1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Authors: Rusty Russell <rusty@rustcorp.com.au>
4  *          Christoffer Dall <c.dall@virtualopensystems.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18  */
19 
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 #include "coproc.h"
38 
39 
40 /******************************************************************************
41  * Co-processor emulation
42  *****************************************************************************/
43 
write_to_read_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)44 static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 			       const struct coproc_params *params)
46 {
47 	WARN_ONCE(1, "CP15 write to read-only register\n");
48 	print_cp_instr(params);
49 	kvm_inject_undefined(vcpu);
50 	return false;
51 }
52 
read_from_write_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)53 static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 				 const struct coproc_params *params)
55 {
56 	WARN_ONCE(1, "CP15 read to write-only register\n");
57 	print_cp_instr(params);
58 	kvm_inject_undefined(vcpu);
59 	return false;
60 }
61 
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels;
64 
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66 #define CSSELR_MAX 12
67 
68 /*
69  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70  * of cp15 registers can be viewed either as couple of two u32 registers
71  * or one u64 register. Current u64 register encoding is that least
72  * significant u32 word is followed by most significant u32 word.
73  */
vcpu_cp15_reg64_set(struct kvm_vcpu * vcpu,const struct coproc_reg * r,u64 val)74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 				       const struct coproc_reg *r,
76 				       u64 val)
77 {
78 	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 }
81 
vcpu_cp15_reg64_get(struct kvm_vcpu * vcpu,const struct coproc_reg * r)82 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 				      const struct coproc_reg *r)
84 {
85 	u64 val;
86 
87 	val = vcpu_cp15(vcpu, r->reg + 1);
88 	val = val << 32;
89 	val = val | vcpu_cp15(vcpu, r->reg);
90 	return val;
91 }
92 
kvm_handle_cp10_id(struct kvm_vcpu * vcpu,struct kvm_run * run)93 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94 {
95 	kvm_inject_undefined(vcpu);
96 	return 1;
97 }
98 
kvm_handle_cp_0_13_access(struct kvm_vcpu * vcpu,struct kvm_run * run)99 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100 {
101 	/*
102 	 * We can get here, if the host has been built without VFPv3 support,
103 	 * but the guest attempted a floating point operation.
104 	 */
105 	kvm_inject_undefined(vcpu);
106 	return 1;
107 }
108 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)109 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110 {
111 	kvm_inject_undefined(vcpu);
112 	return 1;
113 }
114 
reset_mpidr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)115 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116 {
117 	/*
118 	 * Compute guest MPIDR. We build a virtual cluster out of the
119 	 * vcpu_id, but we read the 'U' bit from the underlying
120 	 * hardware directly.
121 	 */
122 	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 				     (vcpu->vcpu_id & 3));
125 }
126 
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
access_actlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)128 static bool access_actlr(struct kvm_vcpu *vcpu,
129 			 const struct coproc_params *p,
130 			 const struct coproc_reg *r)
131 {
132 	if (p->is_write)
133 		return ignore_write(vcpu, p);
134 
135 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 	return true;
137 }
138 
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
access_cbar(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)140 static bool access_cbar(struct kvm_vcpu *vcpu,
141 			const struct coproc_params *p,
142 			const struct coproc_reg *r)
143 {
144 	if (p->is_write)
145 		return write_to_read_only(vcpu, p);
146 	return read_zero(vcpu, p);
147 }
148 
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
access_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)150 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 			  const struct coproc_params *p,
152 			  const struct coproc_reg *r)
153 {
154 	if (p->is_write)
155 		return ignore_write(vcpu, p);
156 
157 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 	return true;
159 }
160 
reset_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)161 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162 {
163 	u32 l2ctlr, ncores;
164 
165 	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 	l2ctlr &= ~(3 << 24);
167 	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 	/* How many cores in the current cluster and the next ones */
169 	ncores -= (vcpu->vcpu_id & ~3);
170 	/* Cap it to the maximum number of cores in a single cluster */
171 	ncores = min(ncores, 3U);
172 	l2ctlr |= (ncores & 3) << 24;
173 
174 	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 }
176 
reset_actlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)177 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178 {
179 	u32 actlr;
180 
181 	/* ACTLR contains SMP bit: make sure you create all cpus first! */
182 	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 	/* Make the SMP bit consistent with the guest configuration */
184 	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 		actlr |= 1U << 6;
186 	else
187 		actlr &= ~(1U << 6);
188 
189 	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 }
191 
192 /*
193  * TRM entries: A7:4.3.50, A15:4.3.49
194  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195  */
access_l2ectlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)196 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 			   const struct coproc_params *p,
198 			   const struct coproc_reg *r)
199 {
200 	if (p->is_write)
201 		return ignore_write(vcpu, p);
202 
203 	*vcpu_reg(vcpu, p->Rt1) = 0;
204 	return true;
205 }
206 
207 /*
208  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209  */
access_dcsw(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)210 static bool access_dcsw(struct kvm_vcpu *vcpu,
211 			const struct coproc_params *p,
212 			const struct coproc_reg *r)
213 {
214 	if (!p->is_write)
215 		return read_from_write_only(vcpu, p);
216 
217 	kvm_set_way_flush(vcpu);
218 	return true;
219 }
220 
221 /*
222  * Generic accessor for VM registers. Only called as long as HCR_TVM
223  * is set.  If the guest enables the MMU, we stop trapping the VM
224  * sys_regs and leave it in complete control of the caches.
225  *
226  * Used by the cpu-specific code.
227  */
access_vm_reg(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)228 bool access_vm_reg(struct kvm_vcpu *vcpu,
229 		   const struct coproc_params *p,
230 		   const struct coproc_reg *r)
231 {
232 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
233 
234 	BUG_ON(!p->is_write);
235 
236 	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237 	if (p->is_64bit)
238 		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239 
240 	kvm_toggle_cache(vcpu, was_enabled);
241 	return true;
242 }
243 
access_gic_sgi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)244 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 			   const struct coproc_params *p,
246 			   const struct coproc_reg *r)
247 {
248 	u64 reg;
249 	bool g1;
250 
251 	if (!p->is_write)
252 		return read_from_write_only(vcpu, p);
253 
254 	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
255 	reg |= *vcpu_reg(vcpu, p->Rt1) ;
256 
257 	/*
258 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
259 	 * Group0 SGIs only, while ICC_SGI1R can generate either group,
260 	 * depending on the SGI configuration. ICC_ASGI1R is effectively
261 	 * equivalent to ICC_SGI0R, as there is no "alternative" secure
262 	 * group.
263 	 */
264 	switch (p->Op1) {
265 	default:		/* Keep GCC quiet */
266 	case 0:			/* ICC_SGI1R */
267 		g1 = true;
268 		break;
269 	case 1:			/* ICC_ASGI1R */
270 	case 2:			/* ICC_SGI0R */
271 		g1 = false;
272 		break;
273 	}
274 
275 	vgic_v3_dispatch_sgi(vcpu, reg, g1);
276 
277 	return true;
278 }
279 
access_gic_sre(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)280 static bool access_gic_sre(struct kvm_vcpu *vcpu,
281 			   const struct coproc_params *p,
282 			   const struct coproc_reg *r)
283 {
284 	if (p->is_write)
285 		return ignore_write(vcpu, p);
286 
287 	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
288 
289 	return true;
290 }
291 
access_cntp_tval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)292 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
293 			     const struct coproc_params *p,
294 			     const struct coproc_reg *r)
295 {
296 	u64 now = kvm_phys_timer_read();
297 	u64 val;
298 
299 	if (p->is_write) {
300 		val = *vcpu_reg(vcpu, p->Rt1);
301 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
302 	} else {
303 		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
304 		*vcpu_reg(vcpu, p->Rt1) = val - now;
305 	}
306 
307 	return true;
308 }
309 
access_cntp_ctl(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)310 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
311 			    const struct coproc_params *p,
312 			    const struct coproc_reg *r)
313 {
314 	u32 val;
315 
316 	if (p->is_write) {
317 		val = *vcpu_reg(vcpu, p->Rt1);
318 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
319 	} else {
320 		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
321 		*vcpu_reg(vcpu, p->Rt1) = val;
322 	}
323 
324 	return true;
325 }
326 
access_cntp_cval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)327 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
328 			     const struct coproc_params *p,
329 			     const struct coproc_reg *r)
330 {
331 	u64 val;
332 
333 	if (p->is_write) {
334 		val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
335 		val |= *vcpu_reg(vcpu, p->Rt1);
336 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
337 	} else {
338 		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
339 		*vcpu_reg(vcpu, p->Rt1) = val;
340 		*vcpu_reg(vcpu, p->Rt2) = val >> 32;
341 	}
342 
343 	return true;
344 }
345 
346 /*
347  * We could trap ID_DFR0 and tell the guest we don't support performance
348  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
349  * NAKed, so it will read the PMCR anyway.
350  *
351  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
352  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
353  * all PM registers, which doesn't crash the guest kernel at least.
354  */
trap_raz_wi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)355 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
356 		    const struct coproc_params *p,
357 		    const struct coproc_reg *r)
358 {
359 	if (p->is_write)
360 		return ignore_write(vcpu, p);
361 	else
362 		return read_zero(vcpu, p);
363 }
364 
365 #define access_pmcr trap_raz_wi
366 #define access_pmcntenset trap_raz_wi
367 #define access_pmcntenclr trap_raz_wi
368 #define access_pmovsr trap_raz_wi
369 #define access_pmselr trap_raz_wi
370 #define access_pmceid0 trap_raz_wi
371 #define access_pmceid1 trap_raz_wi
372 #define access_pmccntr trap_raz_wi
373 #define access_pmxevtyper trap_raz_wi
374 #define access_pmxevcntr trap_raz_wi
375 #define access_pmuserenr trap_raz_wi
376 #define access_pmintenset trap_raz_wi
377 #define access_pmintenclr trap_raz_wi
378 
379 /* Architected CP15 registers.
380  * CRn denotes the primary register number, but is copied to the CRm in the
381  * user space API for 64-bit register access in line with the terminology used
382  * in the ARM ARM.
383  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
384  *            registers preceding 32-bit ones.
385  */
386 static const struct coproc_reg cp15_regs[] = {
387 	/* MPIDR: we use VMPIDR for guest access. */
388 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
389 			NULL, reset_mpidr, c0_MPIDR },
390 
391 	/* CSSELR: swapped by interrupt.S. */
392 	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
393 			NULL, reset_unknown, c0_CSSELR },
394 
395 	/* ACTLR: trapped by HCR.TAC bit. */
396 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
397 			access_actlr, reset_actlr, c1_ACTLR },
398 
399 	/* CPACR: swapped by interrupt.S. */
400 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
401 			NULL, reset_val, c1_CPACR, 0x00000000 },
402 
403 	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
404 	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
405 	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
406 			access_vm_reg, reset_unknown, c2_TTBR0 },
407 	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
408 			access_vm_reg, reset_unknown, c2_TTBR1 },
409 	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
410 			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
411 	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
412 
413 
414 	/* DACR: swapped by interrupt.S. */
415 	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
416 			access_vm_reg, reset_unknown, c3_DACR },
417 
418 	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
419 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
420 			access_vm_reg, reset_unknown, c5_DFSR },
421 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
422 			access_vm_reg, reset_unknown, c5_IFSR },
423 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
424 			access_vm_reg, reset_unknown, c5_ADFSR },
425 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
426 			access_vm_reg, reset_unknown, c5_AIFSR },
427 
428 	/* DFAR/IFAR: swapped by interrupt.S. */
429 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
430 			access_vm_reg, reset_unknown, c6_DFAR },
431 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
432 			access_vm_reg, reset_unknown, c6_IFAR },
433 
434 	/* PAR swapped by interrupt.S */
435 	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
436 
437 	/*
438 	 * DC{C,I,CI}SW operations:
439 	 */
440 	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
441 	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
442 	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
443 	/*
444 	 * L2CTLR access (guest wants to know #CPUs).
445 	 */
446 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
447 			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
448 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
449 
450 	/*
451 	 * Dummy performance monitor implementation.
452 	 */
453 	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
454 	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
455 	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
456 	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
457 	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
458 	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
459 	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
460 	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
461 	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
462 	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
463 	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
464 	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
465 	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
466 
467 	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
468 	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
469 			access_vm_reg, reset_unknown, c10_PRRR},
470 	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
471 			access_vm_reg, reset_unknown, c10_NMRR},
472 
473 	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
474 	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
475 			access_vm_reg, reset_unknown, c10_AMAIR0},
476 	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
477 			access_vm_reg, reset_unknown, c10_AMAIR1},
478 
479 	/* ICC_SGI1R */
480 	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
481 
482 	/* VBAR: swapped by interrupt.S. */
483 	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
484 			NULL, reset_val, c12_VBAR, 0x00000000 },
485 
486 	/* ICC_ASGI1R */
487 	{ CRm64(12), Op1( 1), is64, access_gic_sgi},
488 	/* ICC_SGI0R */
489 	{ CRm64(12), Op1( 2), is64, access_gic_sgi},
490 	/* ICC_SRE */
491 	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
492 
493 	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
494 	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
495 			access_vm_reg, reset_val, c13_CID, 0x00000000 },
496 	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
497 			NULL, reset_unknown, c13_TID_URW },
498 	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
499 			NULL, reset_unknown, c13_TID_URO },
500 	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
501 			NULL, reset_unknown, c13_TID_PRIV },
502 
503 	/* CNTP */
504 	{ CRm64(14), Op1( 2), is64, access_cntp_cval},
505 
506 	/* CNTKCTL: swapped by interrupt.S. */
507 	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
508 			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
509 
510 	/* CNTP */
511 	{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
512 	{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
513 
514 	/* The Configuration Base Address Register. */
515 	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
516 };
517 
check_reg_table(const struct coproc_reg * table,unsigned int n)518 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
519 {
520 	unsigned int i;
521 
522 	for (i = 1; i < n; i++) {
523 		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
524 			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
525 			return 1;
526 		}
527 	}
528 
529 	return 0;
530 }
531 
532 /* Target specific emulation tables */
533 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
534 
kvm_register_target_coproc_table(struct kvm_coproc_target_table * table)535 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
536 {
537 	BUG_ON(check_reg_table(table->table, table->num));
538 	target_tables[table->target] = table;
539 }
540 
541 /* Get specific register table for this target. */
get_target_table(unsigned target,size_t * num)542 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
543 {
544 	struct kvm_coproc_target_table *table;
545 
546 	table = target_tables[target];
547 	*num = table->num;
548 	return table->table;
549 }
550 
551 #define reg_to_match_value(x)						\
552 	({								\
553 		unsigned long val;					\
554 		val  = (x)->CRn << 11;					\
555 		val |= (x)->CRm << 7;					\
556 		val |= (x)->Op1 << 4;					\
557 		val |= (x)->Op2 << 1;					\
558 		val |= !(x)->is_64bit;					\
559 		val;							\
560 	 })
561 
match_reg(const void * key,const void * elt)562 static int match_reg(const void *key, const void *elt)
563 {
564 	const unsigned long pval = (unsigned long)key;
565 	const struct coproc_reg *r = elt;
566 
567 	return pval - reg_to_match_value(r);
568 }
569 
find_reg(const struct coproc_params * params,const struct coproc_reg table[],unsigned int num)570 static const struct coproc_reg *find_reg(const struct coproc_params *params,
571 					 const struct coproc_reg table[],
572 					 unsigned int num)
573 {
574 	unsigned long pval = reg_to_match_value(params);
575 
576 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
577 }
578 
emulate_cp15(struct kvm_vcpu * vcpu,const struct coproc_params * params)579 static int emulate_cp15(struct kvm_vcpu *vcpu,
580 			const struct coproc_params *params)
581 {
582 	size_t num;
583 	const struct coproc_reg *table, *r;
584 
585 	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
586 				   params->CRm, params->Op2, params->is_write);
587 
588 	table = get_target_table(vcpu->arch.target, &num);
589 
590 	/* Search target-specific then generic table. */
591 	r = find_reg(params, table, num);
592 	if (!r)
593 		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
594 
595 	if (likely(r)) {
596 		/* If we don't have an accessor, we should never get here! */
597 		BUG_ON(!r->access);
598 
599 		if (likely(r->access(vcpu, params, r))) {
600 			/* Skip instruction, since it was emulated */
601 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
602 		}
603 	} else {
604 		/* If access function fails, it should complain. */
605 		kvm_err("Unsupported guest CP15 access at: %08lx\n",
606 			*vcpu_pc(vcpu));
607 		print_cp_instr(params);
608 		kvm_inject_undefined(vcpu);
609 	}
610 
611 	return 1;
612 }
613 
decode_64bit_hsr(struct kvm_vcpu * vcpu)614 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
615 {
616 	struct coproc_params params;
617 
618 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
619 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
620 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
621 	params.is_64bit = true;
622 
623 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
624 	params.Op2 = 0;
625 	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
626 	params.CRm = 0;
627 
628 	return params;
629 }
630 
631 /**
632  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
633  * @vcpu: The VCPU pointer
634  * @run:  The kvm_run struct
635  */
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)636 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
637 {
638 	struct coproc_params params = decode_64bit_hsr(vcpu);
639 
640 	return emulate_cp15(vcpu, &params);
641 }
642 
643 /**
644  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
645  * @vcpu: The VCPU pointer
646  * @run:  The kvm_run struct
647  */
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)648 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
649 {
650 	struct coproc_params params = decode_64bit_hsr(vcpu);
651 
652 	/* raz_wi cp14 */
653 	trap_raz_wi(vcpu, &params, NULL);
654 
655 	/* handled */
656 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
657 	return 1;
658 }
659 
reset_coproc_regs(struct kvm_vcpu * vcpu,const struct coproc_reg * table,size_t num)660 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
661 			      const struct coproc_reg *table, size_t num)
662 {
663 	unsigned long i;
664 
665 	for (i = 0; i < num; i++)
666 		if (table[i].reset)
667 			table[i].reset(vcpu, &table[i]);
668 }
669 
decode_32bit_hsr(struct kvm_vcpu * vcpu)670 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
671 {
672 	struct coproc_params params;
673 
674 	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
675 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
676 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
677 	params.is_64bit = false;
678 
679 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
680 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
681 	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
682 	params.Rt2 = 0;
683 
684 	return params;
685 }
686 
687 /**
688  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
689  * @vcpu: The VCPU pointer
690  * @run:  The kvm_run struct
691  */
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)692 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
693 {
694 	struct coproc_params params = decode_32bit_hsr(vcpu);
695 	return emulate_cp15(vcpu, &params);
696 }
697 
698 /**
699  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
700  * @vcpu: The VCPU pointer
701  * @run:  The kvm_run struct
702  */
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)703 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
704 {
705 	struct coproc_params params = decode_32bit_hsr(vcpu);
706 
707 	/* raz_wi cp14 */
708 	trap_raz_wi(vcpu, &params, NULL);
709 
710 	/* handled */
711 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
712 	return 1;
713 }
714 
715 /******************************************************************************
716  * Userspace API
717  *****************************************************************************/
718 
index_to_params(u64 id,struct coproc_params * params)719 static bool index_to_params(u64 id, struct coproc_params *params)
720 {
721 	switch (id & KVM_REG_SIZE_MASK) {
722 	case KVM_REG_SIZE_U32:
723 		/* Any unused index bits means it's not valid. */
724 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
725 			   | KVM_REG_ARM_COPROC_MASK
726 			   | KVM_REG_ARM_32_CRN_MASK
727 			   | KVM_REG_ARM_CRM_MASK
728 			   | KVM_REG_ARM_OPC1_MASK
729 			   | KVM_REG_ARM_32_OPC2_MASK))
730 			return false;
731 
732 		params->is_64bit = false;
733 		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
734 			       >> KVM_REG_ARM_32_CRN_SHIFT);
735 		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
736 			       >> KVM_REG_ARM_CRM_SHIFT);
737 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
738 			       >> KVM_REG_ARM_OPC1_SHIFT);
739 		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
740 			       >> KVM_REG_ARM_32_OPC2_SHIFT);
741 		return true;
742 	case KVM_REG_SIZE_U64:
743 		/* Any unused index bits means it's not valid. */
744 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
745 			      | KVM_REG_ARM_COPROC_MASK
746 			      | KVM_REG_ARM_CRM_MASK
747 			      | KVM_REG_ARM_OPC1_MASK))
748 			return false;
749 		params->is_64bit = true;
750 		/* CRm to CRn: see cp15_to_index for details */
751 		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
752 			       >> KVM_REG_ARM_CRM_SHIFT);
753 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
754 			       >> KVM_REG_ARM_OPC1_SHIFT);
755 		params->Op2 = 0;
756 		params->CRm = 0;
757 		return true;
758 	default:
759 		return false;
760 	}
761 }
762 
763 /* Decode an index value, and find the cp15 coproc_reg entry. */
index_to_coproc_reg(struct kvm_vcpu * vcpu,u64 id)764 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
765 						    u64 id)
766 {
767 	size_t num;
768 	const struct coproc_reg *table, *r;
769 	struct coproc_params params;
770 
771 	/* We only do cp15 for now. */
772 	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
773 		return NULL;
774 
775 	if (!index_to_params(id, &params))
776 		return NULL;
777 
778 	table = get_target_table(vcpu->arch.target, &num);
779 	r = find_reg(&params, table, num);
780 	if (!r)
781 		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
782 
783 	/* Not saved in the cp15 array? */
784 	if (r && !r->reg)
785 		r = NULL;
786 
787 	return r;
788 }
789 
790 /*
791  * These are the invariant cp15 registers: we let the guest see the host
792  * versions of these, so they're part of the guest state.
793  *
794  * A future CPU may provide a mechanism to present different values to
795  * the guest, or a future kvm may trap them.
796  */
797 /* Unfortunately, there's no register-argument for mrc, so generate. */
798 #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
799 	static void get_##name(struct kvm_vcpu *v,			\
800 			       const struct coproc_reg *r)		\
801 	{								\
802 		u32 val;						\
803 									\
804 		asm volatile("mrc p15, " __stringify(op1)		\
805 			     ", %0, c" __stringify(crn)			\
806 			     ", c" __stringify(crm)			\
807 			     ", " __stringify(op2) "\n" : "=r" (val));	\
808 		((struct coproc_reg *)r)->val = val;			\
809 	}
810 
811 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
812 FUNCTION_FOR32(0, 0, 0, 1, CTR)
813 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
814 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
815 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
816 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
817 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
818 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
819 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
820 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
821 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
822 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
823 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
824 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
825 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
826 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
827 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
828 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
829 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
830 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
831 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
832 
833 /* ->val is filled in by kvm_invariant_coproc_table_init() */
834 static struct coproc_reg invariant_cp15[] = {
835 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
836 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
837 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
838 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
839 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
840 
841 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
842 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
843 
844 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
845 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
846 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
847 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
848 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
849 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
850 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
851 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
852 
853 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
854 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
855 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
856 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
857 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
858 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
859 };
860 
861 /*
862  * Reads a register value from a userspace address to a kernel
863  * variable. Make sure that register size matches sizeof(*__val).
864  */
reg_from_user(void * val,const void __user * uaddr,u64 id)865 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
866 {
867 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
868 		return -EFAULT;
869 	return 0;
870 }
871 
872 /*
873  * Writes a register value to a userspace address from a kernel variable.
874  * Make sure that register size matches sizeof(*__val).
875  */
reg_to_user(void __user * uaddr,const void * val,u64 id)876 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
877 {
878 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
879 		return -EFAULT;
880 	return 0;
881 }
882 
get_invariant_cp15(u64 id,void __user * uaddr)883 static int get_invariant_cp15(u64 id, void __user *uaddr)
884 {
885 	struct coproc_params params;
886 	const struct coproc_reg *r;
887 	int ret;
888 
889 	if (!index_to_params(id, &params))
890 		return -ENOENT;
891 
892 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
893 	if (!r)
894 		return -ENOENT;
895 
896 	ret = -ENOENT;
897 	if (KVM_REG_SIZE(id) == 4) {
898 		u32 val = r->val;
899 
900 		ret = reg_to_user(uaddr, &val, id);
901 	} else if (KVM_REG_SIZE(id) == 8) {
902 		ret = reg_to_user(uaddr, &r->val, id);
903 	}
904 	return ret;
905 }
906 
set_invariant_cp15(u64 id,void __user * uaddr)907 static int set_invariant_cp15(u64 id, void __user *uaddr)
908 {
909 	struct coproc_params params;
910 	const struct coproc_reg *r;
911 	int err;
912 	u64 val;
913 
914 	if (!index_to_params(id, &params))
915 		return -ENOENT;
916 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
917 	if (!r)
918 		return -ENOENT;
919 
920 	err = -ENOENT;
921 	if (KVM_REG_SIZE(id) == 4) {
922 		u32 val32;
923 
924 		err = reg_from_user(&val32, uaddr, id);
925 		if (!err)
926 			val = val32;
927 	} else if (KVM_REG_SIZE(id) == 8) {
928 		err = reg_from_user(&val, uaddr, id);
929 	}
930 	if (err)
931 		return err;
932 
933 	/* This is what we mean by invariant: you can't change it. */
934 	if (r->val != val)
935 		return -EINVAL;
936 
937 	return 0;
938 }
939 
is_valid_cache(u32 val)940 static bool is_valid_cache(u32 val)
941 {
942 	u32 level, ctype;
943 
944 	if (val >= CSSELR_MAX)
945 		return false;
946 
947 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
948         level = (val >> 1);
949         ctype = (cache_levels >> (level * 3)) & 7;
950 
951 	switch (ctype) {
952 	case 0: /* No cache */
953 		return false;
954 	case 1: /* Instruction cache only */
955 		return (val & 1);
956 	case 2: /* Data cache only */
957 	case 4: /* Unified cache */
958 		return !(val & 1);
959 	case 3: /* Separate instruction and data caches */
960 		return true;
961 	default: /* Reserved: we can't know instruction or data. */
962 		return false;
963 	}
964 }
965 
966 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)967 static u32 get_ccsidr(u32 csselr)
968 {
969 	u32 ccsidr;
970 
971 	/* Make sure noone else changes CSSELR during this! */
972 	local_irq_disable();
973 	/* Put value into CSSELR */
974 	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
975 	isb();
976 	/* Read result out of CCSIDR */
977 	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
978 	local_irq_enable();
979 
980 	return ccsidr;
981 }
982 
demux_c15_get(u64 id,void __user * uaddr)983 static int demux_c15_get(u64 id, void __user *uaddr)
984 {
985 	u32 val;
986 	u32 __user *uval = uaddr;
987 
988 	/* Fail if we have unknown bits set. */
989 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
990 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
991 		return -ENOENT;
992 
993 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
994 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
995 		if (KVM_REG_SIZE(id) != 4)
996 			return -ENOENT;
997 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
998 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
999 		if (!is_valid_cache(val))
1000 			return -ENOENT;
1001 
1002 		return put_user(get_ccsidr(val), uval);
1003 	default:
1004 		return -ENOENT;
1005 	}
1006 }
1007 
demux_c15_set(u64 id,void __user * uaddr)1008 static int demux_c15_set(u64 id, void __user *uaddr)
1009 {
1010 	u32 val, newval;
1011 	u32 __user *uval = uaddr;
1012 
1013 	/* Fail if we have unknown bits set. */
1014 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1015 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1016 		return -ENOENT;
1017 
1018 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1019 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1020 		if (KVM_REG_SIZE(id) != 4)
1021 			return -ENOENT;
1022 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1023 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1024 		if (!is_valid_cache(val))
1025 			return -ENOENT;
1026 
1027 		if (get_user(newval, uval))
1028 			return -EFAULT;
1029 
1030 		/* This is also invariant: you can't change it. */
1031 		if (newval != get_ccsidr(val))
1032 			return -EINVAL;
1033 		return 0;
1034 	default:
1035 		return -ENOENT;
1036 	}
1037 }
1038 
1039 #ifdef CONFIG_VFPv3
1040 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1041 				   KVM_REG_ARM_VFP_FPSCR,
1042 				   KVM_REG_ARM_VFP_FPINST,
1043 				   KVM_REG_ARM_VFP_FPINST2,
1044 				   KVM_REG_ARM_VFP_MVFR0,
1045 				   KVM_REG_ARM_VFP_MVFR1,
1046 				   KVM_REG_ARM_VFP_FPSID };
1047 
num_fp_regs(void)1048 static unsigned int num_fp_regs(void)
1049 {
1050 	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1051 		return 32;
1052 	else
1053 		return 16;
1054 }
1055 
num_vfp_regs(void)1056 static unsigned int num_vfp_regs(void)
1057 {
1058 	/* Normal FP regs + control regs. */
1059 	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1060 }
1061 
copy_vfp_regids(u64 __user * uindices)1062 static int copy_vfp_regids(u64 __user *uindices)
1063 {
1064 	unsigned int i;
1065 	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1066 	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1067 
1068 	for (i = 0; i < num_fp_regs(); i++) {
1069 		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1070 			     uindices))
1071 			return -EFAULT;
1072 		uindices++;
1073 	}
1074 
1075 	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1076 		if (put_user(u32reg | vfp_sysregs[i], uindices))
1077 			return -EFAULT;
1078 		uindices++;
1079 	}
1080 
1081 	return num_vfp_regs();
1082 }
1083 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1084 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1085 {
1086 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1087 	u32 val;
1088 
1089 	/* Fail if we have unknown bits set. */
1090 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1091 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1092 		return -ENOENT;
1093 
1094 	if (vfpid < num_fp_regs()) {
1095 		if (KVM_REG_SIZE(id) != 8)
1096 			return -ENOENT;
1097 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1098 				   id);
1099 	}
1100 
1101 	/* FP control registers are all 32 bit. */
1102 	if (KVM_REG_SIZE(id) != 4)
1103 		return -ENOENT;
1104 
1105 	switch (vfpid) {
1106 	case KVM_REG_ARM_VFP_FPEXC:
1107 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1108 	case KVM_REG_ARM_VFP_FPSCR:
1109 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1110 	case KVM_REG_ARM_VFP_FPINST:
1111 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1112 	case KVM_REG_ARM_VFP_FPINST2:
1113 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1114 	case KVM_REG_ARM_VFP_MVFR0:
1115 		val = fmrx(MVFR0);
1116 		return reg_to_user(uaddr, &val, id);
1117 	case KVM_REG_ARM_VFP_MVFR1:
1118 		val = fmrx(MVFR1);
1119 		return reg_to_user(uaddr, &val, id);
1120 	case KVM_REG_ARM_VFP_FPSID:
1121 		val = fmrx(FPSID);
1122 		return reg_to_user(uaddr, &val, id);
1123 	default:
1124 		return -ENOENT;
1125 	}
1126 }
1127 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1128 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1129 {
1130 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1131 	u32 val;
1132 
1133 	/* Fail if we have unknown bits set. */
1134 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1135 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1136 		return -ENOENT;
1137 
1138 	if (vfpid < num_fp_regs()) {
1139 		if (KVM_REG_SIZE(id) != 8)
1140 			return -ENOENT;
1141 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1142 				     uaddr, id);
1143 	}
1144 
1145 	/* FP control registers are all 32 bit. */
1146 	if (KVM_REG_SIZE(id) != 4)
1147 		return -ENOENT;
1148 
1149 	switch (vfpid) {
1150 	case KVM_REG_ARM_VFP_FPEXC:
1151 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1152 	case KVM_REG_ARM_VFP_FPSCR:
1153 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1154 	case KVM_REG_ARM_VFP_FPINST:
1155 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1156 	case KVM_REG_ARM_VFP_FPINST2:
1157 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1158 	/* These are invariant. */
1159 	case KVM_REG_ARM_VFP_MVFR0:
1160 		if (reg_from_user(&val, uaddr, id))
1161 			return -EFAULT;
1162 		if (val != fmrx(MVFR0))
1163 			return -EINVAL;
1164 		return 0;
1165 	case KVM_REG_ARM_VFP_MVFR1:
1166 		if (reg_from_user(&val, uaddr, id))
1167 			return -EFAULT;
1168 		if (val != fmrx(MVFR1))
1169 			return -EINVAL;
1170 		return 0;
1171 	case KVM_REG_ARM_VFP_FPSID:
1172 		if (reg_from_user(&val, uaddr, id))
1173 			return -EFAULT;
1174 		if (val != fmrx(FPSID))
1175 			return -EINVAL;
1176 		return 0;
1177 	default:
1178 		return -ENOENT;
1179 	}
1180 }
1181 #else /* !CONFIG_VFPv3 */
num_vfp_regs(void)1182 static unsigned int num_vfp_regs(void)
1183 {
1184 	return 0;
1185 }
1186 
copy_vfp_regids(u64 __user * uindices)1187 static int copy_vfp_regids(u64 __user *uindices)
1188 {
1189 	return 0;
1190 }
1191 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1192 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1193 {
1194 	return -ENOENT;
1195 }
1196 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1197 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1198 {
1199 	return -ENOENT;
1200 }
1201 #endif /* !CONFIG_VFPv3 */
1202 
kvm_arm_coproc_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1203 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1204 {
1205 	const struct coproc_reg *r;
1206 	void __user *uaddr = (void __user *)(long)reg->addr;
1207 	int ret;
1208 
1209 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1210 		return demux_c15_get(reg->id, uaddr);
1211 
1212 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1213 		return vfp_get_reg(vcpu, reg->id, uaddr);
1214 
1215 	r = index_to_coproc_reg(vcpu, reg->id);
1216 	if (!r)
1217 		return get_invariant_cp15(reg->id, uaddr);
1218 
1219 	ret = -ENOENT;
1220 	if (KVM_REG_SIZE(reg->id) == 8) {
1221 		u64 val;
1222 
1223 		val = vcpu_cp15_reg64_get(vcpu, r);
1224 		ret = reg_to_user(uaddr, &val, reg->id);
1225 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1226 		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1227 	}
1228 
1229 	return ret;
1230 }
1231 
kvm_arm_coproc_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1232 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1233 {
1234 	const struct coproc_reg *r;
1235 	void __user *uaddr = (void __user *)(long)reg->addr;
1236 	int ret;
1237 
1238 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1239 		return demux_c15_set(reg->id, uaddr);
1240 
1241 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1242 		return vfp_set_reg(vcpu, reg->id, uaddr);
1243 
1244 	r = index_to_coproc_reg(vcpu, reg->id);
1245 	if (!r)
1246 		return set_invariant_cp15(reg->id, uaddr);
1247 
1248 	ret = -ENOENT;
1249 	if (KVM_REG_SIZE(reg->id) == 8) {
1250 		u64 val;
1251 
1252 		ret = reg_from_user(&val, uaddr, reg->id);
1253 		if (!ret)
1254 			vcpu_cp15_reg64_set(vcpu, r, val);
1255 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1256 		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1257 	}
1258 
1259 	return ret;
1260 }
1261 
num_demux_regs(void)1262 static unsigned int num_demux_regs(void)
1263 {
1264 	unsigned int i, count = 0;
1265 
1266 	for (i = 0; i < CSSELR_MAX; i++)
1267 		if (is_valid_cache(i))
1268 			count++;
1269 
1270 	return count;
1271 }
1272 
write_demux_regids(u64 __user * uindices)1273 static int write_demux_regids(u64 __user *uindices)
1274 {
1275 	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1276 	unsigned int i;
1277 
1278 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1279 	for (i = 0; i < CSSELR_MAX; i++) {
1280 		if (!is_valid_cache(i))
1281 			continue;
1282 		if (put_user(val | i, uindices))
1283 			return -EFAULT;
1284 		uindices++;
1285 	}
1286 	return 0;
1287 }
1288 
cp15_to_index(const struct coproc_reg * reg)1289 static u64 cp15_to_index(const struct coproc_reg *reg)
1290 {
1291 	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1292 	if (reg->is_64bit) {
1293 		val |= KVM_REG_SIZE_U64;
1294 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1295 		/*
1296 		 * CRn always denotes the primary coproc. reg. nr. for the
1297 		 * in-kernel representation, but the user space API uses the
1298 		 * CRm for the encoding, because it is modelled after the
1299 		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1300 		 * B3-1445
1301 		 */
1302 		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1303 	} else {
1304 		val |= KVM_REG_SIZE_U32;
1305 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1306 		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1307 		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1308 		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1309 	}
1310 	return val;
1311 }
1312 
copy_reg_to_user(const struct coproc_reg * reg,u64 __user ** uind)1313 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1314 {
1315 	if (!*uind)
1316 		return true;
1317 
1318 	if (put_user(cp15_to_index(reg), *uind))
1319 		return false;
1320 
1321 	(*uind)++;
1322 	return true;
1323 }
1324 
1325 /* Assumed ordered tables, see kvm_coproc_table_init. */
walk_cp15(struct kvm_vcpu * vcpu,u64 __user * uind)1326 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1327 {
1328 	const struct coproc_reg *i1, *i2, *end1, *end2;
1329 	unsigned int total = 0;
1330 	size_t num;
1331 
1332 	/* We check for duplicates here, to allow arch-specific overrides. */
1333 	i1 = get_target_table(vcpu->arch.target, &num);
1334 	end1 = i1 + num;
1335 	i2 = cp15_regs;
1336 	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1337 
1338 	BUG_ON(i1 == end1 || i2 == end2);
1339 
1340 	/* Walk carefully, as both tables may refer to the same register. */
1341 	while (i1 || i2) {
1342 		int cmp = cmp_reg(i1, i2);
1343 		/* target-specific overrides generic entry. */
1344 		if (cmp <= 0) {
1345 			/* Ignore registers we trap but don't save. */
1346 			if (i1->reg) {
1347 				if (!copy_reg_to_user(i1, &uind))
1348 					return -EFAULT;
1349 				total++;
1350 			}
1351 		} else {
1352 			/* Ignore registers we trap but don't save. */
1353 			if (i2->reg) {
1354 				if (!copy_reg_to_user(i2, &uind))
1355 					return -EFAULT;
1356 				total++;
1357 			}
1358 		}
1359 
1360 		if (cmp <= 0 && ++i1 == end1)
1361 			i1 = NULL;
1362 		if (cmp >= 0 && ++i2 == end2)
1363 			i2 = NULL;
1364 	}
1365 	return total;
1366 }
1367 
kvm_arm_num_coproc_regs(struct kvm_vcpu * vcpu)1368 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1369 {
1370 	return ARRAY_SIZE(invariant_cp15)
1371 		+ num_demux_regs()
1372 		+ num_vfp_regs()
1373 		+ walk_cp15(vcpu, (u64 __user *)NULL);
1374 }
1375 
kvm_arm_copy_coproc_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)1376 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1377 {
1378 	unsigned int i;
1379 	int err;
1380 
1381 	/* Then give them all the invariant registers' indices. */
1382 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1383 		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1384 			return -EFAULT;
1385 		uindices++;
1386 	}
1387 
1388 	err = walk_cp15(vcpu, uindices);
1389 	if (err < 0)
1390 		return err;
1391 	uindices += err;
1392 
1393 	err = copy_vfp_regids(uindices);
1394 	if (err < 0)
1395 		return err;
1396 	uindices += err;
1397 
1398 	return write_demux_regids(uindices);
1399 }
1400 
kvm_coproc_table_init(void)1401 void kvm_coproc_table_init(void)
1402 {
1403 	unsigned int i;
1404 
1405 	/* Make sure tables are unique and in order. */
1406 	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1407 	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1408 
1409 	/* We abuse the reset function to overwrite the table itself. */
1410 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1411 		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1412 
1413 	/*
1414 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1415 	 *
1416 	 *   If software reads the Cache Type fields from Ctype1
1417 	 *   upwards, once it has seen a value of 0b000, no caches
1418 	 *   exist at further-out levels of the hierarchy. So, for
1419 	 *   example, if Ctype3 is the first Cache Type field with a
1420 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1421 	 *   ignored.
1422 	 */
1423 	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1424 	for (i = 0; i < 7; i++)
1425 		if (((cache_levels >> (i*3)) & 7) == 0)
1426 			break;
1427 	/* Clear all higher bits. */
1428 	cache_levels &= (1 << (i*3))-1;
1429 }
1430 
1431 /**
1432  * kvm_reset_coprocs - sets cp15 registers to reset value
1433  * @vcpu: The VCPU pointer
1434  *
1435  * This function finds the right table above and sets the registers on the
1436  * virtual CPU struct to their architecturally defined reset values.
1437  */
kvm_reset_coprocs(struct kvm_vcpu * vcpu)1438 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1439 {
1440 	size_t num;
1441 	const struct coproc_reg *table;
1442 
1443 	/* Catch someone adding a register without putting in reset entry. */
1444 	memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1445 
1446 	/* Generic chip reset first (so target could override). */
1447 	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1448 
1449 	table = get_target_table(vcpu->arch.target, &num);
1450 	reset_coproc_regs(vcpu, table, num);
1451 
1452 	for (num = 1; num < NR_CP15_REGS; num++)
1453 		if (vcpu_cp15(vcpu, num) == 0x42424242)
1454 			panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455 }
1456