 u8 *imask, u8 *omask)
1432 {
1433 const char sigtab[] = "EeSsPpAaBb";
1434 u8 im, om;
1435 __u64 m, v;
1436
1437 om = 0;
1438 im = 0;
1439 m = 0ULL;
1440 v = 0ULL;
1441 while (*name) {
1442 int in, out, bit, neg;
1443 const char *idx;
1444
1445 idx = strchr(sigtab, *name);
1446 if (!idx)
1447 return 0; /* input name not found */
1448
1449 in = idx - sigtab;
1450 neg = (in & 1); /* odd (lower) names are negated */
1451 in >>= 1;
1452 im |= BIT(in);
1453
1454 name++;
1455 if (*name >= '0' && *name <= '7') {
1456 out = *name - '0';
1457 om |= BIT(out);
1458 } else if (*name == '-') {
1459 out = 8;
1460 } else {
1461 return 0; /* unknown bit name */
1462 }
1463
1464 bit = (out * 5) + in;
1465
1466 m |= 1ULL << bit;
1467 if (!neg)
1468 v |= 1ULL << bit;
1469 name++;
1470 }
1471 *mask = m;
1472 *value = v;
1473 if (imask)
1474 *imask |= im;
1475 if (omask)
1476 *omask |= om;
1477 return 1;
1478 }
1479
1480 /* tries to bind a key to the signal name <name>. The key will send the
1481 * strings <press>, <repeat>, <release> for these respective events.
1482 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1483 */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)1484 static struct logical_input *panel_bind_key(const char *name, const char *press,
1485 const char *repeat,
1486 const char *release)
1487 {
1488 struct logical_input *key;
1489
1490 key = kzalloc(sizeof(*key), GFP_KERNEL);
1491 if (!key)
1492 return NULL;
1493
1494 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1495 &scan_mask_o)) {
1496 kfree(key);
1497 return NULL;
1498 }
1499
1500 key->type = INPUT_TYPE_KBD;
1501 key->state = INPUT_ST_LOW;
1502 key->rise_time = 1;
1503 key->fall_time = 1;
1504
1505 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1506 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1507 strncpy(key->u.kbd.release_str, release,
1508 sizeof(key->u.kbd.release_str));
1509 list_add(&key->list, &logical_inputs);
1510 return key;
1511 }
1512
1513 #if 0
1514 /* tries to bind a callback function to the signal name <name>. The function
1515 * <press_fct> will be called with the <press_data> arg when the signal is
1516 * activated, and so on for <release_fct>/<release_data>
1517 * Returns the pointer to the new signal if ok, NULL if the signal could not
1518 * be bound.
1519 */
1520 static struct logical_input *panel_bind_callback(char *name,
1521 void (*press_fct)(int),
1522 int press_data,
1523 void (*release_fct)(int),
1524 int release_data)
1525 {
1526 struct logical_input *callback;
1527
1528 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1529 if (!callback)
1530 return NULL;
1531
1532 memset(callback, 0, sizeof(struct logical_input));
1533 if (!input_name2mask(name, &callback->mask, &callback->value,
1534 &scan_mask_i, &scan_mask_o))
1535 return NULL;
1536
1537 callback->type = INPUT_TYPE_STD;
1538 callback->state = INPUT_ST_LOW;
1539 callback->rise_time = 1;
1540 callback->fall_time = 1;
1541 callback->u.std.press_fct = press_fct;
1542 callback->u.std.press_data = press_data;
1543 callback->u.std.release_fct = release_fct;
1544 callback->u.std.release_data = release_data;
1545 list_add(&callback->list, &logical_inputs);
1546 return callback;
1547 }
1548 #endif
1549
keypad_init(void)1550 static void keypad_init(void)
1551 {
1552 int keynum;
1553
1554 init_waitqueue_head(&keypad_read_wait);
1555 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
1556
1557 /* Let's create all known keys */
1558
1559 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1560 panel_bind_key(keypad_profile[keynum][0],
1561 keypad_profile[keynum][1],
1562 keypad_profile[keynum][2],
1563 keypad_profile[keynum][3]);
1564 }
1565
1566 init_scan_timer();
1567 keypad_initialized = 1;
1568 }
1569
1570 /**************************************************/
1571 /* device initialization */
1572 /**************************************************/
1573
panel_attach(struct parport * port)1574 static void panel_attach(struct parport *port)
1575 {
1576 struct pardev_cb panel_cb;
1577
1578 if (port->number != parport)
1579 return;
1580
1581 if (pprt) {
1582 pr_err("%s: port->number=%d parport=%d, already registered!\n",
1583 __func__, port->number, parport);
1584 return;
1585 }
1586
1587 memset(&panel_cb, 0, sizeof(panel_cb));
1588 panel_cb.private = &pprt;
1589 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1590
1591 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1592 if (!pprt) {
1593 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1594 __func__, port->number, parport);
1595 return;
1596 }
1597
1598 if (parport_claim(pprt)) {
1599 pr_err("could not claim access to parport%d. Aborting.\n",
1600 parport);
1601 goto err_unreg_device;
1602 }
1603
1604 /* must init LCD first, just in case an IRQ from the keypad is
1605 * generated at keypad init
1606 */
1607 if (lcd.enabled) {
1608 lcd_init();
1609 if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1610 goto err_unreg_device;
1611 }
1612
1613 if (keypad.enabled) {
1614 keypad_init();
1615 if (misc_register(&keypad_dev))
1616 goto err_lcd_unreg;
1617 }
1618 return;
1619
1620 err_lcd_unreg:
1621 if (lcd.enabled)
1622 charlcd_unregister(lcd.charlcd);
1623 err_unreg_device:
1624 kfree(lcd.charlcd);
1625 lcd.charlcd = NULL;
1626 parport_unregister_device(pprt);
1627 pprt = NULL;
1628 }
1629
panel_detach(struct parport * port)1630 static void panel_detach(struct parport *port)
1631 {
1632 if (port->number != parport)
1633 return;
1634
1635 if (!pprt) {
1636 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1637 __func__, port->number, parport);
1638 return;
1639 }
1640 if (scan_timer.function)
1641 del_timer_sync(&scan_timer);
1642
1643 if (keypad.enabled) {
1644 misc_deregister(&keypad_dev);
1645 keypad_initialized = 0;
1646 }
1647
1648 if (lcd.enabled) {
1649 charlcd_unregister(lcd.charlcd);
1650 lcd.initialized = false;
1651 kfree(lcd.charlcd);
1652 lcd.charlcd = NULL;
1653 }
1654
1655 /* TODO: free all input signals */
1656 parport_release(pprt);
1657 parport_unregister_device(pprt);
1658 pprt = NULL;
1659 }
1660
1661 static struct parport_driver panel_driver = {
1662 .name = "panel",
1663 .match_port = panel_attach,
1664 .detach = panel_detach,
1665 .devmodel = true,
1666 };
1667
1668 /* init function */
panel_init_module(void)1669 static int __init panel_init_module(void)
1670 {
1671 int selected_keypad_type = NOT_SET, err;
1672
1673 /* take care of an eventual profile */
1674 switch (profile) {
1675 case PANEL_PROFILE_CUSTOM:
1676 /* custom profile */
1677 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1678 selected_lcd_type = DEFAULT_LCD_TYPE;
1679 break;
1680 case PANEL_PROFILE_OLD:
1681 /* 8 bits, 2*16, old keypad */
1682 selected_keypad_type = KEYPAD_TYPE_OLD;
1683 selected_lcd_type = LCD_TYPE_OLD;
1684
1685 /* TODO: This two are a little hacky, sort it out later */
1686 if (lcd_width == NOT_SET)
1687 lcd_width = 16;
1688 if (lcd_hwidth == NOT_SET)
1689 lcd_hwidth = 16;
1690 break;
1691 case PANEL_PROFILE_NEW:
1692 /* serial, 2*16, new keypad */
1693 selected_keypad_type = KEYPAD_TYPE_NEW;
1694 selected_lcd_type = LCD_TYPE_KS0074;
1695 break;
1696 case PANEL_PROFILE_HANTRONIX:
1697 /* 8 bits, 2*16 hantronix-like, no keypad */
1698 selected_keypad_type = KEYPAD_TYPE_NONE;
1699 selected_lcd_type = LCD_TYPE_HANTRONIX;
1700 break;
1701 case PANEL_PROFILE_NEXCOM:
1702 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1703 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1704 selected_lcd_type = LCD_TYPE_NEXCOM;
1705 break;
1706 case PANEL_PROFILE_LARGE:
1707 /* 8 bits, 2*40, old keypad */
1708 selected_keypad_type = KEYPAD_TYPE_OLD;
1709 selected_lcd_type = LCD_TYPE_OLD;
1710 break;
1711 }
1712
1713 /*
1714 * Overwrite selection with module param values (both keypad and lcd),
1715 * where the deprecated params have lower prio.
1716 */
1717 if (keypad_enabled != NOT_SET)
1718 selected_keypad_type = keypad_enabled;
1719 if (keypad_type != NOT_SET)
1720 selected_keypad_type = keypad_type;
1721
1722 keypad.enabled = (selected_keypad_type > 0);
1723
1724 if (lcd_enabled != NOT_SET)
1725 selected_lcd_type = lcd_enabled;
1726 if (lcd_type != NOT_SET)
1727 selected_lcd_type = lcd_type;
1728
1729 lcd.enabled = (selected_lcd_type > 0);
1730
1731 if (lcd.enabled) {
1732 /*
1733 * Init lcd struct with load-time values to preserve exact
1734 * current functionality (at least for now).
1735 */
1736 lcd.charset = lcd_charset;
1737 lcd.proto = lcd_proto;
1738 lcd.pins.e = lcd_e_pin;
1739 lcd.pins.rs = lcd_rs_pin;
1740 lcd.pins.rw = lcd_rw_pin;
1741 lcd.pins.cl = lcd_cl_pin;
1742 lcd.pins.da = lcd_da_pin;
1743 lcd.pins.bl = lcd_bl_pin;
1744 }
1745
1746 switch (selected_keypad_type) {
1747 case KEYPAD_TYPE_OLD:
1748 keypad_profile = old_keypad_profile;
1749 break;
1750 case KEYPAD_TYPE_NEW:
1751 keypad_profile = new_keypad_profile;
1752 break;
1753 case KEYPAD_TYPE_NEXCOM:
1754 keypad_profile = nexcom_keypad_profile;
1755 break;
1756 default:
1757 keypad_profile = NULL;
1758 break;
1759 }
1760
1761 if (!lcd.enabled && !keypad.enabled) {
1762 /* no device enabled, let's exit */
1763 pr_err("panel driver disabled.\n");
1764 return -ENODEV;
1765 }
1766
1767 err = parport_register_driver(&panel_driver);
1768 if (err) {
1769 pr_err("could not register with parport. Aborting.\n");
1770 return err;
1771 }
1772
1773 if (pprt)
1774 pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1775 parport, pprt->port->base);
1776 else
1777 pr_info("panel driver not yet registered\n");
1778 return 0;
1779 }
1780
panel_cleanup_module(void)1781 static void __exit panel_cleanup_module(void)
1782 {
1783 parport_unregister_driver(&panel_driver);
1784 }
1785
1786 module_init(panel_init_module);
1787 module_exit(panel_cleanup_module);
1788 MODULE_AUTHOR("Willy Tarreau");
1789 MODULE_LICENSE("GPL");
1790
1791 /*
1792 * Local variables:
1793 * c-indent-level: 4
1794 * tab-width: 8
1795 * End:
1796 */
1797