1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4 Copyright (c) 2001, 2002 by D-Link Corporation
5 Written by Edward Peng.<edward_peng@dlink.com.tw>
6 Created 03-May-2001, base on Linux' sundance.c.
7
8 */
9
10 #define DRV_NAME "DL2000/TC902x-based linux driver"
11 #define DRV_VERSION "v1.19"
12 #define DRV_RELDATE "2007/08/12"
13 #include "dl2k.h"
14 #include <linux/dma-mapping.h>
15
16 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
17 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
18 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
19 #define dr32(reg) ioread32(ioaddr + (reg))
20 #define dr16(reg) ioread16(ioaddr + (reg))
21 #define dr8(reg) ioread8(ioaddr + (reg))
22
23 static char version[] =
24 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
25 #define MAX_UNITS 8
26 static int mtu[MAX_UNITS];
27 static int vlan[MAX_UNITS];
28 static int jumbo[MAX_UNITS];
29 static char *media[MAX_UNITS];
30 static int tx_flow=-1;
31 static int rx_flow=-1;
32 static int copy_thresh;
33 static int rx_coalesce=10; /* Rx frame count each interrupt */
34 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
35 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
36
37
38 MODULE_AUTHOR ("Edward Peng");
39 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
40 MODULE_LICENSE("GPL");
41 module_param_array(mtu, int, NULL, 0);
42 module_param_array(media, charp, NULL, 0);
43 module_param_array(vlan, int, NULL, 0);
44 module_param_array(jumbo, int, NULL, 0);
45 module_param(tx_flow, int, 0);
46 module_param(rx_flow, int, 0);
47 module_param(copy_thresh, int, 0);
48 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
49 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
50 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
51
52
53 /* Enable the default interrupts */
54 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
55 UpdateStats | LinkEvent)
56
dl2k_enable_int(struct netdev_private * np)57 static void dl2k_enable_int(struct netdev_private *np)
58 {
59 void __iomem *ioaddr = np->ioaddr;
60
61 dw16(IntEnable, DEFAULT_INTR);
62 }
63
64 static const int max_intrloop = 50;
65 static const int multicast_filter_limit = 0x40;
66
67 static int rio_open (struct net_device *dev);
68 static void rio_timer (struct timer_list *t);
69 static void rio_tx_timeout (struct net_device *dev);
70 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
71 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
72 static void rio_free_tx (struct net_device *dev, int irq);
73 static void tx_error (struct net_device *dev, int tx_status);
74 static int receive_packet (struct net_device *dev);
75 static void rio_error (struct net_device *dev, int int_status);
76 static void set_multicast (struct net_device *dev);
77 static struct net_device_stats *get_stats (struct net_device *dev);
78 static int clear_stats (struct net_device *dev);
79 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
80 static int rio_close (struct net_device *dev);
81 static int find_miiphy (struct net_device *dev);
82 static int parse_eeprom (struct net_device *dev);
83 static int read_eeprom (struct netdev_private *, int eep_addr);
84 static int mii_wait_link (struct net_device *dev, int wait);
85 static int mii_set_media (struct net_device *dev);
86 static int mii_get_media (struct net_device *dev);
87 static int mii_set_media_pcs (struct net_device *dev);
88 static int mii_get_media_pcs (struct net_device *dev);
89 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
90 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
91 u16 data);
92
93 static const struct ethtool_ops ethtool_ops;
94
95 static const struct net_device_ops netdev_ops = {
96 .ndo_open = rio_open,
97 .ndo_start_xmit = start_xmit,
98 .ndo_stop = rio_close,
99 .ndo_get_stats = get_stats,
100 .ndo_validate_addr = eth_validate_addr,
101 .ndo_set_mac_address = eth_mac_addr,
102 .ndo_set_rx_mode = set_multicast,
103 .ndo_do_ioctl = rio_ioctl,
104 .ndo_tx_timeout = rio_tx_timeout,
105 };
106
107 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)108 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
109 {
110 struct net_device *dev;
111 struct netdev_private *np;
112 static int card_idx;
113 int chip_idx = ent->driver_data;
114 int err, irq;
115 void __iomem *ioaddr;
116 static int version_printed;
117 void *ring_space;
118 dma_addr_t ring_dma;
119
120 if (!version_printed++)
121 printk ("%s", version);
122
123 err = pci_enable_device (pdev);
124 if (err)
125 return err;
126
127 irq = pdev->irq;
128 err = pci_request_regions (pdev, "dl2k");
129 if (err)
130 goto err_out_disable;
131
132 pci_set_master (pdev);
133
134 err = -ENOMEM;
135
136 dev = alloc_etherdev (sizeof (*np));
137 if (!dev)
138 goto err_out_res;
139 SET_NETDEV_DEV(dev, &pdev->dev);
140
141 np = netdev_priv(dev);
142
143 /* IO registers range. */
144 ioaddr = pci_iomap(pdev, 0, 0);
145 if (!ioaddr)
146 goto err_out_dev;
147 np->eeprom_addr = ioaddr;
148
149 #ifdef MEM_MAPPING
150 /* MM registers range. */
151 ioaddr = pci_iomap(pdev, 1, 0);
152 if (!ioaddr)
153 goto err_out_iounmap;
154 #endif
155 np->ioaddr = ioaddr;
156 np->chip_id = chip_idx;
157 np->pdev = pdev;
158 spin_lock_init (&np->tx_lock);
159 spin_lock_init (&np->rx_lock);
160
161 /* Parse manual configuration */
162 np->an_enable = 1;
163 np->tx_coalesce = 1;
164 if (card_idx < MAX_UNITS) {
165 if (media[card_idx] != NULL) {
166 np->an_enable = 0;
167 if (strcmp (media[card_idx], "auto") == 0 ||
168 strcmp (media[card_idx], "autosense") == 0 ||
169 strcmp (media[card_idx], "0") == 0 ) {
170 np->an_enable = 2;
171 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
172 strcmp (media[card_idx], "4") == 0) {
173 np->speed = 100;
174 np->full_duplex = 1;
175 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
176 strcmp (media[card_idx], "3") == 0) {
177 np->speed = 100;
178 np->full_duplex = 0;
179 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
180 strcmp (media[card_idx], "2") == 0) {
181 np->speed = 10;
182 np->full_duplex = 1;
183 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
184 strcmp (media[card_idx], "1") == 0) {
185 np->speed = 10;
186 np->full_duplex = 0;
187 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
188 strcmp (media[card_idx], "6") == 0) {
189 np->speed=1000;
190 np->full_duplex=1;
191 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
192 strcmp (media[card_idx], "5") == 0) {
193 np->speed = 1000;
194 np->full_duplex = 0;
195 } else {
196 np->an_enable = 1;
197 }
198 }
199 if (jumbo[card_idx] != 0) {
200 np->jumbo = 1;
201 dev->mtu = MAX_JUMBO;
202 } else {
203 np->jumbo = 0;
204 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
205 dev->mtu = mtu[card_idx];
206 }
207 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
208 vlan[card_idx] : 0;
209 if (rx_coalesce > 0 && rx_timeout > 0) {
210 np->rx_coalesce = rx_coalesce;
211 np->rx_timeout = rx_timeout;
212 np->coalesce = 1;
213 }
214 np->tx_flow = (tx_flow == 0) ? 0 : 1;
215 np->rx_flow = (rx_flow == 0) ? 0 : 1;
216
217 if (tx_coalesce < 1)
218 tx_coalesce = 1;
219 else if (tx_coalesce > TX_RING_SIZE-1)
220 tx_coalesce = TX_RING_SIZE - 1;
221 }
222 dev->netdev_ops = &netdev_ops;
223 dev->watchdog_timeo = TX_TIMEOUT;
224 dev->ethtool_ops = ðtool_ops;
225 #if 0
226 dev->features = NETIF_F_IP_CSUM;
227 #endif
228 /* MTU range: 68 - 1536 or 8000 */
229 dev->min_mtu = ETH_MIN_MTU;
230 dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
231
232 pci_set_drvdata (pdev, dev);
233
234 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
235 if (!ring_space)
236 goto err_out_iounmap;
237 np->tx_ring = ring_space;
238 np->tx_ring_dma = ring_dma;
239
240 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
241 if (!ring_space)
242 goto err_out_unmap_tx;
243 np->rx_ring = ring_space;
244 np->rx_ring_dma = ring_dma;
245
246 /* Parse eeprom data */
247 parse_eeprom (dev);
248
249 /* Find PHY address */
250 err = find_miiphy (dev);
251 if (err)
252 goto err_out_unmap_rx;
253
254 /* Fiber device? */
255 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
256 np->link_status = 0;
257 /* Set media and reset PHY */
258 if (np->phy_media) {
259 /* default Auto-Negotiation for fiber deivices */
260 if (np->an_enable == 2) {
261 np->an_enable = 1;
262 }
263 } else {
264 /* Auto-Negotiation is mandatory for 1000BASE-T,
265 IEEE 802.3ab Annex 28D page 14 */
266 if (np->speed == 1000)
267 np->an_enable = 1;
268 }
269
270 err = register_netdev (dev);
271 if (err)
272 goto err_out_unmap_rx;
273
274 card_idx++;
275
276 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
277 dev->name, np->name, dev->dev_addr, irq);
278 if (tx_coalesce > 1)
279 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
280 tx_coalesce);
281 if (np->coalesce)
282 printk(KERN_INFO
283 "rx_coalesce:\t%d packets\n"
284 "rx_timeout: \t%d ns\n",
285 np->rx_coalesce, np->rx_timeout*640);
286 if (np->vlan)
287 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
288 return 0;
289
290 err_out_unmap_rx:
291 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
292 err_out_unmap_tx:
293 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
294 err_out_iounmap:
295 #ifdef MEM_MAPPING
296 pci_iounmap(pdev, np->ioaddr);
297 #endif
298 pci_iounmap(pdev, np->eeprom_addr);
299 err_out_dev:
300 free_netdev (dev);
301 err_out_res:
302 pci_release_regions (pdev);
303 err_out_disable:
304 pci_disable_device (pdev);
305 return err;
306 }
307
308 static int
find_miiphy(struct net_device * dev)309 find_miiphy (struct net_device *dev)
310 {
311 struct netdev_private *np = netdev_priv(dev);
312 int i, phy_found = 0;
313
314 np->phy_addr = 1;
315
316 for (i = 31; i >= 0; i--) {
317 int mii_status = mii_read (dev, i, 1);
318 if (mii_status != 0xffff && mii_status != 0x0000) {
319 np->phy_addr = i;
320 phy_found++;
321 }
322 }
323 if (!phy_found) {
324 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
325 return -ENODEV;
326 }
327 return 0;
328 }
329
330 static int
parse_eeprom(struct net_device * dev)331 parse_eeprom (struct net_device *dev)
332 {
333 struct netdev_private *np = netdev_priv(dev);
334 void __iomem *ioaddr = np->ioaddr;
335 int i, j;
336 u8 sromdata[256];
337 u8 *psib;
338 u32 crc;
339 PSROM_t psrom = (PSROM_t) sromdata;
340
341 int cid, next;
342
343 for (i = 0; i < 128; i++)
344 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
345
346 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
347 /* Check CRC */
348 crc = ~ether_crc_le (256 - 4, sromdata);
349 if (psrom->crc != cpu_to_le32(crc)) {
350 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
351 dev->name);
352 return -1;
353 }
354 }
355
356 /* Set MAC address */
357 for (i = 0; i < 6; i++)
358 dev->dev_addr[i] = psrom->mac_addr[i];
359
360 if (np->chip_id == CHIP_IP1000A) {
361 np->led_mode = psrom->led_mode;
362 return 0;
363 }
364
365 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
366 return 0;
367 }
368
369 /* Parse Software Information Block */
370 i = 0x30;
371 psib = (u8 *) sromdata;
372 do {
373 cid = psib[i++];
374 next = psib[i++];
375 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
376 printk (KERN_ERR "Cell data error\n");
377 return -1;
378 }
379 switch (cid) {
380 case 0: /* Format version */
381 break;
382 case 1: /* End of cell */
383 return 0;
384 case 2: /* Duplex Polarity */
385 np->duplex_polarity = psib[i];
386 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
387 break;
388 case 3: /* Wake Polarity */
389 np->wake_polarity = psib[i];
390 break;
391 case 9: /* Adapter description */
392 j = (next - i > 255) ? 255 : next - i;
393 memcpy (np->name, &(psib[i]), j);
394 break;
395 case 4:
396 case 5:
397 case 6:
398 case 7:
399 case 8: /* Reversed */
400 break;
401 default: /* Unknown cell */
402 return -1;
403 }
404 i = next;
405 } while (1);
406
407 return 0;
408 }
409
rio_set_led_mode(struct net_device * dev)410 static void rio_set_led_mode(struct net_device *dev)
411 {
412 struct netdev_private *np = netdev_priv(dev);
413 void __iomem *ioaddr = np->ioaddr;
414 u32 mode;
415
416 if (np->chip_id != CHIP_IP1000A)
417 return;
418
419 mode = dr32(ASICCtrl);
420 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
421
422 if (np->led_mode & 0x01)
423 mode |= IPG_AC_LED_MODE;
424 if (np->led_mode & 0x02)
425 mode |= IPG_AC_LED_MODE_BIT_1;
426 if (np->led_mode & 0x08)
427 mode |= IPG_AC_LED_SPEED;
428
429 dw32(ASICCtrl, mode);
430 }
431
desc_to_dma(struct netdev_desc * desc)432 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
433 {
434 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
435 }
436
free_list(struct net_device * dev)437 static void free_list(struct net_device *dev)
438 {
439 struct netdev_private *np = netdev_priv(dev);
440 struct sk_buff *skb;
441 int i;
442
443 /* Free all the skbuffs in the queue. */
444 for (i = 0; i < RX_RING_SIZE; i++) {
445 skb = np->rx_skbuff[i];
446 if (skb) {
447 pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
448 skb->len, PCI_DMA_FROMDEVICE);
449 dev_kfree_skb(skb);
450 np->rx_skbuff[i] = NULL;
451 }
452 np->rx_ring[i].status = 0;
453 np->rx_ring[i].fraginfo = 0;
454 }
455 for (i = 0; i < TX_RING_SIZE; i++) {
456 skb = np->tx_skbuff[i];
457 if (skb) {
458 pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
459 skb->len, PCI_DMA_TODEVICE);
460 dev_kfree_skb(skb);
461 np->tx_skbuff[i] = NULL;
462 }
463 }
464 }
465
rio_reset_ring(struct netdev_private * np)466 static void rio_reset_ring(struct netdev_private *np)
467 {
468 int i;
469
470 np->cur_rx = 0;
471 np->cur_tx = 0;
472 np->old_rx = 0;
473 np->old_tx = 0;
474
475 for (i = 0; i < TX_RING_SIZE; i++)
476 np->tx_ring[i].status = cpu_to_le64(TFDDone);
477
478 for (i = 0; i < RX_RING_SIZE; i++)
479 np->rx_ring[i].status = 0;
480 }
481
482 /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)483 static int alloc_list(struct net_device *dev)
484 {
485 struct netdev_private *np = netdev_priv(dev);
486 int i;
487
488 rio_reset_ring(np);
489 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
490
491 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
492 for (i = 0; i < TX_RING_SIZE; i++) {
493 np->tx_skbuff[i] = NULL;
494 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
495 ((i + 1) % TX_RING_SIZE) *
496 sizeof(struct netdev_desc));
497 }
498
499 /* Initialize Rx descriptors & allocate buffers */
500 for (i = 0; i < RX_RING_SIZE; i++) {
501 /* Allocated fixed size of skbuff */
502 struct sk_buff *skb;
503
504 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
505 np->rx_skbuff[i] = skb;
506 if (!skb) {
507 free_list(dev);
508 return -ENOMEM;
509 }
510
511 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
512 ((i + 1) % RX_RING_SIZE) *
513 sizeof(struct netdev_desc));
514 /* Rubicon now supports 40 bits of addressing space. */
515 np->rx_ring[i].fraginfo =
516 cpu_to_le64(pci_map_single(
517 np->pdev, skb->data, np->rx_buf_sz,
518 PCI_DMA_FROMDEVICE));
519 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
520 }
521
522 return 0;
523 }
524
rio_hw_init(struct net_device * dev)525 static void rio_hw_init(struct net_device *dev)
526 {
527 struct netdev_private *np = netdev_priv(dev);
528 void __iomem *ioaddr = np->ioaddr;
529 int i;
530 u16 macctrl;
531
532 /* Reset all logic functions */
533 dw16(ASICCtrl + 2,
534 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
535 mdelay(10);
536
537 rio_set_led_mode(dev);
538
539 /* DebugCtrl bit 4, 5, 9 must set */
540 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
541
542 if (np->chip_id == CHIP_IP1000A &&
543 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
544 /* PHY magic taken from ipg driver, undocumented registers */
545 mii_write(dev, np->phy_addr, 31, 0x0001);
546 mii_write(dev, np->phy_addr, 27, 0x01e0);
547 mii_write(dev, np->phy_addr, 31, 0x0002);
548 mii_write(dev, np->phy_addr, 27, 0xeb8e);
549 mii_write(dev, np->phy_addr, 31, 0x0000);
550 mii_write(dev, np->phy_addr, 30, 0x005e);
551 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
552 mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
553 }
554
555 if (np->phy_media)
556 mii_set_media_pcs(dev);
557 else
558 mii_set_media(dev);
559
560 /* Jumbo frame */
561 if (np->jumbo != 0)
562 dw16(MaxFrameSize, MAX_JUMBO+14);
563
564 /* Set RFDListPtr */
565 dw32(RFDListPtr0, np->rx_ring_dma);
566 dw32(RFDListPtr1, 0);
567
568 /* Set station address */
569 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
570 * too. However, it doesn't work on IP1000A so we use 16-bit access.
571 */
572 for (i = 0; i < 3; i++)
573 dw16(StationAddr0 + 2 * i,
574 cpu_to_le16(((u16 *)dev->dev_addr)[i]));
575
576 set_multicast (dev);
577 if (np->coalesce) {
578 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
579 }
580 /* Set RIO to poll every N*320nsec. */
581 dw8(RxDMAPollPeriod, 0x20);
582 dw8(TxDMAPollPeriod, 0xff);
583 dw8(RxDMABurstThresh, 0x30);
584 dw8(RxDMAUrgentThresh, 0x30);
585 dw32(RmonStatMask, 0x0007ffff);
586 /* clear statistics */
587 clear_stats (dev);
588
589 /* VLAN supported */
590 if (np->vlan) {
591 /* priority field in RxDMAIntCtrl */
592 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
593 /* VLANId */
594 dw16(VLANId, np->vlan);
595 /* Length/Type should be 0x8100 */
596 dw32(VLANTag, 0x8100 << 16 | np->vlan);
597 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
598 VLAN information tagged by TFC' VID, CFI fields. */
599 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
600 }
601
602 /* Start Tx/Rx */
603 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
604
605 macctrl = 0;
606 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
607 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
608 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
609 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
610 dw16(MACCtrl, macctrl);
611 }
612
rio_hw_stop(struct net_device * dev)613 static void rio_hw_stop(struct net_device *dev)
614 {
615 struct netdev_private *np = netdev_priv(dev);
616 void __iomem *ioaddr = np->ioaddr;
617
618 /* Disable interrupts */
619 dw16(IntEnable, 0);
620
621 /* Stop Tx and Rx logics */
622 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
623 }
624
rio_open(struct net_device * dev)625 static int rio_open(struct net_device *dev)
626 {
627 struct netdev_private *np = netdev_priv(dev);
628 const int irq = np->pdev->irq;
629 int i;
630
631 i = alloc_list(dev);
632 if (i)
633 return i;
634
635 rio_hw_init(dev);
636
637 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
638 if (i) {
639 rio_hw_stop(dev);
640 free_list(dev);
641 return i;
642 }
643
644 timer_setup(&np->timer, rio_timer, 0);
645 np->timer.expires = jiffies + 1 * HZ;
646 add_timer(&np->timer);
647
648 netif_start_queue (dev);
649
650 dl2k_enable_int(np);
651 return 0;
652 }
653
654 static void
rio_timer(struct timer_list * t)655 rio_timer (struct timer_list *t)
656 {
657 struct netdev_private *np = from_timer(np, t, timer);
658 struct net_device *dev = pci_get_drvdata(np->pdev);
659 unsigned int entry;
660 int next_tick = 1*HZ;
661 unsigned long flags;
662
663 spin_lock_irqsave(&np->rx_lock, flags);
664 /* Recover rx ring exhausted error */
665 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
666 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
667 /* Re-allocate skbuffs to fill the descriptor ring */
668 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
669 struct sk_buff *skb;
670 entry = np->old_rx % RX_RING_SIZE;
671 /* Dropped packets don't need to re-allocate */
672 if (np->rx_skbuff[entry] == NULL) {
673 skb = netdev_alloc_skb_ip_align(dev,
674 np->rx_buf_sz);
675 if (skb == NULL) {
676 np->rx_ring[entry].fraginfo = 0;
677 printk (KERN_INFO
678 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
679 dev->name, entry);
680 break;
681 }
682 np->rx_skbuff[entry] = skb;
683 np->rx_ring[entry].fraginfo =
684 cpu_to_le64 (pci_map_single
685 (np->pdev, skb->data, np->rx_buf_sz,
686 PCI_DMA_FROMDEVICE));
687 }
688 np->rx_ring[entry].fraginfo |=
689 cpu_to_le64((u64)np->rx_buf_sz << 48);
690 np->rx_ring[entry].status = 0;
691 } /* end for */
692 } /* end if */
693 spin_unlock_irqrestore (&np->rx_lock, flags);
694 np->timer.expires = jiffies + next_tick;
695 add_timer(&np->timer);
696 }
697
698 static void
rio_tx_timeout(struct net_device * dev)699 rio_tx_timeout (struct net_device *dev)
700 {
701 struct netdev_private *np = netdev_priv(dev);
702 void __iomem *ioaddr = np->ioaddr;
703
704 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
705 dev->name, dr32(TxStatus));
706 rio_free_tx(dev, 0);
707 dev->if_port = 0;
708 netif_trans_update(dev); /* prevent tx timeout */
709 }
710
711 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)712 start_xmit (struct sk_buff *skb, struct net_device *dev)
713 {
714 struct netdev_private *np = netdev_priv(dev);
715 void __iomem *ioaddr = np->ioaddr;
716 struct netdev_desc *txdesc;
717 unsigned entry;
718 u64 tfc_vlan_tag = 0;
719
720 if (np->link_status == 0) { /* Link Down */
721 dev_kfree_skb(skb);
722 return NETDEV_TX_OK;
723 }
724 entry = np->cur_tx % TX_RING_SIZE;
725 np->tx_skbuff[entry] = skb;
726 txdesc = &np->tx_ring[entry];
727
728 #if 0
729 if (skb->ip_summed == CHECKSUM_PARTIAL) {
730 txdesc->status |=
731 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
732 IPChecksumEnable);
733 }
734 #endif
735 if (np->vlan) {
736 tfc_vlan_tag = VLANTagInsert |
737 ((u64)np->vlan << 32) |
738 ((u64)skb->priority << 45);
739 }
740 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
741 skb->len,
742 PCI_DMA_TODEVICE));
743 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
744
745 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
746 * Work around: Always use 1 descriptor in 10Mbps mode */
747 if (entry % np->tx_coalesce == 0 || np->speed == 10)
748 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
749 WordAlignDisable |
750 TxDMAIndicate |
751 (1 << FragCountShift));
752 else
753 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
754 WordAlignDisable |
755 (1 << FragCountShift));
756
757 /* TxDMAPollNow */
758 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
759 /* Schedule ISR */
760 dw32(CountDown, 10000);
761 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
762 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
763 < TX_QUEUE_LEN - 1 && np->speed != 10) {
764 /* do nothing */
765 } else if (!netif_queue_stopped(dev)) {
766 netif_stop_queue (dev);
767 }
768
769 /* The first TFDListPtr */
770 if (!dr32(TFDListPtr0)) {
771 dw32(TFDListPtr0, np->tx_ring_dma +
772 entry * sizeof (struct netdev_desc));
773 dw32(TFDListPtr1, 0);
774 }
775
776 return NETDEV_TX_OK;
777 }
778
779 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)780 rio_interrupt (int irq, void *dev_instance)
781 {
782 struct net_device *dev = dev_instance;
783 struct netdev_private *np = netdev_priv(dev);
784 void __iomem *ioaddr = np->ioaddr;
785 unsigned int_status;
786 int cnt = max_intrloop;
787 int handled = 0;
788
789 while (1) {
790 int_status = dr16(IntStatus);
791 dw16(IntStatus, int_status);
792 int_status &= DEFAULT_INTR;
793 if (int_status == 0 || --cnt < 0)
794 break;
795 handled = 1;
796 /* Processing received packets */
797 if (int_status & RxDMAComplete)
798 receive_packet (dev);
799 /* TxDMAComplete interrupt */
800 if ((int_status & (TxDMAComplete|IntRequested))) {
801 int tx_status;
802 tx_status = dr32(TxStatus);
803 if (tx_status & 0x01)
804 tx_error (dev, tx_status);
805 /* Free used tx skbuffs */
806 rio_free_tx (dev, 1);
807 }
808
809 /* Handle uncommon events */
810 if (int_status &
811 (HostError | LinkEvent | UpdateStats))
812 rio_error (dev, int_status);
813 }
814 if (np->cur_tx != np->old_tx)
815 dw32(CountDown, 100);
816 return IRQ_RETVAL(handled);
817 }
818
819 static void
rio_free_tx(struct net_device * dev,int irq)820 rio_free_tx (struct net_device *dev, int irq)
821 {
822 struct netdev_private *np = netdev_priv(dev);
823 int entry = np->old_tx % TX_RING_SIZE;
824 int tx_use = 0;
825 unsigned long flag = 0;
826
827 if (irq)
828 spin_lock(&np->tx_lock);
829 else
830 spin_lock_irqsave(&np->tx_lock, flag);
831
832 /* Free used tx skbuffs */
833 while (entry != np->cur_tx) {
834 struct sk_buff *skb;
835
836 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
837 break;
838 skb = np->tx_skbuff[entry];
839 pci_unmap_single (np->pdev,
840 desc_to_dma(&np->tx_ring[entry]),
841 skb->len, PCI_DMA_TODEVICE);
842 if (irq)
843 dev_consume_skb_irq(skb);
844 else
845 dev_kfree_skb(skb);
846
847 np->tx_skbuff[entry] = NULL;
848 entry = (entry + 1) % TX_RING_SIZE;
849 tx_use++;
850 }
851 if (irq)
852 spin_unlock(&np->tx_lock);
853 else
854 spin_unlock_irqrestore(&np->tx_lock, flag);
855 np->old_tx = entry;
856
857 /* If the ring is no longer full, clear tx_full and
858 call netif_wake_queue() */
859
860 if (netif_queue_stopped(dev) &&
861 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
862 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
863 netif_wake_queue (dev);
864 }
865 }
866
867 static void
tx_error(struct net_device * dev,int tx_status)868 tx_error (struct net_device *dev, int tx_status)
869 {
870 struct netdev_private *np = netdev_priv(dev);
871 void __iomem *ioaddr = np->ioaddr;
872 int frame_id;
873 int i;
874
875 frame_id = (tx_status & 0xffff0000);
876 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
877 dev->name, tx_status, frame_id);
878 dev->stats.tx_errors++;
879 /* Ttransmit Underrun */
880 if (tx_status & 0x10) {
881 dev->stats.tx_fifo_errors++;
882 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
883 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
884 dw16(ASICCtrl + 2,
885 TxReset | DMAReset | FIFOReset | NetworkReset);
886 /* Wait for ResetBusy bit clear */
887 for (i = 50; i > 0; i--) {
888 if (!(dr16(ASICCtrl + 2) & ResetBusy))
889 break;
890 mdelay (1);
891 }
892 rio_set_led_mode(dev);
893 rio_free_tx (dev, 1);
894 /* Reset TFDListPtr */
895 dw32(TFDListPtr0, np->tx_ring_dma +
896 np->old_tx * sizeof (struct netdev_desc));
897 dw32(TFDListPtr1, 0);
898
899 /* Let TxStartThresh stay default value */
900 }
901 /* Late Collision */
902 if (tx_status & 0x04) {
903 dev->stats.tx_fifo_errors++;
904 /* TxReset and clear FIFO */
905 dw16(ASICCtrl + 2, TxReset | FIFOReset);
906 /* Wait reset done */
907 for (i = 50; i > 0; i--) {
908 if (!(dr16(ASICCtrl + 2) & ResetBusy))
909 break;
910 mdelay (1);
911 }
912 rio_set_led_mode(dev);
913 /* Let TxStartThresh stay default value */
914 }
915 /* Maximum Collisions */
916 if (tx_status & 0x08)
917 dev->stats.collisions++;
918 /* Restart the Tx */
919 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
920 }
921
922 static int
receive_packet(struct net_device * dev)923 receive_packet (struct net_device *dev)
924 {
925 struct netdev_private *np = netdev_priv(dev);
926 int entry = np->cur_rx % RX_RING_SIZE;
927 int cnt = 30;
928
929 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
930 while (1) {
931 struct netdev_desc *desc = &np->rx_ring[entry];
932 int pkt_len;
933 u64 frame_status;
934
935 if (!(desc->status & cpu_to_le64(RFDDone)) ||
936 !(desc->status & cpu_to_le64(FrameStart)) ||
937 !(desc->status & cpu_to_le64(FrameEnd)))
938 break;
939
940 /* Chip omits the CRC. */
941 frame_status = le64_to_cpu(desc->status);
942 pkt_len = frame_status & 0xffff;
943 if (--cnt < 0)
944 break;
945 /* Update rx error statistics, drop packet. */
946 if (frame_status & RFS_Errors) {
947 dev->stats.rx_errors++;
948 if (frame_status & (RxRuntFrame | RxLengthError))
949 dev->stats.rx_length_errors++;
950 if (frame_status & RxFCSError)
951 dev->stats.rx_crc_errors++;
952 if (frame_status & RxAlignmentError && np->speed != 1000)
953 dev->stats.rx_frame_errors++;
954 if (frame_status & RxFIFOOverrun)
955 dev->stats.rx_fifo_errors++;
956 } else {
957 struct sk_buff *skb;
958
959 /* Small skbuffs for short packets */
960 if (pkt_len > copy_thresh) {
961 pci_unmap_single (np->pdev,
962 desc_to_dma(desc),
963 np->rx_buf_sz,
964 PCI_DMA_FROMDEVICE);
965 skb_put (skb = np->rx_skbuff[entry], pkt_len);
966 np->rx_skbuff[entry] = NULL;
967 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
968 pci_dma_sync_single_for_cpu(np->pdev,
969 desc_to_dma(desc),
970 np->rx_buf_sz,
971 PCI_DMA_FROMDEVICE);
972 skb_copy_to_linear_data (skb,
973 np->rx_skbuff[entry]->data,
974 pkt_len);
975 skb_put (skb, pkt_len);
976 pci_dma_sync_single_for_device(np->pdev,
977 desc_to_dma(desc),
978 np->rx_buf_sz,
979 PCI_DMA_FROMDEVICE);
980 }
981 skb->protocol = eth_type_trans (skb, dev);
982 #if 0
983 /* Checksum done by hw, but csum value unavailable. */
984 if (np->pdev->pci_rev_id >= 0x0c &&
985 !(frame_status & (TCPError | UDPError | IPError))) {
986 skb->ip_summed = CHECKSUM_UNNECESSARY;
987 }
988 #endif
989 netif_rx (skb);
990 }
991 entry = (entry + 1) % RX_RING_SIZE;
992 }
993 spin_lock(&np->rx_lock);
994 np->cur_rx = entry;
995 /* Re-allocate skbuffs to fill the descriptor ring */
996 entry = np->old_rx;
997 while (entry != np->cur_rx) {
998 struct sk_buff *skb;
999 /* Dropped packets don't need to re-allocate */
1000 if (np->rx_skbuff[entry] == NULL) {
1001 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1002 if (skb == NULL) {
1003 np->rx_ring[entry].fraginfo = 0;
1004 printk (KERN_INFO
1005 "%s: receive_packet: "
1006 "Unable to re-allocate Rx skbuff.#%d\n",
1007 dev->name, entry);
1008 break;
1009 }
1010 np->rx_skbuff[entry] = skb;
1011 np->rx_ring[entry].fraginfo =
1012 cpu_to_le64 (pci_map_single
1013 (np->pdev, skb->data, np->rx_buf_sz,
1014 PCI_DMA_FROMDEVICE));
1015 }
1016 np->rx_ring[entry].fraginfo |=
1017 cpu_to_le64((u64)np->rx_buf_sz << 48);
1018 np->rx_ring[entry].status = 0;
1019 entry = (entry + 1) % RX_RING_SIZE;
1020 }
1021 np->old_rx = entry;
1022 spin_unlock(&np->rx_lock);
1023 return 0;
1024 }
1025
1026 static void
rio_error(struct net_device * dev,int int_status)1027 rio_error (struct net_device *dev, int int_status)
1028 {
1029 struct netdev_private *np = netdev_priv(dev);
1030 void __iomem *ioaddr = np->ioaddr;
1031 u16 macctrl;
1032
1033 /* Link change event */
1034 if (int_status & LinkEvent) {
1035 if (mii_wait_link (dev, 10) == 0) {
1036 printk (KERN_INFO "%s: Link up\n", dev->name);
1037 if (np->phy_media)
1038 mii_get_media_pcs (dev);
1039 else
1040 mii_get_media (dev);
1041 if (np->speed == 1000)
1042 np->tx_coalesce = tx_coalesce;
1043 else
1044 np->tx_coalesce = 1;
1045 macctrl = 0;
1046 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1047 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1048 macctrl |= (np->tx_flow) ?
1049 TxFlowControlEnable : 0;
1050 macctrl |= (np->rx_flow) ?
1051 RxFlowControlEnable : 0;
1052 dw16(MACCtrl, macctrl);
1053 np->link_status = 1;
1054 netif_carrier_on(dev);
1055 } else {
1056 printk (KERN_INFO "%s: Link off\n", dev->name);
1057 np->link_status = 0;
1058 netif_carrier_off(dev);
1059 }
1060 }
1061
1062 /* UpdateStats statistics registers */
1063 if (int_status & UpdateStats) {
1064 get_stats (dev);
1065 }
1066
1067 /* PCI Error, a catastronphic error related to the bus interface
1068 occurs, set GlobalReset and HostReset to reset. */
1069 if (int_status & HostError) {
1070 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1071 dev->name, int_status);
1072 dw16(ASICCtrl + 2, GlobalReset | HostReset);
1073 mdelay (500);
1074 rio_set_led_mode(dev);
1075 }
1076 }
1077
1078 static struct net_device_stats *
get_stats(struct net_device * dev)1079 get_stats (struct net_device *dev)
1080 {
1081 struct netdev_private *np = netdev_priv(dev);
1082 void __iomem *ioaddr = np->ioaddr;
1083 #ifdef MEM_MAPPING
1084 int i;
1085 #endif
1086 unsigned int stat_reg;
1087
1088 /* All statistics registers need to be acknowledged,
1089 else statistic overflow could cause problems */
1090
1091 dev->stats.rx_packets += dr32(FramesRcvOk);
1092 dev->stats.tx_packets += dr32(FramesXmtOk);
1093 dev->stats.rx_bytes += dr32(OctetRcvOk);
1094 dev->stats.tx_bytes += dr32(OctetXmtOk);
1095
1096 dev->stats.multicast = dr32(McstFramesRcvdOk);
1097 dev->stats.collisions += dr32(SingleColFrames)
1098 + dr32(MultiColFrames);
1099
1100 /* detailed tx errors */
1101 stat_reg = dr16(FramesAbortXSColls);
1102 dev->stats.tx_aborted_errors += stat_reg;
1103 dev->stats.tx_errors += stat_reg;
1104
1105 stat_reg = dr16(CarrierSenseErrors);
1106 dev->stats.tx_carrier_errors += stat_reg;
1107 dev->stats.tx_errors += stat_reg;
1108
1109 /* Clear all other statistic register. */
1110 dr32(McstOctetXmtOk);
1111 dr16(BcstFramesXmtdOk);
1112 dr32(McstFramesXmtdOk);
1113 dr16(BcstFramesRcvdOk);
1114 dr16(MacControlFramesRcvd);
1115 dr16(FrameTooLongErrors);
1116 dr16(InRangeLengthErrors);
1117 dr16(FramesCheckSeqErrors);
1118 dr16(FramesLostRxErrors);
1119 dr32(McstOctetXmtOk);
1120 dr32(BcstOctetXmtOk);
1121 dr32(McstFramesXmtdOk);
1122 dr32(FramesWDeferredXmt);
1123 dr32(LateCollisions);
1124 dr16(BcstFramesXmtdOk);
1125 dr16(MacControlFramesXmtd);
1126 dr16(FramesWEXDeferal);
1127
1128 #ifdef MEM_MAPPING
1129 for (i = 0x100; i <= 0x150; i += 4)
1130 dr32(i);
1131 #endif
1132 dr16(TxJumboFrames);
1133 dr16(RxJumboFrames);
1134 dr16(TCPCheckSumErrors);
1135 dr16(UDPCheckSumErrors);
1136 dr16(IPCheckSumErrors);
1137 return &dev->stats;
1138 }
1139
1140 static int
clear_stats(struct net_device * dev)1141 clear_stats (struct net_device *dev)
1142 {
1143 struct netdev_private *np = netdev_priv(dev);
1144 void __iomem *ioaddr = np->ioaddr;
1145 #ifdef MEM_MAPPING
1146 int i;
1147 #endif
1148
1149 /* All statistics registers need to be acknowledged,
1150 else statistic overflow could cause problems */
1151 dr32(FramesRcvOk);
1152 dr32(FramesXmtOk);
1153 dr32(OctetRcvOk);
1154 dr32(OctetXmtOk);
1155
1156 dr32(McstFramesRcvdOk);
1157 dr32(SingleColFrames);
1158 dr32(MultiColFrames);
1159 dr32(LateCollisions);
1160 /* detailed rx errors */
1161 dr16(FrameTooLongErrors);
1162 dr16(InRangeLengthErrors);
1163 dr16(FramesCheckSeqErrors);
1164 dr16(FramesLostRxErrors);
1165
1166 /* detailed tx errors */
1167 dr16(FramesAbortXSColls);
1168 dr16(CarrierSenseErrors);
1169
1170 /* Clear all other statistic register. */
1171 dr32(McstOctetXmtOk);
1172 dr16(BcstFramesXmtdOk);
1173 dr32(McstFramesXmtdOk);
1174 dr16(BcstFramesRcvdOk);
1175 dr16(MacControlFramesRcvd);
1176 dr32(McstOctetXmtOk);
1177 dr32(BcstOctetXmtOk);
1178 dr32(McstFramesXmtdOk);
1179 dr32(FramesWDeferredXmt);
1180 dr16(BcstFramesXmtdOk);
1181 dr16(MacControlFramesXmtd);
1182 dr16(FramesWEXDeferal);
1183 #ifdef MEM_MAPPING
1184 for (i = 0x100; i <= 0x150; i += 4)
1185 dr32(i);
1186 #endif
1187 dr16(TxJumboFrames);
1188 dr16(RxJumboFrames);
1189 dr16(TCPCheckSumErrors);
1190 dr16(UDPCheckSumErrors);
1191 dr16(IPCheckSumErrors);
1192 return 0;
1193 }
1194
1195 static void
set_multicast(struct net_device * dev)1196 set_multicast (struct net_device *dev)
1197 {
1198 struct netdev_private *np = netdev_priv(dev);
1199 void __iomem *ioaddr = np->ioaddr;
1200 u32 hash_table[2];
1201 u16 rx_mode = 0;
1202
1203 hash_table[0] = hash_table[1] = 0;
1204 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1205 hash_table[1] |= 0x02000000;
1206 if (dev->flags & IFF_PROMISC) {
1207 /* Receive all frames promiscuously. */
1208 rx_mode = ReceiveAllFrames;
1209 } else if ((dev->flags & IFF_ALLMULTI) ||
1210 (netdev_mc_count(dev) > multicast_filter_limit)) {
1211 /* Receive broadcast and multicast frames */
1212 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1213 } else if (!netdev_mc_empty(dev)) {
1214 struct netdev_hw_addr *ha;
1215 /* Receive broadcast frames and multicast frames filtering
1216 by Hashtable */
1217 rx_mode =
1218 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1219 netdev_for_each_mc_addr(ha, dev) {
1220 int bit, index = 0;
1221 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1222 /* The inverted high significant 6 bits of CRC are
1223 used as an index to hashtable */
1224 for (bit = 0; bit < 6; bit++)
1225 if (crc & (1 << (31 - bit)))
1226 index |= (1 << bit);
1227 hash_table[index / 32] |= (1 << (index % 32));
1228 }
1229 } else {
1230 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1231 }
1232 if (np->vlan) {
1233 /* ReceiveVLANMatch field in ReceiveMode */
1234 rx_mode |= ReceiveVLANMatch;
1235 }
1236
1237 dw32(HashTable0, hash_table[0]);
1238 dw32(HashTable1, hash_table[1]);
1239 dw16(ReceiveMode, rx_mode);
1240 }
1241
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1242 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1243 {
1244 struct netdev_private *np = netdev_priv(dev);
1245
1246 strlcpy(info->driver, "dl2k", sizeof(info->driver));
1247 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1248 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1249 }
1250
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1251 static int rio_get_link_ksettings(struct net_device *dev,
1252 struct ethtool_link_ksettings *cmd)
1253 {
1254 struct netdev_private *np = netdev_priv(dev);
1255 u32 supported, advertising;
1256
1257 if (np->phy_media) {
1258 /* fiber device */
1259 supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1260 advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1261 cmd->base.port = PORT_FIBRE;
1262 } else {
1263 /* copper device */
1264 supported = SUPPORTED_10baseT_Half |
1265 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1266 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1267 SUPPORTED_Autoneg | SUPPORTED_MII;
1268 advertising = ADVERTISED_10baseT_Half |
1269 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1270 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1271 ADVERTISED_Autoneg | ADVERTISED_MII;
1272 cmd->base.port = PORT_MII;
1273 }
1274 if (np->link_status) {
1275 cmd->base.speed = np->speed;
1276 cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1277 } else {
1278 cmd->base.speed = SPEED_UNKNOWN;
1279 cmd->base.duplex = DUPLEX_UNKNOWN;
1280 }
1281 if (np->an_enable)
1282 cmd->base.autoneg = AUTONEG_ENABLE;
1283 else
1284 cmd->base.autoneg = AUTONEG_DISABLE;
1285
1286 cmd->base.phy_address = np->phy_addr;
1287
1288 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1289 supported);
1290 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1291 advertising);
1292
1293 return 0;
1294 }
1295
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1296 static int rio_set_link_ksettings(struct net_device *dev,
1297 const struct ethtool_link_ksettings *cmd)
1298 {
1299 struct netdev_private *np = netdev_priv(dev);
1300 u32 speed = cmd->base.speed;
1301 u8 duplex = cmd->base.duplex;
1302
1303 netif_carrier_off(dev);
1304 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1305 if (np->an_enable) {
1306 return 0;
1307 } else {
1308 np->an_enable = 1;
1309 mii_set_media(dev);
1310 return 0;
1311 }
1312 } else {
1313 np->an_enable = 0;
1314 if (np->speed == 1000) {
1315 speed = SPEED_100;
1316 duplex = DUPLEX_FULL;
1317 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1318 }
1319 switch (speed) {
1320 case SPEED_10:
1321 np->speed = 10;
1322 np->full_duplex = (duplex == DUPLEX_FULL);
1323 break;
1324 case SPEED_100:
1325 np->speed = 100;
1326 np->full_duplex = (duplex == DUPLEX_FULL);
1327 break;
1328 case SPEED_1000: /* not supported */
1329 default:
1330 return -EINVAL;
1331 }
1332 mii_set_media(dev);
1333 }
1334 return 0;
1335 }
1336
rio_get_link(struct net_device * dev)1337 static u32 rio_get_link(struct net_device *dev)
1338 {
1339 struct netdev_private *np = netdev_priv(dev);
1340 return np->link_status;
1341 }
1342
1343 static const struct ethtool_ops ethtool_ops = {
1344 .get_drvinfo = rio_get_drvinfo,
1345 .get_link = rio_get_link,
1346 .get_link_ksettings = rio_get_link_ksettings,
1347 .set_link_ksettings = rio_set_link_ksettings,
1348 };
1349
1350 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1351 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1352 {
1353 int phy_addr;
1354 struct netdev_private *np = netdev_priv(dev);
1355 struct mii_ioctl_data *miidata = if_mii(rq);
1356
1357 phy_addr = np->phy_addr;
1358 switch (cmd) {
1359 case SIOCGMIIPHY:
1360 miidata->phy_id = phy_addr;
1361 break;
1362 case SIOCGMIIREG:
1363 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1364 break;
1365 case SIOCSMIIREG:
1366 if (!capable(CAP_NET_ADMIN))
1367 return -EPERM;
1368 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1369 break;
1370 default:
1371 return -EOPNOTSUPP;
1372 }
1373 return 0;
1374 }
1375
1376 #define EEP_READ 0x0200
1377 #define EEP_BUSY 0x8000
1378 /* Read the EEPROM word */
1379 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1380 static int read_eeprom(struct netdev_private *np, int eep_addr)
1381 {
1382 void __iomem *ioaddr = np->eeprom_addr;
1383 int i = 1000;
1384
1385 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1386 while (i-- > 0) {
1387 if (!(dr16(EepromCtrl) & EEP_BUSY))
1388 return dr16(EepromData);
1389 }
1390 return 0;
1391 }
1392
1393 enum phy_ctrl_bits {
1394 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1395 MII_DUPLEX = 0x08,
1396 };
1397
1398 #define mii_delay() dr8(PhyCtrl)
1399 static void
mii_sendbit(struct net_device * dev,u32 data)1400 mii_sendbit (struct net_device *dev, u32 data)
1401 {
1402 struct netdev_private *np = netdev_priv(dev);
1403 void __iomem *ioaddr = np->ioaddr;
1404
1405 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1406 dw8(PhyCtrl, data);
1407 mii_delay ();
1408 dw8(PhyCtrl, data | MII_CLK);
1409 mii_delay ();
1410 }
1411
1412 static int
mii_getbit(struct net_device * dev)1413 mii_getbit (struct net_device *dev)
1414 {
1415 struct netdev_private *np = netdev_priv(dev);
1416 void __iomem *ioaddr = np->ioaddr;
1417 u8 data;
1418
1419 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1420 dw8(PhyCtrl, data);
1421 mii_delay ();
1422 dw8(PhyCtrl, data | MII_CLK);
1423 mii_delay ();
1424 return (dr8(PhyCtrl) >> 1) & 1;
1425 }
1426
1427 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1428 mii_send_bits (struct net_device *dev, u32 data, int len)
1429 {
1430 int i;
1431
1432 for (i = len - 1; i >= 0; i--) {
1433 mii_sendbit (dev, data & (1 << i));
1434 }
1435 }
1436
1437 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1438 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1439 {
1440 u32 cmd;
1441 int i;
1442 u32 retval = 0;
1443
1444 /* Preamble */
1445 mii_send_bits (dev, 0xffffffff, 32);
1446 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1447 /* ST,OP = 0110'b for read operation */
1448 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1449 mii_send_bits (dev, cmd, 14);
1450 /* Turnaround */
1451 if (mii_getbit (dev))
1452 goto err_out;
1453 /* Read data */
1454 for (i = 0; i < 16; i++) {
1455 retval |= mii_getbit (dev);
1456 retval <<= 1;
1457 }
1458 /* End cycle */
1459 mii_getbit (dev);
1460 return (retval >> 1) & 0xffff;
1461
1462 err_out:
1463 return 0;
1464 }
1465 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1466 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1467 {
1468 u32 cmd;
1469
1470 /* Preamble */
1471 mii_send_bits (dev, 0xffffffff, 32);
1472 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1473 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1474 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1475 mii_send_bits (dev, cmd, 32);
1476 /* End cycle */
1477 mii_getbit (dev);
1478 return 0;
1479 }
1480 static int
mii_wait_link(struct net_device * dev,int wait)1481 mii_wait_link (struct net_device *dev, int wait)
1482 {
1483 __u16 bmsr;
1484 int phy_addr;
1485 struct netdev_private *np;
1486
1487 np = netdev_priv(dev);
1488 phy_addr = np->phy_addr;
1489
1490 do {
1491 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1492 if (bmsr & BMSR_LSTATUS)
1493 return 0;
1494 mdelay (1);
1495 } while (--wait > 0);
1496 return -1;
1497 }
1498 static int
mii_get_media(struct net_device * dev)1499 mii_get_media (struct net_device *dev)
1500 {
1501 __u16 negotiate;
1502 __u16 bmsr;
1503 __u16 mscr;
1504 __u16 mssr;
1505 int phy_addr;
1506 struct netdev_private *np;
1507
1508 np = netdev_priv(dev);
1509 phy_addr = np->phy_addr;
1510
1511 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1512 if (np->an_enable) {
1513 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1514 /* Auto-Negotiation not completed */
1515 return -1;
1516 }
1517 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1518 mii_read (dev, phy_addr, MII_LPA);
1519 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1520 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1521 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1522 np->speed = 1000;
1523 np->full_duplex = 1;
1524 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1525 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1526 np->speed = 1000;
1527 np->full_duplex = 0;
1528 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1529 } else if (negotiate & ADVERTISE_100FULL) {
1530 np->speed = 100;
1531 np->full_duplex = 1;
1532 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1533 } else if (negotiate & ADVERTISE_100HALF) {
1534 np->speed = 100;
1535 np->full_duplex = 0;
1536 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1537 } else if (negotiate & ADVERTISE_10FULL) {
1538 np->speed = 10;
1539 np->full_duplex = 1;
1540 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1541 } else if (negotiate & ADVERTISE_10HALF) {
1542 np->speed = 10;
1543 np->full_duplex = 0;
1544 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1545 }
1546 if (negotiate & ADVERTISE_PAUSE_CAP) {
1547 np->tx_flow &= 1;
1548 np->rx_flow &= 1;
1549 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1550 np->tx_flow = 0;
1551 np->rx_flow &= 1;
1552 }
1553 /* else tx_flow, rx_flow = user select */
1554 } else {
1555 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1556 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1557 case BMCR_SPEED1000:
1558 printk (KERN_INFO "Operating at 1000 Mbps, ");
1559 break;
1560 case BMCR_SPEED100:
1561 printk (KERN_INFO "Operating at 100 Mbps, ");
1562 break;
1563 case 0:
1564 printk (KERN_INFO "Operating at 10 Mbps, ");
1565 }
1566 if (bmcr & BMCR_FULLDPLX) {
1567 printk (KERN_CONT "Full duplex\n");
1568 } else {
1569 printk (KERN_CONT "Half duplex\n");
1570 }
1571 }
1572 if (np->tx_flow)
1573 printk(KERN_INFO "Enable Tx Flow Control\n");
1574 else
1575 printk(KERN_INFO "Disable Tx Flow Control\n");
1576 if (np->rx_flow)
1577 printk(KERN_INFO "Enable Rx Flow Control\n");
1578 else
1579 printk(KERN_INFO "Disable Rx Flow Control\n");
1580
1581 return 0;
1582 }
1583
1584 static int
mii_set_media(struct net_device * dev)1585 mii_set_media (struct net_device *dev)
1586 {
1587 __u16 pscr;
1588 __u16 bmcr;
1589 __u16 bmsr;
1590 __u16 anar;
1591 int phy_addr;
1592 struct netdev_private *np;
1593 np = netdev_priv(dev);
1594 phy_addr = np->phy_addr;
1595
1596 /* Does user set speed? */
1597 if (np->an_enable) {
1598 /* Advertise capabilities */
1599 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1600 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1601 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1602 ADVERTISE_100HALF | ADVERTISE_10HALF |
1603 ADVERTISE_100BASE4);
1604 if (bmsr & BMSR_100FULL)
1605 anar |= ADVERTISE_100FULL;
1606 if (bmsr & BMSR_100HALF)
1607 anar |= ADVERTISE_100HALF;
1608 if (bmsr & BMSR_100BASE4)
1609 anar |= ADVERTISE_100BASE4;
1610 if (bmsr & BMSR_10FULL)
1611 anar |= ADVERTISE_10FULL;
1612 if (bmsr & BMSR_10HALF)
1613 anar |= ADVERTISE_10HALF;
1614 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1615 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1616
1617 /* Enable Auto crossover */
1618 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1619 pscr |= 3 << 5; /* 11'b */
1620 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1621
1622 /* Soft reset PHY */
1623 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1624 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1625 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626 mdelay(1);
1627 } else {
1628 /* Force speed setting */
1629 /* 1) Disable Auto crossover */
1630 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1631 pscr &= ~(3 << 5);
1632 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1633
1634 /* 2) PHY Reset */
1635 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1636 bmcr |= BMCR_RESET;
1637 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1638
1639 /* 3) Power Down */
1640 bmcr = 0x1940; /* must be 0x1940 */
1641 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1642 mdelay (100); /* wait a certain time */
1643
1644 /* 4) Advertise nothing */
1645 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1646
1647 /* 5) Set media and Power Up */
1648 bmcr = BMCR_PDOWN;
1649 if (np->speed == 100) {
1650 bmcr |= BMCR_SPEED100;
1651 printk (KERN_INFO "Manual 100 Mbps, ");
1652 } else if (np->speed == 10) {
1653 printk (KERN_INFO "Manual 10 Mbps, ");
1654 }
1655 if (np->full_duplex) {
1656 bmcr |= BMCR_FULLDPLX;
1657 printk (KERN_CONT "Full duplex\n");
1658 } else {
1659 printk (KERN_CONT "Half duplex\n");
1660 }
1661 #if 0
1662 /* Set 1000BaseT Master/Slave setting */
1663 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1664 mscr |= MII_MSCR_CFG_ENABLE;
1665 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1666 #endif
1667 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1668 mdelay(10);
1669 }
1670 return 0;
1671 }
1672
1673 static int
mii_get_media_pcs(struct net_device * dev)1674 mii_get_media_pcs (struct net_device *dev)
1675 {
1676 __u16 negotiate;
1677 __u16 bmsr;
1678 int phy_addr;
1679 struct netdev_private *np;
1680
1681 np = netdev_priv(dev);
1682 phy_addr = np->phy_addr;
1683
1684 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1685 if (np->an_enable) {
1686 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1687 /* Auto-Negotiation not completed */
1688 return -1;
1689 }
1690 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1691 mii_read (dev, phy_addr, PCS_ANLPAR);
1692 np->speed = 1000;
1693 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1694 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1695 np->full_duplex = 1;
1696 } else {
1697 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1698 np->full_duplex = 0;
1699 }
1700 if (negotiate & PCS_ANAR_PAUSE) {
1701 np->tx_flow &= 1;
1702 np->rx_flow &= 1;
1703 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1704 np->tx_flow = 0;
1705 np->rx_flow &= 1;
1706 }
1707 /* else tx_flow, rx_flow = user select */
1708 } else {
1709 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1710 printk (KERN_INFO "Operating at 1000 Mbps, ");
1711 if (bmcr & BMCR_FULLDPLX) {
1712 printk (KERN_CONT "Full duplex\n");
1713 } else {
1714 printk (KERN_CONT "Half duplex\n");
1715 }
1716 }
1717 if (np->tx_flow)
1718 printk(KERN_INFO "Enable Tx Flow Control\n");
1719 else
1720 printk(KERN_INFO "Disable Tx Flow Control\n");
1721 if (np->rx_flow)
1722 printk(KERN_INFO "Enable Rx Flow Control\n");
1723 else
1724 printk(KERN_INFO "Disable Rx Flow Control\n");
1725
1726 return 0;
1727 }
1728
1729 static int
mii_set_media_pcs(struct net_device * dev)1730 mii_set_media_pcs (struct net_device *dev)
1731 {
1732 __u16 bmcr;
1733 __u16 esr;
1734 __u16 anar;
1735 int phy_addr;
1736 struct netdev_private *np;
1737 np = netdev_priv(dev);
1738 phy_addr = np->phy_addr;
1739
1740 /* Auto-Negotiation? */
1741 if (np->an_enable) {
1742 /* Advertise capabilities */
1743 esr = mii_read (dev, phy_addr, PCS_ESR);
1744 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1745 ~PCS_ANAR_HALF_DUPLEX &
1746 ~PCS_ANAR_FULL_DUPLEX;
1747 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1748 anar |= PCS_ANAR_HALF_DUPLEX;
1749 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1750 anar |= PCS_ANAR_FULL_DUPLEX;
1751 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1752 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1753
1754 /* Soft reset PHY */
1755 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1756 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1757 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1758 mdelay(1);
1759 } else {
1760 /* Force speed setting */
1761 /* PHY Reset */
1762 bmcr = BMCR_RESET;
1763 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1764 mdelay(10);
1765 if (np->full_duplex) {
1766 bmcr = BMCR_FULLDPLX;
1767 printk (KERN_INFO "Manual full duplex\n");
1768 } else {
1769 bmcr = 0;
1770 printk (KERN_INFO "Manual half duplex\n");
1771 }
1772 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1773 mdelay(10);
1774
1775 /* Advertise nothing */
1776 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1777 }
1778 return 0;
1779 }
1780
1781
1782 static int
rio_close(struct net_device * dev)1783 rio_close (struct net_device *dev)
1784 {
1785 struct netdev_private *np = netdev_priv(dev);
1786 struct pci_dev *pdev = np->pdev;
1787
1788 netif_stop_queue (dev);
1789
1790 rio_hw_stop(dev);
1791
1792 free_irq(pdev->irq, dev);
1793 del_timer_sync (&np->timer);
1794
1795 free_list(dev);
1796
1797 return 0;
1798 }
1799
1800 static void
rio_remove1(struct pci_dev * pdev)1801 rio_remove1 (struct pci_dev *pdev)
1802 {
1803 struct net_device *dev = pci_get_drvdata (pdev);
1804
1805 if (dev) {
1806 struct netdev_private *np = netdev_priv(dev);
1807
1808 unregister_netdev (dev);
1809 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1810 np->rx_ring_dma);
1811 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1812 np->tx_ring_dma);
1813 #ifdef MEM_MAPPING
1814 pci_iounmap(pdev, np->ioaddr);
1815 #endif
1816 pci_iounmap(pdev, np->eeprom_addr);
1817 free_netdev (dev);
1818 pci_release_regions (pdev);
1819 pci_disable_device (pdev);
1820 }
1821 }
1822
1823 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1824 static int rio_suspend(struct device *device)
1825 {
1826 struct net_device *dev = dev_get_drvdata(device);
1827 struct netdev_private *np = netdev_priv(dev);
1828
1829 if (!netif_running(dev))
1830 return 0;
1831
1832 netif_device_detach(dev);
1833 del_timer_sync(&np->timer);
1834 rio_hw_stop(dev);
1835
1836 return 0;
1837 }
1838
rio_resume(struct device * device)1839 static int rio_resume(struct device *device)
1840 {
1841 struct net_device *dev = dev_get_drvdata(device);
1842 struct netdev_private *np = netdev_priv(dev);
1843
1844 if (!netif_running(dev))
1845 return 0;
1846
1847 rio_reset_ring(np);
1848 rio_hw_init(dev);
1849 np->timer.expires = jiffies + 1 * HZ;
1850 add_timer(&np->timer);
1851 netif_device_attach(dev);
1852 dl2k_enable_int(np);
1853
1854 return 0;
1855 }
1856
1857 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1858 #define RIO_PM_OPS (&rio_pm_ops)
1859
1860 #else
1861
1862 #define RIO_PM_OPS NULL
1863
1864 #endif /* CONFIG_PM_SLEEP */
1865
1866 static struct pci_driver rio_driver = {
1867 .name = "dl2k",
1868 .id_table = rio_pci_tbl,
1869 .probe = rio_probe1,
1870 .remove = rio_remove1,
1871 .driver.pm = RIO_PM_OPS,
1872 };
1873
1874 module_pci_driver(rio_driver);
1875 /*
1876
1877 Compile command:
1878
1879 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1880
1881 Read Documentation/networking/device_drivers/dlink/dl2k.txt for details.
1882
1883 */
1884
1885