1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <linux/perf_event.h>
25 #include <acpi/processor.h>
26 #include <linux/context_tracking.h>
27 
28 /*
29  * Include the apic definitions for x86 to have the APIC timer related defines
30  * available also for UP (on SMP it gets magically included via linux/smp.h).
31  * asm/acpi.h is not an option, as it would require more include magic. Also
32  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33  */
34 #ifdef CONFIG_X86
35 #include <asm/apic.h>
36 #include <asm/cpu.h>
37 #endif
38 
39 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40 
41 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42 module_param(max_cstate, uint, 0400);
43 static bool nocst __read_mostly;
44 module_param(nocst, bool, 0400);
45 static bool bm_check_disable __read_mostly;
46 module_param(bm_check_disable, bool, 0400);
47 
48 static unsigned int latency_factor __read_mostly = 2;
49 module_param(latency_factor, uint, 0644);
50 
51 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52 
53 struct cpuidle_driver acpi_idle_driver = {
54 	.name =		"acpi_idle",
55 	.owner =	THIS_MODULE,
56 };
57 
58 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59 static
60 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61 
disabled_by_idle_boot_param(void)62 static int disabled_by_idle_boot_param(void)
63 {
64 	return boot_option_idle_override == IDLE_POLL ||
65 		boot_option_idle_override == IDLE_HALT;
66 }
67 
68 /*
69  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70  * For now disable this. Probably a bug somewhere else.
71  *
72  * To skip this limit, boot/load with a large max_cstate limit.
73  */
set_max_cstate(const struct dmi_system_id * id)74 static int set_max_cstate(const struct dmi_system_id *id)
75 {
76 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77 		return 0;
78 
79 	pr_notice("%s detected - limiting to C%ld max_cstate."
80 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
81 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82 
83 	max_cstate = (long)id->driver_data;
84 
85 	return 0;
86 }
87 
88 static const struct dmi_system_id processor_power_dmi_table[] = {
89 	{ set_max_cstate, "Clevo 5600D", {
90 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92 	 (void *)2},
93 	{ set_max_cstate, "Pavilion zv5000", {
94 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96 	 (void *)1},
97 	{ set_max_cstate, "Asus L8400B", {
98 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100 	 (void *)1},
101 	{},
102 };
103 
104 
105 /*
106  * Callers should disable interrupts before the call and enable
107  * interrupts after return.
108  */
acpi_safe_halt(void)109 static void __cpuidle acpi_safe_halt(void)
110 {
111 	if (!tif_need_resched()) {
112 		raw_safe_halt();
113 		raw_local_irq_disable();
114 	}
115 }
116 
117 #ifdef ARCH_APICTIMER_STOPS_ON_C3
118 
119 /*
120  * Some BIOS implementations switch to C3 in the published C2 state.
121  * This seems to be a common problem on AMD boxen, but other vendors
122  * are affected too. We pick the most conservative approach: we assume
123  * that the local APIC stops in both C2 and C3.
124  */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)125 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126 				   struct acpi_processor_cx *cx)
127 {
128 	struct acpi_processor_power *pwr = &pr->power;
129 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130 
131 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132 		return;
133 
134 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135 		type = ACPI_STATE_C1;
136 
137 	/*
138 	 * Check, if one of the previous states already marked the lapic
139 	 * unstable
140 	 */
141 	if (pwr->timer_broadcast_on_state < state)
142 		return;
143 
144 	if (cx->type >= type)
145 		pr->power.timer_broadcast_on_state = state;
146 }
147 
__lapic_timer_propagate_broadcast(void * arg)148 static void __lapic_timer_propagate_broadcast(void *arg)
149 {
150 	struct acpi_processor *pr = arg;
151 
152 	if (pr->power.timer_broadcast_on_state < INT_MAX)
153 		tick_broadcast_enable();
154 	else
155 		tick_broadcast_disable();
156 }
157 
lapic_timer_propagate_broadcast(struct acpi_processor * pr)158 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 {
160 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161 				 (void *)pr, 1);
162 }
163 
164 /* Power(C) State timer broadcast control */
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)165 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166 					struct acpi_processor_cx *cx)
167 {
168 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169 }
170 
171 #else
172 
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)173 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174 				   struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)175 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176 
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)177 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178 					struct acpi_processor_cx *cx)
179 {
180 	return false;
181 }
182 
183 #endif
184 
185 #if defined(CONFIG_X86)
tsc_check_state(int state)186 static void tsc_check_state(int state)
187 {
188 	switch (boot_cpu_data.x86_vendor) {
189 	case X86_VENDOR_HYGON:
190 	case X86_VENDOR_AMD:
191 	case X86_VENDOR_INTEL:
192 	case X86_VENDOR_CENTAUR:
193 	case X86_VENDOR_ZHAOXIN:
194 		/*
195 		 * AMD Fam10h TSC will tick in all
196 		 * C/P/S0/S1 states when this bit is set.
197 		 */
198 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199 			return;
200 		fallthrough;
201 	default:
202 		/* TSC could halt in idle, so notify users */
203 		if (state > ACPI_STATE_C1)
204 			mark_tsc_unstable("TSC halts in idle");
205 	}
206 }
207 #else
tsc_check_state(int state)208 static void tsc_check_state(int state) { return; }
209 #endif
210 
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)211 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212 {
213 
214 	if (!pr->pblk)
215 		return -ENODEV;
216 
217 	/* if info is obtained from pblk/fadt, type equals state */
218 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220 
221 #ifndef CONFIG_HOTPLUG_CPU
222 	/*
223 	 * Check for P_LVL2_UP flag before entering C2 and above on
224 	 * an SMP system.
225 	 */
226 	if ((num_online_cpus() > 1) &&
227 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228 		return -ENODEV;
229 #endif
230 
231 	/* determine C2 and C3 address from pblk */
232 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234 
235 	/* determine latencies from FADT */
236 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238 
239 	/*
240 	 * FADT specified C2 latency must be less than or equal to
241 	 * 100 microseconds.
242 	 */
243 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244 		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245 				  acpi_gbl_FADT.c2_latency);
246 		/* invalidate C2 */
247 		pr->power.states[ACPI_STATE_C2].address = 0;
248 	}
249 
250 	/*
251 	 * FADT supplied C3 latency must be less than or equal to
252 	 * 1000 microseconds.
253 	 */
254 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255 		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256 				  acpi_gbl_FADT.c3_latency);
257 		/* invalidate C3 */
258 		pr->power.states[ACPI_STATE_C3].address = 0;
259 	}
260 
261 	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262 			  pr->power.states[ACPI_STATE_C2].address,
263 			  pr->power.states[ACPI_STATE_C3].address);
264 
265 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
266 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267 			 pr->power.states[ACPI_STATE_C2].address);
268 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
269 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270 			 pr->power.states[ACPI_STATE_C3].address);
271 
272 	return 0;
273 }
274 
acpi_processor_get_power_info_default(struct acpi_processor * pr)275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277 	if (!pr->power.states[ACPI_STATE_C1].valid) {
278 		/* set the first C-State to C1 */
279 		/* all processors need to support C1 */
280 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281 		pr->power.states[ACPI_STATE_C1].valid = 1;
282 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283 
284 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
285 			 ACPI_CX_DESC_LEN, "ACPI HLT");
286 	}
287 	/* the C0 state only exists as a filler in our array */
288 	pr->power.states[ACPI_STATE_C0].valid = 1;
289 	return 0;
290 }
291 
acpi_processor_get_power_info_cst(struct acpi_processor * pr)292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294 	int ret;
295 
296 	if (nocst)
297 		return -ENODEV;
298 
299 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300 	if (ret)
301 		return ret;
302 
303 	if (!pr->power.count)
304 		return -EFAULT;
305 
306 	pr->flags.has_cst = 1;
307 	return 0;
308 }
309 
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311 					   struct acpi_processor_cx *cx)
312 {
313 	static int bm_check_flag = -1;
314 	static int bm_control_flag = -1;
315 
316 
317 	if (!cx->address)
318 		return;
319 
320 	/*
321 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322 	 * DMA transfers are used by any ISA device to avoid livelock.
323 	 * Note that we could disable Type-F DMA (as recommended by
324 	 * the erratum), but this is known to disrupt certain ISA
325 	 * devices thus we take the conservative approach.
326 	 */
327 	if (errata.piix4.fdma) {
328 		acpi_handle_debug(pr->handle,
329 				  "C3 not supported on PIIX4 with Type-F DMA\n");
330 		return;
331 	}
332 
333 	/* All the logic here assumes flags.bm_check is same across all CPUs */
334 	if (bm_check_flag == -1) {
335 		/* Determine whether bm_check is needed based on CPU  */
336 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337 		bm_check_flag = pr->flags.bm_check;
338 		bm_control_flag = pr->flags.bm_control;
339 	} else {
340 		pr->flags.bm_check = bm_check_flag;
341 		pr->flags.bm_control = bm_control_flag;
342 	}
343 
344 	if (pr->flags.bm_check) {
345 		if (!pr->flags.bm_control) {
346 			if (pr->flags.has_cst != 1) {
347 				/* bus mastering control is necessary */
348 				acpi_handle_debug(pr->handle,
349 						  "C3 support requires BM control\n");
350 				return;
351 			} else {
352 				/* Here we enter C3 without bus mastering */
353 				acpi_handle_debug(pr->handle,
354 						  "C3 support without BM control\n");
355 			}
356 		}
357 	} else {
358 		/*
359 		 * WBINVD should be set in fadt, for C3 state to be
360 		 * supported on when bm_check is not required.
361 		 */
362 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363 			acpi_handle_debug(pr->handle,
364 					  "Cache invalidation should work properly"
365 					  " for C3 to be enabled on SMP systems\n");
366 			return;
367 		}
368 	}
369 
370 	/*
371 	 * Otherwise we've met all of our C3 requirements.
372 	 * Normalize the C3 latency to expidite policy.  Enable
373 	 * checking of bus mastering status (bm_check) so we can
374 	 * use this in our C3 policy
375 	 */
376 	cx->valid = 1;
377 
378 	/*
379 	 * On older chipsets, BM_RLD needs to be set
380 	 * in order for Bus Master activity to wake the
381 	 * system from C3.  Newer chipsets handle DMA
382 	 * during C3 automatically and BM_RLD is a NOP.
383 	 * In either case, the proper way to
384 	 * handle BM_RLD is to set it and leave it set.
385 	 */
386 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387 }
388 
acpi_cst_latency_cmp(const void * a,const void * b)389 static int acpi_cst_latency_cmp(const void *a, const void *b)
390 {
391 	const struct acpi_processor_cx *x = a, *y = b;
392 
393 	if (!(x->valid && y->valid))
394 		return 0;
395 	if (x->latency > y->latency)
396 		return 1;
397 	if (x->latency < y->latency)
398 		return -1;
399 	return 0;
400 }
acpi_cst_latency_swap(void * a,void * b,int n)401 static void acpi_cst_latency_swap(void *a, void *b, int n)
402 {
403 	struct acpi_processor_cx *x = a, *y = b;
404 
405 	if (!(x->valid && y->valid))
406 		return;
407 	swap(x->latency, y->latency);
408 }
409 
acpi_processor_power_verify(struct acpi_processor * pr)410 static int acpi_processor_power_verify(struct acpi_processor *pr)
411 {
412 	unsigned int i;
413 	unsigned int working = 0;
414 	unsigned int last_latency = 0;
415 	unsigned int last_type = 0;
416 	bool buggy_latency = false;
417 
418 	pr->power.timer_broadcast_on_state = INT_MAX;
419 
420 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
421 		struct acpi_processor_cx *cx = &pr->power.states[i];
422 
423 		switch (cx->type) {
424 		case ACPI_STATE_C1:
425 			cx->valid = 1;
426 			break;
427 
428 		case ACPI_STATE_C2:
429 			if (!cx->address)
430 				break;
431 			cx->valid = 1;
432 			break;
433 
434 		case ACPI_STATE_C3:
435 			acpi_processor_power_verify_c3(pr, cx);
436 			break;
437 		}
438 		if (!cx->valid)
439 			continue;
440 		if (cx->type >= last_type && cx->latency < last_latency)
441 			buggy_latency = true;
442 		last_latency = cx->latency;
443 		last_type = cx->type;
444 
445 		lapic_timer_check_state(i, pr, cx);
446 		tsc_check_state(cx->type);
447 		working++;
448 	}
449 
450 	if (buggy_latency) {
451 		pr_notice("FW issue: working around C-state latencies out of order\n");
452 		sort(&pr->power.states[1], max_cstate,
453 		     sizeof(struct acpi_processor_cx),
454 		     acpi_cst_latency_cmp,
455 		     acpi_cst_latency_swap);
456 	}
457 
458 	lapic_timer_propagate_broadcast(pr);
459 
460 	return working;
461 }
462 
acpi_processor_get_cstate_info(struct acpi_processor * pr)463 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
464 {
465 	unsigned int i;
466 	int result;
467 
468 
469 	/* NOTE: the idle thread may not be running while calling
470 	 * this function */
471 
472 	/* Zero initialize all the C-states info. */
473 	memset(pr->power.states, 0, sizeof(pr->power.states));
474 
475 	result = acpi_processor_get_power_info_cst(pr);
476 	if (result == -ENODEV)
477 		result = acpi_processor_get_power_info_fadt(pr);
478 
479 	if (result)
480 		return result;
481 
482 	acpi_processor_get_power_info_default(pr);
483 
484 	pr->power.count = acpi_processor_power_verify(pr);
485 
486 	/*
487 	 * if one state of type C2 or C3 is available, mark this
488 	 * CPU as being "idle manageable"
489 	 */
490 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
491 		if (pr->power.states[i].valid) {
492 			pr->power.count = i;
493 			pr->flags.power = 1;
494 		}
495 	}
496 
497 	return 0;
498 }
499 
500 /**
501  * acpi_idle_bm_check - checks if bus master activity was detected
502  */
acpi_idle_bm_check(void)503 static int acpi_idle_bm_check(void)
504 {
505 	u32 bm_status = 0;
506 
507 	if (bm_check_disable)
508 		return 0;
509 
510 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
511 	if (bm_status)
512 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
513 	/*
514 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
515 	 * the true state of bus mastering activity; forcing us to
516 	 * manually check the BMIDEA bit of each IDE channel.
517 	 */
518 	else if (errata.piix4.bmisx) {
519 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
520 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
521 			bm_status = 1;
522 	}
523 	return bm_status;
524 }
525 
io_idle(unsigned long addr)526 static __cpuidle void io_idle(unsigned long addr)
527 {
528 	/* IO port based C-state */
529 	inb(addr);
530 
531 #ifdef	CONFIG_X86
532 	/* No delay is needed if we are in guest */
533 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
534 		return;
535 	/*
536 	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
537 	 * not this code.  Assume that any Intel systems using this
538 	 * are ancient and may need the dummy wait.  This also assumes
539 	 * that the motivating chipset issue was Intel-only.
540 	 */
541 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
542 		return;
543 #endif
544 	/*
545 	 * Dummy wait op - must do something useless after P_LVL2 read
546 	 * because chipsets cannot guarantee that STPCLK# signal gets
547 	 * asserted in time to freeze execution properly
548 	 *
549 	 * This workaround has been in place since the original ACPI
550 	 * implementation was merged, circa 2002.
551 	 *
552 	 * If a profile is pointing to this instruction, please first
553 	 * consider moving your system to a more modern idle
554 	 * mechanism.
555 	 */
556 	inl(acpi_gbl_FADT.xpm_timer_block.address);
557 }
558 
559 /**
560  * acpi_idle_do_entry - enter idle state using the appropriate method
561  * @cx: cstate data
562  *
563  * Caller disables interrupt before call and enables interrupt after return.
564  */
acpi_idle_do_entry(struct acpi_processor_cx * cx)565 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
566 {
567 	perf_lopwr_cb(true);
568 
569 	if (cx->entry_method == ACPI_CSTATE_FFH) {
570 		/* Call into architectural FFH based C-state */
571 		acpi_processor_ffh_cstate_enter(cx);
572 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
573 		acpi_safe_halt();
574 	} else {
575 		io_idle(cx->address);
576 	}
577 
578 	perf_lopwr_cb(false);
579 }
580 
581 /**
582  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
583  * @dev: the target CPU
584  * @index: the index of suggested state
585  */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)586 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
587 {
588 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
589 
590 	ACPI_FLUSH_CPU_CACHE();
591 
592 	while (1) {
593 
594 		if (cx->entry_method == ACPI_CSTATE_HALT)
595 			safe_halt();
596 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
597 			io_idle(cx->address);
598 		} else
599 			return -ENODEV;
600 	}
601 
602 	/* Never reached */
603 	return 0;
604 }
605 
acpi_idle_fallback_to_c1(struct acpi_processor * pr)606 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
607 {
608 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
609 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
610 }
611 
612 static int c3_cpu_count;
613 static DEFINE_RAW_SPINLOCK(c3_lock);
614 
615 /**
616  * acpi_idle_enter_bm - enters C3 with proper BM handling
617  * @drv: cpuidle driver
618  * @pr: Target processor
619  * @cx: Target state context
620  * @index: index of target state
621  */
acpi_idle_enter_bm(struct cpuidle_driver * drv,struct acpi_processor * pr,struct acpi_processor_cx * cx,int index)622 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
623 			       struct acpi_processor *pr,
624 			       struct acpi_processor_cx *cx,
625 			       int index)
626 {
627 	static struct acpi_processor_cx safe_cx = {
628 		.entry_method = ACPI_CSTATE_HALT,
629 	};
630 
631 	/*
632 	 * disable bus master
633 	 * bm_check implies we need ARB_DIS
634 	 * bm_control implies whether we can do ARB_DIS
635 	 *
636 	 * That leaves a case where bm_check is set and bm_control is not set.
637 	 * In that case we cannot do much, we enter C3 without doing anything.
638 	 */
639 	bool dis_bm = pr->flags.bm_control;
640 
641 	instrumentation_begin();
642 
643 	/* If we can skip BM, demote to a safe state. */
644 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
645 		dis_bm = false;
646 		index = drv->safe_state_index;
647 		if (index >= 0) {
648 			cx = this_cpu_read(acpi_cstate[index]);
649 		} else {
650 			cx = &safe_cx;
651 			index = -EBUSY;
652 		}
653 	}
654 
655 	if (dis_bm) {
656 		raw_spin_lock(&c3_lock);
657 		c3_cpu_count++;
658 		/* Disable bus master arbitration when all CPUs are in C3 */
659 		if (c3_cpu_count == num_online_cpus())
660 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
661 		raw_spin_unlock(&c3_lock);
662 	}
663 
664 	ct_cpuidle_enter();
665 
666 	acpi_idle_do_entry(cx);
667 
668 	ct_cpuidle_exit();
669 
670 	/* Re-enable bus master arbitration */
671 	if (dis_bm) {
672 		raw_spin_lock(&c3_lock);
673 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
674 		c3_cpu_count--;
675 		raw_spin_unlock(&c3_lock);
676 	}
677 
678 	instrumentation_end();
679 
680 	return index;
681 }
682 
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)683 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
684 			   struct cpuidle_driver *drv, int index)
685 {
686 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
687 	struct acpi_processor *pr;
688 
689 	pr = __this_cpu_read(processors);
690 	if (unlikely(!pr))
691 		return -EINVAL;
692 
693 	if (cx->type != ACPI_STATE_C1) {
694 		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
695 			return acpi_idle_enter_bm(drv, pr, cx, index);
696 
697 		/* C2 to C1 demotion. */
698 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
699 			index = ACPI_IDLE_STATE_START;
700 			cx = per_cpu(acpi_cstate[index], dev->cpu);
701 		}
702 	}
703 
704 	if (cx->type == ACPI_STATE_C3)
705 		ACPI_FLUSH_CPU_CACHE();
706 
707 	acpi_idle_do_entry(cx);
708 
709 	return index;
710 }
711 
acpi_idle_enter_s2idle(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)712 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
713 				  struct cpuidle_driver *drv, int index)
714 {
715 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
716 
717 	if (cx->type == ACPI_STATE_C3) {
718 		struct acpi_processor *pr = __this_cpu_read(processors);
719 
720 		if (unlikely(!pr))
721 			return 0;
722 
723 		if (pr->flags.bm_check) {
724 			u8 bm_sts_skip = cx->bm_sts_skip;
725 
726 			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
727 			cx->bm_sts_skip = 1;
728 			acpi_idle_enter_bm(drv, pr, cx, index);
729 			cx->bm_sts_skip = bm_sts_skip;
730 
731 			return 0;
732 		} else {
733 			ACPI_FLUSH_CPU_CACHE();
734 		}
735 	}
736 	acpi_idle_do_entry(cx);
737 
738 	return 0;
739 }
740 
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)741 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
742 					   struct cpuidle_device *dev)
743 {
744 	int i, count = ACPI_IDLE_STATE_START;
745 	struct acpi_processor_cx *cx;
746 	struct cpuidle_state *state;
747 
748 	if (max_cstate == 0)
749 		max_cstate = 1;
750 
751 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
752 		state = &acpi_idle_driver.states[count];
753 		cx = &pr->power.states[i];
754 
755 		if (!cx->valid)
756 			continue;
757 
758 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
759 
760 		if (lapic_timer_needs_broadcast(pr, cx))
761 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
762 
763 		if (cx->type == ACPI_STATE_C3) {
764 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
765 			if (pr->flags.bm_check)
766 				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
767 		}
768 
769 		count++;
770 		if (count == CPUIDLE_STATE_MAX)
771 			break;
772 	}
773 
774 	if (!count)
775 		return -EINVAL;
776 
777 	return 0;
778 }
779 
acpi_processor_setup_cstates(struct acpi_processor * pr)780 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
781 {
782 	int i, count;
783 	struct acpi_processor_cx *cx;
784 	struct cpuidle_state *state;
785 	struct cpuidle_driver *drv = &acpi_idle_driver;
786 
787 	if (max_cstate == 0)
788 		max_cstate = 1;
789 
790 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
791 		cpuidle_poll_state_init(drv);
792 		count = 1;
793 	} else {
794 		count = 0;
795 	}
796 
797 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
798 		cx = &pr->power.states[i];
799 
800 		if (!cx->valid)
801 			continue;
802 
803 		state = &drv->states[count];
804 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
805 		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
806 		state->exit_latency = cx->latency;
807 		state->target_residency = cx->latency * latency_factor;
808 		state->enter = acpi_idle_enter;
809 
810 		state->flags = 0;
811 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
812 		    cx->type == ACPI_STATE_C3) {
813 			state->enter_dead = acpi_idle_play_dead;
814 			if (cx->type != ACPI_STATE_C3)
815 				drv->safe_state_index = count;
816 		}
817 		/*
818 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
819 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
820 		 * particularly interesting from the suspend-to-idle angle, so
821 		 * avoid C1 and the situations in which we may need to fall back
822 		 * to it altogether.
823 		 */
824 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
825 			state->enter_s2idle = acpi_idle_enter_s2idle;
826 
827 		count++;
828 		if (count == CPUIDLE_STATE_MAX)
829 			break;
830 	}
831 
832 	drv->state_count = count;
833 
834 	if (!count)
835 		return -EINVAL;
836 
837 	return 0;
838 }
839 
acpi_processor_cstate_first_run_checks(void)840 static inline void acpi_processor_cstate_first_run_checks(void)
841 {
842 	static int first_run;
843 
844 	if (first_run)
845 		return;
846 	dmi_check_system(processor_power_dmi_table);
847 	max_cstate = acpi_processor_cstate_check(max_cstate);
848 	if (max_cstate < ACPI_C_STATES_MAX)
849 		pr_notice("processor limited to max C-state %d\n", max_cstate);
850 
851 	first_run++;
852 
853 	if (nocst)
854 		return;
855 
856 	acpi_processor_claim_cst_control();
857 }
858 #else
859 
disabled_by_idle_boot_param(void)860 static inline int disabled_by_idle_boot_param(void) { return 0; }
acpi_processor_cstate_first_run_checks(void)861 static inline void acpi_processor_cstate_first_run_checks(void) { }
acpi_processor_get_cstate_info(struct acpi_processor * pr)862 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
863 {
864 	return -ENODEV;
865 }
866 
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)867 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
868 					   struct cpuidle_device *dev)
869 {
870 	return -EINVAL;
871 }
872 
acpi_processor_setup_cstates(struct acpi_processor * pr)873 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
874 {
875 	return -EINVAL;
876 }
877 
878 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
879 
880 struct acpi_lpi_states_array {
881 	unsigned int size;
882 	unsigned int composite_states_size;
883 	struct acpi_lpi_state *entries;
884 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
885 };
886 
obj_get_integer(union acpi_object * obj,u32 * value)887 static int obj_get_integer(union acpi_object *obj, u32 *value)
888 {
889 	if (obj->type != ACPI_TYPE_INTEGER)
890 		return -EINVAL;
891 
892 	*value = obj->integer.value;
893 	return 0;
894 }
895 
acpi_processor_evaluate_lpi(acpi_handle handle,struct acpi_lpi_states_array * info)896 static int acpi_processor_evaluate_lpi(acpi_handle handle,
897 				       struct acpi_lpi_states_array *info)
898 {
899 	acpi_status status;
900 	int ret = 0;
901 	int pkg_count, state_idx = 1, loop;
902 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
903 	union acpi_object *lpi_data;
904 	struct acpi_lpi_state *lpi_state;
905 
906 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
907 	if (ACPI_FAILURE(status)) {
908 		acpi_handle_debug(handle, "No _LPI, giving up\n");
909 		return -ENODEV;
910 	}
911 
912 	lpi_data = buffer.pointer;
913 
914 	/* There must be at least 4 elements = 3 elements + 1 package */
915 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
916 	    lpi_data->package.count < 4) {
917 		pr_debug("not enough elements in _LPI\n");
918 		ret = -ENODATA;
919 		goto end;
920 	}
921 
922 	pkg_count = lpi_data->package.elements[2].integer.value;
923 
924 	/* Validate number of power states. */
925 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
926 		pr_debug("count given by _LPI is not valid\n");
927 		ret = -ENODATA;
928 		goto end;
929 	}
930 
931 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
932 	if (!lpi_state) {
933 		ret = -ENOMEM;
934 		goto end;
935 	}
936 
937 	info->size = pkg_count;
938 	info->entries = lpi_state;
939 
940 	/* LPI States start at index 3 */
941 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
942 		union acpi_object *element, *pkg_elem, *obj;
943 
944 		element = &lpi_data->package.elements[loop];
945 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
946 			continue;
947 
948 		pkg_elem = element->package.elements;
949 
950 		obj = pkg_elem + 6;
951 		if (obj->type == ACPI_TYPE_BUFFER) {
952 			struct acpi_power_register *reg;
953 
954 			reg = (struct acpi_power_register *)obj->buffer.pointer;
955 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
956 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
957 				continue;
958 
959 			lpi_state->address = reg->address;
960 			lpi_state->entry_method =
961 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
962 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
963 		} else if (obj->type == ACPI_TYPE_INTEGER) {
964 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
965 			lpi_state->address = obj->integer.value;
966 		} else {
967 			continue;
968 		}
969 
970 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
971 
972 		obj = pkg_elem + 9;
973 		if (obj->type == ACPI_TYPE_STRING)
974 			strscpy(lpi_state->desc, obj->string.pointer,
975 				ACPI_CX_DESC_LEN);
976 
977 		lpi_state->index = state_idx;
978 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
979 			pr_debug("No min. residency found, assuming 10 us\n");
980 			lpi_state->min_residency = 10;
981 		}
982 
983 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
984 			pr_debug("No wakeup residency found, assuming 10 us\n");
985 			lpi_state->wake_latency = 10;
986 		}
987 
988 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
989 			lpi_state->flags = 0;
990 
991 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
992 			lpi_state->arch_flags = 0;
993 
994 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
995 			lpi_state->res_cnt_freq = 1;
996 
997 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
998 			lpi_state->enable_parent_state = 0;
999 	}
1000 
1001 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1002 end:
1003 	kfree(buffer.pointer);
1004 	return ret;
1005 }
1006 
1007 /*
1008  * flat_state_cnt - the number of composite LPI states after the process of flattening
1009  */
1010 static int flat_state_cnt;
1011 
1012 /**
1013  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1014  *
1015  * @local: local LPI state
1016  * @parent: parent LPI state
1017  * @result: composite LPI state
1018  */
combine_lpi_states(struct acpi_lpi_state * local,struct acpi_lpi_state * parent,struct acpi_lpi_state * result)1019 static bool combine_lpi_states(struct acpi_lpi_state *local,
1020 			       struct acpi_lpi_state *parent,
1021 			       struct acpi_lpi_state *result)
1022 {
1023 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1024 		if (!parent->address) /* 0 means autopromotable */
1025 			return false;
1026 		result->address = local->address + parent->address;
1027 	} else {
1028 		result->address = parent->address;
1029 	}
1030 
1031 	result->min_residency = max(local->min_residency, parent->min_residency);
1032 	result->wake_latency = local->wake_latency + parent->wake_latency;
1033 	result->enable_parent_state = parent->enable_parent_state;
1034 	result->entry_method = local->entry_method;
1035 
1036 	result->flags = parent->flags;
1037 	result->arch_flags = parent->arch_flags;
1038 	result->index = parent->index;
1039 
1040 	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1041 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1042 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1043 	return true;
1044 }
1045 
1046 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1047 
stash_composite_state(struct acpi_lpi_states_array * curr_level,struct acpi_lpi_state * t)1048 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1049 				  struct acpi_lpi_state *t)
1050 {
1051 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1052 }
1053 
flatten_lpi_states(struct acpi_processor * pr,struct acpi_lpi_states_array * curr_level,struct acpi_lpi_states_array * prev_level)1054 static int flatten_lpi_states(struct acpi_processor *pr,
1055 			      struct acpi_lpi_states_array *curr_level,
1056 			      struct acpi_lpi_states_array *prev_level)
1057 {
1058 	int i, j, state_count = curr_level->size;
1059 	struct acpi_lpi_state *p, *t = curr_level->entries;
1060 
1061 	curr_level->composite_states_size = 0;
1062 	for (j = 0; j < state_count; j++, t++) {
1063 		struct acpi_lpi_state *flpi;
1064 
1065 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1066 			continue;
1067 
1068 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1069 			pr_warn("Limiting number of LPI states to max (%d)\n",
1070 				ACPI_PROCESSOR_MAX_POWER);
1071 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1072 			break;
1073 		}
1074 
1075 		flpi = &pr->power.lpi_states[flat_state_cnt];
1076 
1077 		if (!prev_level) { /* leaf/processor node */
1078 			memcpy(flpi, t, sizeof(*t));
1079 			stash_composite_state(curr_level, flpi);
1080 			flat_state_cnt++;
1081 			continue;
1082 		}
1083 
1084 		for (i = 0; i < prev_level->composite_states_size; i++) {
1085 			p = prev_level->composite_states[i];
1086 			if (t->index <= p->enable_parent_state &&
1087 			    combine_lpi_states(p, t, flpi)) {
1088 				stash_composite_state(curr_level, flpi);
1089 				flat_state_cnt++;
1090 				flpi++;
1091 			}
1092 		}
1093 	}
1094 
1095 	kfree(curr_level->entries);
1096 	return 0;
1097 }
1098 
acpi_processor_ffh_lpi_probe(unsigned int cpu)1099 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1100 {
1101 	return -EOPNOTSUPP;
1102 }
1103 
acpi_processor_get_lpi_info(struct acpi_processor * pr)1104 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1105 {
1106 	int ret, i;
1107 	acpi_status status;
1108 	acpi_handle handle = pr->handle, pr_ahandle;
1109 	struct acpi_device *d = NULL;
1110 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1111 
1112 	/* make sure our architecture has support */
1113 	ret = acpi_processor_ffh_lpi_probe(pr->id);
1114 	if (ret == -EOPNOTSUPP)
1115 		return ret;
1116 
1117 	if (!osc_pc_lpi_support_confirmed)
1118 		return -EOPNOTSUPP;
1119 
1120 	if (!acpi_has_method(handle, "_LPI"))
1121 		return -EINVAL;
1122 
1123 	flat_state_cnt = 0;
1124 	prev = &info[0];
1125 	curr = &info[1];
1126 	handle = pr->handle;
1127 	ret = acpi_processor_evaluate_lpi(handle, prev);
1128 	if (ret)
1129 		return ret;
1130 	flatten_lpi_states(pr, prev, NULL);
1131 
1132 	status = acpi_get_parent(handle, &pr_ahandle);
1133 	while (ACPI_SUCCESS(status)) {
1134 		d = acpi_fetch_acpi_dev(pr_ahandle);
1135 		if (!d)
1136 			break;
1137 
1138 		handle = pr_ahandle;
1139 
1140 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1141 			break;
1142 
1143 		/* can be optional ? */
1144 		if (!acpi_has_method(handle, "_LPI"))
1145 			break;
1146 
1147 		ret = acpi_processor_evaluate_lpi(handle, curr);
1148 		if (ret)
1149 			break;
1150 
1151 		/* flatten all the LPI states in this level of hierarchy */
1152 		flatten_lpi_states(pr, curr, prev);
1153 
1154 		tmp = prev, prev = curr, curr = tmp;
1155 
1156 		status = acpi_get_parent(handle, &pr_ahandle);
1157 	}
1158 
1159 	pr->power.count = flat_state_cnt;
1160 	/* reset the index after flattening */
1161 	for (i = 0; i < pr->power.count; i++)
1162 		pr->power.lpi_states[i].index = i;
1163 
1164 	/* Tell driver that _LPI is supported. */
1165 	pr->flags.has_lpi = 1;
1166 	pr->flags.power = 1;
1167 
1168 	return 0;
1169 }
1170 
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state * lpi)1171 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1172 {
1173 	return -ENODEV;
1174 }
1175 
1176 /**
1177  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1178  * @dev: the target CPU
1179  * @drv: cpuidle driver containing cpuidle state info
1180  * @index: index of target state
1181  *
1182  * Return: 0 for success or negative value for error
1183  */
acpi_idle_lpi_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)1184 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1185 			       struct cpuidle_driver *drv, int index)
1186 {
1187 	struct acpi_processor *pr;
1188 	struct acpi_lpi_state *lpi;
1189 
1190 	pr = __this_cpu_read(processors);
1191 
1192 	if (unlikely(!pr))
1193 		return -EINVAL;
1194 
1195 	lpi = &pr->power.lpi_states[index];
1196 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1197 		return acpi_processor_ffh_lpi_enter(lpi);
1198 
1199 	return -EINVAL;
1200 }
1201 
acpi_processor_setup_lpi_states(struct acpi_processor * pr)1202 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1203 {
1204 	int i;
1205 	struct acpi_lpi_state *lpi;
1206 	struct cpuidle_state *state;
1207 	struct cpuidle_driver *drv = &acpi_idle_driver;
1208 
1209 	if (!pr->flags.has_lpi)
1210 		return -EOPNOTSUPP;
1211 
1212 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1213 		lpi = &pr->power.lpi_states[i];
1214 
1215 		state = &drv->states[i];
1216 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1217 		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1218 		state->exit_latency = lpi->wake_latency;
1219 		state->target_residency = lpi->min_residency;
1220 		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1221 		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1222 			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1223 		state->enter = acpi_idle_lpi_enter;
1224 		drv->safe_state_index = i;
1225 	}
1226 
1227 	drv->state_count = i;
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1234  * global state data i.e. idle routines
1235  *
1236  * @pr: the ACPI processor
1237  */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)1238 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1239 {
1240 	int i;
1241 	struct cpuidle_driver *drv = &acpi_idle_driver;
1242 
1243 	if (!pr->flags.power_setup_done || !pr->flags.power)
1244 		return -EINVAL;
1245 
1246 	drv->safe_state_index = -1;
1247 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1248 		drv->states[i].name[0] = '\0';
1249 		drv->states[i].desc[0] = '\0';
1250 	}
1251 
1252 	if (pr->flags.has_lpi)
1253 		return acpi_processor_setup_lpi_states(pr);
1254 
1255 	return acpi_processor_setup_cstates(pr);
1256 }
1257 
1258 /**
1259  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1260  * device i.e. per-cpu data
1261  *
1262  * @pr: the ACPI processor
1263  * @dev : the cpuidle device
1264  */
acpi_processor_setup_cpuidle_dev(struct acpi_processor * pr,struct cpuidle_device * dev)1265 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1266 					    struct cpuidle_device *dev)
1267 {
1268 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1269 		return -EINVAL;
1270 
1271 	dev->cpu = pr->id;
1272 	if (pr->flags.has_lpi)
1273 		return acpi_processor_ffh_lpi_probe(pr->id);
1274 
1275 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1276 }
1277 
acpi_processor_get_power_info(struct acpi_processor * pr)1278 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1279 {
1280 	int ret;
1281 
1282 	ret = acpi_processor_get_lpi_info(pr);
1283 	if (ret)
1284 		ret = acpi_processor_get_cstate_info(pr);
1285 
1286 	return ret;
1287 }
1288 
acpi_processor_hotplug(struct acpi_processor * pr)1289 int acpi_processor_hotplug(struct acpi_processor *pr)
1290 {
1291 	int ret = 0;
1292 	struct cpuidle_device *dev;
1293 
1294 	if (disabled_by_idle_boot_param())
1295 		return 0;
1296 
1297 	if (!pr->flags.power_setup_done)
1298 		return -ENODEV;
1299 
1300 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1301 	cpuidle_pause_and_lock();
1302 	cpuidle_disable_device(dev);
1303 	ret = acpi_processor_get_power_info(pr);
1304 	if (!ret && pr->flags.power) {
1305 		acpi_processor_setup_cpuidle_dev(pr, dev);
1306 		ret = cpuidle_enable_device(dev);
1307 	}
1308 	cpuidle_resume_and_unlock();
1309 
1310 	return ret;
1311 }
1312 
acpi_processor_power_state_has_changed(struct acpi_processor * pr)1313 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1314 {
1315 	int cpu;
1316 	struct acpi_processor *_pr;
1317 	struct cpuidle_device *dev;
1318 
1319 	if (disabled_by_idle_boot_param())
1320 		return 0;
1321 
1322 	if (!pr->flags.power_setup_done)
1323 		return -ENODEV;
1324 
1325 	/*
1326 	 * FIXME:  Design the ACPI notification to make it once per
1327 	 * system instead of once per-cpu.  This condition is a hack
1328 	 * to make the code that updates C-States be called once.
1329 	 */
1330 
1331 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1332 
1333 		/* Protect against cpu-hotplug */
1334 		cpus_read_lock();
1335 		cpuidle_pause_and_lock();
1336 
1337 		/* Disable all cpuidle devices */
1338 		for_each_online_cpu(cpu) {
1339 			_pr = per_cpu(processors, cpu);
1340 			if (!_pr || !_pr->flags.power_setup_done)
1341 				continue;
1342 			dev = per_cpu(acpi_cpuidle_device, cpu);
1343 			cpuidle_disable_device(dev);
1344 		}
1345 
1346 		/* Populate Updated C-state information */
1347 		acpi_processor_get_power_info(pr);
1348 		acpi_processor_setup_cpuidle_states(pr);
1349 
1350 		/* Enable all cpuidle devices */
1351 		for_each_online_cpu(cpu) {
1352 			_pr = per_cpu(processors, cpu);
1353 			if (!_pr || !_pr->flags.power_setup_done)
1354 				continue;
1355 			acpi_processor_get_power_info(_pr);
1356 			if (_pr->flags.power) {
1357 				dev = per_cpu(acpi_cpuidle_device, cpu);
1358 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1359 				cpuidle_enable_device(dev);
1360 			}
1361 		}
1362 		cpuidle_resume_and_unlock();
1363 		cpus_read_unlock();
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static int acpi_processor_registered;
1370 
acpi_processor_power_init(struct acpi_processor * pr)1371 int acpi_processor_power_init(struct acpi_processor *pr)
1372 {
1373 	int retval;
1374 	struct cpuidle_device *dev;
1375 
1376 	if (disabled_by_idle_boot_param())
1377 		return 0;
1378 
1379 	acpi_processor_cstate_first_run_checks();
1380 
1381 	if (!acpi_processor_get_power_info(pr))
1382 		pr->flags.power_setup_done = 1;
1383 
1384 	/*
1385 	 * Install the idle handler if processor power management is supported.
1386 	 * Note that we use previously set idle handler will be used on
1387 	 * platforms that only support C1.
1388 	 */
1389 	if (pr->flags.power) {
1390 		/* Register acpi_idle_driver if not already registered */
1391 		if (!acpi_processor_registered) {
1392 			acpi_processor_setup_cpuidle_states(pr);
1393 			retval = cpuidle_register_driver(&acpi_idle_driver);
1394 			if (retval)
1395 				return retval;
1396 			pr_debug("%s registered with cpuidle\n",
1397 				 acpi_idle_driver.name);
1398 		}
1399 
1400 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1401 		if (!dev)
1402 			return -ENOMEM;
1403 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1404 
1405 		acpi_processor_setup_cpuidle_dev(pr, dev);
1406 
1407 		/* Register per-cpu cpuidle_device. Cpuidle driver
1408 		 * must already be registered before registering device
1409 		 */
1410 		retval = cpuidle_register_device(dev);
1411 		if (retval) {
1412 			if (acpi_processor_registered == 0)
1413 				cpuidle_unregister_driver(&acpi_idle_driver);
1414 			return retval;
1415 		}
1416 		acpi_processor_registered++;
1417 	}
1418 	return 0;
1419 }
1420 
acpi_processor_power_exit(struct acpi_processor * pr)1421 int acpi_processor_power_exit(struct acpi_processor *pr)
1422 {
1423 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1424 
1425 	if (disabled_by_idle_boot_param())
1426 		return 0;
1427 
1428 	if (pr->flags.power) {
1429 		cpuidle_unregister_device(dev);
1430 		acpi_processor_registered--;
1431 		if (acpi_processor_registered == 0)
1432 			cpuidle_unregister_driver(&acpi_idle_driver);
1433 	}
1434 
1435 	pr->flags.power_setup_done = 0;
1436 	return 0;
1437 }
1438