1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * comedi/drivers/s626.c
4 * Sensoray s626 Comedi driver
5 *
6 * COMEDI - Linux Control and Measurement Device Interface
7 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8 *
9 * Based on Sensoray Model 626 Linux driver Version 0.2
10 * Copyright (C) 2002-2004 Sensoray Co., Inc.
11 */
12
13 /*
14 * Driver: s626
15 * Description: Sensoray 626 driver
16 * Devices: [Sensoray] 626 (s626)
17 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
18 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
19 * Status: experimental
20
21 * Configuration options: not applicable, uses PCI auto config
22
23 * INSN_CONFIG instructions:
24 * analog input:
25 * none
26 *
27 * analog output:
28 * none
29 *
30 * digital channel:
31 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
32 * supported configuration options:
33 * INSN_CONFIG_DIO_QUERY
34 * COMEDI_INPUT
35 * COMEDI_OUTPUT
36 *
37 * encoder:
38 * Every channel must be configured before reading.
39 *
40 * Example code
41 *
42 * insn.insn=INSN_CONFIG; //configuration instruction
43 * insn.n=1; //number of operation (must be 1)
44 * insn.data=&initialvalue; //initial value loaded into encoder
45 * //during configuration
46 * insn.subdev=5; //encoder subdevice
47 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
48 * //to configure
49 *
50 * comedi_do_insn(cf,&insn); //executing configuration
51 */
52
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/kernel.h>
57 #include <linux/types.h>
58
59 #include "../comedi_pci.h"
60
61 #include "s626.h"
62
63 struct s626_buffer_dma {
64 dma_addr_t physical_base;
65 void *logical_base;
66 };
67
68 /**
69 * struct s626_private - Working data for s626 driver.
70 * @ai_cmd_running: non-zero if ai_cmd is running.
71 * @ai_sample_timer: time between samples in units of the timer.
72 * @ai_convert_count: conversion counter.
73 * @ai_convert_timer: time between conversion in units of the timer.
74 * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
75 * @adc_items: number of items in ADC poll list.
76 * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
77 * @ana_buf: DMA buffer used to receive ADC data and hold DAC data.
78 * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
79 * @dacpol: image of DAC polarity register.
80 * @trim_setpoint: images of TrimDAC setpoints.
81 * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
82 */
83 struct s626_private {
84 u8 ai_cmd_running;
85 unsigned int ai_sample_timer;
86 int ai_convert_count;
87 unsigned int ai_convert_timer;
88 u16 counter_int_enabs;
89 u8 adc_items;
90 struct s626_buffer_dma rps_buf;
91 struct s626_buffer_dma ana_buf;
92 u32 *dac_wbuf;
93 u16 dacpol;
94 u8 trim_setpoint[12];
95 u32 i2c_adrs;
96 };
97
98 /* Counter overflow/index event flag masks for RDMISC2. */
99 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
100 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
101
102 /*
103 * Enable/disable a function or test status bit(s) that are accessed
104 * through Main Control Registers 1 or 2.
105 */
s626_mc_enable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)106 static void s626_mc_enable(struct comedi_device *dev,
107 unsigned int cmd, unsigned int reg)
108 {
109 unsigned int val = (cmd << 16) | cmd;
110
111 mmiowb();
112 writel(val, dev->mmio + reg);
113 }
114
s626_mc_disable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)115 static void s626_mc_disable(struct comedi_device *dev,
116 unsigned int cmd, unsigned int reg)
117 {
118 writel(cmd << 16, dev->mmio + reg);
119 mmiowb();
120 }
121
s626_mc_test(struct comedi_device * dev,unsigned int cmd,unsigned int reg)122 static bool s626_mc_test(struct comedi_device *dev,
123 unsigned int cmd, unsigned int reg)
124 {
125 unsigned int val;
126
127 val = readl(dev->mmio + reg);
128
129 return (val & cmd) ? true : false;
130 }
131
132 #define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
133
134 /* Write a time slot control record to TSL2. */
135 #define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
136
137 static const struct comedi_lrange s626_range_table = {
138 2, {
139 BIP_RANGE(5),
140 BIP_RANGE(10)
141 }
142 };
143
144 /*
145 * Execute a DEBI transfer. This must be called from within a critical section.
146 */
s626_debi_transfer(struct comedi_device * dev)147 static void s626_debi_transfer(struct comedi_device *dev)
148 {
149 static const int timeout = 10000;
150 int i;
151
152 /* Initiate upload of shadow RAM to DEBI control register */
153 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
154
155 /*
156 * Wait for completion of upload from shadow RAM to
157 * DEBI control register.
158 */
159 for (i = 0; i < timeout; i++) {
160 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
161 break;
162 udelay(1);
163 }
164 if (i == timeout)
165 dev_err(dev->class_dev,
166 "Timeout while uploading to DEBI control register\n");
167
168 /* Wait until DEBI transfer is done */
169 for (i = 0; i < timeout; i++) {
170 if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
171 break;
172 udelay(1);
173 }
174 if (i == timeout)
175 dev_err(dev->class_dev, "DEBI transfer timeout\n");
176 }
177
178 /*
179 * Read a value from a gate array register.
180 */
s626_debi_read(struct comedi_device * dev,u16 addr)181 static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
182 {
183 /* Set up DEBI control register value in shadow RAM */
184 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
185
186 /* Execute the DEBI transfer. */
187 s626_debi_transfer(dev);
188
189 return readl(dev->mmio + S626_P_DEBIAD);
190 }
191
192 /*
193 * Write a value to a gate array register.
194 */
s626_debi_write(struct comedi_device * dev,u16 addr,u16 wdata)195 static void s626_debi_write(struct comedi_device *dev, u16 addr,
196 u16 wdata)
197 {
198 /* Set up DEBI control register value in shadow RAM */
199 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
200 writel(wdata, dev->mmio + S626_P_DEBIAD);
201
202 /* Execute the DEBI transfer. */
203 s626_debi_transfer(dev);
204 }
205
206 /*
207 * Replace the specified bits in a gate array register. Imports: mask
208 * specifies bits that are to be preserved, wdata is new value to be
209 * or'd with the masked original.
210 */
s626_debi_replace(struct comedi_device * dev,unsigned int addr,unsigned int mask,unsigned int wdata)211 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
212 unsigned int mask, unsigned int wdata)
213 {
214 unsigned int val;
215
216 addr &= 0xffff;
217 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
218 s626_debi_transfer(dev);
219
220 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
221 val = readl(dev->mmio + S626_P_DEBIAD);
222 val &= mask;
223 val |= wdata;
224 writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
225 s626_debi_transfer(dev);
226 }
227
228 /* ************** EEPROM ACCESS FUNCTIONS ************** */
229
s626_i2c_handshake_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)230 static int s626_i2c_handshake_eoc(struct comedi_device *dev,
231 struct comedi_subdevice *s,
232 struct comedi_insn *insn,
233 unsigned long context)
234 {
235 bool status;
236
237 status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
238 if (status)
239 return 0;
240 return -EBUSY;
241 }
242
s626_i2c_handshake(struct comedi_device * dev,u32 val)243 static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
244 {
245 unsigned int ctrl;
246 int ret;
247
248 /* Write I2C command to I2C Transfer Control shadow register */
249 writel(val, dev->mmio + S626_P_I2CCTRL);
250
251 /*
252 * Upload I2C shadow registers into working registers and
253 * wait for upload confirmation.
254 */
255 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
256 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
257 if (ret)
258 return ret;
259
260 /* Wait until I2C bus transfer is finished or an error occurs */
261 do {
262 ctrl = readl(dev->mmio + S626_P_I2CCTRL);
263 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
264
265 /* Return non-zero if I2C error occurred */
266 return ctrl & S626_I2C_ERR;
267 }
268
269 /* Read u8 from EEPROM. */
s626_i2c_read(struct comedi_device * dev,u8 addr)270 static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
271 {
272 struct s626_private *devpriv = dev->private;
273
274 /*
275 * Send EEPROM target address:
276 * Byte2 = I2C command: write to I2C EEPROM device.
277 * Byte1 = EEPROM internal target address.
278 * Byte0 = Not sent.
279 */
280 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
281 devpriv->i2c_adrs) |
282 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
283 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
284 /* Abort function and declare error if handshake failed. */
285 return 0;
286
287 /*
288 * Execute EEPROM read:
289 * Byte2 = I2C command: read from I2C EEPROM device.
290 * Byte1 receives uint8_t from EEPROM.
291 * Byte0 = Not sent.
292 */
293 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
294 (devpriv->i2c_adrs | 1)) |
295 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
296 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
297 /* Abort function and declare error if handshake failed. */
298 return 0;
299
300 return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
301 }
302
303 /* *********** DAC FUNCTIONS *********** */
304
305 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
306 static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
307
308 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
309 static const u8 s626_trimadrs[] = {
310 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
311 };
312
313 enum {
314 s626_send_dac_wait_not_mc1_a2out,
315 s626_send_dac_wait_ssr_af2_out,
316 s626_send_dac_wait_fb_buffer2_msb_00,
317 s626_send_dac_wait_fb_buffer2_msb_ff
318 };
319
s626_send_dac_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)320 static int s626_send_dac_eoc(struct comedi_device *dev,
321 struct comedi_subdevice *s,
322 struct comedi_insn *insn,
323 unsigned long context)
324 {
325 unsigned int status;
326
327 switch (context) {
328 case s626_send_dac_wait_not_mc1_a2out:
329 status = readl(dev->mmio + S626_P_MC1);
330 if (!(status & S626_MC1_A2OUT))
331 return 0;
332 break;
333 case s626_send_dac_wait_ssr_af2_out:
334 status = readl(dev->mmio + S626_P_SSR);
335 if (status & S626_SSR_AF2_OUT)
336 return 0;
337 break;
338 case s626_send_dac_wait_fb_buffer2_msb_00:
339 status = readl(dev->mmio + S626_P_FB_BUFFER2);
340 if (!(status & 0xff000000))
341 return 0;
342 break;
343 case s626_send_dac_wait_fb_buffer2_msb_ff:
344 status = readl(dev->mmio + S626_P_FB_BUFFER2);
345 if (status & 0xff000000)
346 return 0;
347 break;
348 default:
349 return -EINVAL;
350 }
351 return -EBUSY;
352 }
353
354 /*
355 * Private helper function: Transmit serial data to DAC via Audio
356 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
357 * dacpol contains valid target image.
358 */
s626_send_dac(struct comedi_device * dev,u32 val)359 static int s626_send_dac(struct comedi_device *dev, u32 val)
360 {
361 struct s626_private *devpriv = dev->private;
362 int ret;
363
364 /* START THE SERIAL CLOCK RUNNING ------------- */
365
366 /*
367 * Assert DAC polarity control and enable gating of DAC serial clock
368 * and audio bit stream signals. At this point in time we must be
369 * assured of being in time slot 0. If we are not in slot 0, the
370 * serial clock and audio stream signals will be disabled; this is
371 * because the following s626_debi_write statement (which enables
372 * signals to be passed through the gate array) would execute before
373 * the trailing edge of WS1/WS3 (which turns off the signals), thus
374 * causing the signals to be inactive during the DAC write.
375 */
376 s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
377
378 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
379
380 /* Copy DAC setpoint value to DAC's output DMA buffer. */
381 /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
382 *devpriv->dac_wbuf = val;
383
384 /*
385 * Enable the output DMA transfer. This will cause the DMAC to copy
386 * the DAC's data value to A2's output FIFO. The DMA transfer will
387 * then immediately terminate because the protection address is
388 * reached upon transfer of the first DWORD value.
389 */
390 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
391
392 /* While the DMA transfer is executing ... */
393
394 /*
395 * Reset Audio2 output FIFO's underflow flag (along with any
396 * other FIFO underflow/overflow flags). When set, this flag
397 * will indicate that we have emerged from slot 0.
398 */
399 writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
400
401 /*
402 * Wait for the DMA transfer to finish so that there will be data
403 * available in the FIFO when time slot 1 tries to transfer a DWORD
404 * from the FIFO to the output buffer register. We test for DMA
405 * Done by polling the DMAC enable flag; this flag is automatically
406 * cleared when the transfer has finished.
407 */
408 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
409 s626_send_dac_wait_not_mc1_a2out);
410 if (ret) {
411 dev_err(dev->class_dev, "DMA transfer timeout\n");
412 return ret;
413 }
414
415 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
416
417 /*
418 * FIFO data is now available, so we enable execution of time slots
419 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
420 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
421 * detection.
422 */
423 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
424 dev->mmio + S626_VECTPORT(0));
425
426 /*
427 * Wait for slot 1 to execute to ensure that the Packet will be
428 * transmitted. This is detected by polling the Audio2 output FIFO
429 * underflow flag, which will be set when slot 1 execution has
430 * finished transferring the DAC's data DWORD from the output FIFO
431 * to the output buffer register.
432 */
433 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
434 s626_send_dac_wait_ssr_af2_out);
435 if (ret) {
436 dev_err(dev->class_dev,
437 "TSL timeout waiting for slot 1 to execute\n");
438 return ret;
439 }
440
441 /*
442 * Set up to trap execution at slot 0 when the TSL sequencer cycles
443 * back to slot 0 after executing the EOS in slot 5. Also,
444 * simultaneously shift out and in the 0x00 that is ALWAYS the value
445 * stored in the last byte to be shifted out of the FIFO's DWORD
446 * buffer register.
447 */
448 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
449 dev->mmio + S626_VECTPORT(0));
450
451 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
452
453 /*
454 * Wait for the TSL to finish executing all time slots before
455 * exiting this function. We must do this so that the next DAC
456 * write doesn't start, thereby enabling clock/chip select signals:
457 *
458 * 1. Before the TSL sequence cycles back to slot 0, which disables
459 * the clock/cs signal gating and traps slot // list execution.
460 * we have not yet finished slot 5 then the clock/cs signals are
461 * still gated and we have not finished transmitting the stream.
462 *
463 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
464 * this case, the slot sequence is currently repeating, but with
465 * clock/cs signals disabled. We must wait for slot 0 to trap
466 * execution before setting up the next DAC setpoint DMA transfer
467 * and enabling the clock/cs signals. To detect the end of slot 5,
468 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
469 * the TSL has not yet finished executing slot 5 ...
470 */
471 if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
472 /*
473 * The trap was set on time and we are still executing somewhere
474 * in slots 2-5, so we now wait for slot 0 to execute and trap
475 * TSL execution. This is detected when FB_BUFFER2 MSB changes
476 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
477 * out/in on SD2 the 0x00 that is always referenced by slot 5.
478 */
479 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
480 s626_send_dac_wait_fb_buffer2_msb_00);
481 if (ret) {
482 dev_err(dev->class_dev,
483 "TSL timeout waiting for slot 0 to execute\n");
484 return ret;
485 }
486 }
487 /*
488 * Either (1) we were too late setting the slot 0 trap; the TSL
489 * sequencer restarted slot 0 before we could set the EOS trap flag,
490 * or (2) we were not late and execution is now trapped at slot 0.
491 * In either case, we must now change slot 0 so that it will store
492 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
493 * In order to do this, we reprogram slot 0 so that it will shift in
494 * SD3, which is driven only by a pull-up resistor.
495 */
496 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
497 dev->mmio + S626_VECTPORT(0));
498
499 /*
500 * Wait for slot 0 to execute, at which time the TSL is setup for
501 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
502 * from 0x00 to 0xFF.
503 */
504 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
505 s626_send_dac_wait_fb_buffer2_msb_ff);
506 if (ret) {
507 dev_err(dev->class_dev,
508 "TSL timeout waiting for slot 0 to execute\n");
509 return ret;
510 }
511 return 0;
512 }
513
514 /*
515 * Private helper function: Write setpoint to an application DAC channel.
516 */
s626_set_dac(struct comedi_device * dev,u16 chan,int16_t dacdata)517 static int s626_set_dac(struct comedi_device *dev,
518 u16 chan, int16_t dacdata)
519 {
520 struct s626_private *devpriv = dev->private;
521 u16 signmask;
522 u32 ws_image;
523 u32 val;
524
525 /*
526 * Adjust DAC data polarity and set up Polarity Control Register image.
527 */
528 signmask = 1 << chan;
529 if (dacdata < 0) {
530 dacdata = -dacdata;
531 devpriv->dacpol |= signmask;
532 } else {
533 devpriv->dacpol &= ~signmask;
534 }
535
536 /* Limit DAC setpoint value to valid range. */
537 if ((u16)dacdata > 0x1FFF)
538 dacdata = 0x1FFF;
539
540 /*
541 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
542 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
543 * data to a non-existent TrimDac channel just to keep the clock
544 * running after sending data to the target DAC. This is necessary
545 * to eliminate the clock glitch that would otherwise occur at the
546 * end of the target DAC's serial data stream. When the sequence
547 * restarts at V0 (after executing V5), the gate array automatically
548 * disables gating for the DAC clock and all DAC chip selects.
549 */
550
551 /* Choose DAC chip select to be asserted */
552 ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
553 /* Slot 2: Transmit high data byte to target DAC */
554 writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
555 dev->mmio + S626_VECTPORT(2));
556 /* Slot 3: Transmit low data byte to target DAC */
557 writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
558 dev->mmio + S626_VECTPORT(3));
559 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
560 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
561 dev->mmio + S626_VECTPORT(4));
562 /* Slot 5: running after writing target DAC's low data byte */
563 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
564 dev->mmio + S626_VECTPORT(5));
565
566 /*
567 * Construct and transmit target DAC's serial packet:
568 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
569 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
570 * to a non-existent TrimDac channel) that serves to keep the clock
571 * running after the packet has been sent to the target DAC.
572 */
573 val = 0x0F000000; /* Continue clock after target DAC data
574 * (write to non-existent trimdac).
575 */
576 val |= 0x00004000; /* Address the two main dual-DAC devices
577 * (TSL's chip select enables target device).
578 */
579 val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
580 * within the device.
581 */
582 val |= (u32)dacdata; /* Include DAC setpoint data. */
583 return s626_send_dac(dev, val);
584 }
585
s626_write_trim_dac(struct comedi_device * dev,u8 logical_chan,u8 dac_data)586 static int s626_write_trim_dac(struct comedi_device *dev,
587 u8 logical_chan, u8 dac_data)
588 {
589 struct s626_private *devpriv = dev->private;
590 u32 chan;
591
592 /*
593 * Save the new setpoint in case the application needs to read it back
594 * later.
595 */
596 devpriv->trim_setpoint[logical_chan] = dac_data;
597
598 /* Map logical channel number to physical channel number. */
599 chan = s626_trimchan[logical_chan];
600
601 /*
602 * Set up TSL2 records for TrimDac write operation. All slots shift
603 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
604 * can be detected.
605 */
606
607 /* Slot 2: Send high uint8_t to target TrimDac */
608 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
609 dev->mmio + S626_VECTPORT(2));
610 /* Slot 3: Send low uint8_t to target TrimDac */
611 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
612 dev->mmio + S626_VECTPORT(3));
613 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
614 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
615 dev->mmio + S626_VECTPORT(4));
616 /* Slot 5: Send NOP low uint8_t to DAC0 */
617 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
618 dev->mmio + S626_VECTPORT(5));
619
620 /*
621 * Construct and transmit target DAC's serial packet:
622 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
623 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
624 * WORD value (that writes a channel 0 NOP command to a non-existent
625 * main DAC channel) that serves to keep the clock running after the
626 * packet has been sent to the target DAC.
627 */
628
629 /*
630 * Address the DAC channel within the trimdac device.
631 * Include DAC setpoint data.
632 */
633 return s626_send_dac(dev, (chan << 8) | dac_data);
634 }
635
s626_load_trim_dacs(struct comedi_device * dev)636 static int s626_load_trim_dacs(struct comedi_device *dev)
637 {
638 u8 i;
639 int ret;
640
641 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
642 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
643 ret = s626_write_trim_dac(dev, i,
644 s626_i2c_read(dev, s626_trimadrs[i]));
645 if (ret)
646 return ret;
647 }
648 return 0;
649 }
650
651 /* ****** COUNTER FUNCTIONS ******* */
652
653 /*
654 * All counter functions address a specific counter by means of the
655 * "Counter" argument, which is a logical counter number. The Counter
656 * argument may have any of the following legal values: 0=0A, 1=1A,
657 * 2=2A, 3=0B, 4=1B, 5=2B.
658 */
659
660 /*
661 * Return/set a counter pair's latch trigger source. 0: On read
662 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
663 * latches B.
664 */
s626_set_latch_source(struct comedi_device * dev,unsigned int chan,u16 value)665 static void s626_set_latch_source(struct comedi_device *dev,
666 unsigned int chan, u16 value)
667 {
668 s626_debi_replace(dev, S626_LP_CRB(chan),
669 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
670 S626_SET_CRB_LATCHSRC(value));
671 }
672
673 /*
674 * Write value into counter preload register.
675 */
s626_preload(struct comedi_device * dev,unsigned int chan,u32 value)676 static void s626_preload(struct comedi_device *dev,
677 unsigned int chan, u32 value)
678 {
679 s626_debi_write(dev, S626_LP_CNTR(chan), value);
680 s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
681 }
682
683 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
684
685 /*
686 * Reset a counter's index and overflow event capture flags.
687 */
s626_reset_cap_flags(struct comedi_device * dev,unsigned int chan)688 static void s626_reset_cap_flags(struct comedi_device *dev,
689 unsigned int chan)
690 {
691 u16 set;
692
693 set = S626_SET_CRB_INTRESETCMD(1);
694 if (chan < 3)
695 set |= S626_SET_CRB_INTRESET_A(1);
696 else
697 set |= S626_SET_CRB_INTRESET_B(1);
698
699 s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
700 }
701
702 /*
703 * Set the operating mode for the specified counter. The setup
704 * parameter is treated as a COUNTER_SETUP data type. The following
705 * parameters are programmable (all other parms are ignored): ClkMult,
706 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
707 */
s626_set_mode_a(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)708 static void s626_set_mode_a(struct comedi_device *dev,
709 unsigned int chan, u16 setup,
710 u16 disable_int_src)
711 {
712 struct s626_private *devpriv = dev->private;
713 u16 cra;
714 u16 crb;
715 unsigned int cntsrc, clkmult, clkpol;
716
717 /* Initialize CRA and CRB images. */
718 /* Preload trigger is passed through. */
719 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
720 /* IndexSrc is passed through. */
721 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
722
723 /* Reset any pending CounterA event captures. */
724 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
725 /* Clock enable is passed through. */
726 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
727
728 /* Force IntSrc to Disabled if disable_int_src is asserted. */
729 if (!disable_int_src)
730 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
731
732 /* Populate all mode-dependent attributes of CRA & CRB images. */
733 clkpol = S626_GET_STD_CLKPOL(setup);
734 switch (S626_GET_STD_ENCMODE(setup)) {
735 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
736 /* Force to Timer mode (Extender valid only for B counters). */
737 /* Fall through to case S626_ENCMODE_TIMER: */
738 case S626_ENCMODE_TIMER: /* Timer Mode: */
739 /* CntSrcA<1> selects system clock */
740 cntsrc = S626_CNTSRC_SYSCLK;
741 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
742 cntsrc |= clkpol;
743 /* ClkPolA behaves as always-on clock enable. */
744 clkpol = 1;
745 /* ClkMult must be 1x. */
746 clkmult = S626_CLKMULT_1X;
747 break;
748 default: /* Counter Mode: */
749 /* Select ENC_C and ENC_D as clock/direction inputs. */
750 cntsrc = S626_CNTSRC_ENCODER;
751 /* Clock polarity is passed through. */
752 /* Force multiplier to x1 if not legal, else pass through. */
753 clkmult = S626_GET_STD_CLKMULT(setup);
754 if (clkmult == S626_CLKMULT_SPECIAL)
755 clkmult = S626_CLKMULT_1X;
756 break;
757 }
758 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
759 S626_SET_CRA_CLKMULT_A(clkmult);
760
761 /*
762 * Force positive index polarity if IndxSrc is software-driven only,
763 * otherwise pass it through.
764 */
765 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
766 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
767
768 /*
769 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
770 * enable mask to indicate the counter interrupt is disabled.
771 */
772 if (disable_int_src)
773 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
774 S626_INDXMASK(chan));
775
776 /*
777 * While retaining CounterB and LatchSrc configurations, program the
778 * new counter operating mode.
779 */
780 s626_debi_replace(dev, S626_LP_CRA(chan),
781 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
782 s626_debi_replace(dev, S626_LP_CRB(chan),
783 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
784 }
785
s626_set_mode_b(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)786 static void s626_set_mode_b(struct comedi_device *dev,
787 unsigned int chan, u16 setup,
788 u16 disable_int_src)
789 {
790 struct s626_private *devpriv = dev->private;
791 u16 cra;
792 u16 crb;
793 unsigned int cntsrc, clkmult, clkpol;
794
795 /* Initialize CRA and CRB images. */
796 /* IndexSrc is passed through. */
797 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
798
799 /* Reset event captures and disable interrupts. */
800 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
801 /* Clock enable is passed through. */
802 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
803 /* Preload trigger source is passed through. */
804 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
805
806 /* Force IntSrc to Disabled if disable_int_src is asserted. */
807 if (!disable_int_src)
808 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
809
810 /* Populate all mode-dependent attributes of CRA & CRB images. */
811 clkpol = S626_GET_STD_CLKPOL(setup);
812 switch (S626_GET_STD_ENCMODE(setup)) {
813 case S626_ENCMODE_TIMER: /* Timer Mode: */
814 /* CntSrcB<1> selects system clock */
815 cntsrc = S626_CNTSRC_SYSCLK;
816 /* with direction (CntSrcB<0>) obtained from ClkPol. */
817 cntsrc |= clkpol;
818 /* ClkPolB behaves as always-on clock enable. */
819 clkpol = 1;
820 /* ClkMultB must be 1x. */
821 clkmult = S626_CLKMULT_1X;
822 break;
823 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
824 /* CntSrcB source is OverflowA (same as "timer") */
825 cntsrc = S626_CNTSRC_SYSCLK;
826 /* with direction obtained from ClkPol. */
827 cntsrc |= clkpol;
828 /* ClkPolB controls IndexB -- always set to active. */
829 clkpol = 1;
830 /* ClkMultB selects OverflowA as the clock source. */
831 clkmult = S626_CLKMULT_SPECIAL;
832 break;
833 default: /* Counter Mode: */
834 /* Select ENC_C and ENC_D as clock/direction inputs. */
835 cntsrc = S626_CNTSRC_ENCODER;
836 /* ClkPol is passed through. */
837 /* Force ClkMult to x1 if not legal, otherwise pass through. */
838 clkmult = S626_GET_STD_CLKMULT(setup);
839 if (clkmult == S626_CLKMULT_SPECIAL)
840 clkmult = S626_CLKMULT_1X;
841 break;
842 }
843 cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
844 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
845
846 /*
847 * Force positive index polarity if IndxSrc is software-driven only,
848 * otherwise pass it through.
849 */
850 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
851 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
852
853 /*
854 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
855 * enable mask to indicate the counter interrupt is disabled.
856 */
857 if (disable_int_src)
858 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
859 S626_INDXMASK(chan));
860
861 /*
862 * While retaining CounterA and LatchSrc configurations, program the
863 * new counter operating mode.
864 */
865 s626_debi_replace(dev, S626_LP_CRA(chan),
866 ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
867 s626_debi_replace(dev, S626_LP_CRB(chan),
868 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
869 }
870
s626_set_mode(struct comedi_device * dev,unsigned int chan,u16 setup,u16 disable_int_src)871 static void s626_set_mode(struct comedi_device *dev,
872 unsigned int chan,
873 u16 setup, u16 disable_int_src)
874 {
875 if (chan < 3)
876 s626_set_mode_a(dev, chan, setup, disable_int_src);
877 else
878 s626_set_mode_b(dev, chan, setup, disable_int_src);
879 }
880
881 /*
882 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
883 */
s626_set_enable(struct comedi_device * dev,unsigned int chan,u16 enab)884 static void s626_set_enable(struct comedi_device *dev,
885 unsigned int chan, u16 enab)
886 {
887 unsigned int mask = S626_CRBMSK_INTCTRL;
888 unsigned int set;
889
890 if (chan < 3) {
891 mask |= S626_CRBMSK_CLKENAB_A;
892 set = S626_SET_CRB_CLKENAB_A(enab);
893 } else {
894 mask |= S626_CRBMSK_CLKENAB_B;
895 set = S626_SET_CRB_CLKENAB_B(enab);
896 }
897 s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
898 }
899
900 /*
901 * Return/set the event that will trigger transfer of the preload
902 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
903 * 2=OverflowA (B counters only), 3=disabled.
904 */
s626_set_load_trig(struct comedi_device * dev,unsigned int chan,u16 trig)905 static void s626_set_load_trig(struct comedi_device *dev,
906 unsigned int chan, u16 trig)
907 {
908 u16 reg;
909 u16 mask;
910 u16 set;
911
912 if (chan < 3) {
913 reg = S626_LP_CRA(chan);
914 mask = S626_CRAMSK_LOADSRC_A;
915 set = S626_SET_CRA_LOADSRC_A(trig);
916 } else {
917 reg = S626_LP_CRB(chan);
918 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
919 set = S626_SET_CRB_LOADSRC_B(trig);
920 }
921 s626_debi_replace(dev, reg, ~mask, set);
922 }
923
924 /*
925 * Return/set counter interrupt source and clear any captured
926 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
927 * 2=IndexOnly, 3=IndexAndOverflow.
928 */
s626_set_int_src(struct comedi_device * dev,unsigned int chan,u16 int_source)929 static void s626_set_int_src(struct comedi_device *dev,
930 unsigned int chan, u16 int_source)
931 {
932 struct s626_private *devpriv = dev->private;
933 u16 cra_reg = S626_LP_CRA(chan);
934 u16 crb_reg = S626_LP_CRB(chan);
935
936 if (chan < 3) {
937 /* Reset any pending counter overflow or index captures */
938 s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
939 S626_SET_CRB_INTRESETCMD(1) |
940 S626_SET_CRB_INTRESET_A(1));
941
942 /* Program counter interrupt source */
943 s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
944 S626_SET_CRA_INTSRC_A(int_source));
945 } else {
946 u16 crb;
947
948 /* Cache writeable CRB register image */
949 crb = s626_debi_read(dev, crb_reg);
950 crb &= ~S626_CRBMSK_INTCTRL;
951
952 /* Reset any pending counter overflow or index captures */
953 s626_debi_write(dev, crb_reg,
954 crb | S626_SET_CRB_INTRESETCMD(1) |
955 S626_SET_CRB_INTRESET_B(1));
956
957 /* Program counter interrupt source */
958 s626_debi_write(dev, crb_reg,
959 (crb & ~S626_CRBMSK_INTSRC_B) |
960 S626_SET_CRB_INTSRC_B(int_source));
961 }
962
963 /* Update MISC2 interrupt enable mask. */
964 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
965 S626_INDXMASK(chan));
966 switch (int_source) {
967 case 0:
968 default:
969 break;
970 case 1:
971 devpriv->counter_int_enabs |= S626_OVERMASK(chan);
972 break;
973 case 2:
974 devpriv->counter_int_enabs |= S626_INDXMASK(chan);
975 break;
976 case 3:
977 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
978 S626_INDXMASK(chan));
979 break;
980 }
981 }
982
983 /*
984 * Generate an index pulse.
985 */
s626_pulse_index(struct comedi_device * dev,unsigned int chan)986 static void s626_pulse_index(struct comedi_device *dev,
987 unsigned int chan)
988 {
989 if (chan < 3) {
990 u16 cra;
991
992 cra = s626_debi_read(dev, S626_LP_CRA(chan));
993
994 /* Pulse index */
995 s626_debi_write(dev, S626_LP_CRA(chan),
996 (cra ^ S626_CRAMSK_INDXPOL_A));
997 s626_debi_write(dev, S626_LP_CRA(chan), cra);
998 } else {
999 u16 crb;
1000
1001 crb = s626_debi_read(dev, S626_LP_CRB(chan));
1002 crb &= ~S626_CRBMSK_INTCTRL;
1003
1004 /* Pulse index */
1005 s626_debi_write(dev, S626_LP_CRB(chan),
1006 (crb ^ S626_CRBMSK_INDXPOL_B));
1007 s626_debi_write(dev, S626_LP_CRB(chan), crb);
1008 }
1009 }
1010
s626_ai_reg_to_uint(unsigned int data)1011 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1012 {
1013 return ((data >> 18) & 0x3fff) ^ 0x2000;
1014 }
1015
s626_dio_set_irq(struct comedi_device * dev,unsigned int chan)1016 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1017 {
1018 unsigned int group = chan / 16;
1019 unsigned int mask = 1 << (chan - (16 * group));
1020 unsigned int status;
1021
1022 /* set channel to capture positive edge */
1023 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1024 s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1025
1026 /* enable interrupt on selected channel */
1027 status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1028 s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1029
1030 /* enable edge capture write command */
1031 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1032
1033 /* enable edge capture on selected channel */
1034 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1035 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1036
1037 return 0;
1038 }
1039
s626_dio_reset_irq(struct comedi_device * dev,unsigned int group,unsigned int mask)1040 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1041 unsigned int mask)
1042 {
1043 /* disable edge capture write command */
1044 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1045
1046 /* enable edge capture on selected channel */
1047 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1048
1049 return 0;
1050 }
1051
s626_dio_clear_irq(struct comedi_device * dev)1052 static int s626_dio_clear_irq(struct comedi_device *dev)
1053 {
1054 unsigned int group;
1055
1056 /* disable edge capture write command */
1057 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1058
1059 /* clear all dio pending events and interrupt */
1060 for (group = 0; group < S626_DIO_BANKS; group++)
1061 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1062
1063 return 0;
1064 }
1065
s626_handle_dio_interrupt(struct comedi_device * dev,u16 irqbit,u8 group)1066 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1067 u16 irqbit, u8 group)
1068 {
1069 struct s626_private *devpriv = dev->private;
1070 struct comedi_subdevice *s = dev->read_subdev;
1071 struct comedi_cmd *cmd = &s->async->cmd;
1072
1073 s626_dio_reset_irq(dev, group, irqbit);
1074
1075 if (devpriv->ai_cmd_running) {
1076 /* check if interrupt is an ai acquisition start trigger */
1077 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1078 cmd->start_src == TRIG_EXT) {
1079 /* Start executing the RPS program */
1080 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1081
1082 if (cmd->scan_begin_src == TRIG_EXT)
1083 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1084 }
1085 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1086 cmd->scan_begin_src == TRIG_EXT) {
1087 /* Trigger ADC scan loop start */
1088 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1089
1090 if (cmd->convert_src == TRIG_EXT) {
1091 devpriv->ai_convert_count = cmd->chanlist_len;
1092
1093 s626_dio_set_irq(dev, cmd->convert_arg);
1094 }
1095
1096 if (cmd->convert_src == TRIG_TIMER) {
1097 devpriv->ai_convert_count = cmd->chanlist_len;
1098 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1099 }
1100 }
1101 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1102 cmd->convert_src == TRIG_EXT) {
1103 /* Trigger ADC scan loop start */
1104 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1105
1106 devpriv->ai_convert_count--;
1107 if (devpriv->ai_convert_count > 0)
1108 s626_dio_set_irq(dev, cmd->convert_arg);
1109 }
1110 }
1111 }
1112
s626_check_dio_interrupts(struct comedi_device * dev)1113 static void s626_check_dio_interrupts(struct comedi_device *dev)
1114 {
1115 u16 irqbit;
1116 u8 group;
1117
1118 for (group = 0; group < S626_DIO_BANKS; group++) {
1119 /* read interrupt type */
1120 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1121
1122 /* check if interrupt is generated from dio channels */
1123 if (irqbit) {
1124 s626_handle_dio_interrupt(dev, irqbit, group);
1125 return;
1126 }
1127 }
1128 }
1129
s626_check_counter_interrupts(struct comedi_device * dev)1130 static void s626_check_counter_interrupts(struct comedi_device *dev)
1131 {
1132 struct s626_private *devpriv = dev->private;
1133 struct comedi_subdevice *s = dev->read_subdev;
1134 struct comedi_async *async = s->async;
1135 struct comedi_cmd *cmd = &async->cmd;
1136 u16 irqbit;
1137
1138 /* read interrupt type */
1139 irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1140
1141 /* check interrupt on counters */
1142 if (irqbit & S626_IRQ_COINT1A) {
1143 /* clear interrupt capture flag */
1144 s626_reset_cap_flags(dev, 0);
1145 }
1146 if (irqbit & S626_IRQ_COINT2A) {
1147 /* clear interrupt capture flag */
1148 s626_reset_cap_flags(dev, 1);
1149 }
1150 if (irqbit & S626_IRQ_COINT3A) {
1151 /* clear interrupt capture flag */
1152 s626_reset_cap_flags(dev, 2);
1153 }
1154 if (irqbit & S626_IRQ_COINT1B) {
1155 /* clear interrupt capture flag */
1156 s626_reset_cap_flags(dev, 3);
1157 }
1158 if (irqbit & S626_IRQ_COINT2B) {
1159 /* clear interrupt capture flag */
1160 s626_reset_cap_flags(dev, 4);
1161
1162 if (devpriv->ai_convert_count > 0) {
1163 devpriv->ai_convert_count--;
1164 if (devpriv->ai_convert_count == 0)
1165 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1166
1167 if (cmd->convert_src == TRIG_TIMER) {
1168 /* Trigger ADC scan loop start */
1169 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1170 S626_P_MC2);
1171 }
1172 }
1173 }
1174 if (irqbit & S626_IRQ_COINT3B) {
1175 /* clear interrupt capture flag */
1176 s626_reset_cap_flags(dev, 5);
1177
1178 if (cmd->scan_begin_src == TRIG_TIMER) {
1179 /* Trigger ADC scan loop start */
1180 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1181 }
1182
1183 if (cmd->convert_src == TRIG_TIMER) {
1184 devpriv->ai_convert_count = cmd->chanlist_len;
1185 s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1186 }
1187 }
1188 }
1189
s626_handle_eos_interrupt(struct comedi_device * dev)1190 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1191 {
1192 struct s626_private *devpriv = dev->private;
1193 struct comedi_subdevice *s = dev->read_subdev;
1194 struct comedi_async *async = s->async;
1195 struct comedi_cmd *cmd = &async->cmd;
1196 /*
1197 * Init ptr to DMA buffer that holds new ADC data. We skip the
1198 * first uint16_t in the buffer because it contains junk data
1199 * from the final ADC of the previous poll list scan.
1200 */
1201 u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
1202 int i;
1203
1204 /* get the data and hand it over to comedi */
1205 for (i = 0; i < cmd->chanlist_len; i++) {
1206 unsigned short tempdata;
1207
1208 /*
1209 * Convert ADC data to 16-bit integer values and copy
1210 * to application buffer.
1211 */
1212 tempdata = s626_ai_reg_to_uint(*readaddr);
1213 readaddr++;
1214
1215 comedi_buf_write_samples(s, &tempdata, 1);
1216 }
1217
1218 if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1219 async->events |= COMEDI_CB_EOA;
1220
1221 if (async->events & COMEDI_CB_CANCEL_MASK)
1222 devpriv->ai_cmd_running = 0;
1223
1224 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1225 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1226
1227 comedi_handle_events(dev, s);
1228
1229 return !devpriv->ai_cmd_running;
1230 }
1231
s626_irq_handler(int irq,void * d)1232 static irqreturn_t s626_irq_handler(int irq, void *d)
1233 {
1234 struct comedi_device *dev = d;
1235 unsigned long flags;
1236 u32 irqtype, irqstatus;
1237
1238 if (!dev->attached)
1239 return IRQ_NONE;
1240 /* lock to avoid race with comedi_poll */
1241 spin_lock_irqsave(&dev->spinlock, flags);
1242
1243 /* save interrupt enable register state */
1244 irqstatus = readl(dev->mmio + S626_P_IER);
1245
1246 /* read interrupt type */
1247 irqtype = readl(dev->mmio + S626_P_ISR);
1248
1249 /* disable master interrupt */
1250 writel(0, dev->mmio + S626_P_IER);
1251
1252 /* clear interrupt */
1253 writel(irqtype, dev->mmio + S626_P_ISR);
1254
1255 switch (irqtype) {
1256 case S626_IRQ_RPS1: /* end_of_scan occurs */
1257 if (s626_handle_eos_interrupt(dev))
1258 irqstatus = 0;
1259 break;
1260 case S626_IRQ_GPIO3: /* check dio and counter interrupt */
1261 /* s626_dio_clear_irq(dev); */
1262 s626_check_dio_interrupts(dev);
1263 s626_check_counter_interrupts(dev);
1264 break;
1265 }
1266
1267 /* enable interrupt */
1268 writel(irqstatus, dev->mmio + S626_P_IER);
1269
1270 spin_unlock_irqrestore(&dev->spinlock, flags);
1271 return IRQ_HANDLED;
1272 }
1273
1274 /*
1275 * This function builds the RPS program for hardware driven acquisition.
1276 */
s626_reset_adc(struct comedi_device * dev,u8 * ppl)1277 static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
1278 {
1279 struct s626_private *devpriv = dev->private;
1280 struct comedi_subdevice *s = dev->read_subdev;
1281 struct comedi_cmd *cmd = &s->async->cmd;
1282 u32 *rps;
1283 u32 jmp_adrs;
1284 u16 i;
1285 u16 n;
1286 u32 local_ppl;
1287
1288 /* Stop RPS program in case it is currently running */
1289 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1290
1291 /* Set starting logical address to write RPS commands. */
1292 rps = (u32 *)devpriv->rps_buf.logical_base;
1293
1294 /* Initialize RPS instruction pointer */
1295 writel((u32)devpriv->rps_buf.physical_base,
1296 dev->mmio + S626_P_RPSADDR1);
1297
1298 /* Construct RPS program in rps_buf DMA buffer */
1299 if (cmd->scan_begin_src != TRIG_FOLLOW) {
1300 /* Wait for Start trigger. */
1301 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1302 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1303 }
1304
1305 /*
1306 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1307 * because the first RPS DEBI Write following a non-RPS DEBI write
1308 * seems to always fail. If we don't do this dummy write, the ADC
1309 * gain might not be set to the value required for the first slot in
1310 * the poll list; the ADC gain would instead remain unchanged from
1311 * the previously programmed value.
1312 */
1313 /* Write DEBI Write command and address to shadow RAM. */
1314 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1315 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1316 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1317 /* Write DEBI immediate data to shadow RAM: */
1318 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
1319 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1320 /* Reset "shadow RAM uploaded" flag. */
1321 /* Invoke shadow RAM upload. */
1322 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1323 /* Wait for shadow upload to finish. */
1324 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1325
1326 /*
1327 * Digitize all slots in the poll list. This is implemented as a
1328 * for loop to limit the slot count to 16 in case the application
1329 * forgot to set the S626_EOPL flag in the final slot.
1330 */
1331 for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1332 devpriv->adc_items++) {
1333 /*
1334 * Convert application's poll list item to private board class
1335 * format. Each app poll list item is an uint8_t with form
1336 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1337 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1338 */
1339 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1340 S626_GSEL_BIPOLAR10V);
1341
1342 /* Switch ADC analog gain. */
1343 /* Write DEBI command and address to shadow RAM. */
1344 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1345 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1346 /* Write DEBI immediate data to shadow RAM. */
1347 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1348 *rps++ = local_ppl;
1349 /* Reset "shadow RAM uploaded" flag. */
1350 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1351 /* Invoke shadow RAM upload. */
1352 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1353 /* Wait for shadow upload to finish. */
1354 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1355 /* Select ADC analog input channel. */
1356 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1357 /* Write DEBI command and address to shadow RAM. */
1358 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1359 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1360 /* Write DEBI immediate data to shadow RAM. */
1361 *rps++ = local_ppl;
1362 /* Reset "shadow RAM uploaded" flag. */
1363 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1364 /* Invoke shadow RAM upload. */
1365 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1366 /* Wait for shadow upload to finish. */
1367 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1368
1369 /*
1370 * Delay at least 10 microseconds for analog input settling.
1371 * Instead of padding with NOPs, we use S626_RPS_JUMP
1372 * instructions here; this allows us to produce a longer delay
1373 * than is possible with NOPs because each S626_RPS_JUMP
1374 * flushes the RPS' instruction prefetch pipeline.
1375 */
1376 jmp_adrs =
1377 (u32)devpriv->rps_buf.physical_base +
1378 (u32)((unsigned long)rps -
1379 (unsigned long)devpriv->rps_buf.logical_base);
1380 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1381 jmp_adrs += 8; /* Repeat to implement time delay: */
1382 /* Jump to next RPS instruction. */
1383 *rps++ = S626_RPS_JUMP;
1384 *rps++ = jmp_adrs;
1385 }
1386
1387 if (cmd->convert_src != TRIG_NOW) {
1388 /* Wait for Start trigger. */
1389 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1390 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1391 }
1392 /* Start ADC by pulsing GPIO1. */
1393 /* Begin ADC Start pulse. */
1394 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1395 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1396 *rps++ = S626_RPS_NOP;
1397 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1398 /* End ADC Start pulse. */
1399 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1400 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1401 /*
1402 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1403 * busy) and for data from previous conversion to shift into FB
1404 * BUFFER 1 register.
1405 */
1406 /* Wait for ADC done. */
1407 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1408
1409 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1410 *rps++ = S626_RPS_STREG |
1411 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1412 *rps++ = (u32)devpriv->ana_buf.physical_base +
1413 (devpriv->adc_items << 2);
1414
1415 /*
1416 * If this slot's EndOfPollList flag is set, all channels have
1417 * now been processed.
1418 */
1419 if (*ppl++ & S626_EOPL) {
1420 devpriv->adc_items++; /* Adjust poll list item count. */
1421 break; /* Exit poll list processing loop. */
1422 }
1423 }
1424
1425 /*
1426 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1427 * ADC to stabilize for 2 microseconds before starting the final
1428 * (dummy) conversion. This delay is necessary to allow sufficient
1429 * time between last conversion finished and the start of the dummy
1430 * conversion. Without this delay, the last conversion's data value
1431 * is sometimes set to the previous conversion's data value.
1432 */
1433 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1434 *rps++ = S626_RPS_NOP;
1435
1436 /*
1437 * Start a dummy conversion to cause the data from the last
1438 * conversion of interest to be shifted in.
1439 */
1440 /* Begin ADC Start pulse. */
1441 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1442 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1443 *rps++ = S626_RPS_NOP;
1444 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1445 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1446 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1447
1448 /*
1449 * Wait for the data from the last conversion of interest to arrive
1450 * in FB BUFFER 1 register.
1451 */
1452 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
1453
1454 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1455 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1456 *rps++ = (u32)devpriv->ana_buf.physical_base +
1457 (devpriv->adc_items << 2);
1458
1459 /* Indicate ADC scan loop is finished. */
1460 /* Signal ReadADC() that scan is done. */
1461 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1462
1463 /* invoke interrupt */
1464 if (devpriv->ai_cmd_running == 1)
1465 *rps++ = S626_RPS_IRQ;
1466
1467 /* Restart RPS program at its beginning. */
1468 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
1469 *rps++ = (u32)devpriv->rps_buf.physical_base;
1470
1471 /* End of RPS program build */
1472 }
1473
s626_ai_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)1474 static int s626_ai_eoc(struct comedi_device *dev,
1475 struct comedi_subdevice *s,
1476 struct comedi_insn *insn,
1477 unsigned long context)
1478 {
1479 unsigned int status;
1480
1481 status = readl(dev->mmio + S626_P_PSR);
1482 if (status & S626_PSR_GPIO2)
1483 return 0;
1484 return -EBUSY;
1485 }
1486
s626_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1487 static int s626_ai_insn_read(struct comedi_device *dev,
1488 struct comedi_subdevice *s,
1489 struct comedi_insn *insn,
1490 unsigned int *data)
1491 {
1492 u16 chan = CR_CHAN(insn->chanspec);
1493 u16 range = CR_RANGE(insn->chanspec);
1494 u16 adc_spec = 0;
1495 u32 gpio_image;
1496 u32 tmp;
1497 int ret;
1498 int n;
1499
1500 /*
1501 * Convert application's ADC specification into form
1502 * appropriate for register programming.
1503 */
1504 if (range == 0)
1505 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1506 else
1507 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1508
1509 /* Switch ADC analog gain. */
1510 s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
1511
1512 /* Select ADC analog input channel. */
1513 s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
1514
1515 for (n = 0; n < insn->n; n++) {
1516 /* Delay 10 microseconds for analog input settling. */
1517 usleep_range(10, 20);
1518
1519 /* Start ADC by pulsing GPIO1 low */
1520 gpio_image = readl(dev->mmio + S626_P_GPIO);
1521 /* Assert ADC Start command */
1522 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1523 /* and stretch it out */
1524 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1525 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1526 /* Negate ADC Start command */
1527 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1528
1529 /*
1530 * Wait for ADC to complete (GPIO2 is asserted high when
1531 * ADC not busy) and for data from previous conversion to
1532 * shift into FB BUFFER 1 register.
1533 */
1534
1535 /* Wait for ADC done */
1536 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1537 if (ret)
1538 return ret;
1539
1540 /* Fetch ADC data */
1541 if (n != 0) {
1542 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1543 data[n - 1] = s626_ai_reg_to_uint(tmp);
1544 }
1545
1546 /*
1547 * Allow the ADC to stabilize for 4 microseconds before
1548 * starting the next (final) conversion. This delay is
1549 * necessary to allow sufficient time between last
1550 * conversion finished and the start of the next
1551 * conversion. Without this delay, the last conversion's
1552 * data value is sometimes set to the previous
1553 * conversion's data value.
1554 */
1555 udelay(4);
1556 }
1557
1558 /*
1559 * Start a dummy conversion to cause the data from the
1560 * previous conversion to be shifted in.
1561 */
1562 gpio_image = readl(dev->mmio + S626_P_GPIO);
1563 /* Assert ADC Start command */
1564 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1565 /* and stretch it out */
1566 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1567 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1568 /* Negate ADC Start command */
1569 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1570
1571 /* Wait for the data to arrive in FB BUFFER 1 register. */
1572
1573 /* Wait for ADC done */
1574 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1575 if (ret)
1576 return ret;
1577
1578 /* Fetch ADC data from audio interface's input shift register. */
1579
1580 /* Fetch ADC data */
1581 if (n != 0) {
1582 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1583 data[n - 1] = s626_ai_reg_to_uint(tmp);
1584 }
1585
1586 return n;
1587 }
1588
s626_ai_load_polllist(u8 * ppl,struct comedi_cmd * cmd)1589 static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
1590 {
1591 int n;
1592
1593 for (n = 0; n < cmd->chanlist_len; n++) {
1594 if (CR_RANGE(cmd->chanlist[n]) == 0)
1595 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1596 else
1597 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1598 }
1599 if (n != 0)
1600 ppl[n - 1] |= S626_EOPL;
1601
1602 return n;
1603 }
1604
s626_ai_inttrig(struct comedi_device * dev,struct comedi_subdevice * s,unsigned int trig_num)1605 static int s626_ai_inttrig(struct comedi_device *dev,
1606 struct comedi_subdevice *s,
1607 unsigned int trig_num)
1608 {
1609 struct comedi_cmd *cmd = &s->async->cmd;
1610
1611 if (trig_num != cmd->start_arg)
1612 return -EINVAL;
1613
1614 /* Start executing the RPS program */
1615 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1616
1617 s->async->inttrig = NULL;
1618
1619 return 1;
1620 }
1621
1622 /*
1623 * This function doesn't require a particular form, this is just what
1624 * happens to be used in some of the drivers. It should convert ns
1625 * nanoseconds to a counter value suitable for programming the device.
1626 * Also, it should adjust ns so that it cooresponds to the actual time
1627 * that the device will use.
1628 */
s626_ns_to_timer(unsigned int * nanosec,unsigned int flags)1629 static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1630 {
1631 int divider, base;
1632
1633 base = 500; /* 2MHz internal clock */
1634
1635 switch (flags & CMDF_ROUND_MASK) {
1636 case CMDF_ROUND_NEAREST:
1637 default:
1638 divider = DIV_ROUND_CLOSEST(*nanosec, base);
1639 break;
1640 case CMDF_ROUND_DOWN:
1641 divider = (*nanosec) / base;
1642 break;
1643 case CMDF_ROUND_UP:
1644 divider = DIV_ROUND_UP(*nanosec, base);
1645 break;
1646 }
1647
1648 *nanosec = base * divider;
1649 return divider - 1;
1650 }
1651
s626_timer_load(struct comedi_device * dev,unsigned int chan,int tick)1652 static void s626_timer_load(struct comedi_device *dev,
1653 unsigned int chan, int tick)
1654 {
1655 u16 setup =
1656 /* Preload upon index. */
1657 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1658 /* Disable hardware index. */
1659 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1660 /* Operating mode is Timer. */
1661 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1662 /* Count direction is Down. */
1663 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1664 /* Clock multiplier is 1x. */
1665 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1666 /* Enabled by index */
1667 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1668 u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
1669 /* uint16_t enab = S626_CLKENAB_ALWAYS; */
1670
1671 s626_set_mode(dev, chan, setup, false);
1672
1673 /* Set the preload register */
1674 s626_preload(dev, chan, tick);
1675
1676 /*
1677 * Software index pulse forces the preload register to load
1678 * into the counter
1679 */
1680 s626_set_load_trig(dev, chan, 0);
1681 s626_pulse_index(dev, chan);
1682
1683 /* set reload on counter overflow */
1684 s626_set_load_trig(dev, chan, 1);
1685
1686 /* set interrupt on overflow */
1687 s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1688
1689 s626_set_latch_source(dev, chan, value_latchsrc);
1690 /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1691 }
1692
1693 /* TO COMPLETE */
s626_ai_cmd(struct comedi_device * dev,struct comedi_subdevice * s)1694 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1695 {
1696 struct s626_private *devpriv = dev->private;
1697 u8 ppl[16];
1698 struct comedi_cmd *cmd = &s->async->cmd;
1699 int tick;
1700
1701 if (devpriv->ai_cmd_running) {
1702 dev_err(dev->class_dev,
1703 "%s: Another ai_cmd is running\n", __func__);
1704 return -EBUSY;
1705 }
1706 /* disable interrupt */
1707 writel(0, dev->mmio + S626_P_IER);
1708
1709 /* clear interrupt request */
1710 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
1711
1712 /* clear any pending interrupt */
1713 s626_dio_clear_irq(dev);
1714 /* s626_enc_clear_irq(dev); */
1715
1716 /* reset ai_cmd_running flag */
1717 devpriv->ai_cmd_running = 0;
1718
1719 s626_ai_load_polllist(ppl, cmd);
1720 devpriv->ai_cmd_running = 1;
1721 devpriv->ai_convert_count = 0;
1722
1723 switch (cmd->scan_begin_src) {
1724 case TRIG_FOLLOW:
1725 break;
1726 case TRIG_TIMER:
1727 /*
1728 * set a counter to generate adc trigger at scan_begin_arg
1729 * interval
1730 */
1731 tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
1732
1733 /* load timer value and enable interrupt */
1734 s626_timer_load(dev, 5, tick);
1735 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1736 break;
1737 case TRIG_EXT:
1738 /* set the digital line and interrupt for scan trigger */
1739 if (cmd->start_src != TRIG_EXT)
1740 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1741 break;
1742 }
1743
1744 switch (cmd->convert_src) {
1745 case TRIG_NOW:
1746 break;
1747 case TRIG_TIMER:
1748 /*
1749 * set a counter to generate adc trigger at convert_arg
1750 * interval
1751 */
1752 tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
1753
1754 /* load timer value and enable interrupt */
1755 s626_timer_load(dev, 4, tick);
1756 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1757 break;
1758 case TRIG_EXT:
1759 /* set the digital line and interrupt for convert trigger */
1760 if (cmd->scan_begin_src != TRIG_EXT &&
1761 cmd->start_src == TRIG_EXT)
1762 s626_dio_set_irq(dev, cmd->convert_arg);
1763 break;
1764 }
1765
1766 s626_reset_adc(dev, ppl);
1767
1768 switch (cmd->start_src) {
1769 case TRIG_NOW:
1770 /* Trigger ADC scan loop start */
1771 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1772
1773 /* Start executing the RPS program */
1774 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1775 s->async->inttrig = NULL;
1776 break;
1777 case TRIG_EXT:
1778 /* configure DIO channel for acquisition trigger */
1779 s626_dio_set_irq(dev, cmd->start_arg);
1780 s->async->inttrig = NULL;
1781 break;
1782 case TRIG_INT:
1783 s->async->inttrig = s626_ai_inttrig;
1784 break;
1785 }
1786
1787 /* enable interrupt */
1788 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
1789
1790 return 0;
1791 }
1792
s626_ai_cmdtest(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_cmd * cmd)1793 static int s626_ai_cmdtest(struct comedi_device *dev,
1794 struct comedi_subdevice *s, struct comedi_cmd *cmd)
1795 {
1796 int err = 0;
1797 unsigned int arg;
1798
1799 /* Step 1 : check if triggers are trivially valid */
1800
1801 err |= comedi_check_trigger_src(&cmd->start_src,
1802 TRIG_NOW | TRIG_INT | TRIG_EXT);
1803 err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1804 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1805 err |= comedi_check_trigger_src(&cmd->convert_src,
1806 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1807 err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1808 err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1809
1810 if (err)
1811 return 1;
1812
1813 /* Step 2a : make sure trigger sources are unique */
1814
1815 err |= comedi_check_trigger_is_unique(cmd->start_src);
1816 err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1817 err |= comedi_check_trigger_is_unique(cmd->convert_src);
1818 err |= comedi_check_trigger_is_unique(cmd->stop_src);
1819
1820 /* Step 2b : and mutually compatible */
1821
1822 if (err)
1823 return 2;
1824
1825 /* Step 3: check if arguments are trivially valid */
1826
1827 switch (cmd->start_src) {
1828 case TRIG_NOW:
1829 case TRIG_INT:
1830 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
1831 break;
1832 case TRIG_EXT:
1833 err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
1834 break;
1835 }
1836
1837 if (cmd->scan_begin_src == TRIG_EXT)
1838 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1839 if (cmd->convert_src == TRIG_EXT)
1840 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
1841
1842 #define S626_MAX_SPEED 200000 /* in nanoseconds */
1843 #define S626_MIN_SPEED 2000000000 /* in nanoseconds */
1844
1845 if (cmd->scan_begin_src == TRIG_TIMER) {
1846 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1847 S626_MAX_SPEED);
1848 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1849 S626_MIN_SPEED);
1850 } else {
1851 /*
1852 * external trigger
1853 * should be level/edge, hi/lo specification here
1854 * should specify multiple external triggers
1855 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1856 */
1857 }
1858 if (cmd->convert_src == TRIG_TIMER) {
1859 err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1860 S626_MAX_SPEED);
1861 err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1862 S626_MIN_SPEED);
1863 } else {
1864 /*
1865 * external trigger - see above
1866 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1867 */
1868 }
1869
1870 err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1871 cmd->chanlist_len);
1872
1873 if (cmd->stop_src == TRIG_COUNT)
1874 err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
1875 else /* TRIG_NONE */
1876 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
1877
1878 if (err)
1879 return 3;
1880
1881 /* step 4: fix up any arguments */
1882
1883 if (cmd->scan_begin_src == TRIG_TIMER) {
1884 arg = cmd->scan_begin_arg;
1885 s626_ns_to_timer(&arg, cmd->flags);
1886 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
1887 }
1888
1889 if (cmd->convert_src == TRIG_TIMER) {
1890 arg = cmd->convert_arg;
1891 s626_ns_to_timer(&arg, cmd->flags);
1892 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
1893
1894 if (cmd->scan_begin_src == TRIG_TIMER) {
1895 arg = cmd->convert_arg * cmd->scan_end_arg;
1896 err |= comedi_check_trigger_arg_min(
1897 &cmd->scan_begin_arg,
1898 arg);
1899 }
1900 }
1901
1902 if (err)
1903 return 4;
1904
1905 return 0;
1906 }
1907
s626_ai_cancel(struct comedi_device * dev,struct comedi_subdevice * s)1908 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1909 {
1910 struct s626_private *devpriv = dev->private;
1911
1912 /* Stop RPS program in case it is currently running */
1913 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1914
1915 /* disable master interrupt */
1916 writel(0, dev->mmio + S626_P_IER);
1917
1918 devpriv->ai_cmd_running = 0;
1919
1920 return 0;
1921 }
1922
s626_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1923 static int s626_ao_insn_write(struct comedi_device *dev,
1924 struct comedi_subdevice *s,
1925 struct comedi_insn *insn,
1926 unsigned int *data)
1927 {
1928 unsigned int chan = CR_CHAN(insn->chanspec);
1929 int i;
1930
1931 for (i = 0; i < insn->n; i++) {
1932 s16 dacdata = (s16)data[i];
1933 int ret;
1934
1935 dacdata -= (0x1fff);
1936
1937 ret = s626_set_dac(dev, chan, dacdata);
1938 if (ret)
1939 return ret;
1940
1941 s->readback[chan] = data[i];
1942 }
1943
1944 return insn->n;
1945 }
1946
1947 /* *************** DIGITAL I/O FUNCTIONS *************** */
1948
1949 /*
1950 * All DIO functions address a group of DIO channels by means of
1951 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
1952 * ports A, B and C, respectively.
1953 */
1954
s626_dio_init(struct comedi_device * dev)1955 static void s626_dio_init(struct comedi_device *dev)
1956 {
1957 u16 group;
1958
1959 /* Prepare to treat writes to WRCapSel as capture disables. */
1960 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1961
1962 /* For each group of sixteen channels ... */
1963 for (group = 0; group < S626_DIO_BANKS; group++) {
1964 /* Disable all interrupts */
1965 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
1966 /* Disable all event captures */
1967 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1968 /* Init all DIOs to default edge polarity */
1969 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
1970 /* Program all outputs to inactive state */
1971 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
1972 }
1973 }
1974
s626_dio_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1975 static int s626_dio_insn_bits(struct comedi_device *dev,
1976 struct comedi_subdevice *s,
1977 struct comedi_insn *insn,
1978 unsigned int *data)
1979 {
1980 unsigned long group = (unsigned long)s->private;
1981
1982 if (comedi_dio_update_state(s, data))
1983 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
1984
1985 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1986
1987 return insn->n;
1988 }
1989
s626_dio_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1990 static int s626_dio_insn_config(struct comedi_device *dev,
1991 struct comedi_subdevice *s,
1992 struct comedi_insn *insn,
1993 unsigned int *data)
1994 {
1995 unsigned long group = (unsigned long)s->private;
1996 int ret;
1997
1998 ret = comedi_dio_insn_config(dev, s, insn, data, 0);
1999 if (ret)
2000 return ret;
2001
2002 s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2003
2004 return insn->n;
2005 }
2006
2007 /*
2008 * Now this function initializes the value of the counter (data[0])
2009 * and set the subdevice. To complete with trigger and interrupt
2010 * configuration.
2011 *
2012 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2013 * what is being configured, but this function appears to be using data[0]
2014 * as a variable.
2015 */
s626_enc_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2016 static int s626_enc_insn_config(struct comedi_device *dev,
2017 struct comedi_subdevice *s,
2018 struct comedi_insn *insn, unsigned int *data)
2019 {
2020 unsigned int chan = CR_CHAN(insn->chanspec);
2021 u16 setup =
2022 /* Preload upon index. */
2023 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2024 /* Disable hardware index. */
2025 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2026 /* Operating mode is Counter. */
2027 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2028 /* Active high clock. */
2029 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2030 /* Clock multiplier is 1x. */
2031 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2032 /* Enabled by index */
2033 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2034 /* uint16_t disable_int_src = true; */
2035 /* uint32_t Preloadvalue; //Counter initial value */
2036 u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2037 u16 enab = S626_CLKENAB_ALWAYS;
2038
2039 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2040
2041 s626_set_mode(dev, chan, setup, true);
2042 s626_preload(dev, chan, data[0]);
2043 s626_pulse_index(dev, chan);
2044 s626_set_latch_source(dev, chan, value_latchsrc);
2045 s626_set_enable(dev, chan, (enab != 0));
2046
2047 return insn->n;
2048 }
2049
s626_enc_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2050 static int s626_enc_insn_read(struct comedi_device *dev,
2051 struct comedi_subdevice *s,
2052 struct comedi_insn *insn,
2053 unsigned int *data)
2054 {
2055 unsigned int chan = CR_CHAN(insn->chanspec);
2056 u16 cntr_latch_reg = S626_LP_CNTR(chan);
2057 int i;
2058
2059 for (i = 0; i < insn->n; i++) {
2060 unsigned int val;
2061
2062 /*
2063 * Read the counter's output latch LSW/MSW.
2064 * Latches on LSW read.
2065 */
2066 val = s626_debi_read(dev, cntr_latch_reg);
2067 val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2068 data[i] = val;
2069 }
2070
2071 return insn->n;
2072 }
2073
s626_enc_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2074 static int s626_enc_insn_write(struct comedi_device *dev,
2075 struct comedi_subdevice *s,
2076 struct comedi_insn *insn, unsigned int *data)
2077 {
2078 unsigned int chan = CR_CHAN(insn->chanspec);
2079
2080 /* Set the preload register */
2081 s626_preload(dev, chan, data[0]);
2082
2083 /*
2084 * Software index pulse forces the preload register to load
2085 * into the counter
2086 */
2087 s626_set_load_trig(dev, chan, 0);
2088 s626_pulse_index(dev, chan);
2089 s626_set_load_trig(dev, chan, 2);
2090
2091 return 1;
2092 }
2093
s626_write_misc2(struct comedi_device * dev,u16 new_image)2094 static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
2095 {
2096 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2097 s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2098 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2099 }
2100
s626_counters_init(struct comedi_device * dev)2101 static void s626_counters_init(struct comedi_device *dev)
2102 {
2103 int chan;
2104 u16 setup =
2105 /* Preload upon index. */
2106 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2107 /* Disable hardware index. */
2108 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2109 /* Operating mode is counter. */
2110 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2111 /* Active high clock. */
2112 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2113 /* Clock multiplier is 1x. */
2114 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2115 /* Enabled by index */
2116 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2117
2118 /*
2119 * Disable all counter interrupts and clear any captured counter events.
2120 */
2121 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2122 s626_set_mode(dev, chan, setup, true);
2123 s626_set_int_src(dev, chan, 0);
2124 s626_reset_cap_flags(dev, chan);
2125 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2126 }
2127 }
2128
s626_allocate_dma_buffers(struct comedi_device * dev)2129 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2130 {
2131 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2132 struct s626_private *devpriv = dev->private;
2133 void *addr;
2134 dma_addr_t appdma;
2135
2136 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2137 if (!addr)
2138 return -ENOMEM;
2139 devpriv->ana_buf.logical_base = addr;
2140 devpriv->ana_buf.physical_base = appdma;
2141
2142 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2143 if (!addr)
2144 return -ENOMEM;
2145 devpriv->rps_buf.logical_base = addr;
2146 devpriv->rps_buf.physical_base = appdma;
2147
2148 return 0;
2149 }
2150
s626_free_dma_buffers(struct comedi_device * dev)2151 static void s626_free_dma_buffers(struct comedi_device *dev)
2152 {
2153 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2154 struct s626_private *devpriv = dev->private;
2155
2156 if (!devpriv)
2157 return;
2158
2159 if (devpriv->rps_buf.logical_base)
2160 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2161 devpriv->rps_buf.logical_base,
2162 devpriv->rps_buf.physical_base);
2163 if (devpriv->ana_buf.logical_base)
2164 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2165 devpriv->ana_buf.logical_base,
2166 devpriv->ana_buf.physical_base);
2167 }
2168
s626_initialize(struct comedi_device * dev)2169 static int s626_initialize(struct comedi_device *dev)
2170 {
2171 struct s626_private *devpriv = dev->private;
2172 dma_addr_t phys_buf;
2173 u16 chan;
2174 int i;
2175 int ret;
2176
2177 /* Enable DEBI and audio pins, enable I2C interface */
2178 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2179 S626_P_MC1);
2180
2181 /*
2182 * Configure DEBI operating mode
2183 *
2184 * Local bus is 16 bits wide
2185 * Declare DEBI transfer timeout interval
2186 * Set up byte lane steering
2187 * Intel-compatible local bus (DEBI never times out)
2188 */
2189 writel(S626_DEBI_CFG_SLAVE16 |
2190 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2191 S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2192
2193 /* Disable MMU paging */
2194 writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2195
2196 /* Init GPIO so that ADC Start* is negated */
2197 writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2198
2199 /* I2C device address for onboard eeprom (revb) */
2200 devpriv->i2c_adrs = 0xA0;
2201
2202 /*
2203 * Issue an I2C ABORT command to halt any I2C
2204 * operation in progress and reset BUSY flag.
2205 */
2206 writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2207 dev->mmio + S626_P_I2CSTAT);
2208 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2209 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2210 if (ret)
2211 return ret;
2212
2213 /*
2214 * Per SAA7146 data sheet, write to STATUS
2215 * reg twice to reset all I2C error flags.
2216 */
2217 for (i = 0; i < 2; i++) {
2218 writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2219 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2220 ret = comedi_timeout(dev, NULL,
2221 NULL, s626_i2c_handshake_eoc, 0);
2222 if (ret)
2223 return ret;
2224 }
2225
2226 /*
2227 * Init audio interface functional attributes: set DAC/ADC
2228 * serial clock rates, invert DAC serial clock so that
2229 * DAC data setup times are satisfied, enable DAC serial
2230 * clock out.
2231 */
2232 writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2233
2234 /*
2235 * Set up TSL1 slot list, which is used to control the
2236 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2237 * S626_SIB_A1 = store data uint8_t at next available location
2238 * in FB BUFFER1 register.
2239 */
2240 writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2241 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2242 dev->mmio + S626_P_TSL1 + 4);
2243
2244 /* Enable TSL1 slot list so that it executes all the time */
2245 writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2246
2247 /*
2248 * Initialize RPS registers used for ADC
2249 */
2250
2251 /* Physical start of RPS program */
2252 writel((u32)devpriv->rps_buf.physical_base,
2253 dev->mmio + S626_P_RPSADDR1);
2254 /* RPS program performs no explicit mem writes */
2255 writel(0, dev->mmio + S626_P_RPSPAGE1);
2256 /* Disable RPS timeouts */
2257 writel(0, dev->mmio + S626_P_RPS1_TOUT);
2258
2259 #if 0
2260 /*
2261 * SAA7146 BUG WORKAROUND
2262 *
2263 * Initialize SAA7146 ADC interface to a known state by
2264 * invoking ADCs until FB BUFFER 1 register shows that it
2265 * is correctly receiving ADC data. This is necessary
2266 * because the SAA7146 ADC interface does not start up in
2267 * a defined state after a PCI reset.
2268 */
2269 {
2270 struct comedi_subdevice *s = dev->read_subdev;
2271 u8 poll_list;
2272 u16 adc_data;
2273 u16 start_val;
2274 u16 index;
2275 unsigned int data[16];
2276
2277 /* Create a simple polling list for analog input channel 0 */
2278 poll_list = S626_EOPL;
2279 s626_reset_adc(dev, &poll_list);
2280
2281 /* Get initial ADC value */
2282 s626_ai_rinsn(dev, s, NULL, data);
2283 start_val = data[0];
2284
2285 /*
2286 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2287 * EXECUTION.
2288 *
2289 * Invoke ADCs until the new ADC value differs from the initial
2290 * value or a timeout occurs. The timeout protects against the
2291 * possibility that the driver is restarting and the ADC data is
2292 * a fixed value resulting from the applied ADC analog input
2293 * being unusually quiet or at the rail.
2294 */
2295 for (index = 0; index < 500; index++) {
2296 s626_ai_rinsn(dev, s, NULL, data);
2297 adc_data = data[0];
2298 if (adc_data != start_val)
2299 break;
2300 }
2301 }
2302 #endif /* SAA7146 BUG WORKAROUND */
2303
2304 /*
2305 * Initialize the DAC interface
2306 */
2307
2308 /*
2309 * Init Audio2's output DMAC attributes:
2310 * burst length = 1 DWORD
2311 * threshold = 1 DWORD.
2312 */
2313 writel(0, dev->mmio + S626_P_PCI_BT_A);
2314
2315 /*
2316 * Init Audio2's output DMA physical addresses. The protection
2317 * address is set to 1 DWORD past the base address so that a
2318 * single DWORD will be transferred each time a DMA transfer is
2319 * enabled.
2320 */
2321 phys_buf = devpriv->ana_buf.physical_base +
2322 (S626_DAC_WDMABUF_OS * sizeof(u32));
2323 writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2324 writel((u32)(phys_buf + sizeof(u32)),
2325 dev->mmio + S626_P_PROTA2_OUT);
2326
2327 /*
2328 * Cache Audio2's output DMA buffer logical address. This is
2329 * where DAC data is buffered for A2 output DMA transfers.
2330 */
2331 devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
2332 S626_DAC_WDMABUF_OS;
2333
2334 /*
2335 * Audio2's output channels does not use paging. The
2336 * protection violation handling bit is set so that the
2337 * DMAC will automatically halt and its PCI address pointer
2338 * will be reset when the protection address is reached.
2339 */
2340 writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2341
2342 /*
2343 * Initialize time slot list 2 (TSL2), which is used to control
2344 * the clock generation for and serialization of data to be sent
2345 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2346 * execution; this permits other slots to be safely modified
2347 * without first turning off the TSL sequencer (which is
2348 * apparently impossible to do). Also, SD3 (which is driven by a
2349 * pull-up resistor) is shifted in and stored to the MSB of
2350 * FB_BUFFER2 to be used as evidence that the slot sequence has
2351 * not yet finished executing.
2352 */
2353
2354 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2355 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2356 dev->mmio + S626_VECTPORT(0));
2357
2358 /*
2359 * Initialize slot 1, which is constant. Slot 1 causes a
2360 * DWORD to be transferred from audio channel 2's output FIFO
2361 * to the FIFO's output buffer so that it can be serialized
2362 * and sent to the DAC during subsequent slots. All remaining
2363 * slots are dynamically populated as required by the target
2364 * DAC device.
2365 */
2366
2367 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2368 writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2369
2370 /* Start DAC's audio interface (TSL2) running */
2371 writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2372
2373 /*
2374 * Init Trim DACs to calibrated values. Do it twice because the
2375 * SAA7146 audio channel does not always reset properly and
2376 * sometimes causes the first few TrimDAC writes to malfunction.
2377 */
2378 s626_load_trim_dacs(dev);
2379 ret = s626_load_trim_dacs(dev);
2380 if (ret)
2381 return ret;
2382
2383 /*
2384 * Manually init all gate array hardware in case this is a soft
2385 * reset (we have no way of determining whether this is a warm
2386 * or cold start). This is necessary because the gate array will
2387 * reset only in response to a PCI hard reset; there is no soft
2388 * reset function.
2389 */
2390
2391 /*
2392 * Init all DAC outputs to 0V and init all DAC setpoint and
2393 * polarity images.
2394 */
2395 for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2396 ret = s626_set_dac(dev, chan, 0);
2397 if (ret)
2398 return ret;
2399 }
2400
2401 /* Init counters */
2402 s626_counters_init(dev);
2403
2404 /*
2405 * Without modifying the state of the Battery Backup enab, disable
2406 * the watchdog timer, set DIO channels 0-5 to operate in the
2407 * standard DIO (vs. counter overflow) mode, disable the battery
2408 * charger, and reset the watchdog interval selector to zero.
2409 */
2410 s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2411 S626_MISC2_BATT_ENABLE));
2412
2413 /* Initialize the digital I/O subsystem */
2414 s626_dio_init(dev);
2415
2416 return 0;
2417 }
2418
s626_auto_attach(struct comedi_device * dev,unsigned long context_unused)2419 static int s626_auto_attach(struct comedi_device *dev,
2420 unsigned long context_unused)
2421 {
2422 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2423 struct s626_private *devpriv;
2424 struct comedi_subdevice *s;
2425 int ret;
2426
2427 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2428 if (!devpriv)
2429 return -ENOMEM;
2430
2431 ret = comedi_pci_enable(dev);
2432 if (ret)
2433 return ret;
2434
2435 dev->mmio = pci_ioremap_bar(pcidev, 0);
2436 if (!dev->mmio)
2437 return -ENOMEM;
2438
2439 /* disable master interrupt */
2440 writel(0, dev->mmio + S626_P_IER);
2441
2442 /* soft reset */
2443 writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2444
2445 /* DMA FIXME DMA// */
2446
2447 ret = s626_allocate_dma_buffers(dev);
2448 if (ret)
2449 return ret;
2450
2451 if (pcidev->irq) {
2452 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2453 dev->board_name, dev);
2454
2455 if (ret == 0)
2456 dev->irq = pcidev->irq;
2457 }
2458
2459 ret = comedi_alloc_subdevices(dev, 6);
2460 if (ret)
2461 return ret;
2462
2463 s = &dev->subdevices[0];
2464 /* analog input subdevice */
2465 s->type = COMEDI_SUBD_AI;
2466 s->subdev_flags = SDF_READABLE | SDF_DIFF;
2467 s->n_chan = S626_ADC_CHANNELS;
2468 s->maxdata = 0x3fff;
2469 s->range_table = &s626_range_table;
2470 s->len_chanlist = S626_ADC_CHANNELS;
2471 s->insn_read = s626_ai_insn_read;
2472 if (dev->irq) {
2473 dev->read_subdev = s;
2474 s->subdev_flags |= SDF_CMD_READ;
2475 s->do_cmd = s626_ai_cmd;
2476 s->do_cmdtest = s626_ai_cmdtest;
2477 s->cancel = s626_ai_cancel;
2478 }
2479
2480 s = &dev->subdevices[1];
2481 /* analog output subdevice */
2482 s->type = COMEDI_SUBD_AO;
2483 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2484 s->n_chan = S626_DAC_CHANNELS;
2485 s->maxdata = 0x3fff;
2486 s->range_table = &range_bipolar10;
2487 s->insn_write = s626_ao_insn_write;
2488
2489 ret = comedi_alloc_subdev_readback(s);
2490 if (ret)
2491 return ret;
2492
2493 s = &dev->subdevices[2];
2494 /* digital I/O subdevice */
2495 s->type = COMEDI_SUBD_DIO;
2496 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2497 s->n_chan = 16;
2498 s->maxdata = 1;
2499 s->io_bits = 0xffff;
2500 s->private = (void *)0; /* DIO group 0 */
2501 s->range_table = &range_digital;
2502 s->insn_config = s626_dio_insn_config;
2503 s->insn_bits = s626_dio_insn_bits;
2504
2505 s = &dev->subdevices[3];
2506 /* digital I/O subdevice */
2507 s->type = COMEDI_SUBD_DIO;
2508 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2509 s->n_chan = 16;
2510 s->maxdata = 1;
2511 s->io_bits = 0xffff;
2512 s->private = (void *)1; /* DIO group 1 */
2513 s->range_table = &range_digital;
2514 s->insn_config = s626_dio_insn_config;
2515 s->insn_bits = s626_dio_insn_bits;
2516
2517 s = &dev->subdevices[4];
2518 /* digital I/O subdevice */
2519 s->type = COMEDI_SUBD_DIO;
2520 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2521 s->n_chan = 16;
2522 s->maxdata = 1;
2523 s->io_bits = 0xffff;
2524 s->private = (void *)2; /* DIO group 2 */
2525 s->range_table = &range_digital;
2526 s->insn_config = s626_dio_insn_config;
2527 s->insn_bits = s626_dio_insn_bits;
2528
2529 s = &dev->subdevices[5];
2530 /* encoder (counter) subdevice */
2531 s->type = COMEDI_SUBD_COUNTER;
2532 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2533 s->n_chan = S626_ENCODER_CHANNELS;
2534 s->maxdata = 0xffffff;
2535 s->range_table = &range_unknown;
2536 s->insn_config = s626_enc_insn_config;
2537 s->insn_read = s626_enc_insn_read;
2538 s->insn_write = s626_enc_insn_write;
2539
2540 return s626_initialize(dev);
2541 }
2542
s626_detach(struct comedi_device * dev)2543 static void s626_detach(struct comedi_device *dev)
2544 {
2545 struct s626_private *devpriv = dev->private;
2546
2547 if (devpriv) {
2548 /* stop ai_command */
2549 devpriv->ai_cmd_running = 0;
2550
2551 if (dev->mmio) {
2552 /* interrupt mask */
2553 /* Disable master interrupt */
2554 writel(0, dev->mmio + S626_P_IER);
2555 /* Clear board's IRQ status flag */
2556 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2557 dev->mmio + S626_P_ISR);
2558
2559 /* Disable the watchdog timer and battery charger. */
2560 s626_write_misc2(dev, 0);
2561
2562 /* Close all interfaces on 7146 device */
2563 writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2564 writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2565 }
2566 }
2567 comedi_pci_detach(dev);
2568 s626_free_dma_buffers(dev);
2569 }
2570
2571 static struct comedi_driver s626_driver = {
2572 .driver_name = "s626",
2573 .module = THIS_MODULE,
2574 .auto_attach = s626_auto_attach,
2575 .detach = s626_detach,
2576 };
2577
s626_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)2578 static int s626_pci_probe(struct pci_dev *dev,
2579 const struct pci_device_id *id)
2580 {
2581 return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2582 }
2583
2584 /*
2585 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2586 * also subvendor:subdevice ids, because otherwise it will conflict with
2587 * Philips SAA7146 media/dvb based cards.
2588 */
2589 static const struct pci_device_id s626_pci_table[] = {
2590 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2591 0x6000, 0x0272) },
2592 { 0 }
2593 };
2594 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2595
2596 static struct pci_driver s626_pci_driver = {
2597 .name = "s626",
2598 .id_table = s626_pci_table,
2599 .probe = s626_pci_probe,
2600 .remove = comedi_pci_auto_unconfig,
2601 };
2602 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2603
2604 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2605 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2606 MODULE_LICENSE("GPL");
2607