1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_MMU_8XX_H_
3 #define _ASM_POWERPC_MMU_8XX_H_
4 /*
5 * PPC8xx support
6 */
7
8 /* Control/status registers for the MPC8xx.
9 * A write operation to these registers causes serialized access.
10 * During software tablewalk, the registers used perform mask/shift-add
11 * operations when written/read. A TLB entry is created when the Mx_RPN
12 * is written, and the contents of several registers are used to
13 * create the entry.
14 */
15 #define SPRN_MI_CTR 784 /* Instruction TLB control register */
16 #define MI_GPM 0x80000000 /* Set domain manager mode */
17 #define MI_PPM 0x40000000 /* Set subpage protection */
18 #define MI_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */
19 #define MI_RSV4I 0x08000000 /* Reserve 4 TLB entries */
20 #define MI_PPCS 0x02000000 /* Use MI_RPN prob/priv state */
21 #define MI_IDXMASK 0x00001f00 /* TLB index to be loaded */
22 #define MI_RESETVAL 0x00000000 /* Value of register at reset */
23
24 /* These are the Ks and Kp from the PowerPC books. For proper operation,
25 * Ks = 0, Kp = 1.
26 */
27 #define SPRN_MI_AP 786
28 #define MI_Ks 0x80000000 /* Should not be set */
29 #define MI_Kp 0x40000000 /* Should always be set */
30
31 /*
32 * All pages' PP data bits are set to either 001 or 011 by copying _PAGE_EXEC
33 * into bit 21 in the ITLBmiss handler (bit 21 is the middle bit), which means
34 * respectively NA for All or X for Supervisor and no access for User.
35 * Then we use the APG to say whether accesses are according to Page rules or
36 * "all Supervisor" rules (Access to all)
37 * Therefore, we define 2 APG groups. lsb is _PMD_USER
38 * 0 => Kernel => 01 (all accesses performed according to page definition)
39 * 1 => User => 00 (all accesses performed as supervisor iaw page definition)
40 * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
41 */
42 #define MI_APG_INIT 0x4fffffff
43
44 /*
45 * 0 => Kernel => 01 (all accesses performed according to page definition)
46 * 1 => User => 10 (all accesses performed according to swaped page definition)
47 * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
48 */
49 #define MI_APG_KUEP 0x6fffffff
50
51 /* The effective page number register. When read, contains the information
52 * about the last instruction TLB miss. When MI_RPN is written, bits in
53 * this register are used to create the TLB entry.
54 */
55 #define SPRN_MI_EPN 787
56 #define MI_EPNMASK 0xfffff000 /* Effective page number for entry */
57 #define MI_EVALID 0x00000200 /* Entry is valid */
58 #define MI_ASIDMASK 0x0000000f /* ASID match value */
59 /* Reset value is undefined */
60
61 /* A "level 1" or "segment" or whatever you want to call it register.
62 * For the instruction TLB, it contains bits that get loaded into the
63 * TLB entry when the MI_RPN is written.
64 */
65 #define SPRN_MI_TWC 789
66 #define MI_APG 0x000001e0 /* Access protection group (0) */
67 #define MI_GUARDED 0x00000010 /* Guarded storage */
68 #define MI_PSMASK 0x0000000c /* Mask of page size bits */
69 #define MI_PS8MEG 0x0000000c /* 8M page size */
70 #define MI_PS512K 0x00000004 /* 512K page size */
71 #define MI_PS4K_16K 0x00000000 /* 4K or 16K page size */
72 #define MI_SVALID 0x00000001 /* Segment entry is valid */
73 /* Reset value is undefined */
74
75 /* Real page number. Defined by the pte. Writing this register
76 * causes a TLB entry to be created for the instruction TLB, using
77 * additional information from the MI_EPN, and MI_TWC registers.
78 */
79 #define SPRN_MI_RPN 790
80 #define MI_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */
81
82 /* Define an RPN value for mapping kernel memory to large virtual
83 * pages for boot initialization. This has real page number of 0,
84 * large page size, shared page, cache enabled, and valid.
85 * Also mark all subpages valid and write access.
86 */
87 #define MI_BOOTINIT 0x000001fd
88
89 #define SPRN_MD_CTR 792 /* Data TLB control register */
90 #define MD_GPM 0x80000000 /* Set domain manager mode */
91 #define MD_PPM 0x40000000 /* Set subpage protection */
92 #define MD_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */
93 #define MD_WTDEF 0x10000000 /* Set writethrough when MMU dis */
94 #define MD_RSV4I 0x08000000 /* Reserve 4 TLB entries */
95 #define MD_TWAM 0x04000000 /* Use 4K page hardware assist */
96 #define MD_PPCS 0x02000000 /* Use MI_RPN prob/priv state */
97 #define MD_IDXMASK 0x00001f00 /* TLB index to be loaded */
98 #define MD_RESETVAL 0x04000000 /* Value of register at reset */
99
100 #define SPRN_M_CASID 793 /* Address space ID (context) to match */
101 #define MC_ASIDMASK 0x0000000f /* Bits used for ASID value */
102
103
104 /* These are the Ks and Kp from the PowerPC books. For proper operation,
105 * Ks = 0, Kp = 1.
106 */
107 #define SPRN_MD_AP 794
108 #define MD_Ks 0x80000000 /* Should not be set */
109 #define MD_Kp 0x40000000 /* Should always be set */
110
111 /*
112 * All pages' PP data bits are set to either 000 or 011 or 001, which means
113 * respectively RW for Supervisor and no access for User, or RO for
114 * Supervisor and no access for user and NA for ALL.
115 * Then we use the APG to say whether accesses are according to Page rules or
116 * "all Supervisor" rules (Access to all)
117 * Therefore, we define 2 APG groups. lsb is _PMD_USER
118 * 0 => Kernel => 01 (all accesses performed according to page definition)
119 * 1 => User => 00 (all accesses performed as supervisor iaw page definition)
120 * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
121 */
122 #define MD_APG_INIT 0x4fffffff
123
124 /*
125 * 0 => No user => 01 (all accesses performed according to page definition)
126 * 1 => User => 10 (all accesses performed according to swaped page definition)
127 * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
128 */
129 #define MD_APG_KUAP 0x6fffffff
130
131 /* The effective page number register. When read, contains the information
132 * about the last instruction TLB miss. When MD_RPN is written, bits in
133 * this register are used to create the TLB entry.
134 */
135 #define SPRN_MD_EPN 795
136 #define MD_EPNMASK 0xfffff000 /* Effective page number for entry */
137 #define MD_EVALID 0x00000200 /* Entry is valid */
138 #define MD_ASIDMASK 0x0000000f /* ASID match value */
139 /* Reset value is undefined */
140
141 /* The pointer to the base address of the first level page table.
142 * During a software tablewalk, reading this register provides the address
143 * of the entry associated with MD_EPN.
144 */
145 #define SPRN_M_TWB 796
146 #define M_L1TB 0xfffff000 /* Level 1 table base address */
147 #define M_L1INDX 0x00000ffc /* Level 1 index, when read */
148 /* Reset value is undefined */
149
150 /* A "level 1" or "segment" or whatever you want to call it register.
151 * For the data TLB, it contains bits that get loaded into the TLB entry
152 * when the MD_RPN is written. It is also provides the hardware assist
153 * for finding the PTE address during software tablewalk.
154 */
155 #define SPRN_MD_TWC 797
156 #define MD_L2TB 0xfffff000 /* Level 2 table base address */
157 #define MD_L2INDX 0xfffffe00 /* Level 2 index (*pte), when read */
158 #define MD_APG 0x000001e0 /* Access protection group (0) */
159 #define MD_GUARDED 0x00000010 /* Guarded storage */
160 #define MD_PSMASK 0x0000000c /* Mask of page size bits */
161 #define MD_PS8MEG 0x0000000c /* 8M page size */
162 #define MD_PS512K 0x00000004 /* 512K page size */
163 #define MD_PS4K_16K 0x00000000 /* 4K or 16K page size */
164 #define MD_WT 0x00000002 /* Use writethrough page attribute */
165 #define MD_SVALID 0x00000001 /* Segment entry is valid */
166 /* Reset value is undefined */
167
168
169 /* Real page number. Defined by the pte. Writing this register
170 * causes a TLB entry to be created for the data TLB, using
171 * additional information from the MD_EPN, and MD_TWC registers.
172 */
173 #define SPRN_MD_RPN 798
174 #define MD_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */
175
176 /* This is a temporary storage register that could be used to save
177 * a processor working register during a tablewalk.
178 */
179 #define SPRN_M_TW 799
180
181 #ifdef CONFIG_PPC_MM_SLICES
182 #include <asm/nohash/32/slice.h>
183 #define SLICE_ARRAY_SIZE (1 << (32 - SLICE_LOW_SHIFT - 1))
184 #define LOW_SLICE_ARRAY_SZ SLICE_ARRAY_SIZE
185 #endif
186
187 #if defined(CONFIG_PPC_4K_PAGES)
188 #define mmu_virtual_psize MMU_PAGE_4K
189 #elif defined(CONFIG_PPC_16K_PAGES)
190 #define mmu_virtual_psize MMU_PAGE_16K
191 #define PTE_FRAG_NR 4
192 #define PTE_FRAG_SIZE_SHIFT 12
193 #define PTE_FRAG_SIZE (1UL << 12)
194 #else
195 #error "Unsupported PAGE_SIZE"
196 #endif
197
198 #define mmu_linear_psize MMU_PAGE_8M
199
200 #ifndef __ASSEMBLY__
201
202 #include <linux/mmdebug.h>
203
204 struct slice_mask {
205 u64 low_slices;
206 DECLARE_BITMAP(high_slices, 0);
207 };
208
209 typedef struct {
210 unsigned int id;
211 unsigned int active;
212 unsigned long vdso_base;
213 #ifdef CONFIG_PPC_MM_SLICES
214 u16 user_psize; /* page size index */
215 unsigned char low_slices_psize[SLICE_ARRAY_SIZE];
216 unsigned char high_slices_psize[0];
217 unsigned long slb_addr_limit;
218 struct slice_mask mask_base_psize; /* 4k or 16k */
219 struct slice_mask mask_512k;
220 struct slice_mask mask_8m;
221 #endif
222 void *pte_frag;
223 } mm_context_t;
224
225 #ifdef CONFIG_PPC_MM_SLICES
mm_ctx_user_psize(mm_context_t * ctx)226 static inline u16 mm_ctx_user_psize(mm_context_t *ctx)
227 {
228 return ctx->user_psize;
229 }
230
mm_ctx_set_user_psize(mm_context_t * ctx,u16 user_psize)231 static inline void mm_ctx_set_user_psize(mm_context_t *ctx, u16 user_psize)
232 {
233 ctx->user_psize = user_psize;
234 }
235
mm_ctx_low_slices(mm_context_t * ctx)236 static inline unsigned char *mm_ctx_low_slices(mm_context_t *ctx)
237 {
238 return ctx->low_slices_psize;
239 }
240
mm_ctx_high_slices(mm_context_t * ctx)241 static inline unsigned char *mm_ctx_high_slices(mm_context_t *ctx)
242 {
243 return ctx->high_slices_psize;
244 }
245
mm_ctx_slb_addr_limit(mm_context_t * ctx)246 static inline unsigned long mm_ctx_slb_addr_limit(mm_context_t *ctx)
247 {
248 return ctx->slb_addr_limit;
249 }
250
mm_ctx_set_slb_addr_limit(mm_context_t * ctx,unsigned long limit)251 static inline void mm_ctx_set_slb_addr_limit(mm_context_t *ctx, unsigned long limit)
252 {
253 ctx->slb_addr_limit = limit;
254 }
255
slice_mask_for_size(mm_context_t * ctx,int psize)256 static inline struct slice_mask *slice_mask_for_size(mm_context_t *ctx, int psize)
257 {
258 if (psize == MMU_PAGE_512K)
259 return &ctx->mask_512k;
260 if (psize == MMU_PAGE_8M)
261 return &ctx->mask_8m;
262
263 BUG_ON(psize != mmu_virtual_psize);
264
265 return &ctx->mask_base_psize;
266 }
267 #endif /* CONFIG_PPC_MM_SLICE */
268
269 #define PHYS_IMMR_BASE (mfspr(SPRN_IMMR) & 0xfff80000)
270 #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE))
271
272 /* Page size definitions, common between 32 and 64-bit
273 *
274 * shift : is the "PAGE_SHIFT" value for that page size
275 * penc : is the pte encoding mask
276 *
277 */
278 struct mmu_psize_def {
279 unsigned int shift; /* number of bits */
280 unsigned int enc; /* PTE encoding */
281 unsigned int ind; /* Corresponding indirect page size shift */
282 unsigned int flags;
283 #define MMU_PAGE_SIZE_DIRECT 0x1 /* Supported as a direct size */
284 #define MMU_PAGE_SIZE_INDIRECT 0x2 /* Supported as an indirect size */
285 };
286
287 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
288
shift_to_mmu_psize(unsigned int shift)289 static inline int shift_to_mmu_psize(unsigned int shift)
290 {
291 int psize;
292
293 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
294 if (mmu_psize_defs[psize].shift == shift)
295 return psize;
296 return -1;
297 }
298
mmu_psize_to_shift(unsigned int mmu_psize)299 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
300 {
301 if (mmu_psize_defs[mmu_psize].shift)
302 return mmu_psize_defs[mmu_psize].shift;
303 BUG();
304 }
305
306 /* patch sites */
307 extern s32 patch__itlbmiss_linmem_top, patch__itlbmiss_linmem_top8;
308 extern s32 patch__dtlbmiss_linmem_top, patch__dtlbmiss_immr_jmp;
309 extern s32 patch__fixupdar_linmem_top;
310 extern s32 patch__dtlbmiss_romem_top, patch__dtlbmiss_romem_top8;
311
312 extern s32 patch__itlbmiss_exit_1, patch__itlbmiss_exit_2;
313 extern s32 patch__dtlbmiss_exit_1, patch__dtlbmiss_exit_2, patch__dtlbmiss_exit_3;
314 extern s32 patch__itlbmiss_perf, patch__dtlbmiss_perf;
315
316 #endif /* !__ASSEMBLY__ */
317
318 #endif /* _ASM_POWERPC_MMU_8XX_H_ */
319