1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <linux/perf_event.h>
25 #include <acpi/processor.h>
26 #include <linux/context_tracking.h>
27
28 /*
29 * Include the apic definitions for x86 to have the APIC timer related defines
30 * available also for UP (on SMP it gets magically included via linux/smp.h).
31 * asm/acpi.h is not an option, as it would require more include magic. Also
32 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33 */
34 #ifdef CONFIG_X86
35 #include <asm/apic.h>
36 #include <asm/cpu.h>
37 #endif
38
39 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40
41 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42 module_param(max_cstate, uint, 0400);
43 static bool nocst __read_mostly;
44 module_param(nocst, bool, 0400);
45 static bool bm_check_disable __read_mostly;
46 module_param(bm_check_disable, bool, 0400);
47
48 static unsigned int latency_factor __read_mostly = 2;
49 module_param(latency_factor, uint, 0644);
50
51 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52
53 struct cpuidle_driver acpi_idle_driver = {
54 .name = "acpi_idle",
55 .owner = THIS_MODULE,
56 };
57
58 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59 static
60 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61
disabled_by_idle_boot_param(void)62 static int disabled_by_idle_boot_param(void)
63 {
64 return boot_option_idle_override == IDLE_POLL ||
65 boot_option_idle_override == IDLE_HALT;
66 }
67
68 /*
69 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70 * For now disable this. Probably a bug somewhere else.
71 *
72 * To skip this limit, boot/load with a large max_cstate limit.
73 */
set_max_cstate(const struct dmi_system_id * id)74 static int set_max_cstate(const struct dmi_system_id *id)
75 {
76 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77 return 0;
78
79 pr_notice("%s detected - limiting to C%ld max_cstate."
80 " Override with \"processor.max_cstate=%d\"\n", id->ident,
81 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82
83 max_cstate = (long)id->driver_data;
84
85 return 0;
86 }
87
88 static const struct dmi_system_id processor_power_dmi_table[] = {
89 { set_max_cstate, "Clevo 5600D", {
90 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92 (void *)2},
93 { set_max_cstate, "Pavilion zv5000", {
94 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96 (void *)1},
97 { set_max_cstate, "Asus L8400B", {
98 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100 (void *)1},
101 {},
102 };
103
104
105 /*
106 * Callers should disable interrupts before the call and enable
107 * interrupts after return.
108 */
acpi_safe_halt(void)109 static void __cpuidle acpi_safe_halt(void)
110 {
111 if (!tif_need_resched()) {
112 safe_halt();
113 local_irq_disable();
114 }
115 }
116
117 #ifdef ARCH_APICTIMER_STOPS_ON_C3
118
119 /*
120 * Some BIOS implementations switch to C3 in the published C2 state.
121 * This seems to be a common problem on AMD boxen, but other vendors
122 * are affected too. We pick the most conservative approach: we assume
123 * that the local APIC stops in both C2 and C3.
124 */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)125 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126 struct acpi_processor_cx *cx)
127 {
128 struct acpi_processor_power *pwr = &pr->power;
129 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130
131 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132 return;
133
134 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135 type = ACPI_STATE_C1;
136
137 /*
138 * Check, if one of the previous states already marked the lapic
139 * unstable
140 */
141 if (pwr->timer_broadcast_on_state < state)
142 return;
143
144 if (cx->type >= type)
145 pr->power.timer_broadcast_on_state = state;
146 }
147
__lapic_timer_propagate_broadcast(void * arg)148 static void __lapic_timer_propagate_broadcast(void *arg)
149 {
150 struct acpi_processor *pr = (struct acpi_processor *) arg;
151
152 if (pr->power.timer_broadcast_on_state < INT_MAX)
153 tick_broadcast_enable();
154 else
155 tick_broadcast_disable();
156 }
157
lapic_timer_propagate_broadcast(struct acpi_processor * pr)158 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 {
160 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161 (void *)pr, 1);
162 }
163
164 /* Power(C) State timer broadcast control */
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)165 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166 struct acpi_processor_cx *cx)
167 {
168 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169 }
170
171 #else
172
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)173 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174 struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)175 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)177 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178 struct acpi_processor_cx *cx)
179 {
180 return false;
181 }
182
183 #endif
184
185 #if defined(CONFIG_X86)
tsc_check_state(int state)186 static void tsc_check_state(int state)
187 {
188 switch (boot_cpu_data.x86_vendor) {
189 case X86_VENDOR_HYGON:
190 case X86_VENDOR_AMD:
191 case X86_VENDOR_INTEL:
192 case X86_VENDOR_CENTAUR:
193 case X86_VENDOR_ZHAOXIN:
194 /*
195 * AMD Fam10h TSC will tick in all
196 * C/P/S0/S1 states when this bit is set.
197 */
198 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199 return;
200 fallthrough;
201 default:
202 /* TSC could halt in idle, so notify users */
203 if (state > ACPI_STATE_C1)
204 mark_tsc_unstable("TSC halts in idle");
205 }
206 }
207 #else
tsc_check_state(int state)208 static void tsc_check_state(int state) { return; }
209 #endif
210
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)211 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212 {
213
214 if (!pr->pblk)
215 return -ENODEV;
216
217 /* if info is obtained from pblk/fadt, type equals state */
218 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220
221 #ifndef CONFIG_HOTPLUG_CPU
222 /*
223 * Check for P_LVL2_UP flag before entering C2 and above on
224 * an SMP system.
225 */
226 if ((num_online_cpus() > 1) &&
227 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228 return -ENODEV;
229 #endif
230
231 /* determine C2 and C3 address from pblk */
232 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234
235 /* determine latencies from FADT */
236 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238
239 /*
240 * FADT specified C2 latency must be less than or equal to
241 * 100 microseconds.
242 */
243 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245 acpi_gbl_FADT.c2_latency);
246 /* invalidate C2 */
247 pr->power.states[ACPI_STATE_C2].address = 0;
248 }
249
250 /*
251 * FADT supplied C3 latency must be less than or equal to
252 * 1000 microseconds.
253 */
254 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256 acpi_gbl_FADT.c3_latency);
257 /* invalidate C3 */
258 pr->power.states[ACPI_STATE_C3].address = 0;
259 }
260
261 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262 pr->power.states[ACPI_STATE_C2].address,
263 pr->power.states[ACPI_STATE_C3].address);
264
265 snprintf(pr->power.states[ACPI_STATE_C2].desc,
266 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267 pr->power.states[ACPI_STATE_C2].address);
268 snprintf(pr->power.states[ACPI_STATE_C3].desc,
269 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270 pr->power.states[ACPI_STATE_C3].address);
271
272 return 0;
273 }
274
acpi_processor_get_power_info_default(struct acpi_processor * pr)275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277 if (!pr->power.states[ACPI_STATE_C1].valid) {
278 /* set the first C-State to C1 */
279 /* all processors need to support C1 */
280 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281 pr->power.states[ACPI_STATE_C1].valid = 1;
282 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285 ACPI_CX_DESC_LEN, "ACPI HLT");
286 }
287 /* the C0 state only exists as a filler in our array */
288 pr->power.states[ACPI_STATE_C0].valid = 1;
289 return 0;
290 }
291
acpi_processor_get_power_info_cst(struct acpi_processor * pr)292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294 int ret;
295
296 if (nocst)
297 return -ENODEV;
298
299 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300 if (ret)
301 return ret;
302
303 if (!pr->power.count)
304 return -EFAULT;
305
306 pr->flags.has_cst = 1;
307 return 0;
308 }
309
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311 struct acpi_processor_cx *cx)
312 {
313 static int bm_check_flag = -1;
314 static int bm_control_flag = -1;
315
316
317 if (!cx->address)
318 return;
319
320 /*
321 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322 * DMA transfers are used by any ISA device to avoid livelock.
323 * Note that we could disable Type-F DMA (as recommended by
324 * the erratum), but this is known to disrupt certain ISA
325 * devices thus we take the conservative approach.
326 */
327 else if (errata.piix4.fdma) {
328 acpi_handle_debug(pr->handle,
329 "C3 not supported on PIIX4 with Type-F DMA\n");
330 return;
331 }
332
333 /* All the logic here assumes flags.bm_check is same across all CPUs */
334 if (bm_check_flag == -1) {
335 /* Determine whether bm_check is needed based on CPU */
336 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337 bm_check_flag = pr->flags.bm_check;
338 bm_control_flag = pr->flags.bm_control;
339 } else {
340 pr->flags.bm_check = bm_check_flag;
341 pr->flags.bm_control = bm_control_flag;
342 }
343
344 if (pr->flags.bm_check) {
345 if (!pr->flags.bm_control) {
346 if (pr->flags.has_cst != 1) {
347 /* bus mastering control is necessary */
348 acpi_handle_debug(pr->handle,
349 "C3 support requires BM control\n");
350 return;
351 } else {
352 /* Here we enter C3 without bus mastering */
353 acpi_handle_debug(pr->handle,
354 "C3 support without BM control\n");
355 }
356 }
357 } else {
358 /*
359 * WBINVD should be set in fadt, for C3 state to be
360 * supported on when bm_check is not required.
361 */
362 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363 acpi_handle_debug(pr->handle,
364 "Cache invalidation should work properly"
365 " for C3 to be enabled on SMP systems\n");
366 return;
367 }
368 }
369
370 /*
371 * Otherwise we've met all of our C3 requirements.
372 * Normalize the C3 latency to expidite policy. Enable
373 * checking of bus mastering status (bm_check) so we can
374 * use this in our C3 policy
375 */
376 cx->valid = 1;
377
378 /*
379 * On older chipsets, BM_RLD needs to be set
380 * in order for Bus Master activity to wake the
381 * system from C3. Newer chipsets handle DMA
382 * during C3 automatically and BM_RLD is a NOP.
383 * In either case, the proper way to
384 * handle BM_RLD is to set it and leave it set.
385 */
386 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387
388 return;
389 }
390
acpi_cst_latency_cmp(const void * a,const void * b)391 static int acpi_cst_latency_cmp(const void *a, const void *b)
392 {
393 const struct acpi_processor_cx *x = a, *y = b;
394
395 if (!(x->valid && y->valid))
396 return 0;
397 if (x->latency > y->latency)
398 return 1;
399 if (x->latency < y->latency)
400 return -1;
401 return 0;
402 }
acpi_cst_latency_swap(void * a,void * b,int n)403 static void acpi_cst_latency_swap(void *a, void *b, int n)
404 {
405 struct acpi_processor_cx *x = a, *y = b;
406
407 if (!(x->valid && y->valid))
408 return;
409 swap(x->latency, y->latency);
410 }
411
acpi_processor_power_verify(struct acpi_processor * pr)412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414 unsigned int i;
415 unsigned int working = 0;
416 unsigned int last_latency = 0;
417 unsigned int last_type = 0;
418 bool buggy_latency = false;
419
420 pr->power.timer_broadcast_on_state = INT_MAX;
421
422 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423 struct acpi_processor_cx *cx = &pr->power.states[i];
424
425 switch (cx->type) {
426 case ACPI_STATE_C1:
427 cx->valid = 1;
428 break;
429
430 case ACPI_STATE_C2:
431 if (!cx->address)
432 break;
433 cx->valid = 1;
434 break;
435
436 case ACPI_STATE_C3:
437 acpi_processor_power_verify_c3(pr, cx);
438 break;
439 }
440 if (!cx->valid)
441 continue;
442 if (cx->type >= last_type && cx->latency < last_latency)
443 buggy_latency = true;
444 last_latency = cx->latency;
445 last_type = cx->type;
446
447 lapic_timer_check_state(i, pr, cx);
448 tsc_check_state(cx->type);
449 working++;
450 }
451
452 if (buggy_latency) {
453 pr_notice("FW issue: working around C-state latencies out of order\n");
454 sort(&pr->power.states[1], max_cstate,
455 sizeof(struct acpi_processor_cx),
456 acpi_cst_latency_cmp,
457 acpi_cst_latency_swap);
458 }
459
460 lapic_timer_propagate_broadcast(pr);
461
462 return (working);
463 }
464
acpi_processor_get_cstate_info(struct acpi_processor * pr)465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466 {
467 unsigned int i;
468 int result;
469
470
471 /* NOTE: the idle thread may not be running while calling
472 * this function */
473
474 /* Zero initialize all the C-states info. */
475 memset(pr->power.states, 0, sizeof(pr->power.states));
476
477 result = acpi_processor_get_power_info_cst(pr);
478 if (result == -ENODEV)
479 result = acpi_processor_get_power_info_fadt(pr);
480
481 if (result)
482 return result;
483
484 acpi_processor_get_power_info_default(pr);
485
486 pr->power.count = acpi_processor_power_verify(pr);
487
488 /*
489 * if one state of type C2 or C3 is available, mark this
490 * CPU as being "idle manageable"
491 */
492 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493 if (pr->power.states[i].valid) {
494 pr->power.count = i;
495 pr->flags.power = 1;
496 }
497 }
498
499 return 0;
500 }
501
502 /**
503 * acpi_idle_bm_check - checks if bus master activity was detected
504 */
acpi_idle_bm_check(void)505 static int acpi_idle_bm_check(void)
506 {
507 u32 bm_status = 0;
508
509 if (bm_check_disable)
510 return 0;
511
512 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513 if (bm_status)
514 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515 /*
516 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517 * the true state of bus mastering activity; forcing us to
518 * manually check the BMIDEA bit of each IDE channel.
519 */
520 else if (errata.piix4.bmisx) {
521 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523 bm_status = 1;
524 }
525 return bm_status;
526 }
527
wait_for_freeze(void)528 static void wait_for_freeze(void)
529 {
530 #ifdef CONFIG_X86
531 /* No delay is needed if we are in guest */
532 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533 return;
534 /*
535 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
536 * not this code. Assume that any Intel systems using this
537 * are ancient and may need the dummy wait. This also assumes
538 * that the motivating chipset issue was Intel-only.
539 */
540 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
541 return;
542 #endif
543 /*
544 * Dummy wait op - must do something useless after P_LVL2 read
545 * because chipsets cannot guarantee that STPCLK# signal gets
546 * asserted in time to freeze execution properly
547 *
548 * This workaround has been in place since the original ACPI
549 * implementation was merged, circa 2002.
550 *
551 * If a profile is pointing to this instruction, please first
552 * consider moving your system to a more modern idle
553 * mechanism.
554 */
555 inl(acpi_gbl_FADT.xpm_timer_block.address);
556 }
557
558 /**
559 * acpi_idle_do_entry - enter idle state using the appropriate method
560 * @cx: cstate data
561 *
562 * Caller disables interrupt before call and enables interrupt after return.
563 */
acpi_idle_do_entry(struct acpi_processor_cx * cx)564 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
565 {
566 perf_lopwr_cb(true);
567
568 if (cx->entry_method == ACPI_CSTATE_FFH) {
569 /* Call into architectural FFH based C-state */
570 acpi_processor_ffh_cstate_enter(cx);
571 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
572 acpi_safe_halt();
573 } else {
574 /* IO port based C-state */
575 inb(cx->address);
576 wait_for_freeze();
577 }
578
579 perf_lopwr_cb(false);
580 }
581
582 /**
583 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
584 * @dev: the target CPU
585 * @index: the index of suggested state
586 */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)587 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
588 {
589 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
590
591 ACPI_FLUSH_CPU_CACHE();
592
593 while (1) {
594
595 if (cx->entry_method == ACPI_CSTATE_HALT)
596 safe_halt();
597 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
598 inb(cx->address);
599 wait_for_freeze();
600 } else
601 return -ENODEV;
602
603 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
604 cond_wakeup_cpu0();
605 #endif
606 }
607
608 /* Never reached */
609 return 0;
610 }
611
acpi_idle_fallback_to_c1(struct acpi_processor * pr)612 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
613 {
614 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
615 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
616 }
617
618 static int c3_cpu_count;
619 static DEFINE_RAW_SPINLOCK(c3_lock);
620
621 /**
622 * acpi_idle_enter_bm - enters C3 with proper BM handling
623 * @drv: cpuidle driver
624 * @pr: Target processor
625 * @cx: Target state context
626 * @index: index of target state
627 */
acpi_idle_enter_bm(struct cpuidle_driver * drv,struct acpi_processor * pr,struct acpi_processor_cx * cx,int index)628 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
629 struct acpi_processor *pr,
630 struct acpi_processor_cx *cx,
631 int index)
632 {
633 static struct acpi_processor_cx safe_cx = {
634 .entry_method = ACPI_CSTATE_HALT,
635 };
636
637 /*
638 * disable bus master
639 * bm_check implies we need ARB_DIS
640 * bm_control implies whether we can do ARB_DIS
641 *
642 * That leaves a case where bm_check is set and bm_control is not set.
643 * In that case we cannot do much, we enter C3 without doing anything.
644 */
645 bool dis_bm = pr->flags.bm_control;
646
647 /* If we can skip BM, demote to a safe state. */
648 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
649 dis_bm = false;
650 index = drv->safe_state_index;
651 if (index >= 0) {
652 cx = this_cpu_read(acpi_cstate[index]);
653 } else {
654 cx = &safe_cx;
655 index = -EBUSY;
656 }
657 }
658
659 if (dis_bm) {
660 raw_spin_lock(&c3_lock);
661 c3_cpu_count++;
662 /* Disable bus master arbitration when all CPUs are in C3 */
663 if (c3_cpu_count == num_online_cpus())
664 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
665 raw_spin_unlock(&c3_lock);
666 }
667
668 ct_idle_enter();
669
670 acpi_idle_do_entry(cx);
671
672 ct_idle_exit();
673
674 /* Re-enable bus master arbitration */
675 if (dis_bm) {
676 raw_spin_lock(&c3_lock);
677 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
678 c3_cpu_count--;
679 raw_spin_unlock(&c3_lock);
680 }
681
682 return index;
683 }
684
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)685 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
686 struct cpuidle_driver *drv, int index)
687 {
688 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
689 struct acpi_processor *pr;
690
691 pr = __this_cpu_read(processors);
692 if (unlikely(!pr))
693 return -EINVAL;
694
695 if (cx->type != ACPI_STATE_C1) {
696 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
697 return acpi_idle_enter_bm(drv, pr, cx, index);
698
699 /* C2 to C1 demotion. */
700 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
701 index = ACPI_IDLE_STATE_START;
702 cx = per_cpu(acpi_cstate[index], dev->cpu);
703 }
704 }
705
706 if (cx->type == ACPI_STATE_C3)
707 ACPI_FLUSH_CPU_CACHE();
708
709 acpi_idle_do_entry(cx);
710
711 return index;
712 }
713
acpi_idle_enter_s2idle(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)714 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
715 struct cpuidle_driver *drv, int index)
716 {
717 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
718
719 if (cx->type == ACPI_STATE_C3) {
720 struct acpi_processor *pr = __this_cpu_read(processors);
721
722 if (unlikely(!pr))
723 return 0;
724
725 if (pr->flags.bm_check) {
726 u8 bm_sts_skip = cx->bm_sts_skip;
727
728 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
729 cx->bm_sts_skip = 1;
730 acpi_idle_enter_bm(drv, pr, cx, index);
731 cx->bm_sts_skip = bm_sts_skip;
732
733 return 0;
734 } else {
735 ACPI_FLUSH_CPU_CACHE();
736 }
737 }
738 acpi_idle_do_entry(cx);
739
740 return 0;
741 }
742
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)743 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
744 struct cpuidle_device *dev)
745 {
746 int i, count = ACPI_IDLE_STATE_START;
747 struct acpi_processor_cx *cx;
748 struct cpuidle_state *state;
749
750 if (max_cstate == 0)
751 max_cstate = 1;
752
753 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
754 state = &acpi_idle_driver.states[count];
755 cx = &pr->power.states[i];
756
757 if (!cx->valid)
758 continue;
759
760 per_cpu(acpi_cstate[count], dev->cpu) = cx;
761
762 if (lapic_timer_needs_broadcast(pr, cx))
763 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
764
765 if (cx->type == ACPI_STATE_C3) {
766 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
767 if (pr->flags.bm_check)
768 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
769 }
770
771 count++;
772 if (count == CPUIDLE_STATE_MAX)
773 break;
774 }
775
776 if (!count)
777 return -EINVAL;
778
779 return 0;
780 }
781
acpi_processor_setup_cstates(struct acpi_processor * pr)782 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
783 {
784 int i, count;
785 struct acpi_processor_cx *cx;
786 struct cpuidle_state *state;
787 struct cpuidle_driver *drv = &acpi_idle_driver;
788
789 if (max_cstate == 0)
790 max_cstate = 1;
791
792 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
793 cpuidle_poll_state_init(drv);
794 count = 1;
795 } else {
796 count = 0;
797 }
798
799 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
800 cx = &pr->power.states[i];
801
802 if (!cx->valid)
803 continue;
804
805 state = &drv->states[count];
806 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
807 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
808 state->exit_latency = cx->latency;
809 state->target_residency = cx->latency * latency_factor;
810 state->enter = acpi_idle_enter;
811
812 state->flags = 0;
813 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
814 cx->type == ACPI_STATE_C3) {
815 state->enter_dead = acpi_idle_play_dead;
816 if (cx->type != ACPI_STATE_C3)
817 drv->safe_state_index = count;
818 }
819 /*
820 * Halt-induced C1 is not good for ->enter_s2idle, because it
821 * re-enables interrupts on exit. Moreover, C1 is generally not
822 * particularly interesting from the suspend-to-idle angle, so
823 * avoid C1 and the situations in which we may need to fall back
824 * to it altogether.
825 */
826 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
827 state->enter_s2idle = acpi_idle_enter_s2idle;
828
829 count++;
830 if (count == CPUIDLE_STATE_MAX)
831 break;
832 }
833
834 drv->state_count = count;
835
836 if (!count)
837 return -EINVAL;
838
839 return 0;
840 }
841
acpi_processor_cstate_first_run_checks(void)842 static inline void acpi_processor_cstate_first_run_checks(void)
843 {
844 static int first_run;
845
846 if (first_run)
847 return;
848 dmi_check_system(processor_power_dmi_table);
849 max_cstate = acpi_processor_cstate_check(max_cstate);
850 if (max_cstate < ACPI_C_STATES_MAX)
851 pr_notice("processor limited to max C-state %d\n", max_cstate);
852
853 first_run++;
854
855 if (nocst)
856 return;
857
858 acpi_processor_claim_cst_control();
859 }
860 #else
861
disabled_by_idle_boot_param(void)862 static inline int disabled_by_idle_boot_param(void) { return 0; }
acpi_processor_cstate_first_run_checks(void)863 static inline void acpi_processor_cstate_first_run_checks(void) { }
acpi_processor_get_cstate_info(struct acpi_processor * pr)864 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
865 {
866 return -ENODEV;
867 }
868
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)869 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
870 struct cpuidle_device *dev)
871 {
872 return -EINVAL;
873 }
874
acpi_processor_setup_cstates(struct acpi_processor * pr)875 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
876 {
877 return -EINVAL;
878 }
879
880 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
881
882 struct acpi_lpi_states_array {
883 unsigned int size;
884 unsigned int composite_states_size;
885 struct acpi_lpi_state *entries;
886 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
887 };
888
obj_get_integer(union acpi_object * obj,u32 * value)889 static int obj_get_integer(union acpi_object *obj, u32 *value)
890 {
891 if (obj->type != ACPI_TYPE_INTEGER)
892 return -EINVAL;
893
894 *value = obj->integer.value;
895 return 0;
896 }
897
acpi_processor_evaluate_lpi(acpi_handle handle,struct acpi_lpi_states_array * info)898 static int acpi_processor_evaluate_lpi(acpi_handle handle,
899 struct acpi_lpi_states_array *info)
900 {
901 acpi_status status;
902 int ret = 0;
903 int pkg_count, state_idx = 1, loop;
904 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
905 union acpi_object *lpi_data;
906 struct acpi_lpi_state *lpi_state;
907
908 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
909 if (ACPI_FAILURE(status)) {
910 acpi_handle_debug(handle, "No _LPI, giving up\n");
911 return -ENODEV;
912 }
913
914 lpi_data = buffer.pointer;
915
916 /* There must be at least 4 elements = 3 elements + 1 package */
917 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
918 lpi_data->package.count < 4) {
919 pr_debug("not enough elements in _LPI\n");
920 ret = -ENODATA;
921 goto end;
922 }
923
924 pkg_count = lpi_data->package.elements[2].integer.value;
925
926 /* Validate number of power states. */
927 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
928 pr_debug("count given by _LPI is not valid\n");
929 ret = -ENODATA;
930 goto end;
931 }
932
933 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
934 if (!lpi_state) {
935 ret = -ENOMEM;
936 goto end;
937 }
938
939 info->size = pkg_count;
940 info->entries = lpi_state;
941
942 /* LPI States start at index 3 */
943 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
944 union acpi_object *element, *pkg_elem, *obj;
945
946 element = &lpi_data->package.elements[loop];
947 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
948 continue;
949
950 pkg_elem = element->package.elements;
951
952 obj = pkg_elem + 6;
953 if (obj->type == ACPI_TYPE_BUFFER) {
954 struct acpi_power_register *reg;
955
956 reg = (struct acpi_power_register *)obj->buffer.pointer;
957 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
958 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
959 continue;
960
961 lpi_state->address = reg->address;
962 lpi_state->entry_method =
963 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
964 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
965 } else if (obj->type == ACPI_TYPE_INTEGER) {
966 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
967 lpi_state->address = obj->integer.value;
968 } else {
969 continue;
970 }
971
972 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
973
974 obj = pkg_elem + 9;
975 if (obj->type == ACPI_TYPE_STRING)
976 strscpy(lpi_state->desc, obj->string.pointer,
977 ACPI_CX_DESC_LEN);
978
979 lpi_state->index = state_idx;
980 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
981 pr_debug("No min. residency found, assuming 10 us\n");
982 lpi_state->min_residency = 10;
983 }
984
985 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
986 pr_debug("No wakeup residency found, assuming 10 us\n");
987 lpi_state->wake_latency = 10;
988 }
989
990 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
991 lpi_state->flags = 0;
992
993 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
994 lpi_state->arch_flags = 0;
995
996 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
997 lpi_state->res_cnt_freq = 1;
998
999 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1000 lpi_state->enable_parent_state = 0;
1001 }
1002
1003 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1004 end:
1005 kfree(buffer.pointer);
1006 return ret;
1007 }
1008
1009 /*
1010 * flat_state_cnt - the number of composite LPI states after the process of flattening
1011 */
1012 static int flat_state_cnt;
1013
1014 /**
1015 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1016 *
1017 * @local: local LPI state
1018 * @parent: parent LPI state
1019 * @result: composite LPI state
1020 */
combine_lpi_states(struct acpi_lpi_state * local,struct acpi_lpi_state * parent,struct acpi_lpi_state * result)1021 static bool combine_lpi_states(struct acpi_lpi_state *local,
1022 struct acpi_lpi_state *parent,
1023 struct acpi_lpi_state *result)
1024 {
1025 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1026 if (!parent->address) /* 0 means autopromotable */
1027 return false;
1028 result->address = local->address + parent->address;
1029 } else {
1030 result->address = parent->address;
1031 }
1032
1033 result->min_residency = max(local->min_residency, parent->min_residency);
1034 result->wake_latency = local->wake_latency + parent->wake_latency;
1035 result->enable_parent_state = parent->enable_parent_state;
1036 result->entry_method = local->entry_method;
1037
1038 result->flags = parent->flags;
1039 result->arch_flags = parent->arch_flags;
1040 result->index = parent->index;
1041
1042 strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1043 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1044 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1045 return true;
1046 }
1047
1048 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1049
stash_composite_state(struct acpi_lpi_states_array * curr_level,struct acpi_lpi_state * t)1050 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1051 struct acpi_lpi_state *t)
1052 {
1053 curr_level->composite_states[curr_level->composite_states_size++] = t;
1054 }
1055
flatten_lpi_states(struct acpi_processor * pr,struct acpi_lpi_states_array * curr_level,struct acpi_lpi_states_array * prev_level)1056 static int flatten_lpi_states(struct acpi_processor *pr,
1057 struct acpi_lpi_states_array *curr_level,
1058 struct acpi_lpi_states_array *prev_level)
1059 {
1060 int i, j, state_count = curr_level->size;
1061 struct acpi_lpi_state *p, *t = curr_level->entries;
1062
1063 curr_level->composite_states_size = 0;
1064 for (j = 0; j < state_count; j++, t++) {
1065 struct acpi_lpi_state *flpi;
1066
1067 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1068 continue;
1069
1070 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1071 pr_warn("Limiting number of LPI states to max (%d)\n",
1072 ACPI_PROCESSOR_MAX_POWER);
1073 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1074 break;
1075 }
1076
1077 flpi = &pr->power.lpi_states[flat_state_cnt];
1078
1079 if (!prev_level) { /* leaf/processor node */
1080 memcpy(flpi, t, sizeof(*t));
1081 stash_composite_state(curr_level, flpi);
1082 flat_state_cnt++;
1083 continue;
1084 }
1085
1086 for (i = 0; i < prev_level->composite_states_size; i++) {
1087 p = prev_level->composite_states[i];
1088 if (t->index <= p->enable_parent_state &&
1089 combine_lpi_states(p, t, flpi)) {
1090 stash_composite_state(curr_level, flpi);
1091 flat_state_cnt++;
1092 flpi++;
1093 }
1094 }
1095 }
1096
1097 kfree(curr_level->entries);
1098 return 0;
1099 }
1100
acpi_processor_ffh_lpi_probe(unsigned int cpu)1101 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1102 {
1103 return -EOPNOTSUPP;
1104 }
1105
acpi_processor_get_lpi_info(struct acpi_processor * pr)1106 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1107 {
1108 int ret, i;
1109 acpi_status status;
1110 acpi_handle handle = pr->handle, pr_ahandle;
1111 struct acpi_device *d = NULL;
1112 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1113
1114 /* make sure our architecture has support */
1115 ret = acpi_processor_ffh_lpi_probe(pr->id);
1116 if (ret == -EOPNOTSUPP)
1117 return ret;
1118
1119 if (!osc_pc_lpi_support_confirmed)
1120 return -EOPNOTSUPP;
1121
1122 if (!acpi_has_method(handle, "_LPI"))
1123 return -EINVAL;
1124
1125 flat_state_cnt = 0;
1126 prev = &info[0];
1127 curr = &info[1];
1128 handle = pr->handle;
1129 ret = acpi_processor_evaluate_lpi(handle, prev);
1130 if (ret)
1131 return ret;
1132 flatten_lpi_states(pr, prev, NULL);
1133
1134 status = acpi_get_parent(handle, &pr_ahandle);
1135 while (ACPI_SUCCESS(status)) {
1136 d = acpi_fetch_acpi_dev(pr_ahandle);
1137 handle = pr_ahandle;
1138
1139 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1140 break;
1141
1142 /* can be optional ? */
1143 if (!acpi_has_method(handle, "_LPI"))
1144 break;
1145
1146 ret = acpi_processor_evaluate_lpi(handle, curr);
1147 if (ret)
1148 break;
1149
1150 /* flatten all the LPI states in this level of hierarchy */
1151 flatten_lpi_states(pr, curr, prev);
1152
1153 tmp = prev, prev = curr, curr = tmp;
1154
1155 status = acpi_get_parent(handle, &pr_ahandle);
1156 }
1157
1158 pr->power.count = flat_state_cnt;
1159 /* reset the index after flattening */
1160 for (i = 0; i < pr->power.count; i++)
1161 pr->power.lpi_states[i].index = i;
1162
1163 /* Tell driver that _LPI is supported. */
1164 pr->flags.has_lpi = 1;
1165 pr->flags.power = 1;
1166
1167 return 0;
1168 }
1169
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state * lpi)1170 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1171 {
1172 return -ENODEV;
1173 }
1174
1175 /**
1176 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1177 * @dev: the target CPU
1178 * @drv: cpuidle driver containing cpuidle state info
1179 * @index: index of target state
1180 *
1181 * Return: 0 for success or negative value for error
1182 */
acpi_idle_lpi_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)1183 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1184 struct cpuidle_driver *drv, int index)
1185 {
1186 struct acpi_processor *pr;
1187 struct acpi_lpi_state *lpi;
1188
1189 pr = __this_cpu_read(processors);
1190
1191 if (unlikely(!pr))
1192 return -EINVAL;
1193
1194 lpi = &pr->power.lpi_states[index];
1195 if (lpi->entry_method == ACPI_CSTATE_FFH)
1196 return acpi_processor_ffh_lpi_enter(lpi);
1197
1198 return -EINVAL;
1199 }
1200
acpi_processor_setup_lpi_states(struct acpi_processor * pr)1201 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1202 {
1203 int i;
1204 struct acpi_lpi_state *lpi;
1205 struct cpuidle_state *state;
1206 struct cpuidle_driver *drv = &acpi_idle_driver;
1207
1208 if (!pr->flags.has_lpi)
1209 return -EOPNOTSUPP;
1210
1211 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1212 lpi = &pr->power.lpi_states[i];
1213
1214 state = &drv->states[i];
1215 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1216 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1217 state->exit_latency = lpi->wake_latency;
1218 state->target_residency = lpi->min_residency;
1219 if (lpi->arch_flags)
1220 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1221 state->enter = acpi_idle_lpi_enter;
1222 drv->safe_state_index = i;
1223 }
1224
1225 drv->state_count = i;
1226
1227 return 0;
1228 }
1229
1230 /**
1231 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1232 * global state data i.e. idle routines
1233 *
1234 * @pr: the ACPI processor
1235 */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)1236 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1237 {
1238 int i;
1239 struct cpuidle_driver *drv = &acpi_idle_driver;
1240
1241 if (!pr->flags.power_setup_done || !pr->flags.power)
1242 return -EINVAL;
1243
1244 drv->safe_state_index = -1;
1245 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1246 drv->states[i].name[0] = '\0';
1247 drv->states[i].desc[0] = '\0';
1248 }
1249
1250 if (pr->flags.has_lpi)
1251 return acpi_processor_setup_lpi_states(pr);
1252
1253 return acpi_processor_setup_cstates(pr);
1254 }
1255
1256 /**
1257 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1258 * device i.e. per-cpu data
1259 *
1260 * @pr: the ACPI processor
1261 * @dev : the cpuidle device
1262 */
acpi_processor_setup_cpuidle_dev(struct acpi_processor * pr,struct cpuidle_device * dev)1263 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1264 struct cpuidle_device *dev)
1265 {
1266 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1267 return -EINVAL;
1268
1269 dev->cpu = pr->id;
1270 if (pr->flags.has_lpi)
1271 return acpi_processor_ffh_lpi_probe(pr->id);
1272
1273 return acpi_processor_setup_cpuidle_cx(pr, dev);
1274 }
1275
acpi_processor_get_power_info(struct acpi_processor * pr)1276 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1277 {
1278 int ret;
1279
1280 ret = acpi_processor_get_lpi_info(pr);
1281 if (ret)
1282 ret = acpi_processor_get_cstate_info(pr);
1283
1284 return ret;
1285 }
1286
acpi_processor_hotplug(struct acpi_processor * pr)1287 int acpi_processor_hotplug(struct acpi_processor *pr)
1288 {
1289 int ret = 0;
1290 struct cpuidle_device *dev;
1291
1292 if (disabled_by_idle_boot_param())
1293 return 0;
1294
1295 if (!pr->flags.power_setup_done)
1296 return -ENODEV;
1297
1298 dev = per_cpu(acpi_cpuidle_device, pr->id);
1299 cpuidle_pause_and_lock();
1300 cpuidle_disable_device(dev);
1301 ret = acpi_processor_get_power_info(pr);
1302 if (!ret && pr->flags.power) {
1303 acpi_processor_setup_cpuidle_dev(pr, dev);
1304 ret = cpuidle_enable_device(dev);
1305 }
1306 cpuidle_resume_and_unlock();
1307
1308 return ret;
1309 }
1310
acpi_processor_power_state_has_changed(struct acpi_processor * pr)1311 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1312 {
1313 int cpu;
1314 struct acpi_processor *_pr;
1315 struct cpuidle_device *dev;
1316
1317 if (disabled_by_idle_boot_param())
1318 return 0;
1319
1320 if (!pr->flags.power_setup_done)
1321 return -ENODEV;
1322
1323 /*
1324 * FIXME: Design the ACPI notification to make it once per
1325 * system instead of once per-cpu. This condition is a hack
1326 * to make the code that updates C-States be called once.
1327 */
1328
1329 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1330
1331 /* Protect against cpu-hotplug */
1332 cpus_read_lock();
1333 cpuidle_pause_and_lock();
1334
1335 /* Disable all cpuidle devices */
1336 for_each_online_cpu(cpu) {
1337 _pr = per_cpu(processors, cpu);
1338 if (!_pr || !_pr->flags.power_setup_done)
1339 continue;
1340 dev = per_cpu(acpi_cpuidle_device, cpu);
1341 cpuidle_disable_device(dev);
1342 }
1343
1344 /* Populate Updated C-state information */
1345 acpi_processor_get_power_info(pr);
1346 acpi_processor_setup_cpuidle_states(pr);
1347
1348 /* Enable all cpuidle devices */
1349 for_each_online_cpu(cpu) {
1350 _pr = per_cpu(processors, cpu);
1351 if (!_pr || !_pr->flags.power_setup_done)
1352 continue;
1353 acpi_processor_get_power_info(_pr);
1354 if (_pr->flags.power) {
1355 dev = per_cpu(acpi_cpuidle_device, cpu);
1356 acpi_processor_setup_cpuidle_dev(_pr, dev);
1357 cpuidle_enable_device(dev);
1358 }
1359 }
1360 cpuidle_resume_and_unlock();
1361 cpus_read_unlock();
1362 }
1363
1364 return 0;
1365 }
1366
1367 static int acpi_processor_registered;
1368
acpi_processor_power_init(struct acpi_processor * pr)1369 int acpi_processor_power_init(struct acpi_processor *pr)
1370 {
1371 int retval;
1372 struct cpuidle_device *dev;
1373
1374 if (disabled_by_idle_boot_param())
1375 return 0;
1376
1377 acpi_processor_cstate_first_run_checks();
1378
1379 if (!acpi_processor_get_power_info(pr))
1380 pr->flags.power_setup_done = 1;
1381
1382 /*
1383 * Install the idle handler if processor power management is supported.
1384 * Note that we use previously set idle handler will be used on
1385 * platforms that only support C1.
1386 */
1387 if (pr->flags.power) {
1388 /* Register acpi_idle_driver if not already registered */
1389 if (!acpi_processor_registered) {
1390 acpi_processor_setup_cpuidle_states(pr);
1391 retval = cpuidle_register_driver(&acpi_idle_driver);
1392 if (retval)
1393 return retval;
1394 pr_debug("%s registered with cpuidle\n",
1395 acpi_idle_driver.name);
1396 }
1397
1398 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1399 if (!dev)
1400 return -ENOMEM;
1401 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1402
1403 acpi_processor_setup_cpuidle_dev(pr, dev);
1404
1405 /* Register per-cpu cpuidle_device. Cpuidle driver
1406 * must already be registered before registering device
1407 */
1408 retval = cpuidle_register_device(dev);
1409 if (retval) {
1410 if (acpi_processor_registered == 0)
1411 cpuidle_unregister_driver(&acpi_idle_driver);
1412 return retval;
1413 }
1414 acpi_processor_registered++;
1415 }
1416 return 0;
1417 }
1418
acpi_processor_power_exit(struct acpi_processor * pr)1419 int acpi_processor_power_exit(struct acpi_processor *pr)
1420 {
1421 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1422
1423 if (disabled_by_idle_boot_param())
1424 return 0;
1425
1426 if (pr->flags.power) {
1427 cpuidle_unregister_device(dev);
1428 acpi_processor_registered--;
1429 if (acpi_processor_registered == 0)
1430 cpuidle_unregister_driver(&acpi_idle_driver);
1431 }
1432
1433 pr->flags.power_setup_done = 0;
1434 return 0;
1435 }
1436