1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52 };
53
54 struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57 };
58
59 struct throtl_data
60 {
61 /* service tree for active throtl groups */
62 struct throtl_service_queue service_queue;
63
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
69 unsigned int throtl_slice;
70
71 /* Work for dispatching throttled bios */
72 struct work_struct dispatch_work;
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
78
79 unsigned int scale;
80
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
84 unsigned long last_calculate_time;
85 unsigned long filtered_latency;
86
87 bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
tg_to_blkg(struct throtl_grp * tg)92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94 return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
sq_to_tg(struct throtl_service_queue * sq)104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110 }
111
112 /**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 * Determine the associated throtl_data accordingly and return it.
118 */
sq_to_td(struct throtl_service_queue * sq)119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to elapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
throtl_adjusted_limit(uint64_t low,struct throtl_data * td)137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145 }
146
tg_bps_limit(struct throtl_grp * tg,int rw)147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149 struct blkcg_gq *blkg = tg_to_blkg(tg);
150 struct throtl_data *td;
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
174 return ret;
175 }
176
tg_iops_limit(struct throtl_grp * tg,int rw)177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179 struct blkcg_gq *blkg = tg_to_blkg(tg);
180 struct throtl_data *td;
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
185
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
206 return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
220 */
221 #define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
228 if ((__tg)) { \
229 blk_add_cgroup_trace_msg(__td->queue, \
230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
234 } while (0)
235
throtl_bio_data_size(struct bio * bio)236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242 }
243
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249 }
250
251 /**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263 {
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269 }
270
271 /**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
throtl_peek_queued(struct list_head * queued)275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277 struct throtl_qnode *qn;
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
283 qn = list_first_entry(queued, struct throtl_qnode, node);
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287 }
288
289 /**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305 {
306 struct throtl_qnode *qn;
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
312 qn = list_first_entry(queued, struct throtl_qnode, node);
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
334 sq->pending_tree = RB_ROOT_CACHED;
335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
throtl_pd_alloc(struct gendisk * disk,struct blkcg * blkcg,gfp_t gfp)338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
340 {
341 struct throtl_grp *tg;
342 int rw;
343
344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
345 if (!tg)
346 return NULL;
347
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349 goto err_free_tg;
350
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
353
354 throtl_service_queue_init(&tg->service_queue);
355
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359 }
360
361 RB_CLEAR_NODE(&tg->rb_node);
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
371
372 tg->latency_target = DFL_LATENCY_TARGET;
373 tg->latency_target_conf = DFL_LATENCY_TARGET;
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
376
377 return &tg->pd;
378
379 err_exit_stat_bytes:
380 blkg_rwstat_exit(&tg->stat_bytes);
381 err_free_tg:
382 kfree(tg);
383 return NULL;
384 }
385
throtl_pd_init(struct blkg_policy_data * pd)386 static void throtl_pd_init(struct blkg_policy_data *pd)
387 {
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
390 struct throtl_data *td = blkg->q->td;
391 struct throtl_service_queue *sq = &tg->service_queue;
392
393 /*
394 * If on the default hierarchy, we switch to properly hierarchical
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
399 * device.
400 *
401 * If not on the default hierarchy, the broken flat hierarchy
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
407 sq->parent_sq = &td->service_queue;
408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410 tg->td = td;
411 }
412
413 /*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
tg_update_has_rules(struct throtl_grp * tg)418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421 struct throtl_data *td = tg->td;
422 int rw;
423
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
431 (td->limit_valid[td->limit_index] &&
432 (tg_bps_limit(tg, rw) != U64_MAX));
433 }
434 }
435
throtl_pd_online(struct blkg_policy_data * pd)436 static void throtl_pd_online(struct blkg_policy_data *pd)
437 {
438 struct throtl_grp *tg = pd_to_tg(pd);
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
443 tg_update_has_rules(tg);
444 }
445
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_update_limit_valid(struct throtl_data * td)447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
448 {
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459 low_valid = true;
460 break;
461 }
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466 }
467 #else
blk_throtl_update_limit_valid(struct throtl_data * td)468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469 {
470 }
471 #endif
472
473 static void throtl_upgrade_state(struct throtl_data *td);
throtl_pd_offline(struct blkg_policy_data * pd)474 static void throtl_pd_offline(struct blkg_policy_data *pd)
475 {
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
487 }
488
throtl_pd_free(struct blkg_policy_data * pd)489 static void throtl_pd_free(struct blkg_policy_data *pd)
490 {
491 struct throtl_grp *tg = pd_to_tg(pd);
492
493 del_timer_sync(&tg->service_queue.pending_timer);
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
496 kfree(tg);
497 }
498
499 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)500 throtl_rb_first(struct throtl_service_queue *parent_sq)
501 {
502 struct rb_node *n;
503
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
509 }
510
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)511 static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
513 {
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
516 }
517
update_min_dispatch_time(struct throtl_service_queue * parent_sq)518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519 {
520 struct throtl_grp *tg;
521
522 tg = throtl_rb_first(parent_sq);
523 if (!tg)
524 return;
525
526 parent_sq->first_pending_disptime = tg->disptime;
527 }
528
tg_service_queue_add(struct throtl_grp * tg)529 static void tg_service_queue_add(struct throtl_grp *tg)
530 {
531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
536 bool leftmost = true;
537
538 while (*node != NULL) {
539 parent = *node;
540 __tg = rb_entry_tg(parent);
541
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
544 else {
545 node = &parent->rb_right;
546 leftmost = false;
547 }
548 }
549
550 rb_link_node(&tg->rb_node, parent, node);
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 leftmost);
553 }
554
throtl_enqueue_tg(struct throtl_grp * tg)555 static void throtl_enqueue_tg(struct throtl_grp *tg)
556 {
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
561 }
562 }
563
throtl_dequeue_tg(struct throtl_grp * tg)564 static void throtl_dequeue_tg(struct throtl_grp *tg)
565 {
566 if (tg->flags & THROTL_TG_PENDING) {
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
569
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
572 tg->flags &= ~THROTL_TG_PENDING;
573 }
574 }
575
576 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
579 {
580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581
582 /*
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
588 */
589 if (time_after(expires, max_expire))
590 expires = max_expire;
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
594 }
595
596 /**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
616 {
617 /* any pending children left? */
618 if (!sq->nr_pending)
619 return true;
620
621 update_min_dispatch_time(sq);
622
623 /* is the next dispatch time in the future? */
624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626 return true;
627 }
628
629 /* tell the caller to continue dispatching */
630 return false;
631 }
632
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635 {
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
647 if (time_after(start, tg->slice_start[rw]))
648 tg->slice_start[rw] = start;
649
650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655 }
656
throtl_start_new_slice(struct throtl_grp * tg,bool rw,bool clear_carryover)657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
659 {
660 tg->bytes_disp[rw] = 0;
661 tg->io_disp[rw] = 0;
662 tg->slice_start[rw] = jiffies;
663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
667 }
668
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
673 }
674
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
677 {
678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679 }
680
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
683 {
684 throtl_set_slice_end(tg, rw, jiffy_end);
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
689 }
690
691 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693 {
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695 return false;
696
697 return true;
698 }
699
calculate_io_allowed(u32 iops_limit,unsigned long jiffy_elapsed)700 static unsigned int calculate_io_allowed(u32 iops_limit,
701 unsigned long jiffy_elapsed)
702 {
703 unsigned int io_allowed;
704 u64 tmp;
705
706 /*
707 * jiffy_elapsed should not be a big value as minimum iops can be
708 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709 * will allow dispatch after 1 second and after that slice should
710 * have been trimmed.
711 */
712
713 tmp = (u64)iops_limit * jiffy_elapsed;
714 do_div(tmp, HZ);
715
716 if (tmp > UINT_MAX)
717 io_allowed = UINT_MAX;
718 else
719 io_allowed = tmp;
720
721 return io_allowed;
722 }
723
calculate_bytes_allowed(u64 bps_limit,unsigned long jiffy_elapsed)724 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
725 {
726 /*
727 * Can result be wider than 64 bits?
728 * We check against 62, not 64, due to ilog2 truncation.
729 */
730 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
731 return U64_MAX;
732 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
733 }
734
735 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)736 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
737 {
738 unsigned long time_elapsed;
739 long long bytes_trim;
740 int io_trim;
741
742 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
743
744 /*
745 * If bps are unlimited (-1), then time slice don't get
746 * renewed. Don't try to trim the slice if slice is used. A new
747 * slice will start when appropriate.
748 */
749 if (throtl_slice_used(tg, rw))
750 return;
751
752 /*
753 * A bio has been dispatched. Also adjust slice_end. It might happen
754 * that initially cgroup limit was very low resulting in high
755 * slice_end, but later limit was bumped up and bio was dispatched
756 * sooner, then we need to reduce slice_end. A high bogus slice_end
757 * is bad because it does not allow new slice to start.
758 */
759
760 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
761
762 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
763 tg->td->throtl_slice);
764 if (!time_elapsed)
765 return;
766
767 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
768 time_elapsed) +
769 tg->carryover_bytes[rw];
770 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
771 tg->carryover_ios[rw];
772 if (bytes_trim <= 0 && io_trim <= 0)
773 return;
774
775 tg->carryover_bytes[rw] = 0;
776 if ((long long)tg->bytes_disp[rw] >= bytes_trim)
777 tg->bytes_disp[rw] -= bytes_trim;
778 else
779 tg->bytes_disp[rw] = 0;
780
781 tg->carryover_ios[rw] = 0;
782 if ((int)tg->io_disp[rw] >= io_trim)
783 tg->io_disp[rw] -= io_trim;
784 else
785 tg->io_disp[rw] = 0;
786
787 tg->slice_start[rw] += time_elapsed;
788
789 throtl_log(&tg->service_queue,
790 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
791 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
792 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
793 jiffies);
794 }
795
__tg_update_carryover(struct throtl_grp * tg,bool rw)796 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
797 {
798 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
799 u64 bps_limit = tg_bps_limit(tg, rw);
800 u32 iops_limit = tg_iops_limit(tg, rw);
801
802 /*
803 * If config is updated while bios are still throttled, calculate and
804 * accumulate how many bytes/ios are waited across changes. And
805 * carryover_bytes/ios will be used to calculate new wait time under new
806 * configuration.
807 */
808 if (bps_limit != U64_MAX)
809 tg->carryover_bytes[rw] +=
810 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
811 tg->bytes_disp[rw];
812 if (iops_limit != UINT_MAX)
813 tg->carryover_ios[rw] +=
814 calculate_io_allowed(iops_limit, jiffy_elapsed) -
815 tg->io_disp[rw];
816 }
817
tg_update_carryover(struct throtl_grp * tg)818 static void tg_update_carryover(struct throtl_grp *tg)
819 {
820 if (tg->service_queue.nr_queued[READ])
821 __tg_update_carryover(tg, READ);
822 if (tg->service_queue.nr_queued[WRITE])
823 __tg_update_carryover(tg, WRITE);
824
825 /* see comments in struct throtl_grp for meaning of these fields. */
826 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
827 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
828 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
829 }
830
tg_within_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit)831 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
832 u32 iops_limit)
833 {
834 bool rw = bio_data_dir(bio);
835 int io_allowed;
836 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
837
838 if (iops_limit == UINT_MAX) {
839 return 0;
840 }
841
842 jiffy_elapsed = jiffies - tg->slice_start[rw];
843
844 /* Round up to the next throttle slice, wait time must be nonzero */
845 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
846 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
847 tg->carryover_ios[rw];
848 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
849 return 0;
850
851 /* Calc approx time to dispatch */
852 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
853 return jiffy_wait;
854 }
855
tg_within_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit)856 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
857 u64 bps_limit)
858 {
859 bool rw = bio_data_dir(bio);
860 long long bytes_allowed;
861 u64 extra_bytes;
862 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
863 unsigned int bio_size = throtl_bio_data_size(bio);
864
865 /* no need to throttle if this bio's bytes have been accounted */
866 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
867 return 0;
868 }
869
870 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
871
872 /* Slice has just started. Consider one slice interval */
873 if (!jiffy_elapsed)
874 jiffy_elapsed_rnd = tg->td->throtl_slice;
875
876 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
877 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
878 tg->carryover_bytes[rw];
879 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
880 return 0;
881
882 /* Calc approx time to dispatch */
883 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
884 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
885
886 if (!jiffy_wait)
887 jiffy_wait = 1;
888
889 /*
890 * This wait time is without taking into consideration the rounding
891 * up we did. Add that time also.
892 */
893 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
894 return jiffy_wait;
895 }
896
897 /*
898 * Returns whether one can dispatch a bio or not. Also returns approx number
899 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
900 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)901 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
902 unsigned long *wait)
903 {
904 bool rw = bio_data_dir(bio);
905 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
906 u64 bps_limit = tg_bps_limit(tg, rw);
907 u32 iops_limit = tg_iops_limit(tg, rw);
908
909 /*
910 * Currently whole state machine of group depends on first bio
911 * queued in the group bio list. So one should not be calling
912 * this function with a different bio if there are other bios
913 * queued.
914 */
915 BUG_ON(tg->service_queue.nr_queued[rw] &&
916 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
917
918 /* If tg->bps = -1, then BW is unlimited */
919 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
920 tg->flags & THROTL_TG_CANCELING) {
921 if (wait)
922 *wait = 0;
923 return true;
924 }
925
926 /*
927 * If previous slice expired, start a new one otherwise renew/extend
928 * existing slice to make sure it is at least throtl_slice interval
929 * long since now. New slice is started only for empty throttle group.
930 * If there is queued bio, that means there should be an active
931 * slice and it should be extended instead.
932 */
933 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
934 throtl_start_new_slice(tg, rw, true);
935 else {
936 if (time_before(tg->slice_end[rw],
937 jiffies + tg->td->throtl_slice))
938 throtl_extend_slice(tg, rw,
939 jiffies + tg->td->throtl_slice);
940 }
941
942 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
943 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
944 if (bps_wait + iops_wait == 0) {
945 if (wait)
946 *wait = 0;
947 return true;
948 }
949
950 max_wait = max(bps_wait, iops_wait);
951
952 if (wait)
953 *wait = max_wait;
954
955 if (time_before(tg->slice_end[rw], jiffies + max_wait))
956 throtl_extend_slice(tg, rw, jiffies + max_wait);
957
958 return false;
959 }
960
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)961 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
962 {
963 bool rw = bio_data_dir(bio);
964 unsigned int bio_size = throtl_bio_data_size(bio);
965
966 /* Charge the bio to the group */
967 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
968 tg->bytes_disp[rw] += bio_size;
969 tg->last_bytes_disp[rw] += bio_size;
970 }
971
972 tg->io_disp[rw]++;
973 tg->last_io_disp[rw]++;
974 }
975
976 /**
977 * throtl_add_bio_tg - add a bio to the specified throtl_grp
978 * @bio: bio to add
979 * @qn: qnode to use
980 * @tg: the target throtl_grp
981 *
982 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
983 * tg->qnode_on_self[] is used.
984 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)985 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
986 struct throtl_grp *tg)
987 {
988 struct throtl_service_queue *sq = &tg->service_queue;
989 bool rw = bio_data_dir(bio);
990
991 if (!qn)
992 qn = &tg->qnode_on_self[rw];
993
994 /*
995 * If @tg doesn't currently have any bios queued in the same
996 * direction, queueing @bio can change when @tg should be
997 * dispatched. Mark that @tg was empty. This is automatically
998 * cleared on the next tg_update_disptime().
999 */
1000 if (!sq->nr_queued[rw])
1001 tg->flags |= THROTL_TG_WAS_EMPTY;
1002
1003 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1004
1005 sq->nr_queued[rw]++;
1006 throtl_enqueue_tg(tg);
1007 }
1008
tg_update_disptime(struct throtl_grp * tg)1009 static void tg_update_disptime(struct throtl_grp *tg)
1010 {
1011 struct throtl_service_queue *sq = &tg->service_queue;
1012 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1013 struct bio *bio;
1014
1015 bio = throtl_peek_queued(&sq->queued[READ]);
1016 if (bio)
1017 tg_may_dispatch(tg, bio, &read_wait);
1018
1019 bio = throtl_peek_queued(&sq->queued[WRITE]);
1020 if (bio)
1021 tg_may_dispatch(tg, bio, &write_wait);
1022
1023 min_wait = min(read_wait, write_wait);
1024 disptime = jiffies + min_wait;
1025
1026 /* Update dispatch time */
1027 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1028 tg->disptime = disptime;
1029 tg_service_queue_add(tg);
1030
1031 /* see throtl_add_bio_tg() */
1032 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1033 }
1034
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)1035 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1036 struct throtl_grp *parent_tg, bool rw)
1037 {
1038 if (throtl_slice_used(parent_tg, rw)) {
1039 throtl_start_new_slice_with_credit(parent_tg, rw,
1040 child_tg->slice_start[rw]);
1041 }
1042
1043 }
1044
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1045 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1046 {
1047 struct throtl_service_queue *sq = &tg->service_queue;
1048 struct throtl_service_queue *parent_sq = sq->parent_sq;
1049 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1050 struct throtl_grp *tg_to_put = NULL;
1051 struct bio *bio;
1052
1053 /*
1054 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1055 * from @tg may put its reference and @parent_sq might end up
1056 * getting released prematurely. Remember the tg to put and put it
1057 * after @bio is transferred to @parent_sq.
1058 */
1059 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1060 sq->nr_queued[rw]--;
1061
1062 throtl_charge_bio(tg, bio);
1063
1064 /*
1065 * If our parent is another tg, we just need to transfer @bio to
1066 * the parent using throtl_add_bio_tg(). If our parent is
1067 * @td->service_queue, @bio is ready to be issued. Put it on its
1068 * bio_lists[] and decrease total number queued. The caller is
1069 * responsible for issuing these bios.
1070 */
1071 if (parent_tg) {
1072 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1073 start_parent_slice_with_credit(tg, parent_tg, rw);
1074 } else {
1075 bio_set_flag(bio, BIO_BPS_THROTTLED);
1076 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1077 &parent_sq->queued[rw]);
1078 BUG_ON(tg->td->nr_queued[rw] <= 0);
1079 tg->td->nr_queued[rw]--;
1080 }
1081
1082 throtl_trim_slice(tg, rw);
1083
1084 if (tg_to_put)
1085 blkg_put(tg_to_blkg(tg_to_put));
1086 }
1087
throtl_dispatch_tg(struct throtl_grp * tg)1088 static int throtl_dispatch_tg(struct throtl_grp *tg)
1089 {
1090 struct throtl_service_queue *sq = &tg->service_queue;
1091 unsigned int nr_reads = 0, nr_writes = 0;
1092 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1093 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1094 struct bio *bio;
1095
1096 /* Try to dispatch 75% READS and 25% WRITES */
1097
1098 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1099 tg_may_dispatch(tg, bio, NULL)) {
1100
1101 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1102 nr_reads++;
1103
1104 if (nr_reads >= max_nr_reads)
1105 break;
1106 }
1107
1108 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1109 tg_may_dispatch(tg, bio, NULL)) {
1110
1111 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1112 nr_writes++;
1113
1114 if (nr_writes >= max_nr_writes)
1115 break;
1116 }
1117
1118 return nr_reads + nr_writes;
1119 }
1120
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1121 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1122 {
1123 unsigned int nr_disp = 0;
1124
1125 while (1) {
1126 struct throtl_grp *tg;
1127 struct throtl_service_queue *sq;
1128
1129 if (!parent_sq->nr_pending)
1130 break;
1131
1132 tg = throtl_rb_first(parent_sq);
1133 if (!tg)
1134 break;
1135
1136 if (time_before(jiffies, tg->disptime))
1137 break;
1138
1139 nr_disp += throtl_dispatch_tg(tg);
1140
1141 sq = &tg->service_queue;
1142 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1143 tg_update_disptime(tg);
1144 else
1145 throtl_dequeue_tg(tg);
1146
1147 if (nr_disp >= THROTL_QUANTUM)
1148 break;
1149 }
1150
1151 return nr_disp;
1152 }
1153
1154 static bool throtl_can_upgrade(struct throtl_data *td,
1155 struct throtl_grp *this_tg);
1156 /**
1157 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1158 * @t: the pending_timer member of the throtl_service_queue being serviced
1159 *
1160 * This timer is armed when a child throtl_grp with active bio's become
1161 * pending and queued on the service_queue's pending_tree and expires when
1162 * the first child throtl_grp should be dispatched. This function
1163 * dispatches bio's from the children throtl_grps to the parent
1164 * service_queue.
1165 *
1166 * If the parent's parent is another throtl_grp, dispatching is propagated
1167 * by either arming its pending_timer or repeating dispatch directly. If
1168 * the top-level service_tree is reached, throtl_data->dispatch_work is
1169 * kicked so that the ready bio's are issued.
1170 */
throtl_pending_timer_fn(struct timer_list * t)1171 static void throtl_pending_timer_fn(struct timer_list *t)
1172 {
1173 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1174 struct throtl_grp *tg = sq_to_tg(sq);
1175 struct throtl_data *td = sq_to_td(sq);
1176 struct throtl_service_queue *parent_sq;
1177 struct request_queue *q;
1178 bool dispatched;
1179 int ret;
1180
1181 /* throtl_data may be gone, so figure out request queue by blkg */
1182 if (tg)
1183 q = tg->pd.blkg->q;
1184 else
1185 q = td->queue;
1186
1187 spin_lock_irq(&q->queue_lock);
1188
1189 if (!q->root_blkg)
1190 goto out_unlock;
1191
1192 if (throtl_can_upgrade(td, NULL))
1193 throtl_upgrade_state(td);
1194
1195 again:
1196 parent_sq = sq->parent_sq;
1197 dispatched = false;
1198
1199 while (true) {
1200 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1201 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1202 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1203
1204 ret = throtl_select_dispatch(sq);
1205 if (ret) {
1206 throtl_log(sq, "bios disp=%u", ret);
1207 dispatched = true;
1208 }
1209
1210 if (throtl_schedule_next_dispatch(sq, false))
1211 break;
1212
1213 /* this dispatch windows is still open, relax and repeat */
1214 spin_unlock_irq(&q->queue_lock);
1215 cpu_relax();
1216 spin_lock_irq(&q->queue_lock);
1217 }
1218
1219 if (!dispatched)
1220 goto out_unlock;
1221
1222 if (parent_sq) {
1223 /* @parent_sq is another throl_grp, propagate dispatch */
1224 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1225 tg_update_disptime(tg);
1226 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1227 /* window is already open, repeat dispatching */
1228 sq = parent_sq;
1229 tg = sq_to_tg(sq);
1230 goto again;
1231 }
1232 }
1233 } else {
1234 /* reached the top-level, queue issuing */
1235 queue_work(kthrotld_workqueue, &td->dispatch_work);
1236 }
1237 out_unlock:
1238 spin_unlock_irq(&q->queue_lock);
1239 }
1240
1241 /**
1242 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1243 * @work: work item being executed
1244 *
1245 * This function is queued for execution when bios reach the bio_lists[]
1246 * of throtl_data->service_queue. Those bios are ready and issued by this
1247 * function.
1248 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1249 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1250 {
1251 struct throtl_data *td = container_of(work, struct throtl_data,
1252 dispatch_work);
1253 struct throtl_service_queue *td_sq = &td->service_queue;
1254 struct request_queue *q = td->queue;
1255 struct bio_list bio_list_on_stack;
1256 struct bio *bio;
1257 struct blk_plug plug;
1258 int rw;
1259
1260 bio_list_init(&bio_list_on_stack);
1261
1262 spin_lock_irq(&q->queue_lock);
1263 for (rw = READ; rw <= WRITE; rw++)
1264 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1265 bio_list_add(&bio_list_on_stack, bio);
1266 spin_unlock_irq(&q->queue_lock);
1267
1268 if (!bio_list_empty(&bio_list_on_stack)) {
1269 blk_start_plug(&plug);
1270 while ((bio = bio_list_pop(&bio_list_on_stack)))
1271 submit_bio_noacct_nocheck(bio);
1272 blk_finish_plug(&plug);
1273 }
1274 }
1275
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1276 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1277 int off)
1278 {
1279 struct throtl_grp *tg = pd_to_tg(pd);
1280 u64 v = *(u64 *)((void *)tg + off);
1281
1282 if (v == U64_MAX)
1283 return 0;
1284 return __blkg_prfill_u64(sf, pd, v);
1285 }
1286
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1287 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1288 int off)
1289 {
1290 struct throtl_grp *tg = pd_to_tg(pd);
1291 unsigned int v = *(unsigned int *)((void *)tg + off);
1292
1293 if (v == UINT_MAX)
1294 return 0;
1295 return __blkg_prfill_u64(sf, pd, v);
1296 }
1297
tg_print_conf_u64(struct seq_file * sf,void * v)1298 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1299 {
1300 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1301 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1302 return 0;
1303 }
1304
tg_print_conf_uint(struct seq_file * sf,void * v)1305 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1306 {
1307 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1308 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1309 return 0;
1310 }
1311
tg_conf_updated(struct throtl_grp * tg,bool global)1312 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1313 {
1314 struct throtl_service_queue *sq = &tg->service_queue;
1315 struct cgroup_subsys_state *pos_css;
1316 struct blkcg_gq *blkg;
1317
1318 throtl_log(&tg->service_queue,
1319 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1320 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1321 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1322
1323 /*
1324 * Update has_rules[] flags for the updated tg's subtree. A tg is
1325 * considered to have rules if either the tg itself or any of its
1326 * ancestors has rules. This identifies groups without any
1327 * restrictions in the whole hierarchy and allows them to bypass
1328 * blk-throttle.
1329 */
1330 blkg_for_each_descendant_pre(blkg, pos_css,
1331 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1332 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1333 struct throtl_grp *parent_tg;
1334
1335 tg_update_has_rules(this_tg);
1336 /* ignore root/second level */
1337 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1338 !blkg->parent->parent)
1339 continue;
1340 parent_tg = blkg_to_tg(blkg->parent);
1341 /*
1342 * make sure all children has lower idle time threshold and
1343 * higher latency target
1344 */
1345 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1346 parent_tg->idletime_threshold);
1347 this_tg->latency_target = max(this_tg->latency_target,
1348 parent_tg->latency_target);
1349 }
1350
1351 /*
1352 * We're already holding queue_lock and know @tg is valid. Let's
1353 * apply the new config directly.
1354 *
1355 * Restart the slices for both READ and WRITES. It might happen
1356 * that a group's limit are dropped suddenly and we don't want to
1357 * account recently dispatched IO with new low rate.
1358 */
1359 throtl_start_new_slice(tg, READ, false);
1360 throtl_start_new_slice(tg, WRITE, false);
1361
1362 if (tg->flags & THROTL_TG_PENDING) {
1363 tg_update_disptime(tg);
1364 throtl_schedule_next_dispatch(sq->parent_sq, true);
1365 }
1366 }
1367
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1368 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1369 char *buf, size_t nbytes, loff_t off, bool is_u64)
1370 {
1371 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1372 struct blkg_conf_ctx ctx;
1373 struct throtl_grp *tg;
1374 int ret;
1375 u64 v;
1376
1377 blkg_conf_init(&ctx, buf);
1378
1379 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1380 if (ret)
1381 goto out_finish;
1382
1383 ret = -EINVAL;
1384 if (sscanf(ctx.body, "%llu", &v) != 1)
1385 goto out_finish;
1386 if (!v)
1387 v = U64_MAX;
1388
1389 tg = blkg_to_tg(ctx.blkg);
1390 tg_update_carryover(tg);
1391
1392 if (is_u64)
1393 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1394 else
1395 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1396
1397 tg_conf_updated(tg, false);
1398 ret = 0;
1399 out_finish:
1400 blkg_conf_exit(&ctx);
1401 return ret ?: nbytes;
1402 }
1403
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1404 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1405 char *buf, size_t nbytes, loff_t off)
1406 {
1407 return tg_set_conf(of, buf, nbytes, off, true);
1408 }
1409
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1410 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1411 char *buf, size_t nbytes, loff_t off)
1412 {
1413 return tg_set_conf(of, buf, nbytes, off, false);
1414 }
1415
tg_print_rwstat(struct seq_file * sf,void * v)1416 static int tg_print_rwstat(struct seq_file *sf, void *v)
1417 {
1418 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1419 blkg_prfill_rwstat, &blkcg_policy_throtl,
1420 seq_cft(sf)->private, true);
1421 return 0;
1422 }
1423
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1424 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1425 struct blkg_policy_data *pd, int off)
1426 {
1427 struct blkg_rwstat_sample sum;
1428
1429 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1430 &sum);
1431 return __blkg_prfill_rwstat(sf, pd, &sum);
1432 }
1433
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1434 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1435 {
1436 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1437 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1438 seq_cft(sf)->private, true);
1439 return 0;
1440 }
1441
1442 static struct cftype throtl_legacy_files[] = {
1443 {
1444 .name = "throttle.read_bps_device",
1445 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1446 .seq_show = tg_print_conf_u64,
1447 .write = tg_set_conf_u64,
1448 },
1449 {
1450 .name = "throttle.write_bps_device",
1451 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1452 .seq_show = tg_print_conf_u64,
1453 .write = tg_set_conf_u64,
1454 },
1455 {
1456 .name = "throttle.read_iops_device",
1457 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1458 .seq_show = tg_print_conf_uint,
1459 .write = tg_set_conf_uint,
1460 },
1461 {
1462 .name = "throttle.write_iops_device",
1463 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1464 .seq_show = tg_print_conf_uint,
1465 .write = tg_set_conf_uint,
1466 },
1467 {
1468 .name = "throttle.io_service_bytes",
1469 .private = offsetof(struct throtl_grp, stat_bytes),
1470 .seq_show = tg_print_rwstat,
1471 },
1472 {
1473 .name = "throttle.io_service_bytes_recursive",
1474 .private = offsetof(struct throtl_grp, stat_bytes),
1475 .seq_show = tg_print_rwstat_recursive,
1476 },
1477 {
1478 .name = "throttle.io_serviced",
1479 .private = offsetof(struct throtl_grp, stat_ios),
1480 .seq_show = tg_print_rwstat,
1481 },
1482 {
1483 .name = "throttle.io_serviced_recursive",
1484 .private = offsetof(struct throtl_grp, stat_ios),
1485 .seq_show = tg_print_rwstat_recursive,
1486 },
1487 { } /* terminate */
1488 };
1489
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1490 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1491 int off)
1492 {
1493 struct throtl_grp *tg = pd_to_tg(pd);
1494 const char *dname = blkg_dev_name(pd->blkg);
1495 char bufs[4][21] = { "max", "max", "max", "max" };
1496 u64 bps_dft;
1497 unsigned int iops_dft;
1498 char idle_time[26] = "";
1499 char latency_time[26] = "";
1500
1501 if (!dname)
1502 return 0;
1503
1504 if (off == LIMIT_LOW) {
1505 bps_dft = 0;
1506 iops_dft = 0;
1507 } else {
1508 bps_dft = U64_MAX;
1509 iops_dft = UINT_MAX;
1510 }
1511
1512 if (tg->bps_conf[READ][off] == bps_dft &&
1513 tg->bps_conf[WRITE][off] == bps_dft &&
1514 tg->iops_conf[READ][off] == iops_dft &&
1515 tg->iops_conf[WRITE][off] == iops_dft &&
1516 (off != LIMIT_LOW ||
1517 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1518 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1519 return 0;
1520
1521 if (tg->bps_conf[READ][off] != U64_MAX)
1522 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1523 tg->bps_conf[READ][off]);
1524 if (tg->bps_conf[WRITE][off] != U64_MAX)
1525 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1526 tg->bps_conf[WRITE][off]);
1527 if (tg->iops_conf[READ][off] != UINT_MAX)
1528 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1529 tg->iops_conf[READ][off]);
1530 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1531 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1532 tg->iops_conf[WRITE][off]);
1533 if (off == LIMIT_LOW) {
1534 if (tg->idletime_threshold_conf == ULONG_MAX)
1535 strcpy(idle_time, " idle=max");
1536 else
1537 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1538 tg->idletime_threshold_conf);
1539
1540 if (tg->latency_target_conf == ULONG_MAX)
1541 strcpy(latency_time, " latency=max");
1542 else
1543 snprintf(latency_time, sizeof(latency_time),
1544 " latency=%lu", tg->latency_target_conf);
1545 }
1546
1547 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1548 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1549 latency_time);
1550 return 0;
1551 }
1552
tg_print_limit(struct seq_file * sf,void * v)1553 static int tg_print_limit(struct seq_file *sf, void *v)
1554 {
1555 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1556 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1557 return 0;
1558 }
1559
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1560 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1561 char *buf, size_t nbytes, loff_t off)
1562 {
1563 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1564 struct blkg_conf_ctx ctx;
1565 struct throtl_grp *tg;
1566 u64 v[4];
1567 unsigned long idle_time;
1568 unsigned long latency_time;
1569 int ret;
1570 int index = of_cft(of)->private;
1571
1572 blkg_conf_init(&ctx, buf);
1573
1574 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1575 if (ret)
1576 goto out_finish;
1577
1578 tg = blkg_to_tg(ctx.blkg);
1579 tg_update_carryover(tg);
1580
1581 v[0] = tg->bps_conf[READ][index];
1582 v[1] = tg->bps_conf[WRITE][index];
1583 v[2] = tg->iops_conf[READ][index];
1584 v[3] = tg->iops_conf[WRITE][index];
1585
1586 idle_time = tg->idletime_threshold_conf;
1587 latency_time = tg->latency_target_conf;
1588 while (true) {
1589 char tok[27]; /* wiops=18446744073709551616 */
1590 char *p;
1591 u64 val = U64_MAX;
1592 int len;
1593
1594 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1595 break;
1596 if (tok[0] == '\0')
1597 break;
1598 ctx.body += len;
1599
1600 ret = -EINVAL;
1601 p = tok;
1602 strsep(&p, "=");
1603 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1604 goto out_finish;
1605
1606 ret = -ERANGE;
1607 if (!val)
1608 goto out_finish;
1609
1610 ret = -EINVAL;
1611 if (!strcmp(tok, "rbps") && val > 1)
1612 v[0] = val;
1613 else if (!strcmp(tok, "wbps") && val > 1)
1614 v[1] = val;
1615 else if (!strcmp(tok, "riops") && val > 1)
1616 v[2] = min_t(u64, val, UINT_MAX);
1617 else if (!strcmp(tok, "wiops") && val > 1)
1618 v[3] = min_t(u64, val, UINT_MAX);
1619 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1620 idle_time = val;
1621 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1622 latency_time = val;
1623 else
1624 goto out_finish;
1625 }
1626
1627 tg->bps_conf[READ][index] = v[0];
1628 tg->bps_conf[WRITE][index] = v[1];
1629 tg->iops_conf[READ][index] = v[2];
1630 tg->iops_conf[WRITE][index] = v[3];
1631
1632 if (index == LIMIT_MAX) {
1633 tg->bps[READ][index] = v[0];
1634 tg->bps[WRITE][index] = v[1];
1635 tg->iops[READ][index] = v[2];
1636 tg->iops[WRITE][index] = v[3];
1637 }
1638 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1639 tg->bps_conf[READ][LIMIT_MAX]);
1640 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1641 tg->bps_conf[WRITE][LIMIT_MAX]);
1642 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1643 tg->iops_conf[READ][LIMIT_MAX]);
1644 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1645 tg->iops_conf[WRITE][LIMIT_MAX]);
1646 tg->idletime_threshold_conf = idle_time;
1647 tg->latency_target_conf = latency_time;
1648
1649 /* force user to configure all settings for low limit */
1650 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1651 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1652 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1653 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1654 tg->bps[READ][LIMIT_LOW] = 0;
1655 tg->bps[WRITE][LIMIT_LOW] = 0;
1656 tg->iops[READ][LIMIT_LOW] = 0;
1657 tg->iops[WRITE][LIMIT_LOW] = 0;
1658 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1659 tg->latency_target = DFL_LATENCY_TARGET;
1660 } else if (index == LIMIT_LOW) {
1661 tg->idletime_threshold = tg->idletime_threshold_conf;
1662 tg->latency_target = tg->latency_target_conf;
1663 }
1664
1665 blk_throtl_update_limit_valid(tg->td);
1666 if (tg->td->limit_valid[LIMIT_LOW]) {
1667 if (index == LIMIT_LOW)
1668 tg->td->limit_index = LIMIT_LOW;
1669 } else
1670 tg->td->limit_index = LIMIT_MAX;
1671 tg_conf_updated(tg, index == LIMIT_LOW &&
1672 tg->td->limit_valid[LIMIT_LOW]);
1673 ret = 0;
1674 out_finish:
1675 blkg_conf_exit(&ctx);
1676 return ret ?: nbytes;
1677 }
1678
1679 static struct cftype throtl_files[] = {
1680 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1681 {
1682 .name = "low",
1683 .flags = CFTYPE_NOT_ON_ROOT,
1684 .seq_show = tg_print_limit,
1685 .write = tg_set_limit,
1686 .private = LIMIT_LOW,
1687 },
1688 #endif
1689 {
1690 .name = "max",
1691 .flags = CFTYPE_NOT_ON_ROOT,
1692 .seq_show = tg_print_limit,
1693 .write = tg_set_limit,
1694 .private = LIMIT_MAX,
1695 },
1696 { } /* terminate */
1697 };
1698
throtl_shutdown_wq(struct request_queue * q)1699 static void throtl_shutdown_wq(struct request_queue *q)
1700 {
1701 struct throtl_data *td = q->td;
1702
1703 cancel_work_sync(&td->dispatch_work);
1704 }
1705
1706 struct blkcg_policy blkcg_policy_throtl = {
1707 .dfl_cftypes = throtl_files,
1708 .legacy_cftypes = throtl_legacy_files,
1709
1710 .pd_alloc_fn = throtl_pd_alloc,
1711 .pd_init_fn = throtl_pd_init,
1712 .pd_online_fn = throtl_pd_online,
1713 .pd_offline_fn = throtl_pd_offline,
1714 .pd_free_fn = throtl_pd_free,
1715 };
1716
blk_throtl_cancel_bios(struct gendisk * disk)1717 void blk_throtl_cancel_bios(struct gendisk *disk)
1718 {
1719 struct request_queue *q = disk->queue;
1720 struct cgroup_subsys_state *pos_css;
1721 struct blkcg_gq *blkg;
1722
1723 spin_lock_irq(&q->queue_lock);
1724 /*
1725 * queue_lock is held, rcu lock is not needed here technically.
1726 * However, rcu lock is still held to emphasize that following
1727 * path need RCU protection and to prevent warning from lockdep.
1728 */
1729 rcu_read_lock();
1730 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1731 struct throtl_grp *tg = blkg_to_tg(blkg);
1732 struct throtl_service_queue *sq = &tg->service_queue;
1733
1734 /*
1735 * Set the flag to make sure throtl_pending_timer_fn() won't
1736 * stop until all throttled bios are dispatched.
1737 */
1738 tg->flags |= THROTL_TG_CANCELING;
1739
1740 /*
1741 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1742 * will be inserted to service queue without THROTL_TG_PENDING
1743 * set in tg_update_disptime below. Then IO dispatched from
1744 * child in tg_dispatch_one_bio will trigger double insertion
1745 * and corrupt the tree.
1746 */
1747 if (!(tg->flags & THROTL_TG_PENDING))
1748 continue;
1749
1750 /*
1751 * Update disptime after setting the above flag to make sure
1752 * throtl_select_dispatch() won't exit without dispatching.
1753 */
1754 tg_update_disptime(tg);
1755
1756 throtl_schedule_pending_timer(sq, jiffies + 1);
1757 }
1758 rcu_read_unlock();
1759 spin_unlock_irq(&q->queue_lock);
1760 }
1761
1762 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
__tg_last_low_overflow_time(struct throtl_grp * tg)1763 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1764 {
1765 unsigned long rtime = jiffies, wtime = jiffies;
1766
1767 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1768 rtime = tg->last_low_overflow_time[READ];
1769 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1770 wtime = tg->last_low_overflow_time[WRITE];
1771 return min(rtime, wtime);
1772 }
1773
tg_last_low_overflow_time(struct throtl_grp * tg)1774 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1775 {
1776 struct throtl_service_queue *parent_sq;
1777 struct throtl_grp *parent = tg;
1778 unsigned long ret = __tg_last_low_overflow_time(tg);
1779
1780 while (true) {
1781 parent_sq = parent->service_queue.parent_sq;
1782 parent = sq_to_tg(parent_sq);
1783 if (!parent)
1784 break;
1785
1786 /*
1787 * The parent doesn't have low limit, it always reaches low
1788 * limit. Its overflow time is useless for children
1789 */
1790 if (!parent->bps[READ][LIMIT_LOW] &&
1791 !parent->iops[READ][LIMIT_LOW] &&
1792 !parent->bps[WRITE][LIMIT_LOW] &&
1793 !parent->iops[WRITE][LIMIT_LOW])
1794 continue;
1795 if (time_after(__tg_last_low_overflow_time(parent), ret))
1796 ret = __tg_last_low_overflow_time(parent);
1797 }
1798 return ret;
1799 }
1800
throtl_tg_is_idle(struct throtl_grp * tg)1801 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1802 {
1803 /*
1804 * cgroup is idle if:
1805 * - single idle is too long, longer than a fixed value (in case user
1806 * configure a too big threshold) or 4 times of idletime threshold
1807 * - average think time is more than threshold
1808 * - IO latency is largely below threshold
1809 */
1810 unsigned long time;
1811 bool ret;
1812
1813 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1814 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1815 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1816 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1817 tg->avg_idletime > tg->idletime_threshold ||
1818 (tg->latency_target && tg->bio_cnt &&
1819 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1820 throtl_log(&tg->service_queue,
1821 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1822 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1823 tg->bio_cnt, ret, tg->td->scale);
1824 return ret;
1825 }
1826
throtl_low_limit_reached(struct throtl_grp * tg,int rw)1827 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1828 {
1829 struct throtl_service_queue *sq = &tg->service_queue;
1830 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1831
1832 /*
1833 * if low limit is zero, low limit is always reached.
1834 * if low limit is non-zero, we can check if there is any request
1835 * is queued to determine if low limit is reached as we throttle
1836 * request according to limit.
1837 */
1838 return !limit || sq->nr_queued[rw];
1839 }
1840
throtl_tg_can_upgrade(struct throtl_grp * tg)1841 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1842 {
1843 /*
1844 * cgroup reaches low limit when low limit of READ and WRITE are
1845 * both reached, it's ok to upgrade to next limit if cgroup reaches
1846 * low limit
1847 */
1848 if (throtl_low_limit_reached(tg, READ) &&
1849 throtl_low_limit_reached(tg, WRITE))
1850 return true;
1851
1852 if (time_after_eq(jiffies,
1853 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1854 throtl_tg_is_idle(tg))
1855 return true;
1856 return false;
1857 }
1858
throtl_hierarchy_can_upgrade(struct throtl_grp * tg)1859 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1860 {
1861 while (true) {
1862 if (throtl_tg_can_upgrade(tg))
1863 return true;
1864 tg = sq_to_tg(tg->service_queue.parent_sq);
1865 if (!tg || !tg_to_blkg(tg)->parent)
1866 return false;
1867 }
1868 return false;
1869 }
1870
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)1871 static bool throtl_can_upgrade(struct throtl_data *td,
1872 struct throtl_grp *this_tg)
1873 {
1874 struct cgroup_subsys_state *pos_css;
1875 struct blkcg_gq *blkg;
1876
1877 if (td->limit_index != LIMIT_LOW)
1878 return false;
1879
1880 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1881 return false;
1882
1883 rcu_read_lock();
1884 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1885 struct throtl_grp *tg = blkg_to_tg(blkg);
1886
1887 if (tg == this_tg)
1888 continue;
1889 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1890 continue;
1891 if (!throtl_hierarchy_can_upgrade(tg)) {
1892 rcu_read_unlock();
1893 return false;
1894 }
1895 }
1896 rcu_read_unlock();
1897 return true;
1898 }
1899
throtl_upgrade_check(struct throtl_grp * tg)1900 static void throtl_upgrade_check(struct throtl_grp *tg)
1901 {
1902 unsigned long now = jiffies;
1903
1904 if (tg->td->limit_index != LIMIT_LOW)
1905 return;
1906
1907 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1908 return;
1909
1910 tg->last_check_time = now;
1911
1912 if (!time_after_eq(now,
1913 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1914 return;
1915
1916 if (throtl_can_upgrade(tg->td, NULL))
1917 throtl_upgrade_state(tg->td);
1918 }
1919
throtl_upgrade_state(struct throtl_data * td)1920 static void throtl_upgrade_state(struct throtl_data *td)
1921 {
1922 struct cgroup_subsys_state *pos_css;
1923 struct blkcg_gq *blkg;
1924
1925 throtl_log(&td->service_queue, "upgrade to max");
1926 td->limit_index = LIMIT_MAX;
1927 td->low_upgrade_time = jiffies;
1928 td->scale = 0;
1929 rcu_read_lock();
1930 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1931 struct throtl_grp *tg = blkg_to_tg(blkg);
1932 struct throtl_service_queue *sq = &tg->service_queue;
1933
1934 tg->disptime = jiffies - 1;
1935 throtl_select_dispatch(sq);
1936 throtl_schedule_next_dispatch(sq, true);
1937 }
1938 rcu_read_unlock();
1939 throtl_select_dispatch(&td->service_queue);
1940 throtl_schedule_next_dispatch(&td->service_queue, true);
1941 queue_work(kthrotld_workqueue, &td->dispatch_work);
1942 }
1943
throtl_downgrade_state(struct throtl_data * td)1944 static void throtl_downgrade_state(struct throtl_data *td)
1945 {
1946 td->scale /= 2;
1947
1948 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1949 if (td->scale) {
1950 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1951 return;
1952 }
1953
1954 td->limit_index = LIMIT_LOW;
1955 td->low_downgrade_time = jiffies;
1956 }
1957
throtl_tg_can_downgrade(struct throtl_grp * tg)1958 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1959 {
1960 struct throtl_data *td = tg->td;
1961 unsigned long now = jiffies;
1962
1963 /*
1964 * If cgroup is below low limit, consider downgrade and throttle other
1965 * cgroups
1966 */
1967 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1968 td->throtl_slice) &&
1969 (!throtl_tg_is_idle(tg) ||
1970 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1971 return true;
1972 return false;
1973 }
1974
throtl_hierarchy_can_downgrade(struct throtl_grp * tg)1975 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1976 {
1977 struct throtl_data *td = tg->td;
1978
1979 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1980 return false;
1981
1982 while (true) {
1983 if (!throtl_tg_can_downgrade(tg))
1984 return false;
1985 tg = sq_to_tg(tg->service_queue.parent_sq);
1986 if (!tg || !tg_to_blkg(tg)->parent)
1987 break;
1988 }
1989 return true;
1990 }
1991
throtl_downgrade_check(struct throtl_grp * tg)1992 static void throtl_downgrade_check(struct throtl_grp *tg)
1993 {
1994 uint64_t bps;
1995 unsigned int iops;
1996 unsigned long elapsed_time;
1997 unsigned long now = jiffies;
1998
1999 if (tg->td->limit_index != LIMIT_MAX ||
2000 !tg->td->limit_valid[LIMIT_LOW])
2001 return;
2002 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2003 return;
2004 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2005 return;
2006
2007 elapsed_time = now - tg->last_check_time;
2008 tg->last_check_time = now;
2009
2010 if (time_before(now, tg_last_low_overflow_time(tg) +
2011 tg->td->throtl_slice))
2012 return;
2013
2014 if (tg->bps[READ][LIMIT_LOW]) {
2015 bps = tg->last_bytes_disp[READ] * HZ;
2016 do_div(bps, elapsed_time);
2017 if (bps >= tg->bps[READ][LIMIT_LOW])
2018 tg->last_low_overflow_time[READ] = now;
2019 }
2020
2021 if (tg->bps[WRITE][LIMIT_LOW]) {
2022 bps = tg->last_bytes_disp[WRITE] * HZ;
2023 do_div(bps, elapsed_time);
2024 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2025 tg->last_low_overflow_time[WRITE] = now;
2026 }
2027
2028 if (tg->iops[READ][LIMIT_LOW]) {
2029 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2030 if (iops >= tg->iops[READ][LIMIT_LOW])
2031 tg->last_low_overflow_time[READ] = now;
2032 }
2033
2034 if (tg->iops[WRITE][LIMIT_LOW]) {
2035 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2036 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2037 tg->last_low_overflow_time[WRITE] = now;
2038 }
2039
2040 /*
2041 * If cgroup is below low limit, consider downgrade and throttle other
2042 * cgroups
2043 */
2044 if (throtl_hierarchy_can_downgrade(tg))
2045 throtl_downgrade_state(tg->td);
2046
2047 tg->last_bytes_disp[READ] = 0;
2048 tg->last_bytes_disp[WRITE] = 0;
2049 tg->last_io_disp[READ] = 0;
2050 tg->last_io_disp[WRITE] = 0;
2051 }
2052
blk_throtl_update_idletime(struct throtl_grp * tg)2053 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2054 {
2055 unsigned long now;
2056 unsigned long last_finish_time = tg->last_finish_time;
2057
2058 if (last_finish_time == 0)
2059 return;
2060
2061 now = ktime_get_ns() >> 10;
2062 if (now <= last_finish_time ||
2063 last_finish_time == tg->checked_last_finish_time)
2064 return;
2065
2066 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2067 tg->checked_last_finish_time = last_finish_time;
2068 }
2069
throtl_update_latency_buckets(struct throtl_data * td)2070 static void throtl_update_latency_buckets(struct throtl_data *td)
2071 {
2072 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2073 int i, cpu, rw;
2074 unsigned long last_latency[2] = { 0 };
2075 unsigned long latency[2];
2076
2077 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2078 return;
2079 if (time_before(jiffies, td->last_calculate_time + HZ))
2080 return;
2081 td->last_calculate_time = jiffies;
2082
2083 memset(avg_latency, 0, sizeof(avg_latency));
2084 for (rw = READ; rw <= WRITE; rw++) {
2085 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2086 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2087
2088 for_each_possible_cpu(cpu) {
2089 struct latency_bucket *bucket;
2090
2091 /* this isn't race free, but ok in practice */
2092 bucket = per_cpu_ptr(td->latency_buckets[rw],
2093 cpu);
2094 tmp->total_latency += bucket[i].total_latency;
2095 tmp->samples += bucket[i].samples;
2096 bucket[i].total_latency = 0;
2097 bucket[i].samples = 0;
2098 }
2099
2100 if (tmp->samples >= 32) {
2101 int samples = tmp->samples;
2102
2103 latency[rw] = tmp->total_latency;
2104
2105 tmp->total_latency = 0;
2106 tmp->samples = 0;
2107 latency[rw] /= samples;
2108 if (latency[rw] == 0)
2109 continue;
2110 avg_latency[rw][i].latency = latency[rw];
2111 }
2112 }
2113 }
2114
2115 for (rw = READ; rw <= WRITE; rw++) {
2116 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2117 if (!avg_latency[rw][i].latency) {
2118 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2119 td->avg_buckets[rw][i].latency =
2120 last_latency[rw];
2121 continue;
2122 }
2123
2124 if (!td->avg_buckets[rw][i].valid)
2125 latency[rw] = avg_latency[rw][i].latency;
2126 else
2127 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2128 avg_latency[rw][i].latency) >> 3;
2129
2130 td->avg_buckets[rw][i].latency = max(latency[rw],
2131 last_latency[rw]);
2132 td->avg_buckets[rw][i].valid = true;
2133 last_latency[rw] = td->avg_buckets[rw][i].latency;
2134 }
2135 }
2136
2137 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2138 throtl_log(&td->service_queue,
2139 "Latency bucket %d: read latency=%ld, read valid=%d, "
2140 "write latency=%ld, write valid=%d", i,
2141 td->avg_buckets[READ][i].latency,
2142 td->avg_buckets[READ][i].valid,
2143 td->avg_buckets[WRITE][i].latency,
2144 td->avg_buckets[WRITE][i].valid);
2145 }
2146 #else
throtl_update_latency_buckets(struct throtl_data * td)2147 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2148 {
2149 }
2150
blk_throtl_update_idletime(struct throtl_grp * tg)2151 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2152 {
2153 }
2154
throtl_downgrade_check(struct throtl_grp * tg)2155 static void throtl_downgrade_check(struct throtl_grp *tg)
2156 {
2157 }
2158
throtl_upgrade_check(struct throtl_grp * tg)2159 static void throtl_upgrade_check(struct throtl_grp *tg)
2160 {
2161 }
2162
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)2163 static bool throtl_can_upgrade(struct throtl_data *td,
2164 struct throtl_grp *this_tg)
2165 {
2166 return false;
2167 }
2168
throtl_upgrade_state(struct throtl_data * td)2169 static void throtl_upgrade_state(struct throtl_data *td)
2170 {
2171 }
2172 #endif
2173
__blk_throtl_bio(struct bio * bio)2174 bool __blk_throtl_bio(struct bio *bio)
2175 {
2176 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2177 struct blkcg_gq *blkg = bio->bi_blkg;
2178 struct throtl_qnode *qn = NULL;
2179 struct throtl_grp *tg = blkg_to_tg(blkg);
2180 struct throtl_service_queue *sq;
2181 bool rw = bio_data_dir(bio);
2182 bool throttled = false;
2183 struct throtl_data *td = tg->td;
2184
2185 rcu_read_lock();
2186
2187 spin_lock_irq(&q->queue_lock);
2188
2189 throtl_update_latency_buckets(td);
2190
2191 blk_throtl_update_idletime(tg);
2192
2193 sq = &tg->service_queue;
2194
2195 again:
2196 while (true) {
2197 if (tg->last_low_overflow_time[rw] == 0)
2198 tg->last_low_overflow_time[rw] = jiffies;
2199 throtl_downgrade_check(tg);
2200 throtl_upgrade_check(tg);
2201 /* throtl is FIFO - if bios are already queued, should queue */
2202 if (sq->nr_queued[rw])
2203 break;
2204
2205 /* if above limits, break to queue */
2206 if (!tg_may_dispatch(tg, bio, NULL)) {
2207 tg->last_low_overflow_time[rw] = jiffies;
2208 if (throtl_can_upgrade(td, tg)) {
2209 throtl_upgrade_state(td);
2210 goto again;
2211 }
2212 break;
2213 }
2214
2215 /* within limits, let's charge and dispatch directly */
2216 throtl_charge_bio(tg, bio);
2217
2218 /*
2219 * We need to trim slice even when bios are not being queued
2220 * otherwise it might happen that a bio is not queued for
2221 * a long time and slice keeps on extending and trim is not
2222 * called for a long time. Now if limits are reduced suddenly
2223 * we take into account all the IO dispatched so far at new
2224 * low rate and * newly queued IO gets a really long dispatch
2225 * time.
2226 *
2227 * So keep on trimming slice even if bio is not queued.
2228 */
2229 throtl_trim_slice(tg, rw);
2230
2231 /*
2232 * @bio passed through this layer without being throttled.
2233 * Climb up the ladder. If we're already at the top, it
2234 * can be executed directly.
2235 */
2236 qn = &tg->qnode_on_parent[rw];
2237 sq = sq->parent_sq;
2238 tg = sq_to_tg(sq);
2239 if (!tg) {
2240 bio_set_flag(bio, BIO_BPS_THROTTLED);
2241 goto out_unlock;
2242 }
2243 }
2244
2245 /* out-of-limit, queue to @tg */
2246 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2247 rw == READ ? 'R' : 'W',
2248 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2249 tg_bps_limit(tg, rw),
2250 tg->io_disp[rw], tg_iops_limit(tg, rw),
2251 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2252
2253 tg->last_low_overflow_time[rw] = jiffies;
2254
2255 td->nr_queued[rw]++;
2256 throtl_add_bio_tg(bio, qn, tg);
2257 throttled = true;
2258
2259 /*
2260 * Update @tg's dispatch time and force schedule dispatch if @tg
2261 * was empty before @bio. The forced scheduling isn't likely to
2262 * cause undue delay as @bio is likely to be dispatched directly if
2263 * its @tg's disptime is not in the future.
2264 */
2265 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2266 tg_update_disptime(tg);
2267 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2268 }
2269
2270 out_unlock:
2271 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2272 if (throttled || !td->track_bio_latency)
2273 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2274 #endif
2275 spin_unlock_irq(&q->queue_lock);
2276
2277 rcu_read_unlock();
2278 return throttled;
2279 }
2280
2281 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_track_latency(struct throtl_data * td,sector_t size,enum req_op op,unsigned long time)2282 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2283 enum req_op op, unsigned long time)
2284 {
2285 const bool rw = op_is_write(op);
2286 struct latency_bucket *latency;
2287 int index;
2288
2289 if (!td || td->limit_index != LIMIT_LOW ||
2290 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2291 !blk_queue_nonrot(td->queue))
2292 return;
2293
2294 index = request_bucket_index(size);
2295
2296 latency = get_cpu_ptr(td->latency_buckets[rw]);
2297 latency[index].total_latency += time;
2298 latency[index].samples++;
2299 put_cpu_ptr(td->latency_buckets[rw]);
2300 }
2301
blk_throtl_stat_add(struct request * rq,u64 time_ns)2302 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2303 {
2304 struct request_queue *q = rq->q;
2305 struct throtl_data *td = q->td;
2306
2307 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2308 time_ns >> 10);
2309 }
2310
blk_throtl_bio_endio(struct bio * bio)2311 void blk_throtl_bio_endio(struct bio *bio)
2312 {
2313 struct blkcg_gq *blkg;
2314 struct throtl_grp *tg;
2315 u64 finish_time_ns;
2316 unsigned long finish_time;
2317 unsigned long start_time;
2318 unsigned long lat;
2319 int rw = bio_data_dir(bio);
2320
2321 blkg = bio->bi_blkg;
2322 if (!blkg)
2323 return;
2324 tg = blkg_to_tg(blkg);
2325 if (!tg->td->limit_valid[LIMIT_LOW])
2326 return;
2327
2328 finish_time_ns = ktime_get_ns();
2329 tg->last_finish_time = finish_time_ns >> 10;
2330
2331 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2332 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2333 if (!start_time || finish_time <= start_time)
2334 return;
2335
2336 lat = finish_time - start_time;
2337 /* this is only for bio based driver */
2338 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2339 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2340 bio_op(bio), lat);
2341
2342 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2343 int bucket;
2344 unsigned int threshold;
2345
2346 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2347 threshold = tg->td->avg_buckets[rw][bucket].latency +
2348 tg->latency_target;
2349 if (lat > threshold)
2350 tg->bad_bio_cnt++;
2351 /*
2352 * Not race free, could get wrong count, which means cgroups
2353 * will be throttled
2354 */
2355 tg->bio_cnt++;
2356 }
2357
2358 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2359 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2360 tg->bio_cnt /= 2;
2361 tg->bad_bio_cnt /= 2;
2362 }
2363 }
2364 #endif
2365
blk_throtl_init(struct gendisk * disk)2366 int blk_throtl_init(struct gendisk *disk)
2367 {
2368 struct request_queue *q = disk->queue;
2369 struct throtl_data *td;
2370 int ret;
2371
2372 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2373 if (!td)
2374 return -ENOMEM;
2375 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2376 LATENCY_BUCKET_SIZE, __alignof__(u64));
2377 if (!td->latency_buckets[READ]) {
2378 kfree(td);
2379 return -ENOMEM;
2380 }
2381 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2382 LATENCY_BUCKET_SIZE, __alignof__(u64));
2383 if (!td->latency_buckets[WRITE]) {
2384 free_percpu(td->latency_buckets[READ]);
2385 kfree(td);
2386 return -ENOMEM;
2387 }
2388
2389 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2390 throtl_service_queue_init(&td->service_queue);
2391
2392 q->td = td;
2393 td->queue = q;
2394
2395 td->limit_valid[LIMIT_MAX] = true;
2396 td->limit_index = LIMIT_MAX;
2397 td->low_upgrade_time = jiffies;
2398 td->low_downgrade_time = jiffies;
2399
2400 /* activate policy */
2401 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2402 if (ret) {
2403 free_percpu(td->latency_buckets[READ]);
2404 free_percpu(td->latency_buckets[WRITE]);
2405 kfree(td);
2406 }
2407 return ret;
2408 }
2409
blk_throtl_exit(struct gendisk * disk)2410 void blk_throtl_exit(struct gendisk *disk)
2411 {
2412 struct request_queue *q = disk->queue;
2413
2414 BUG_ON(!q->td);
2415 del_timer_sync(&q->td->service_queue.pending_timer);
2416 throtl_shutdown_wq(q);
2417 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2418 free_percpu(q->td->latency_buckets[READ]);
2419 free_percpu(q->td->latency_buckets[WRITE]);
2420 kfree(q->td);
2421 }
2422
blk_throtl_register(struct gendisk * disk)2423 void blk_throtl_register(struct gendisk *disk)
2424 {
2425 struct request_queue *q = disk->queue;
2426 struct throtl_data *td;
2427 int i;
2428
2429 td = q->td;
2430 BUG_ON(!td);
2431
2432 if (blk_queue_nonrot(q)) {
2433 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2434 td->filtered_latency = LATENCY_FILTERED_SSD;
2435 } else {
2436 td->throtl_slice = DFL_THROTL_SLICE_HD;
2437 td->filtered_latency = LATENCY_FILTERED_HD;
2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2441 }
2442 }
2443 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2444 /* if no low limit, use previous default */
2445 td->throtl_slice = DFL_THROTL_SLICE_HD;
2446
2447 #else
2448 td->track_bio_latency = !queue_is_mq(q);
2449 if (!td->track_bio_latency)
2450 blk_stat_enable_accounting(q);
2451 #endif
2452 }
2453
2454 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_sample_time_show(struct request_queue * q,char * page)2455 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2456 {
2457 if (!q->td)
2458 return -EINVAL;
2459 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2460 }
2461
blk_throtl_sample_time_store(struct request_queue * q,const char * page,size_t count)2462 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2463 const char *page, size_t count)
2464 {
2465 unsigned long v;
2466 unsigned long t;
2467
2468 if (!q->td)
2469 return -EINVAL;
2470 if (kstrtoul(page, 10, &v))
2471 return -EINVAL;
2472 t = msecs_to_jiffies(v);
2473 if (t == 0 || t > MAX_THROTL_SLICE)
2474 return -EINVAL;
2475 q->td->throtl_slice = t;
2476 return count;
2477 }
2478 #endif
2479
throtl_init(void)2480 static int __init throtl_init(void)
2481 {
2482 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2483 if (!kthrotld_workqueue)
2484 panic("Failed to create kthrotld\n");
2485
2486 return blkcg_policy_register(&blkcg_policy_throtl);
2487 }
2488
2489 module_init(throtl_init);
2490