1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/video/cyber2000fb.c
4 *
5 * Copyright (C) 1998-2002 Russell King
6 *
7 * MIPS and 50xx clock support
8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9 *
10 * 32 bit support, text color and panning fixes for modes != 8 bit
11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12 *
13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
14 *
15 * Based on cyberfb.c.
16 *
17 * Note that we now use the new fbcon fix, var and cmap scheme. We do
18 * still have to check which console is the currently displayed one
19 * however, especially for the colourmap stuff.
20 *
21 * We also use the new hotplug PCI subsystem. I'm not sure if there
22 * are any such cards, but I'm erring on the side of caution. We don't
23 * want to go pop just because someone does have one.
24 *
25 * Note that this doesn't work fully in the case of multiple CyberPro
26 * cards with grabbers. We currently can only attach to the first
27 * CyberPro card found.
28 *
29 * When we're in truecolour mode, we power down the LUT RAM as a power
30 * saving feature. Also, when we enter any of the powersaving modes
31 * (except soft blanking) we power down the RAMDACs. This saves about
32 * 1W, which is roughly 8% of the power consumption of a NetWinder
33 * (which, incidentally, is about the same saving as a 2.5in hard disk
34 * entering standby mode.)
35 */
36 #include <linux/aperture.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <linux/delay.h>
44 #include <linux/fb.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/io.h>
48 #include <linux/i2c.h>
49 #include <linux/i2c-algo-bit.h>
50
51
52 #ifdef __arm__
53 #include <asm/mach-types.h>
54 #endif
55
56 #include "cyber2000fb.h"
57
58 struct cfb_info {
59 struct fb_info fb;
60 struct display_switch *dispsw;
61 unsigned char __iomem *region;
62 unsigned char __iomem *regs;
63 u_int id;
64 u_int irq;
65 int func_use_count;
66 u_long ref_ps;
67
68 /*
69 * Clock divisors
70 */
71 u_int divisors[4];
72
73 struct {
74 u8 red, green, blue;
75 } palette[NR_PALETTE];
76
77 u_char mem_ctl1;
78 u_char mem_ctl2;
79 u_char mclk_mult;
80 u_char mclk_div;
81 /*
82 * RAMDAC control register is both of these or'ed together
83 */
84 u_char ramdac_ctrl;
85 u_char ramdac_powerdown;
86
87 u32 pseudo_palette[16];
88
89 spinlock_t reg_b0_lock;
90
91 #ifdef CONFIG_FB_CYBER2000_DDC
92 bool ddc_registered;
93 struct i2c_adapter ddc_adapter;
94 struct i2c_algo_bit_data ddc_algo;
95 #endif
96
97 #ifdef CONFIG_FB_CYBER2000_I2C
98 struct i2c_adapter i2c_adapter;
99 struct i2c_algo_bit_data i2c_algo;
100 #endif
101 };
102
103 static char *default_font = "Acorn8x8";
104 module_param(default_font, charp, 0);
105 MODULE_PARM_DESC(default_font, "Default font name");
106
107 /*
108 * Our access methods.
109 */
110 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
112 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
113
114 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
115
116 static inline void
cyber2000_crtcw(unsigned int reg,unsigned int val,struct cfb_info * cfb)117 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
118 {
119 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
120 }
121
122 static inline void
cyber2000_grphw(unsigned int reg,unsigned int val,struct cfb_info * cfb)123 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
124 {
125 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
126 }
127
128 static inline unsigned int
cyber2000_grphr(unsigned int reg,struct cfb_info * cfb)129 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
130 {
131 cyber2000fb_writeb(reg, 0x3ce, cfb);
132 return cyber2000fb_readb(0x3cf, cfb);
133 }
134
135 static inline void
cyber2000_attrw(unsigned int reg,unsigned int val,struct cfb_info * cfb)136 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
137 {
138 cyber2000fb_readb(0x3da, cfb);
139 cyber2000fb_writeb(reg, 0x3c0, cfb);
140 cyber2000fb_readb(0x3c1, cfb);
141 cyber2000fb_writeb(val, 0x3c0, cfb);
142 }
143
144 static inline void
cyber2000_seqw(unsigned int reg,unsigned int val,struct cfb_info * cfb)145 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
146 {
147 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
148 }
149
150 /* -------------------- Hardware specific routines ------------------------- */
151
152 /*
153 * Hardware Cyber2000 Acceleration
154 */
155 static void
cyber2000fb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)156 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
157 {
158 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
159 unsigned long dst, col;
160
161 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
162 cfb_fillrect(info, rect);
163 return;
164 }
165
166 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
167 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
168 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
169
170 col = rect->color;
171 if (cfb->fb.var.bits_per_pixel > 8)
172 col = ((u32 *)cfb->fb.pseudo_palette)[col];
173 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
174
175 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
176 if (cfb->fb.var.bits_per_pixel == 24) {
177 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
178 dst *= 3;
179 }
180
181 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
182 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
183 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
184 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
185 }
186
187 static void
cyber2000fb_copyarea(struct fb_info * info,const struct fb_copyarea * region)188 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
189 {
190 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
191 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
192 unsigned long src, dst;
193
194 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
195 cfb_copyarea(info, region);
196 return;
197 }
198
199 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
200 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
201 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
202
203 src = region->sx + region->sy * cfb->fb.var.xres_virtual;
204 dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
205
206 if (region->sx < region->dx) {
207 src += region->width - 1;
208 dst += region->width - 1;
209 cmd |= CO_CMD_L_INC_LEFT;
210 }
211
212 if (region->sy < region->dy) {
213 src += (region->height - 1) * cfb->fb.var.xres_virtual;
214 dst += (region->height - 1) * cfb->fb.var.xres_virtual;
215 cmd |= CO_CMD_L_INC_UP;
216 }
217
218 if (cfb->fb.var.bits_per_pixel == 24) {
219 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
220 src *= 3;
221 dst *= 3;
222 }
223 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
224 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
225 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
226 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
227 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
228 CO_REG_CMD_H, cfb);
229 }
230
231 static void
cyber2000fb_imageblit(struct fb_info * info,const struct fb_image * image)232 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
233 {
234 cfb_imageblit(info, image);
235 return;
236 }
237
cyber2000fb_sync(struct fb_info * info)238 static int cyber2000fb_sync(struct fb_info *info)
239 {
240 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
241 int count = 100000;
242
243 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
244 return 0;
245
246 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
247 if (!count--) {
248 debug_printf("accel_wait timed out\n");
249 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
250 break;
251 }
252 udelay(1);
253 }
254 return 0;
255 }
256
257 /*
258 * ===========================================================================
259 */
260
convert_bitfield(u_int val,struct fb_bitfield * bf)261 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
262 {
263 u_int mask = (1 << bf->length) - 1;
264
265 return (val >> (16 - bf->length) & mask) << bf->offset;
266 }
267
268 /*
269 * Set a single color register. Return != 0 for invalid regno.
270 */
271 static int
cyber2000fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)272 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
273 u_int transp, struct fb_info *info)
274 {
275 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
276 struct fb_var_screeninfo *var = &cfb->fb.var;
277 u32 pseudo_val;
278 int ret = 1;
279
280 switch (cfb->fb.fix.visual) {
281 default:
282 return 1;
283
284 /*
285 * Pseudocolour:
286 * 8 8
287 * pixel --/--+--/--> red lut --> red dac
288 * | 8
289 * +--/--> green lut --> green dac
290 * | 8
291 * +--/--> blue lut --> blue dac
292 */
293 case FB_VISUAL_PSEUDOCOLOR:
294 if (regno >= NR_PALETTE)
295 return 1;
296
297 red >>= 8;
298 green >>= 8;
299 blue >>= 8;
300
301 cfb->palette[regno].red = red;
302 cfb->palette[regno].green = green;
303 cfb->palette[regno].blue = blue;
304
305 cyber2000fb_writeb(regno, 0x3c8, cfb);
306 cyber2000fb_writeb(red, 0x3c9, cfb);
307 cyber2000fb_writeb(green, 0x3c9, cfb);
308 cyber2000fb_writeb(blue, 0x3c9, cfb);
309 return 0;
310
311 /*
312 * Direct colour:
313 * n rl
314 * pixel --/--+--/--> red lut --> red dac
315 * | gl
316 * +--/--> green lut --> green dac
317 * | bl
318 * +--/--> blue lut --> blue dac
319 * n = bpp, rl = red length, gl = green length, bl = blue length
320 */
321 case FB_VISUAL_DIRECTCOLOR:
322 red >>= 8;
323 green >>= 8;
324 blue >>= 8;
325
326 if (var->green.length == 6 && regno < 64) {
327 cfb->palette[regno << 2].green = green;
328
329 /*
330 * The 6 bits of the green component are applied
331 * to the high 6 bits of the LUT.
332 */
333 cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
334 cyber2000fb_writeb(cfb->palette[regno >> 1].red,
335 0x3c9, cfb);
336 cyber2000fb_writeb(green, 0x3c9, cfb);
337 cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
338 0x3c9, cfb);
339
340 green = cfb->palette[regno << 3].green;
341
342 ret = 0;
343 }
344
345 if (var->green.length >= 5 && regno < 32) {
346 cfb->palette[regno << 3].red = red;
347 cfb->palette[regno << 3].green = green;
348 cfb->palette[regno << 3].blue = blue;
349
350 /*
351 * The 5 bits of each colour component are
352 * applied to the high 5 bits of the LUT.
353 */
354 cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
355 cyber2000fb_writeb(red, 0x3c9, cfb);
356 cyber2000fb_writeb(green, 0x3c9, cfb);
357 cyber2000fb_writeb(blue, 0x3c9, cfb);
358 ret = 0;
359 }
360
361 if (var->green.length == 4 && regno < 16) {
362 cfb->palette[regno << 4].red = red;
363 cfb->palette[regno << 4].green = green;
364 cfb->palette[regno << 4].blue = blue;
365
366 /*
367 * The 5 bits of each colour component are
368 * applied to the high 5 bits of the LUT.
369 */
370 cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
371 cyber2000fb_writeb(red, 0x3c9, cfb);
372 cyber2000fb_writeb(green, 0x3c9, cfb);
373 cyber2000fb_writeb(blue, 0x3c9, cfb);
374 ret = 0;
375 }
376
377 /*
378 * Since this is only used for the first 16 colours, we
379 * don't have to care about overflowing for regno >= 32
380 */
381 pseudo_val = regno << var->red.offset |
382 regno << var->green.offset |
383 regno << var->blue.offset;
384 break;
385
386 /*
387 * True colour:
388 * n rl
389 * pixel --/--+--/--> red dac
390 * | gl
391 * +--/--> green dac
392 * | bl
393 * +--/--> blue dac
394 * n = bpp, rl = red length, gl = green length, bl = blue length
395 */
396 case FB_VISUAL_TRUECOLOR:
397 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
398 pseudo_val |= convert_bitfield(red, &var->red);
399 pseudo_val |= convert_bitfield(green, &var->green);
400 pseudo_val |= convert_bitfield(blue, &var->blue);
401 ret = 0;
402 break;
403 }
404
405 /*
406 * Now set our pseudo palette for the CFB16/24/32 drivers.
407 */
408 if (regno < 16)
409 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
410
411 return ret;
412 }
413
414 struct par_info {
415 /*
416 * Hardware
417 */
418 u_char clock_mult;
419 u_char clock_div;
420 u_char extseqmisc;
421 u_char co_pixfmt;
422 u_char crtc_ofl;
423 u_char crtc[19];
424 u_int width;
425 u_int pitch;
426 u_int fetch;
427
428 /*
429 * Other
430 */
431 u_char ramdac;
432 };
433
434 static const u_char crtc_idx[] = {
435 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
436 0x08, 0x09,
437 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
438 };
439
cyber2000fb_write_ramdac_ctrl(struct cfb_info * cfb)440 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
441 {
442 unsigned int i;
443 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
444
445 cyber2000fb_writeb(0x56, 0x3ce, cfb);
446 i = cyber2000fb_readb(0x3cf, cfb);
447 cyber2000fb_writeb(i | 4, 0x3cf, cfb);
448 cyber2000fb_writeb(val, 0x3c6, cfb);
449 cyber2000fb_writeb(i, 0x3cf, cfb);
450 /* prevent card lock-up observed on x86 with CyberPro 2000 */
451 cyber2000fb_readb(0x3cf, cfb);
452 }
453
cyber2000fb_set_timing(struct cfb_info * cfb,struct par_info * hw)454 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
455 {
456 u_int i;
457
458 /*
459 * Blank palette
460 */
461 for (i = 0; i < NR_PALETTE; i++) {
462 cyber2000fb_writeb(i, 0x3c8, cfb);
463 cyber2000fb_writeb(0, 0x3c9, cfb);
464 cyber2000fb_writeb(0, 0x3c9, cfb);
465 cyber2000fb_writeb(0, 0x3c9, cfb);
466 }
467
468 cyber2000fb_writeb(0xef, 0x3c2, cfb);
469 cyber2000_crtcw(0x11, 0x0b, cfb);
470 cyber2000_attrw(0x11, 0x00, cfb);
471
472 cyber2000_seqw(0x00, 0x01, cfb);
473 cyber2000_seqw(0x01, 0x01, cfb);
474 cyber2000_seqw(0x02, 0x0f, cfb);
475 cyber2000_seqw(0x03, 0x00, cfb);
476 cyber2000_seqw(0x04, 0x0e, cfb);
477 cyber2000_seqw(0x00, 0x03, cfb);
478
479 for (i = 0; i < sizeof(crtc_idx); i++)
480 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
481
482 for (i = 0x0a; i < 0x10; i++)
483 cyber2000_crtcw(i, 0, cfb);
484
485 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
486 cyber2000_grphw(0x00, 0x00, cfb);
487 cyber2000_grphw(0x01, 0x00, cfb);
488 cyber2000_grphw(0x02, 0x00, cfb);
489 cyber2000_grphw(0x03, 0x00, cfb);
490 cyber2000_grphw(0x04, 0x00, cfb);
491 cyber2000_grphw(0x05, 0x60, cfb);
492 cyber2000_grphw(0x06, 0x05, cfb);
493 cyber2000_grphw(0x07, 0x0f, cfb);
494 cyber2000_grphw(0x08, 0xff, cfb);
495
496 /* Attribute controller registers */
497 for (i = 0; i < 16; i++)
498 cyber2000_attrw(i, i, cfb);
499
500 cyber2000_attrw(0x10, 0x01, cfb);
501 cyber2000_attrw(0x11, 0x00, cfb);
502 cyber2000_attrw(0x12, 0x0f, cfb);
503 cyber2000_attrw(0x13, 0x00, cfb);
504 cyber2000_attrw(0x14, 0x00, cfb);
505
506 /* PLL registers */
507 spin_lock(&cfb->reg_b0_lock);
508 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
509 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
510 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
511 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
512 cyber2000_grphw(0x90, 0x01, cfb);
513 cyber2000_grphw(0xb9, 0x80, cfb);
514 cyber2000_grphw(0xb9, 0x00, cfb);
515 spin_unlock(&cfb->reg_b0_lock);
516
517 cfb->ramdac_ctrl = hw->ramdac;
518 cyber2000fb_write_ramdac_ctrl(cfb);
519
520 cyber2000fb_writeb(0x20, 0x3c0, cfb);
521 cyber2000fb_writeb(0xff, 0x3c6, cfb);
522
523 cyber2000_grphw(0x14, hw->fetch, cfb);
524 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
525 ((hw->pitch >> 4) & 0x30), cfb);
526 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
527
528 /*
529 * Set up accelerator registers
530 */
531 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
532 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
533 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
534 }
535
536 static inline int
cyber2000fb_update_start(struct cfb_info * cfb,struct fb_var_screeninfo * var)537 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
538 {
539 u_int base = var->yoffset * var->xres_virtual + var->xoffset;
540
541 base *= var->bits_per_pixel;
542
543 /*
544 * Convert to bytes and shift two extra bits because DAC
545 * can only start on 4 byte aligned data.
546 */
547 base >>= 5;
548
549 if (base >= 1 << 20)
550 return -EINVAL;
551
552 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
553 cyber2000_crtcw(0x0c, base >> 8, cfb);
554 cyber2000_crtcw(0x0d, base, cfb);
555
556 return 0;
557 }
558
559 static int
cyber2000fb_decode_crtc(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)560 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
561 struct fb_var_screeninfo *var)
562 {
563 u_int Htotal, Hblankend, Hsyncend;
564 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
565 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
566
567 hw->crtc[13] = hw->pitch;
568 hw->crtc[17] = 0xe3;
569 hw->crtc[14] = 0;
570 hw->crtc[8] = 0;
571
572 Htotal = var->xres + var->right_margin +
573 var->hsync_len + var->left_margin;
574
575 if (Htotal > 2080)
576 return -EINVAL;
577
578 hw->crtc[0] = (Htotal >> 3) - 5;
579 hw->crtc[1] = (var->xres >> 3) - 1;
580 hw->crtc[2] = var->xres >> 3;
581 hw->crtc[4] = (var->xres + var->right_margin) >> 3;
582
583 Hblankend = (Htotal - 4 * 8) >> 3;
584
585 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) |
586 ENCODE_BIT(1, 0, 0x01, 7);
587
588 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3;
589
590 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) |
591 ENCODE_BIT(Hblankend, 5, 0x01, 7);
592
593 Vdispend = var->yres - 1;
594 Vsyncstart = var->yres + var->lower_margin;
595 Vsyncend = var->yres + var->lower_margin + var->vsync_len;
596 Vtotal = var->yres + var->lower_margin + var->vsync_len +
597 var->upper_margin - 2;
598
599 if (Vtotal > 2047)
600 return -EINVAL;
601
602 Vblankstart = var->yres + 6;
603 Vblankend = Vtotal - 10;
604
605 hw->crtc[6] = Vtotal;
606 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) |
607 ENCODE_BIT(Vdispend, 8, 0x01, 1) |
608 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) |
609 ENCODE_BIT(Vblankstart, 8, 0x01, 3) |
610 ENCODE_BIT(1, 0, 0x01, 4) |
611 ENCODE_BIT(Vtotal, 9, 0x01, 5) |
612 ENCODE_BIT(Vdispend, 9, 0x01, 6) |
613 ENCODE_BIT(Vsyncstart, 9, 0x01, 7);
614 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
615 ENCODE_BIT(Vblankstart, 9, 0x01, 5) |
616 ENCODE_BIT(1, 0, 0x01, 6);
617 hw->crtc[10] = Vsyncstart;
618 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) |
619 ENCODE_BIT(1, 0, 0x01, 7);
620 hw->crtc[12] = Vdispend;
621 hw->crtc[15] = Vblankstart;
622 hw->crtc[16] = Vblankend;
623 hw->crtc[18] = 0xff;
624
625 /*
626 * overflow - graphics reg 0x11
627 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
628 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
629 */
630 hw->crtc_ofl =
631 ENCODE_BIT(Vtotal, 10, 0x01, 0) |
632 ENCODE_BIT(Vdispend, 10, 0x01, 1) |
633 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
634 ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
635 EXT_CRT_VRTOFL_LINECOMP10;
636
637 /* woody: set the interlaced bit... */
638 /* FIXME: what about doublescan? */
639 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
640 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
641
642 return 0;
643 }
644
645 /*
646 * The following was discovered by a good monitor, bit twiddling, theorising
647 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
648 *
649 * Clock registers:
650 * fclock = fpll / div2
651 * fpll = fref * mult / div1
652 * where:
653 * fref = 14.318MHz (69842ps)
654 * mult = reg0xb0.7:0
655 * div1 = (reg0xb1.5:0 + 1)
656 * div2 = 2^(reg0xb1.7:6)
657 * fpll should be between 115 and 260 MHz
658 * (8696ps and 3846ps)
659 */
660 static int
cyber2000fb_decode_clock(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)661 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
662 struct fb_var_screeninfo *var)
663 {
664 u_long pll_ps = var->pixclock;
665 const u_long ref_ps = cfb->ref_ps;
666 u_int div2, t_div1, best_div1, best_mult;
667 int best_diff;
668 int vco;
669
670 /*
671 * Step 1:
672 * find div2 such that 115MHz < fpll < 260MHz
673 * and 0 <= div2 < 4
674 */
675 for (div2 = 0; div2 < 4; div2++) {
676 u_long new_pll;
677
678 new_pll = pll_ps / cfb->divisors[div2];
679 if (8696 > new_pll && new_pll > 3846) {
680 pll_ps = new_pll;
681 break;
682 }
683 }
684
685 if (div2 == 4)
686 return -EINVAL;
687
688 /*
689 * Step 2:
690 * Given pll_ps and ref_ps, find:
691 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
692 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
693 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
694 */
695 best_diff = 0x7fffffff;
696 best_mult = 2;
697 best_div1 = 32;
698 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
699 u_int rr, t_mult, t_pll_ps;
700 int diff;
701
702 /*
703 * Find the multiplier for this divisor
704 */
705 rr = ref_ps * t_div1;
706 t_mult = (rr + pll_ps / 2) / pll_ps;
707
708 /*
709 * Is the multiplier within the correct range?
710 */
711 if (t_mult > 256 || t_mult < 2)
712 continue;
713
714 /*
715 * Calculate the actual clock period from this multiplier
716 * and divisor, and estimate the error.
717 */
718 t_pll_ps = (rr + t_mult / 2) / t_mult;
719 diff = pll_ps - t_pll_ps;
720 if (diff < 0)
721 diff = -diff;
722
723 if (diff < best_diff) {
724 best_diff = diff;
725 best_mult = t_mult;
726 best_div1 = t_div1;
727 }
728
729 /*
730 * If we hit an exact value, there is no point in continuing.
731 */
732 if (diff == 0)
733 break;
734 }
735
736 /*
737 * Step 3:
738 * combine values
739 */
740 hw->clock_mult = best_mult - 1;
741 hw->clock_div = div2 << 6 | (best_div1 - 1);
742
743 vco = ref_ps * best_div1 / best_mult;
744 if ((ref_ps == 40690) && (vco < 5556))
745 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
746 hw->clock_div |= EXT_DCLK_DIV_VFSEL;
747
748 return 0;
749 }
750
751 /*
752 * Set the User Defined Part of the Display
753 */
754 static int
cyber2000fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)755 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
756 {
757 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
758 struct par_info hw;
759 unsigned int mem;
760 int err;
761
762 var->transp.msb_right = 0;
763 var->red.msb_right = 0;
764 var->green.msb_right = 0;
765 var->blue.msb_right = 0;
766 var->transp.offset = 0;
767 var->transp.length = 0;
768
769 switch (var->bits_per_pixel) {
770 case 8: /* PSEUDOCOLOUR, 256 */
771 var->red.offset = 0;
772 var->red.length = 8;
773 var->green.offset = 0;
774 var->green.length = 8;
775 var->blue.offset = 0;
776 var->blue.length = 8;
777 break;
778
779 case 16:/* DIRECTCOLOUR, 64k or 32k */
780 switch (var->green.length) {
781 case 6: /* RGB565, 64k */
782 var->red.offset = 11;
783 var->red.length = 5;
784 var->green.offset = 5;
785 var->green.length = 6;
786 var->blue.offset = 0;
787 var->blue.length = 5;
788 break;
789
790 default:
791 case 5: /* RGB555, 32k */
792 var->red.offset = 10;
793 var->red.length = 5;
794 var->green.offset = 5;
795 var->green.length = 5;
796 var->blue.offset = 0;
797 var->blue.length = 5;
798 break;
799
800 case 4: /* RGB444, 4k + transparency? */
801 var->transp.offset = 12;
802 var->transp.length = 4;
803 var->red.offset = 8;
804 var->red.length = 4;
805 var->green.offset = 4;
806 var->green.length = 4;
807 var->blue.offset = 0;
808 var->blue.length = 4;
809 break;
810 }
811 break;
812
813 case 24:/* TRUECOLOUR, 16m */
814 var->red.offset = 16;
815 var->red.length = 8;
816 var->green.offset = 8;
817 var->green.length = 8;
818 var->blue.offset = 0;
819 var->blue.length = 8;
820 break;
821
822 case 32:/* TRUECOLOUR, 16m */
823 var->transp.offset = 24;
824 var->transp.length = 8;
825 var->red.offset = 16;
826 var->red.length = 8;
827 var->green.offset = 8;
828 var->green.length = 8;
829 var->blue.offset = 0;
830 var->blue.length = 8;
831 break;
832
833 default:
834 return -EINVAL;
835 }
836
837 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
838 if (mem > cfb->fb.fix.smem_len)
839 var->yres_virtual = cfb->fb.fix.smem_len * 8 /
840 (var->bits_per_pixel * var->xres_virtual);
841
842 if (var->yres > var->yres_virtual)
843 var->yres = var->yres_virtual;
844 if (var->xres > var->xres_virtual)
845 var->xres = var->xres_virtual;
846
847 err = cyber2000fb_decode_clock(&hw, cfb, var);
848 if (err)
849 return err;
850
851 err = cyber2000fb_decode_crtc(&hw, cfb, var);
852 if (err)
853 return err;
854
855 return 0;
856 }
857
cyber2000fb_set_par(struct fb_info * info)858 static int cyber2000fb_set_par(struct fb_info *info)
859 {
860 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
861 struct fb_var_screeninfo *var = &cfb->fb.var;
862 struct par_info hw;
863 unsigned int mem;
864
865 hw.width = var->xres_virtual;
866 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
867
868 switch (var->bits_per_pixel) {
869 case 8:
870 hw.co_pixfmt = CO_PIXFMT_8BPP;
871 hw.pitch = hw.width >> 3;
872 hw.extseqmisc = EXT_SEQ_MISC_8;
873 break;
874
875 case 16:
876 hw.co_pixfmt = CO_PIXFMT_16BPP;
877 hw.pitch = hw.width >> 2;
878
879 switch (var->green.length) {
880 case 6: /* RGB565, 64k */
881 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565;
882 break;
883 case 5: /* RGB555, 32k */
884 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555;
885 break;
886 case 4: /* RGB444, 4k + transparency? */
887 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444;
888 break;
889 default:
890 BUG();
891 }
892 break;
893
894 case 24:/* TRUECOLOUR, 16m */
895 hw.co_pixfmt = CO_PIXFMT_24BPP;
896 hw.width *= 3;
897 hw.pitch = hw.width >> 3;
898 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
899 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888;
900 break;
901
902 case 32:/* TRUECOLOUR, 16m */
903 hw.co_pixfmt = CO_PIXFMT_32BPP;
904 hw.pitch = hw.width >> 1;
905 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
906 hw.extseqmisc = EXT_SEQ_MISC_32;
907 break;
908
909 default:
910 BUG();
911 }
912
913 /*
914 * Sigh, this is absolutely disgusting, but caused by
915 * the way the fbcon developers want to separate out
916 * the "checking" and the "setting" of the video mode.
917 *
918 * If the mode is not suitable for the hardware here,
919 * we can't prevent it being set by returning an error.
920 *
921 * In theory, since NetWinders contain just one VGA card,
922 * we should never end up hitting this problem.
923 */
924 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
925 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
926
927 hw.width -= 1;
928 hw.fetch = hw.pitch;
929 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
930 hw.fetch <<= 1;
931 hw.fetch += 1;
932
933 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
934
935 /*
936 * Same here - if the size of the video mode exceeds the
937 * available RAM, we can't prevent this mode being set.
938 *
939 * In theory, since NetWinders contain just one VGA card,
940 * we should never end up hitting this problem.
941 */
942 mem = cfb->fb.fix.line_length * var->yres_virtual;
943 BUG_ON(mem > cfb->fb.fix.smem_len);
944
945 /*
946 * 8bpp displays are always pseudo colour. 16bpp and above
947 * are direct colour or true colour, depending on whether
948 * the RAMDAC palettes are bypassed. (Direct colour has
949 * palettes, true colour does not.)
950 */
951 if (var->bits_per_pixel == 8)
952 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
953 else if (hw.ramdac & RAMDAC_BYPASS)
954 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
955 else
956 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
957
958 cyber2000fb_set_timing(cfb, &hw);
959 cyber2000fb_update_start(cfb, var);
960
961 return 0;
962 }
963
964 /*
965 * Pan or Wrap the Display
966 */
967 static int
cyber2000fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)968 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
969 {
970 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
971
972 if (cyber2000fb_update_start(cfb, var))
973 return -EINVAL;
974
975 cfb->fb.var.xoffset = var->xoffset;
976 cfb->fb.var.yoffset = var->yoffset;
977
978 if (var->vmode & FB_VMODE_YWRAP) {
979 cfb->fb.var.vmode |= FB_VMODE_YWRAP;
980 } else {
981 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
982 }
983
984 return 0;
985 }
986
987 /*
988 * (Un)Blank the display.
989 *
990 * Blank the screen if blank_mode != 0, else unblank. If
991 * blank == NULL then the caller blanks by setting the CLUT
992 * (Color Look Up Table) to all black. Return 0 if blanking
993 * succeeded, != 0 if un-/blanking failed due to e.g. a
994 * video mode which doesn't support it. Implements VESA
995 * suspend and powerdown modes on hardware that supports
996 * disabling hsync/vsync:
997 * blank_mode == 2: suspend vsync
998 * blank_mode == 3: suspend hsync
999 * blank_mode == 4: powerdown
1000 *
1001 * wms...Enable VESA DMPS compatible powerdown mode
1002 * run "setterm -powersave powerdown" to take advantage
1003 */
cyber2000fb_blank(int blank,struct fb_info * info)1004 static int cyber2000fb_blank(int blank, struct fb_info *info)
1005 {
1006 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
1007 unsigned int sync = 0;
1008 int i;
1009
1010 switch (blank) {
1011 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */
1012 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1013 break;
1014 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */
1015 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1016 break;
1017 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */
1018 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1019 break;
1020 case FB_BLANK_NORMAL: /* soft blank */
1021 default: /* unblank */
1022 break;
1023 }
1024
1025 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1026
1027 if (blank <= 1) {
1028 /* turn on ramdacs */
1029 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1030 RAMDAC_RAMPWRDN);
1031 cyber2000fb_write_ramdac_ctrl(cfb);
1032 }
1033
1034 /*
1035 * Soft blank/unblank the display.
1036 */
1037 if (blank) { /* soft blank */
1038 for (i = 0; i < NR_PALETTE; i++) {
1039 cyber2000fb_writeb(i, 0x3c8, cfb);
1040 cyber2000fb_writeb(0, 0x3c9, cfb);
1041 cyber2000fb_writeb(0, 0x3c9, cfb);
1042 cyber2000fb_writeb(0, 0x3c9, cfb);
1043 }
1044 } else { /* unblank */
1045 for (i = 0; i < NR_PALETTE; i++) {
1046 cyber2000fb_writeb(i, 0x3c8, cfb);
1047 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1048 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1049 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1050 }
1051 }
1052
1053 if (blank >= 2) {
1054 /* turn off ramdacs */
1055 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1056 RAMDAC_RAMPWRDN;
1057 cyber2000fb_write_ramdac_ctrl(cfb);
1058 }
1059
1060 return 0;
1061 }
1062
1063 static const struct fb_ops cyber2000fb_ops = {
1064 .owner = THIS_MODULE,
1065 .fb_check_var = cyber2000fb_check_var,
1066 .fb_set_par = cyber2000fb_set_par,
1067 .fb_setcolreg = cyber2000fb_setcolreg,
1068 .fb_blank = cyber2000fb_blank,
1069 .fb_pan_display = cyber2000fb_pan_display,
1070 .fb_fillrect = cyber2000fb_fillrect,
1071 .fb_copyarea = cyber2000fb_copyarea,
1072 .fb_imageblit = cyber2000fb_imageblit,
1073 .fb_sync = cyber2000fb_sync,
1074 };
1075
1076 /*
1077 * This is the only "static" reference to the internal data structures
1078 * of this driver. It is here solely at the moment to support the other
1079 * CyberPro modules external to this driver.
1080 */
1081 static struct cfb_info *int_cfb_info;
1082
1083 /*
1084 * Enable access to the extended registers
1085 */
cyber2000fb_enable_extregs(struct cfb_info * cfb)1086 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1087 {
1088 cfb->func_use_count += 1;
1089
1090 if (cfb->func_use_count == 1) {
1091 int old;
1092
1093 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1094 old |= EXT_FUNC_CTL_EXTREGENBL;
1095 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1096 }
1097 }
1098 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1099
1100 /*
1101 * Disable access to the extended registers
1102 */
cyber2000fb_disable_extregs(struct cfb_info * cfb)1103 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1104 {
1105 if (cfb->func_use_count == 1) {
1106 int old;
1107
1108 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1109 old &= ~EXT_FUNC_CTL_EXTREGENBL;
1110 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1111 }
1112
1113 if (cfb->func_use_count == 0)
1114 printk(KERN_ERR "disable_extregs: count = 0\n");
1115 else
1116 cfb->func_use_count -= 1;
1117 }
1118 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1119
1120 /*
1121 * Attach a capture/tv driver to the core CyberX0X0 driver.
1122 */
cyber2000fb_attach(struct cyberpro_info * info,int idx)1123 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1124 {
1125 if (int_cfb_info != NULL) {
1126 info->dev = int_cfb_info->fb.device;
1127 #ifdef CONFIG_FB_CYBER2000_I2C
1128 info->i2c = &int_cfb_info->i2c_adapter;
1129 #else
1130 info->i2c = NULL;
1131 #endif
1132 info->regs = int_cfb_info->regs;
1133 info->irq = int_cfb_info->irq;
1134 info->fb = int_cfb_info->fb.screen_base;
1135 info->fb_size = int_cfb_info->fb.fix.smem_len;
1136 info->info = int_cfb_info;
1137
1138 strscpy(info->dev_name, int_cfb_info->fb.fix.id,
1139 sizeof(info->dev_name));
1140 }
1141
1142 return int_cfb_info != NULL;
1143 }
1144 EXPORT_SYMBOL(cyber2000fb_attach);
1145
1146 /*
1147 * Detach a capture/tv driver from the core CyberX0X0 driver.
1148 */
cyber2000fb_detach(int idx)1149 void cyber2000fb_detach(int idx)
1150 {
1151 }
1152 EXPORT_SYMBOL(cyber2000fb_detach);
1153
1154 #ifdef CONFIG_FB_CYBER2000_DDC
1155
1156 #define DDC_REG 0xb0
1157 #define DDC_SCL_OUT (1 << 0)
1158 #define DDC_SDA_OUT (1 << 4)
1159 #define DDC_SCL_IN (1 << 2)
1160 #define DDC_SDA_IN (1 << 6)
1161
cyber2000fb_enable_ddc(struct cfb_info * cfb)1162 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1163 __acquires(&cfb->reg_b0_lock)
1164 {
1165 spin_lock(&cfb->reg_b0_lock);
1166 cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1167 }
1168
cyber2000fb_disable_ddc(struct cfb_info * cfb)1169 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1170 __releases(&cfb->reg_b0_lock)
1171 {
1172 cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1173 spin_unlock(&cfb->reg_b0_lock);
1174 }
1175
1176
cyber2000fb_ddc_setscl(void * data,int val)1177 static void cyber2000fb_ddc_setscl(void *data, int val)
1178 {
1179 struct cfb_info *cfb = data;
1180 unsigned char reg;
1181
1182 cyber2000fb_enable_ddc(cfb);
1183 reg = cyber2000_grphr(DDC_REG, cfb);
1184 if (!val) /* bit is inverted */
1185 reg |= DDC_SCL_OUT;
1186 else
1187 reg &= ~DDC_SCL_OUT;
1188 cyber2000_grphw(DDC_REG, reg, cfb);
1189 cyber2000fb_disable_ddc(cfb);
1190 }
1191
cyber2000fb_ddc_setsda(void * data,int val)1192 static void cyber2000fb_ddc_setsda(void *data, int val)
1193 {
1194 struct cfb_info *cfb = data;
1195 unsigned char reg;
1196
1197 cyber2000fb_enable_ddc(cfb);
1198 reg = cyber2000_grphr(DDC_REG, cfb);
1199 if (!val) /* bit is inverted */
1200 reg |= DDC_SDA_OUT;
1201 else
1202 reg &= ~DDC_SDA_OUT;
1203 cyber2000_grphw(DDC_REG, reg, cfb);
1204 cyber2000fb_disable_ddc(cfb);
1205 }
1206
cyber2000fb_ddc_getscl(void * data)1207 static int cyber2000fb_ddc_getscl(void *data)
1208 {
1209 struct cfb_info *cfb = data;
1210 int retval;
1211
1212 cyber2000fb_enable_ddc(cfb);
1213 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1214 cyber2000fb_disable_ddc(cfb);
1215
1216 return retval;
1217 }
1218
cyber2000fb_ddc_getsda(void * data)1219 static int cyber2000fb_ddc_getsda(void *data)
1220 {
1221 struct cfb_info *cfb = data;
1222 int retval;
1223
1224 cyber2000fb_enable_ddc(cfb);
1225 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1226 cyber2000fb_disable_ddc(cfb);
1227
1228 return retval;
1229 }
1230
cyber2000fb_setup_ddc_bus(struct cfb_info * cfb)1231 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1232 {
1233 strscpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1234 sizeof(cfb->ddc_adapter.name));
1235 cfb->ddc_adapter.owner = THIS_MODULE;
1236 cfb->ddc_adapter.class = I2C_CLASS_DDC;
1237 cfb->ddc_adapter.algo_data = &cfb->ddc_algo;
1238 cfb->ddc_adapter.dev.parent = cfb->fb.device;
1239 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda;
1240 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl;
1241 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda;
1242 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl;
1243 cfb->ddc_algo.udelay = 10;
1244 cfb->ddc_algo.timeout = 20;
1245 cfb->ddc_algo.data = cfb;
1246
1247 i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1248
1249 return i2c_bit_add_bus(&cfb->ddc_adapter);
1250 }
1251 #endif /* CONFIG_FB_CYBER2000_DDC */
1252
1253 #ifdef CONFIG_FB_CYBER2000_I2C
cyber2000fb_i2c_setsda(void * data,int state)1254 static void cyber2000fb_i2c_setsda(void *data, int state)
1255 {
1256 struct cfb_info *cfb = data;
1257 unsigned int latch2;
1258
1259 spin_lock(&cfb->reg_b0_lock);
1260 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1261 latch2 &= EXT_LATCH2_I2C_CLKEN;
1262 if (state)
1263 latch2 |= EXT_LATCH2_I2C_DATEN;
1264 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1265 spin_unlock(&cfb->reg_b0_lock);
1266 }
1267
cyber2000fb_i2c_setscl(void * data,int state)1268 static void cyber2000fb_i2c_setscl(void *data, int state)
1269 {
1270 struct cfb_info *cfb = data;
1271 unsigned int latch2;
1272
1273 spin_lock(&cfb->reg_b0_lock);
1274 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1275 latch2 &= EXT_LATCH2_I2C_DATEN;
1276 if (state)
1277 latch2 |= EXT_LATCH2_I2C_CLKEN;
1278 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1279 spin_unlock(&cfb->reg_b0_lock);
1280 }
1281
cyber2000fb_i2c_getsda(void * data)1282 static int cyber2000fb_i2c_getsda(void *data)
1283 {
1284 struct cfb_info *cfb = data;
1285 int ret;
1286
1287 spin_lock(&cfb->reg_b0_lock);
1288 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1289 spin_unlock(&cfb->reg_b0_lock);
1290
1291 return ret;
1292 }
1293
cyber2000fb_i2c_getscl(void * data)1294 static int cyber2000fb_i2c_getscl(void *data)
1295 {
1296 struct cfb_info *cfb = data;
1297 int ret;
1298
1299 spin_lock(&cfb->reg_b0_lock);
1300 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1301 spin_unlock(&cfb->reg_b0_lock);
1302
1303 return ret;
1304 }
1305
cyber2000fb_i2c_register(struct cfb_info * cfb)1306 static int cyber2000fb_i2c_register(struct cfb_info *cfb)
1307 {
1308 strscpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1309 sizeof(cfb->i2c_adapter.name));
1310 cfb->i2c_adapter.owner = THIS_MODULE;
1311 cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1312 cfb->i2c_adapter.dev.parent = cfb->fb.device;
1313 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1314 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1315 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1316 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1317 cfb->i2c_algo.udelay = 5;
1318 cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1319 cfb->i2c_algo.data = cfb;
1320
1321 return i2c_bit_add_bus(&cfb->i2c_adapter);
1322 }
1323
cyber2000fb_i2c_unregister(struct cfb_info * cfb)1324 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1325 {
1326 i2c_del_adapter(&cfb->i2c_adapter);
1327 }
1328 #else
1329 #define cyber2000fb_i2c_register(cfb) (0)
1330 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1331 #endif
1332
1333 /*
1334 * These parameters give
1335 * 640x480, hsync 31.5kHz, vsync 60Hz
1336 */
1337 static const struct fb_videomode cyber2000fb_default_mode = {
1338 .refresh = 60,
1339 .xres = 640,
1340 .yres = 480,
1341 .pixclock = 39722,
1342 .left_margin = 56,
1343 .right_margin = 16,
1344 .upper_margin = 34,
1345 .lower_margin = 9,
1346 .hsync_len = 88,
1347 .vsync_len = 2,
1348 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1349 .vmode = FB_VMODE_NONINTERLACED
1350 };
1351
1352 static char igs_regs[] = {
1353 EXT_CRT_IRQ, 0,
1354 EXT_CRT_TEST, 0,
1355 EXT_SYNC_CTL, 0,
1356 EXT_SEG_WRITE_PTR, 0,
1357 EXT_SEG_READ_PTR, 0,
1358 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE |
1359 EXT_BIU_MISC_COP_ENABLE |
1360 EXT_BIU_MISC_COP_BFC,
1361 EXT_FUNC_CTL, 0,
1362 CURS_H_START, 0,
1363 CURS_H_START + 1, 0,
1364 CURS_H_PRESET, 0,
1365 CURS_V_START, 0,
1366 CURS_V_START + 1, 0,
1367 CURS_V_PRESET, 0,
1368 CURS_CTL, 0,
1369 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT,
1370 EXT_OVERSCAN_RED, 0,
1371 EXT_OVERSCAN_GREEN, 0,
1372 EXT_OVERSCAN_BLUE, 0,
1373
1374 /* some of these are questionable when we have a BIOS */
1375 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK |
1376 EXT_MEM_CTL0_RAS_1 |
1377 EXT_MEM_CTL0_MULTCAS,
1378 EXT_HIDDEN_CTL1, 0x30,
1379 EXT_FIFO_CTL, 0x0b,
1380 EXT_FIFO_CTL + 1, 0x17,
1381 0x76, 0x00,
1382 EXT_HIDDEN_CTL4, 0xc8
1383 };
1384
1385 /*
1386 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1387 * ensure that we're using the correct PLL (5XXX's may be
1388 * programmed to use an additional set of PLLs.)
1389 */
cyberpro_init_hw(struct cfb_info * cfb)1390 static void cyberpro_init_hw(struct cfb_info *cfb)
1391 {
1392 int i;
1393
1394 for (i = 0; i < sizeof(igs_regs); i += 2)
1395 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1396
1397 if (cfb->id == ID_CYBERPRO_5000) {
1398 unsigned char val;
1399 cyber2000fb_writeb(0xba, 0x3ce, cfb);
1400 val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1401 cyber2000fb_writeb(val, 0x3cf, cfb);
1402 }
1403 }
1404
cyberpro_alloc_fb_info(unsigned int id,char * name)1405 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name)
1406 {
1407 struct cfb_info *cfb;
1408
1409 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1410 if (!cfb)
1411 return NULL;
1412
1413
1414 cfb->id = id;
1415
1416 if (id == ID_CYBERPRO_5000)
1417 cfb->ref_ps = 40690; /* 24.576 MHz */
1418 else
1419 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */
1420
1421 cfb->divisors[0] = 1;
1422 cfb->divisors[1] = 2;
1423 cfb->divisors[2] = 4;
1424
1425 if (id == ID_CYBERPRO_2000)
1426 cfb->divisors[3] = 8;
1427 else
1428 cfb->divisors[3] = 6;
1429
1430 strcpy(cfb->fb.fix.id, name);
1431
1432 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1433 cfb->fb.fix.type_aux = 0;
1434 cfb->fb.fix.xpanstep = 0;
1435 cfb->fb.fix.ypanstep = 1;
1436 cfb->fb.fix.ywrapstep = 0;
1437
1438 switch (id) {
1439 case ID_IGA_1682:
1440 cfb->fb.fix.accel = 0;
1441 break;
1442
1443 case ID_CYBERPRO_2000:
1444 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1445 break;
1446
1447 case ID_CYBERPRO_2010:
1448 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1449 break;
1450
1451 case ID_CYBERPRO_5000:
1452 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1453 break;
1454 }
1455
1456 cfb->fb.var.nonstd = 0;
1457 cfb->fb.var.activate = FB_ACTIVATE_NOW;
1458 cfb->fb.var.height = -1;
1459 cfb->fb.var.width = -1;
1460 cfb->fb.var.accel_flags = FB_ACCELF_TEXT;
1461
1462 cfb->fb.fbops = &cyber2000fb_ops;
1463 cfb->fb.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
1464 cfb->fb.pseudo_palette = cfb->pseudo_palette;
1465
1466 spin_lock_init(&cfb->reg_b0_lock);
1467
1468 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1469
1470 return cfb;
1471 }
1472
cyberpro_free_fb_info(struct cfb_info * cfb)1473 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1474 {
1475 if (cfb) {
1476 /*
1477 * Free the colourmap
1478 */
1479 fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1480
1481 kfree(cfb);
1482 }
1483 }
1484
1485 /*
1486 * Parse Cyber2000fb options. Usage:
1487 * video=cyber2000:font:fontname
1488 */
1489 #ifndef MODULE
cyber2000fb_setup(char * options)1490 static int cyber2000fb_setup(char *options)
1491 {
1492 char *opt;
1493
1494 if (!options || !*options)
1495 return 0;
1496
1497 while ((opt = strsep(&options, ",")) != NULL) {
1498 if (!*opt)
1499 continue;
1500
1501 if (strncmp(opt, "font:", 5) == 0) {
1502 static char default_font_storage[40];
1503
1504 strscpy(default_font_storage, opt + 5,
1505 sizeof(default_font_storage));
1506 default_font = default_font_storage;
1507 continue;
1508 }
1509
1510 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1511 }
1512 return 0;
1513 }
1514 #endif /* MODULE */
1515
1516 /*
1517 * The CyberPro chips can be placed on many different bus types.
1518 * This probe function is common to all bus types. The bus-specific
1519 * probe function is expected to have:
1520 * - enabled access to the linear memory region
1521 * - memory mapped access to the registers
1522 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1523 */
cyberpro_common_probe(struct cfb_info * cfb)1524 static int cyberpro_common_probe(struct cfb_info *cfb)
1525 {
1526 u_long smem_size;
1527 u_int h_sync, v_sync;
1528 int err;
1529
1530 cyberpro_init_hw(cfb);
1531
1532 /*
1533 * Get the video RAM size and width from the VGA register.
1534 * This should have been already initialised by the BIOS,
1535 * but if it's garbage, claim default 1MB VRAM (woody)
1536 */
1537 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1538 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1539
1540 /*
1541 * Determine the size of the memory.
1542 */
1543 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1544 case MEM_CTL2_SIZE_4MB:
1545 smem_size = 0x00400000;
1546 break;
1547 case MEM_CTL2_SIZE_2MB:
1548 smem_size = 0x00200000;
1549 break;
1550 case MEM_CTL2_SIZE_1MB:
1551 smem_size = 0x00100000;
1552 break;
1553 default:
1554 smem_size = 0x00100000;
1555 break;
1556 }
1557
1558 cfb->fb.fix.smem_len = smem_size;
1559 cfb->fb.fix.mmio_len = MMIO_SIZE;
1560 cfb->fb.screen_base = cfb->region;
1561
1562 #ifdef CONFIG_FB_CYBER2000_DDC
1563 if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1564 cfb->ddc_registered = true;
1565 #endif
1566
1567 err = -EINVAL;
1568 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1569 &cyber2000fb_default_mode, 8)) {
1570 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1571 goto failed;
1572 }
1573
1574 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1575 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1576
1577 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1578 cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1579
1580 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1581
1582 /*
1583 * Calculate the hsync and vsync frequencies. Note that
1584 * we split the 1e12 constant up so that we can preserve
1585 * the precision and fit the results into 32-bit registers.
1586 * (1953125000 * 512 = 1e12)
1587 */
1588 h_sync = 1953125000 / cfb->fb.var.pixclock;
1589 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1590 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1591 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1592 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1593
1594 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1595 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1596 cfb->fb.var.xres, cfb->fb.var.yres,
1597 h_sync / 1000, h_sync % 1000, v_sync);
1598
1599 err = cyber2000fb_i2c_register(cfb);
1600 if (err)
1601 goto failed;
1602
1603 err = register_framebuffer(&cfb->fb);
1604 if (err)
1605 cyber2000fb_i2c_unregister(cfb);
1606
1607 failed:
1608 #ifdef CONFIG_FB_CYBER2000_DDC
1609 if (err && cfb->ddc_registered)
1610 i2c_del_adapter(&cfb->ddc_adapter);
1611 #endif
1612 return err;
1613 }
1614
cyberpro_common_remove(struct cfb_info * cfb)1615 static void cyberpro_common_remove(struct cfb_info *cfb)
1616 {
1617 unregister_framebuffer(&cfb->fb);
1618 #ifdef CONFIG_FB_CYBER2000_DDC
1619 if (cfb->ddc_registered)
1620 i2c_del_adapter(&cfb->ddc_adapter);
1621 #endif
1622 cyber2000fb_i2c_unregister(cfb);
1623 }
1624
cyberpro_common_resume(struct cfb_info * cfb)1625 static void cyberpro_common_resume(struct cfb_info *cfb)
1626 {
1627 cyberpro_init_hw(cfb);
1628
1629 /*
1630 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1631 */
1632 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1633 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1634
1635 /*
1636 * Restore the old video mode and the palette.
1637 * We also need to tell fbcon to redraw the console.
1638 */
1639 cyber2000fb_set_par(&cfb->fb);
1640 }
1641
1642 /*
1643 * We need to wake up the CyberPro, and make sure its in linear memory
1644 * mode. Unfortunately, this is specific to the platform and card that
1645 * we are running on.
1646 *
1647 * On x86 and ARM, should we be initialising the CyberPro first via the
1648 * IO registers, and then the MMIO registers to catch all cases? Can we
1649 * end up in the situation where the chip is in MMIO mode, but not awake
1650 * on an x86 system?
1651 */
cyberpro_pci_enable_mmio(struct cfb_info * cfb)1652 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1653 {
1654 unsigned char val;
1655
1656 #if defined(__sparc_v9__)
1657 #error "You lose, consult DaveM."
1658 #elif defined(__sparc__)
1659 /*
1660 * SPARC does not have an "outb" instruction, so we generate
1661 * I/O cycles storing into a reserved memory space at
1662 * physical address 0x3000000
1663 */
1664 unsigned char __iomem *iop;
1665
1666 iop = ioremap(0x3000000, 0x5000);
1667 if (iop == NULL) {
1668 printk(KERN_ERR "iga5000: cannot map I/O\n");
1669 return -ENOMEM;
1670 }
1671
1672 writeb(0x18, iop + 0x46e8);
1673 writeb(0x01, iop + 0x102);
1674 writeb(0x08, iop + 0x46e8);
1675 writeb(EXT_BIU_MISC, iop + 0x3ce);
1676 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1677
1678 iounmap(iop);
1679 #else
1680 /*
1681 * Most other machine types are "normal", so
1682 * we use the standard IO-based wakeup.
1683 */
1684 outb(0x18, 0x46e8);
1685 outb(0x01, 0x102);
1686 outb(0x08, 0x46e8);
1687 outb(EXT_BIU_MISC, 0x3ce);
1688 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1689 #endif
1690
1691 /*
1692 * Allow the CyberPro to accept PCI burst accesses
1693 */
1694 if (cfb->id == ID_CYBERPRO_2010) {
1695 printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1696 cfb->fb.fix.id);
1697 } else {
1698 val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1699 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1700 printk(KERN_INFO "%s: enabling PCI bursts\n",
1701 cfb->fb.fix.id);
1702
1703 val |= EXT_BUS_CTL_PCIBURST_WRITE;
1704
1705 if (cfb->id == ID_CYBERPRO_5000)
1706 val |= EXT_BUS_CTL_PCIBURST_READ;
1707
1708 cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1709 }
1710 }
1711
1712 return 0;
1713 }
1714
cyberpro_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)1715 static int cyberpro_pci_probe(struct pci_dev *dev,
1716 const struct pci_device_id *id)
1717 {
1718 struct cfb_info *cfb;
1719 char name[16];
1720 int err;
1721
1722 sprintf(name, "CyberPro%4X", id->device);
1723
1724 err = aperture_remove_conflicting_pci_devices(dev, name);
1725 if (err)
1726 return err;
1727
1728 err = pci_enable_device(dev);
1729 if (err)
1730 return err;
1731
1732 err = -ENOMEM;
1733 cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1734 if (!cfb)
1735 goto failed_release;
1736
1737 err = pci_request_regions(dev, cfb->fb.fix.id);
1738 if (err)
1739 goto failed_regions;
1740
1741 cfb->irq = dev->irq;
1742 cfb->region = pci_ioremap_bar(dev, 0);
1743 if (!cfb->region) {
1744 err = -ENOMEM;
1745 goto failed_ioremap;
1746 }
1747
1748 cfb->regs = cfb->region + MMIO_OFFSET;
1749 cfb->fb.device = &dev->dev;
1750 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1751 cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1752
1753 /*
1754 * Bring up the hardware. This is expected to enable access
1755 * to the linear memory region, and allow access to the memory
1756 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1757 * initialised.
1758 */
1759 err = cyberpro_pci_enable_mmio(cfb);
1760 if (err)
1761 goto failed;
1762
1763 /*
1764 * Use MCLK from BIOS. FIXME: what about hotplug?
1765 */
1766 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1767 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1768
1769 #ifdef __arm__
1770 /*
1771 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1772 */
1773 if (machine_is_netwinder()) {
1774 cfb->mclk_mult = 0xdb;
1775 cfb->mclk_div = 0x54;
1776 }
1777 #endif
1778
1779 err = cyberpro_common_probe(cfb);
1780 if (err)
1781 goto failed;
1782
1783 /*
1784 * Our driver data
1785 */
1786 pci_set_drvdata(dev, cfb);
1787 if (int_cfb_info == NULL)
1788 int_cfb_info = cfb;
1789
1790 return 0;
1791
1792 failed:
1793 iounmap(cfb->region);
1794 failed_ioremap:
1795 pci_release_regions(dev);
1796 failed_regions:
1797 cyberpro_free_fb_info(cfb);
1798 failed_release:
1799 pci_disable_device(dev);
1800 return err;
1801 }
1802
cyberpro_pci_remove(struct pci_dev * dev)1803 static void cyberpro_pci_remove(struct pci_dev *dev)
1804 {
1805 struct cfb_info *cfb = pci_get_drvdata(dev);
1806
1807 if (cfb) {
1808 cyberpro_common_remove(cfb);
1809 iounmap(cfb->region);
1810 cyberpro_free_fb_info(cfb);
1811
1812 if (cfb == int_cfb_info)
1813 int_cfb_info = NULL;
1814
1815 pci_release_regions(dev);
1816 pci_disable_device(dev);
1817 }
1818 }
1819
cyberpro_pci_suspend(struct device * dev)1820 static int __maybe_unused cyberpro_pci_suspend(struct device *dev)
1821 {
1822 return 0;
1823 }
1824
1825 /*
1826 * Re-initialise the CyberPro hardware
1827 */
cyberpro_pci_resume(struct device * dev)1828 static int __maybe_unused cyberpro_pci_resume(struct device *dev)
1829 {
1830 struct cfb_info *cfb = dev_get_drvdata(dev);
1831
1832 if (cfb) {
1833 cyberpro_pci_enable_mmio(cfb);
1834 cyberpro_common_resume(cfb);
1835 }
1836
1837 return 0;
1838 }
1839
1840 static struct pci_device_id cyberpro_pci_table[] = {
1841 /* Not yet
1842 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1843 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1844 */
1845 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1846 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1847 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1848 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1849 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1850 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1851 { 0, }
1852 };
1853
1854 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1855
1856 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops,
1857 cyberpro_pci_suspend,
1858 cyberpro_pci_resume);
1859
1860 static struct pci_driver cyberpro_driver = {
1861 .name = "CyberPro",
1862 .probe = cyberpro_pci_probe,
1863 .remove = cyberpro_pci_remove,
1864 .driver.pm = &cyberpro_pci_pm_ops,
1865 .id_table = cyberpro_pci_table
1866 };
1867
1868 /*
1869 * I don't think we can use the "module_init" stuff here because
1870 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1871 * around module_init.
1872 *
1873 * Tony: "module_init" is now required
1874 */
cyber2000fb_init(void)1875 static int __init cyber2000fb_init(void)
1876 {
1877 int ret = -1, err;
1878
1879 #ifndef MODULE
1880 char *option = NULL;
1881
1882 if (fb_get_options("cyber2000fb", &option))
1883 return -ENODEV;
1884 cyber2000fb_setup(option);
1885 #endif
1886
1887 err = pci_register_driver(&cyberpro_driver);
1888 if (!err)
1889 ret = 0;
1890
1891 return ret ? err : 0;
1892 }
1893 module_init(cyber2000fb_init);
1894
cyberpro_exit(void)1895 static void __exit cyberpro_exit(void)
1896 {
1897 pci_unregister_driver(&cyberpro_driver);
1898 }
1899 module_exit(cyberpro_exit);
1900
1901 MODULE_AUTHOR("Russell King");
1902 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1903 MODULE_LICENSE("GPL");
1904