1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
4 *
5 * Author: Wang YanQing (udknight@gmail.com)
6 * The code based on code and ideas from:
7 * Eric Dumazet (eric.dumazet@gmail.com)
8 * and from:
9 * Shubham Bansal <illusionist.neo@gmail.com>
10 */
11
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <asm/cacheflush.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <linux/bpf.h>
19
20 /*
21 * eBPF prog stack layout:
22 *
23 * high
24 * original ESP => +-----+
25 * | | callee saved registers
26 * +-----+
27 * | ... | eBPF JIT scratch space
28 * BPF_FP,IA32_EBP => +-----+
29 * | ... | eBPF prog stack
30 * +-----+
31 * |RSVD | JIT scratchpad
32 * current ESP => +-----+
33 * | |
34 * | ... | Function call stack
35 * | |
36 * +-----+
37 * low
38 *
39 * The callee saved registers:
40 *
41 * high
42 * original ESP => +------------------+ \
43 * | ebp | |
44 * current EBP => +------------------+ } callee saved registers
45 * | ebx,esi,edi | |
46 * +------------------+ /
47 * low
48 */
49
emit_code(u8 * ptr,u32 bytes,unsigned int len)50 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
51 {
52 if (len == 1)
53 *ptr = bytes;
54 else if (len == 2)
55 *(u16 *)ptr = bytes;
56 else {
57 *(u32 *)ptr = bytes;
58 barrier();
59 }
60 return ptr + len;
61 }
62
63 #define EMIT(bytes, len) \
64 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
65
66 #define EMIT1(b1) EMIT(b1, 1)
67 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
68 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
69 #define EMIT4(b1, b2, b3, b4) \
70 EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
71
72 #define EMIT1_off32(b1, off) \
73 do { EMIT1(b1); EMIT(off, 4); } while (0)
74 #define EMIT2_off32(b1, b2, off) \
75 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
76 #define EMIT3_off32(b1, b2, b3, off) \
77 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
78 #define EMIT4_off32(b1, b2, b3, b4, off) \
79 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
80
81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
82
is_imm8(int value)83 static bool is_imm8(int value)
84 {
85 return value <= 127 && value >= -128;
86 }
87
is_simm32(s64 value)88 static bool is_simm32(s64 value)
89 {
90 return value == (s64) (s32) value;
91 }
92
93 #define STACK_OFFSET(k) (k)
94 #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
95
96 #define IA32_EAX (0x0)
97 #define IA32_EBX (0x3)
98 #define IA32_ECX (0x1)
99 #define IA32_EDX (0x2)
100 #define IA32_ESI (0x6)
101 #define IA32_EDI (0x7)
102 #define IA32_EBP (0x5)
103 #define IA32_ESP (0x4)
104
105 /*
106 * List of x86 cond jumps opcodes (. + s8)
107 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
108 */
109 #define IA32_JB 0x72
110 #define IA32_JAE 0x73
111 #define IA32_JE 0x74
112 #define IA32_JNE 0x75
113 #define IA32_JBE 0x76
114 #define IA32_JA 0x77
115 #define IA32_JL 0x7C
116 #define IA32_JGE 0x7D
117 #define IA32_JLE 0x7E
118 #define IA32_JG 0x7F
119
120 #define COND_JMP_OPCODE_INVALID (0xFF)
121
122 /*
123 * Map eBPF registers to IA32 32bit registers or stack scratch space.
124 *
125 * 1. All the registers, R0-R10, are mapped to scratch space on stack.
126 * 2. We need two 64 bit temp registers to do complex operations on eBPF
127 * registers.
128 * 3. For performance reason, the BPF_REG_AX for blinding constant, is
129 * mapped to real hardware register pair, IA32_ESI and IA32_EDI.
130 *
131 * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
132 * registers, we have to map each eBPF registers with two IA32 32 bit regs
133 * or scratch memory space and we have to build eBPF 64 bit register from those.
134 *
135 * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
136 */
137 static const u8 bpf2ia32[][2] = {
138 /* Return value from in-kernel function, and exit value from eBPF */
139 [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
140
141 /* The arguments from eBPF program to in-kernel function */
142 /* Stored on stack scratch space */
143 [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
144 [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
145 [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
146 [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
147 [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
148
149 /* Callee saved registers that in-kernel function will preserve */
150 /* Stored on stack scratch space */
151 [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
152 [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
153 [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
154 [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
155
156 /* Read only Frame Pointer to access Stack */
157 [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
158
159 /* Temporary register for blinding constants. */
160 [BPF_REG_AX] = {IA32_ESI, IA32_EDI},
161
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
164 };
165
166 #define dst_lo dst[0]
167 #define dst_hi dst[1]
168 #define src_lo src[0]
169 #define src_hi src[1]
170
171 #define STACK_ALIGNMENT 8
172 /*
173 * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
174 * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
175 * BPF_REG_FP, BPF_REG_AX and Tail call counts.
176 */
177 #define SCRATCH_SIZE 96
178
179 /* Total stack size used in JITed code */
180 #define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
181
182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
183
184 /* Get the offset of eBPF REGISTERs stored on scratch space. */
185 #define STACK_VAR(off) (off)
186
187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)188 static u8 add_1reg(u8 byte, u32 dst_reg)
189 {
190 return byte + dst_reg;
191 }
192
193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)194 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
195 {
196 return byte + dst_reg + (src_reg << 3);
197 }
198
jit_fill_hole(void * area,unsigned int size)199 static void jit_fill_hole(void *area, unsigned int size)
200 {
201 /* Fill whole space with int3 instructions */
202 memset(area, 0xcc, size);
203 }
204
emit_ia32_mov_i(const u8 dst,const u32 val,bool dstk,u8 ** pprog)205 static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
206 u8 **pprog)
207 {
208 u8 *prog = *pprog;
209 int cnt = 0;
210
211 if (dstk) {
212 if (val == 0) {
213 /* xor eax,eax */
214 EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
215 /* mov dword ptr [ebp+off],eax */
216 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
217 STACK_VAR(dst));
218 } else {
219 EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
220 STACK_VAR(dst), val);
221 }
222 } else {
223 if (val == 0)
224 EMIT2(0x33, add_2reg(0xC0, dst, dst));
225 else
226 EMIT2_off32(0xC7, add_1reg(0xC0, dst),
227 val);
228 }
229 *pprog = prog;
230 }
231
232 /* dst = imm (4 bytes)*/
emit_ia32_mov_r(const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)233 static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
234 bool sstk, u8 **pprog)
235 {
236 u8 *prog = *pprog;
237 int cnt = 0;
238 u8 sreg = sstk ? IA32_EAX : src;
239
240 if (sstk)
241 /* mov eax,dword ptr [ebp+off] */
242 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
243 if (dstk)
244 /* mov dword ptr [ebp+off],eax */
245 EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
246 else
247 /* mov dst,sreg */
248 EMIT2(0x89, add_2reg(0xC0, dst, sreg));
249
250 *pprog = prog;
251 }
252
253 /* dst = src */
emit_ia32_mov_r64(const bool is64,const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog,const struct bpf_prog_aux * aux)254 static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
255 const u8 src[], bool dstk,
256 bool sstk, u8 **pprog,
257 const struct bpf_prog_aux *aux)
258 {
259 emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
260 if (is64)
261 /* complete 8 byte move */
262 emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
263 else if (!aux->verifier_zext)
264 /* zero out high 4 bytes */
265 emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
266 }
267
268 /* Sign extended move */
emit_ia32_mov_i64(const bool is64,const u8 dst[],const u32 val,bool dstk,u8 ** pprog)269 static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
270 const u32 val, bool dstk, u8 **pprog)
271 {
272 u32 hi = 0;
273
274 if (is64 && (val & (1<<31)))
275 hi = (u32)~0;
276 emit_ia32_mov_i(dst_lo, val, dstk, pprog);
277 emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
278 }
279
280 /*
281 * ALU operation (32 bit)
282 * dst = dst * src
283 */
emit_ia32_mul_r(const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)284 static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
285 bool sstk, u8 **pprog)
286 {
287 u8 *prog = *pprog;
288 int cnt = 0;
289 u8 sreg = sstk ? IA32_ECX : src;
290
291 if (sstk)
292 /* mov ecx,dword ptr [ebp+off] */
293 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
294
295 if (dstk)
296 /* mov eax,dword ptr [ebp+off] */
297 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
298 else
299 /* mov eax,dst */
300 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
301
302
303 EMIT2(0xF7, add_1reg(0xE0, sreg));
304
305 if (dstk)
306 /* mov dword ptr [ebp+off],eax */
307 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
308 STACK_VAR(dst));
309 else
310 /* mov dst,eax */
311 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
312
313 *pprog = prog;
314 }
315
emit_ia32_to_le_r64(const u8 dst[],s32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)316 static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
317 bool dstk, u8 **pprog,
318 const struct bpf_prog_aux *aux)
319 {
320 u8 *prog = *pprog;
321 int cnt = 0;
322 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
323 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
324
325 if (dstk && val != 64) {
326 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
327 STACK_VAR(dst_lo));
328 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
329 STACK_VAR(dst_hi));
330 }
331 switch (val) {
332 case 16:
333 /*
334 * Emit 'movzwl eax,ax' to zero extend 16-bit
335 * into 64 bit
336 */
337 EMIT2(0x0F, 0xB7);
338 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
339 if (!aux->verifier_zext)
340 /* xor dreg_hi,dreg_hi */
341 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
342 break;
343 case 32:
344 if (!aux->verifier_zext)
345 /* xor dreg_hi,dreg_hi */
346 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
347 break;
348 case 64:
349 /* nop */
350 break;
351 }
352
353 if (dstk && val != 64) {
354 /* mov dword ptr [ebp+off],dreg_lo */
355 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
356 STACK_VAR(dst_lo));
357 /* mov dword ptr [ebp+off],dreg_hi */
358 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
359 STACK_VAR(dst_hi));
360 }
361 *pprog = prog;
362 }
363
emit_ia32_to_be_r64(const u8 dst[],s32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)364 static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
365 bool dstk, u8 **pprog,
366 const struct bpf_prog_aux *aux)
367 {
368 u8 *prog = *pprog;
369 int cnt = 0;
370 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
371 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
372
373 if (dstk) {
374 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
375 STACK_VAR(dst_lo));
376 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
377 STACK_VAR(dst_hi));
378 }
379 switch (val) {
380 case 16:
381 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
382 EMIT1(0x66);
383 EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
384
385 EMIT2(0x0F, 0xB7);
386 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
387
388 if (!aux->verifier_zext)
389 /* xor dreg_hi,dreg_hi */
390 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
391 break;
392 case 32:
393 /* Emit 'bswap eax' to swap lower 4 bytes */
394 EMIT1(0x0F);
395 EMIT1(add_1reg(0xC8, dreg_lo));
396
397 if (!aux->verifier_zext)
398 /* xor dreg_hi,dreg_hi */
399 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
400 break;
401 case 64:
402 /* Emit 'bswap eax' to swap lower 4 bytes */
403 EMIT1(0x0F);
404 EMIT1(add_1reg(0xC8, dreg_lo));
405
406 /* Emit 'bswap edx' to swap lower 4 bytes */
407 EMIT1(0x0F);
408 EMIT1(add_1reg(0xC8, dreg_hi));
409
410 /* mov ecx,dreg_hi */
411 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
412 /* mov dreg_hi,dreg_lo */
413 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
414 /* mov dreg_lo,ecx */
415 EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
416
417 break;
418 }
419 if (dstk) {
420 /* mov dword ptr [ebp+off],dreg_lo */
421 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
422 STACK_VAR(dst_lo));
423 /* mov dword ptr [ebp+off],dreg_hi */
424 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
425 STACK_VAR(dst_hi));
426 }
427 *pprog = prog;
428 }
429
430 /*
431 * ALU operation (32 bit)
432 * dst = dst (div|mod) src
433 */
emit_ia32_div_mod_r(const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)434 static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
435 bool dstk, bool sstk, u8 **pprog)
436 {
437 u8 *prog = *pprog;
438 int cnt = 0;
439
440 if (sstk)
441 /* mov ecx,dword ptr [ebp+off] */
442 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
443 STACK_VAR(src));
444 else if (src != IA32_ECX)
445 /* mov ecx,src */
446 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
447
448 if (dstk)
449 /* mov eax,dword ptr [ebp+off] */
450 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
451 STACK_VAR(dst));
452 else
453 /* mov eax,dst */
454 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
455
456 /* xor edx,edx */
457 EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
458 /* div ecx */
459 EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
460
461 if (op == BPF_MOD) {
462 if (dstk)
463 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
464 STACK_VAR(dst));
465 else
466 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
467 } else {
468 if (dstk)
469 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
470 STACK_VAR(dst));
471 else
472 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
473 }
474 *pprog = prog;
475 }
476
477 /*
478 * ALU operation (32 bit)
479 * dst = dst (shift) src
480 */
emit_ia32_shift_r(const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)481 static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
482 bool dstk, bool sstk, u8 **pprog)
483 {
484 u8 *prog = *pprog;
485 int cnt = 0;
486 u8 dreg = dstk ? IA32_EAX : dst;
487 u8 b2;
488
489 if (dstk)
490 /* mov eax,dword ptr [ebp+off] */
491 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
492
493 if (sstk)
494 /* mov ecx,dword ptr [ebp+off] */
495 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
496 else if (src != IA32_ECX)
497 /* mov ecx,src */
498 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
499
500 switch (op) {
501 case BPF_LSH:
502 b2 = 0xE0; break;
503 case BPF_RSH:
504 b2 = 0xE8; break;
505 case BPF_ARSH:
506 b2 = 0xF8; break;
507 default:
508 return;
509 }
510 EMIT2(0xD3, add_1reg(b2, dreg));
511
512 if (dstk)
513 /* mov dword ptr [ebp+off],dreg */
514 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
515 *pprog = prog;
516 }
517
518 /*
519 * ALU operation (32 bit)
520 * dst = dst (op) src
521 */
emit_ia32_alu_r(const bool is64,const bool hi,const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)522 static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
523 const u8 dst, const u8 src, bool dstk,
524 bool sstk, u8 **pprog)
525 {
526 u8 *prog = *pprog;
527 int cnt = 0;
528 u8 sreg = sstk ? IA32_EAX : src;
529 u8 dreg = dstk ? IA32_EDX : dst;
530
531 if (sstk)
532 /* mov eax,dword ptr [ebp+off] */
533 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
534
535 if (dstk)
536 /* mov eax,dword ptr [ebp+off] */
537 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
538
539 switch (BPF_OP(op)) {
540 /* dst = dst + src */
541 case BPF_ADD:
542 if (hi && is64)
543 EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
544 else
545 EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
546 break;
547 /* dst = dst - src */
548 case BPF_SUB:
549 if (hi && is64)
550 EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
551 else
552 EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
553 break;
554 /* dst = dst | src */
555 case BPF_OR:
556 EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
557 break;
558 /* dst = dst & src */
559 case BPF_AND:
560 EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
561 break;
562 /* dst = dst ^ src */
563 case BPF_XOR:
564 EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
565 break;
566 }
567
568 if (dstk)
569 /* mov dword ptr [ebp+off],dreg */
570 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
571 STACK_VAR(dst));
572 *pprog = prog;
573 }
574
575 /* ALU operation (64 bit) */
emit_ia32_alu_r64(const bool is64,const u8 op,const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog,const struct bpf_prog_aux * aux)576 static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
577 const u8 dst[], const u8 src[],
578 bool dstk, bool sstk,
579 u8 **pprog, const struct bpf_prog_aux *aux)
580 {
581 u8 *prog = *pprog;
582
583 emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
584 if (is64)
585 emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
586 &prog);
587 else if (!aux->verifier_zext)
588 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
589 *pprog = prog;
590 }
591
592 /*
593 * ALU operation (32 bit)
594 * dst = dst (op) val
595 */
emit_ia32_alu_i(const bool is64,const bool hi,const u8 op,const u8 dst,const s32 val,bool dstk,u8 ** pprog)596 static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
597 const u8 dst, const s32 val, bool dstk,
598 u8 **pprog)
599 {
600 u8 *prog = *pprog;
601 int cnt = 0;
602 u8 dreg = dstk ? IA32_EAX : dst;
603 u8 sreg = IA32_EDX;
604
605 if (dstk)
606 /* mov eax,dword ptr [ebp+off] */
607 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
608
609 if (!is_imm8(val))
610 /* mov edx,imm32*/
611 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
612
613 switch (op) {
614 /* dst = dst + val */
615 case BPF_ADD:
616 if (hi && is64) {
617 if (is_imm8(val))
618 EMIT3(0x83, add_1reg(0xD0, dreg), val);
619 else
620 EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
621 } else {
622 if (is_imm8(val))
623 EMIT3(0x83, add_1reg(0xC0, dreg), val);
624 else
625 EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
626 }
627 break;
628 /* dst = dst - val */
629 case BPF_SUB:
630 if (hi && is64) {
631 if (is_imm8(val))
632 EMIT3(0x83, add_1reg(0xD8, dreg), val);
633 else
634 EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
635 } else {
636 if (is_imm8(val))
637 EMIT3(0x83, add_1reg(0xE8, dreg), val);
638 else
639 EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
640 }
641 break;
642 /* dst = dst | val */
643 case BPF_OR:
644 if (is_imm8(val))
645 EMIT3(0x83, add_1reg(0xC8, dreg), val);
646 else
647 EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
648 break;
649 /* dst = dst & val */
650 case BPF_AND:
651 if (is_imm8(val))
652 EMIT3(0x83, add_1reg(0xE0, dreg), val);
653 else
654 EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
655 break;
656 /* dst = dst ^ val */
657 case BPF_XOR:
658 if (is_imm8(val))
659 EMIT3(0x83, add_1reg(0xF0, dreg), val);
660 else
661 EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
662 break;
663 case BPF_NEG:
664 EMIT2(0xF7, add_1reg(0xD8, dreg));
665 break;
666 }
667
668 if (dstk)
669 /* mov dword ptr [ebp+off],dreg */
670 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
671 STACK_VAR(dst));
672 *pprog = prog;
673 }
674
675 /* ALU operation (64 bit) */
emit_ia32_alu_i64(const bool is64,const u8 op,const u8 dst[],const u32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)676 static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
677 const u8 dst[], const u32 val,
678 bool dstk, u8 **pprog,
679 const struct bpf_prog_aux *aux)
680 {
681 u8 *prog = *pprog;
682 u32 hi = 0;
683
684 if (is64 && (val & (1<<31)))
685 hi = (u32)~0;
686
687 emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
688 if (is64)
689 emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
690 else if (!aux->verifier_zext)
691 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
692
693 *pprog = prog;
694 }
695
696 /* dst = ~dst (64 bit) */
emit_ia32_neg64(const u8 dst[],bool dstk,u8 ** pprog)697 static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
698 {
699 u8 *prog = *pprog;
700 int cnt = 0;
701 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
702 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
703
704 if (dstk) {
705 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
706 STACK_VAR(dst_lo));
707 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
708 STACK_VAR(dst_hi));
709 }
710
711 /* neg dreg_lo */
712 EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
713 /* adc dreg_hi,0x0 */
714 EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
715 /* neg dreg_hi */
716 EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
717
718 if (dstk) {
719 /* mov dword ptr [ebp+off],dreg_lo */
720 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
721 STACK_VAR(dst_lo));
722 /* mov dword ptr [ebp+off],dreg_hi */
723 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
724 STACK_VAR(dst_hi));
725 }
726 *pprog = prog;
727 }
728
729 /* dst = dst << src */
emit_ia32_lsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)730 static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
731 bool dstk, bool sstk, u8 **pprog)
732 {
733 u8 *prog = *pprog;
734 int cnt = 0;
735 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
736 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
737
738 if (dstk) {
739 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
740 STACK_VAR(dst_lo));
741 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
742 STACK_VAR(dst_hi));
743 }
744
745 if (sstk)
746 /* mov ecx,dword ptr [ebp+off] */
747 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
748 STACK_VAR(src_lo));
749 else
750 /* mov ecx,src_lo */
751 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
752
753 /* shld dreg_hi,dreg_lo,cl */
754 EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
755 /* shl dreg_lo,cl */
756 EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
757
758 /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
759
760 /* cmp ecx,32 */
761 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
762 /* skip the next two instructions (4 bytes) when < 32 */
763 EMIT2(IA32_JB, 4);
764
765 /* mov dreg_hi,dreg_lo */
766 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
767 /* xor dreg_lo,dreg_lo */
768 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
769
770 if (dstk) {
771 /* mov dword ptr [ebp+off],dreg_lo */
772 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
773 STACK_VAR(dst_lo));
774 /* mov dword ptr [ebp+off],dreg_hi */
775 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
776 STACK_VAR(dst_hi));
777 }
778 /* out: */
779 *pprog = prog;
780 }
781
782 /* dst = dst >> src (signed)*/
emit_ia32_arsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)783 static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
784 bool dstk, bool sstk, u8 **pprog)
785 {
786 u8 *prog = *pprog;
787 int cnt = 0;
788 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
789 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
790
791 if (dstk) {
792 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
793 STACK_VAR(dst_lo));
794 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
795 STACK_VAR(dst_hi));
796 }
797
798 if (sstk)
799 /* mov ecx,dword ptr [ebp+off] */
800 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
801 STACK_VAR(src_lo));
802 else
803 /* mov ecx,src_lo */
804 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
805
806 /* shrd dreg_lo,dreg_hi,cl */
807 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
808 /* sar dreg_hi,cl */
809 EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
810
811 /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
812
813 /* cmp ecx,32 */
814 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
815 /* skip the next two instructions (5 bytes) when < 32 */
816 EMIT2(IA32_JB, 5);
817
818 /* mov dreg_lo,dreg_hi */
819 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
820 /* sar dreg_hi,31 */
821 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
822
823 if (dstk) {
824 /* mov dword ptr [ebp+off],dreg_lo */
825 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
826 STACK_VAR(dst_lo));
827 /* mov dword ptr [ebp+off],dreg_hi */
828 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
829 STACK_VAR(dst_hi));
830 }
831 /* out: */
832 *pprog = prog;
833 }
834
835 /* dst = dst >> src */
emit_ia32_rsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)836 static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
837 bool sstk, u8 **pprog)
838 {
839 u8 *prog = *pprog;
840 int cnt = 0;
841 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
842 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
843
844 if (dstk) {
845 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
846 STACK_VAR(dst_lo));
847 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
848 STACK_VAR(dst_hi));
849 }
850
851 if (sstk)
852 /* mov ecx,dword ptr [ebp+off] */
853 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
854 STACK_VAR(src_lo));
855 else
856 /* mov ecx,src_lo */
857 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
858
859 /* shrd dreg_lo,dreg_hi,cl */
860 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
861 /* shr dreg_hi,cl */
862 EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
863
864 /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
865
866 /* cmp ecx,32 */
867 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
868 /* skip the next two instructions (4 bytes) when < 32 */
869 EMIT2(IA32_JB, 4);
870
871 /* mov dreg_lo,dreg_hi */
872 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
873 /* xor dreg_hi,dreg_hi */
874 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
875
876 if (dstk) {
877 /* mov dword ptr [ebp+off],dreg_lo */
878 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
879 STACK_VAR(dst_lo));
880 /* mov dword ptr [ebp+off],dreg_hi */
881 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
882 STACK_VAR(dst_hi));
883 }
884 /* out: */
885 *pprog = prog;
886 }
887
888 /* dst = dst << val */
emit_ia32_lsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)889 static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
890 bool dstk, u8 **pprog)
891 {
892 u8 *prog = *pprog;
893 int cnt = 0;
894 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
895 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
896
897 if (dstk) {
898 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
899 STACK_VAR(dst_lo));
900 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
901 STACK_VAR(dst_hi));
902 }
903 /* Do LSH operation */
904 if (val < 32) {
905 /* shld dreg_hi,dreg_lo,imm8 */
906 EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
907 /* shl dreg_lo,imm8 */
908 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
909 } else if (val >= 32 && val < 64) {
910 u32 value = val - 32;
911
912 /* shl dreg_lo,imm8 */
913 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
914 /* mov dreg_hi,dreg_lo */
915 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
916 /* xor dreg_lo,dreg_lo */
917 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
918 } else {
919 /* xor dreg_lo,dreg_lo */
920 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
921 /* xor dreg_hi,dreg_hi */
922 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
923 }
924
925 if (dstk) {
926 /* mov dword ptr [ebp+off],dreg_lo */
927 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
928 STACK_VAR(dst_lo));
929 /* mov dword ptr [ebp+off],dreg_hi */
930 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
931 STACK_VAR(dst_hi));
932 }
933 *pprog = prog;
934 }
935
936 /* dst = dst >> val */
emit_ia32_rsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)937 static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
938 bool dstk, u8 **pprog)
939 {
940 u8 *prog = *pprog;
941 int cnt = 0;
942 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
943 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
944
945 if (dstk) {
946 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
947 STACK_VAR(dst_lo));
948 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
949 STACK_VAR(dst_hi));
950 }
951
952 /* Do RSH operation */
953 if (val < 32) {
954 /* shrd dreg_lo,dreg_hi,imm8 */
955 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
956 /* shr dreg_hi,imm8 */
957 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
958 } else if (val >= 32 && val < 64) {
959 u32 value = val - 32;
960
961 /* shr dreg_hi,imm8 */
962 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
963 /* mov dreg_lo,dreg_hi */
964 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
965 /* xor dreg_hi,dreg_hi */
966 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
967 } else {
968 /* xor dreg_lo,dreg_lo */
969 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
970 /* xor dreg_hi,dreg_hi */
971 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
972 }
973
974 if (dstk) {
975 /* mov dword ptr [ebp+off],dreg_lo */
976 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
977 STACK_VAR(dst_lo));
978 /* mov dword ptr [ebp+off],dreg_hi */
979 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
980 STACK_VAR(dst_hi));
981 }
982 *pprog = prog;
983 }
984
985 /* dst = dst >> val (signed) */
emit_ia32_arsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)986 static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
987 bool dstk, u8 **pprog)
988 {
989 u8 *prog = *pprog;
990 int cnt = 0;
991 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
992 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
993
994 if (dstk) {
995 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
996 STACK_VAR(dst_lo));
997 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
998 STACK_VAR(dst_hi));
999 }
1000 /* Do RSH operation */
1001 if (val < 32) {
1002 /* shrd dreg_lo,dreg_hi,imm8 */
1003 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
1004 /* ashr dreg_hi,imm8 */
1005 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
1006 } else if (val >= 32 && val < 64) {
1007 u32 value = val - 32;
1008
1009 /* ashr dreg_hi,imm8 */
1010 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
1011 /* mov dreg_lo,dreg_hi */
1012 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1013
1014 /* ashr dreg_hi,imm8 */
1015 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1016 } else {
1017 /* ashr dreg_hi,imm8 */
1018 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1019 /* mov dreg_lo,dreg_hi */
1020 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1021 }
1022
1023 if (dstk) {
1024 /* mov dword ptr [ebp+off],dreg_lo */
1025 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
1026 STACK_VAR(dst_lo));
1027 /* mov dword ptr [ebp+off],dreg_hi */
1028 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
1029 STACK_VAR(dst_hi));
1030 }
1031 *pprog = prog;
1032 }
1033
emit_ia32_mul_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)1034 static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
1035 bool sstk, u8 **pprog)
1036 {
1037 u8 *prog = *pprog;
1038 int cnt = 0;
1039
1040 if (dstk)
1041 /* mov eax,dword ptr [ebp+off] */
1042 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1043 STACK_VAR(dst_hi));
1044 else
1045 /* mov eax,dst_hi */
1046 EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
1047
1048 if (sstk)
1049 /* mul dword ptr [ebp+off] */
1050 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1051 else
1052 /* mul src_lo */
1053 EMIT2(0xF7, add_1reg(0xE0, src_lo));
1054
1055 /* mov ecx,eax */
1056 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1057
1058 if (dstk)
1059 /* mov eax,dword ptr [ebp+off] */
1060 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1061 STACK_VAR(dst_lo));
1062 else
1063 /* mov eax,dst_lo */
1064 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1065
1066 if (sstk)
1067 /* mul dword ptr [ebp+off] */
1068 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
1069 else
1070 /* mul src_hi */
1071 EMIT2(0xF7, add_1reg(0xE0, src_hi));
1072
1073 /* add eax,eax */
1074 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1075
1076 if (dstk)
1077 /* mov eax,dword ptr [ebp+off] */
1078 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1079 STACK_VAR(dst_lo));
1080 else
1081 /* mov eax,dst_lo */
1082 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1083
1084 if (sstk)
1085 /* mul dword ptr [ebp+off] */
1086 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1087 else
1088 /* mul src_lo */
1089 EMIT2(0xF7, add_1reg(0xE0, src_lo));
1090
1091 /* add ecx,edx */
1092 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1093
1094 if (dstk) {
1095 /* mov dword ptr [ebp+off],eax */
1096 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1097 STACK_VAR(dst_lo));
1098 /* mov dword ptr [ebp+off],ecx */
1099 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1100 STACK_VAR(dst_hi));
1101 } else {
1102 /* mov dst_lo,eax */
1103 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1104 /* mov dst_hi,ecx */
1105 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1106 }
1107
1108 *pprog = prog;
1109 }
1110
emit_ia32_mul_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)1111 static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
1112 bool dstk, u8 **pprog)
1113 {
1114 u8 *prog = *pprog;
1115 int cnt = 0;
1116 u32 hi;
1117
1118 hi = val & (1<<31) ? (u32)~0 : 0;
1119 /* movl eax,imm32 */
1120 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1121 if (dstk)
1122 /* mul dword ptr [ebp+off] */
1123 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
1124 else
1125 /* mul dst_hi */
1126 EMIT2(0xF7, add_1reg(0xE0, dst_hi));
1127
1128 /* mov ecx,eax */
1129 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1130
1131 /* movl eax,imm32 */
1132 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
1133 if (dstk)
1134 /* mul dword ptr [ebp+off] */
1135 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1136 else
1137 /* mul dst_lo */
1138 EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1139 /* add ecx,eax */
1140 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1141
1142 /* movl eax,imm32 */
1143 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1144 if (dstk)
1145 /* mul dword ptr [ebp+off] */
1146 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1147 else
1148 /* mul dst_lo */
1149 EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1150
1151 /* add ecx,edx */
1152 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1153
1154 if (dstk) {
1155 /* mov dword ptr [ebp+off],eax */
1156 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1157 STACK_VAR(dst_lo));
1158 /* mov dword ptr [ebp+off],ecx */
1159 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1160 STACK_VAR(dst_hi));
1161 } else {
1162 /* mov dword ptr [ebp+off],eax */
1163 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1164 /* mov dword ptr [ebp+off],ecx */
1165 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1166 }
1167
1168 *pprog = prog;
1169 }
1170
bpf_size_to_x86_bytes(int bpf_size)1171 static int bpf_size_to_x86_bytes(int bpf_size)
1172 {
1173 if (bpf_size == BPF_W)
1174 return 4;
1175 else if (bpf_size == BPF_H)
1176 return 2;
1177 else if (bpf_size == BPF_B)
1178 return 1;
1179 else if (bpf_size == BPF_DW)
1180 return 4; /* imm32 */
1181 else
1182 return 0;
1183 }
1184
1185 struct jit_context {
1186 int cleanup_addr; /* Epilogue code offset */
1187 };
1188
1189 /* Maximum number of bytes emitted while JITing one eBPF insn */
1190 #define BPF_MAX_INSN_SIZE 128
1191 #define BPF_INSN_SAFETY 64
1192
1193 #define PROLOGUE_SIZE 35
1194
1195 /*
1196 * Emit prologue code for BPF program and check it's size.
1197 * bpf_tail_call helper will skip it while jumping into another program.
1198 */
emit_prologue(u8 ** pprog,u32 stack_depth)1199 static void emit_prologue(u8 **pprog, u32 stack_depth)
1200 {
1201 u8 *prog = *pprog;
1202 int cnt = 0;
1203 const u8 *r1 = bpf2ia32[BPF_REG_1];
1204 const u8 fplo = bpf2ia32[BPF_REG_FP][0];
1205 const u8 fphi = bpf2ia32[BPF_REG_FP][1];
1206 const u8 *tcc = bpf2ia32[TCALL_CNT];
1207
1208 /* push ebp */
1209 EMIT1(0x55);
1210 /* mov ebp,esp */
1211 EMIT2(0x89, 0xE5);
1212 /* push edi */
1213 EMIT1(0x57);
1214 /* push esi */
1215 EMIT1(0x56);
1216 /* push ebx */
1217 EMIT1(0x53);
1218
1219 /* sub esp,STACK_SIZE */
1220 EMIT2_off32(0x81, 0xEC, STACK_SIZE);
1221 /* sub ebp,SCRATCH_SIZE+12*/
1222 EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
1223 /* xor ebx,ebx */
1224 EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
1225
1226 /* Set up BPF prog stack base register */
1227 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
1228 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
1229
1230 /* Move BPF_CTX (EAX) to BPF_REG_R1 */
1231 /* mov dword ptr [ebp+off],eax */
1232 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1233 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
1234
1235 /* Initialize Tail Count */
1236 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
1237 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1238
1239 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
1240 *pprog = prog;
1241 }
1242
1243 /* Emit epilogue code for BPF program */
emit_epilogue(u8 ** pprog,u32 stack_depth)1244 static void emit_epilogue(u8 **pprog, u32 stack_depth)
1245 {
1246 u8 *prog = *pprog;
1247 const u8 *r0 = bpf2ia32[BPF_REG_0];
1248 int cnt = 0;
1249
1250 /* mov eax,dword ptr [ebp+off]*/
1251 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
1252 /* mov edx,dword ptr [ebp+off]*/
1253 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
1254
1255 /* add ebp,SCRATCH_SIZE+12*/
1256 EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
1257
1258 /* mov ebx,dword ptr [ebp-12]*/
1259 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
1260 /* mov esi,dword ptr [ebp-8]*/
1261 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
1262 /* mov edi,dword ptr [ebp-4]*/
1263 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
1264
1265 EMIT1(0xC9); /* leave */
1266 EMIT1(0xC3); /* ret */
1267 *pprog = prog;
1268 }
1269
1270 /*
1271 * Generate the following code:
1272 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
1273 * if (index >= array->map.max_entries)
1274 * goto out;
1275 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
1276 * goto out;
1277 * prog = array->ptrs[index];
1278 * if (prog == NULL)
1279 * goto out;
1280 * goto *(prog->bpf_func + prologue_size);
1281 * out:
1282 */
emit_bpf_tail_call(u8 ** pprog)1283 static void emit_bpf_tail_call(u8 **pprog)
1284 {
1285 u8 *prog = *pprog;
1286 int cnt = 0;
1287 const u8 *r1 = bpf2ia32[BPF_REG_1];
1288 const u8 *r2 = bpf2ia32[BPF_REG_2];
1289 const u8 *r3 = bpf2ia32[BPF_REG_3];
1290 const u8 *tcc = bpf2ia32[TCALL_CNT];
1291 u32 lo, hi;
1292 static int jmp_label1 = -1;
1293
1294 /*
1295 * if (index >= array->map.max_entries)
1296 * goto out;
1297 */
1298 /* mov eax,dword ptr [ebp+off] */
1299 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
1300 /* mov edx,dword ptr [ebp+off] */
1301 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
1302
1303 /* cmp dword ptr [eax+off],edx */
1304 EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
1305 offsetof(struct bpf_array, map.max_entries));
1306 /* jbe out */
1307 EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
1308
1309 /*
1310 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1311 * goto out;
1312 */
1313 lo = (u32)MAX_TAIL_CALL_CNT;
1314 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1315 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1316 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1317
1318 /* cmp edx,hi */
1319 EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
1320 EMIT2(IA32_JNE, 3);
1321 /* cmp ecx,lo */
1322 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
1323
1324 /* ja out */
1325 EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
1326
1327 /* add eax,0x1 */
1328 EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
1329 /* adc ebx,0x0 */
1330 EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
1331
1332 /* mov dword ptr [ebp+off],eax */
1333 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1334 /* mov dword ptr [ebp+off],edx */
1335 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1336
1337 /* prog = array->ptrs[index]; */
1338 /* mov edx, [eax + edx * 4 + offsetof(...)] */
1339 EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
1340
1341 /*
1342 * if (prog == NULL)
1343 * goto out;
1344 */
1345 /* test edx,edx */
1346 EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
1347 /* je out */
1348 EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
1349
1350 /* goto *(prog->bpf_func + prologue_size); */
1351 /* mov edx, dword ptr [edx + 32] */
1352 EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
1353 offsetof(struct bpf_prog, bpf_func));
1354 /* add edx,prologue_size */
1355 EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
1356
1357 /* mov eax,dword ptr [ebp+off] */
1358 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1359
1360 /*
1361 * Now we're ready to jump into next BPF program:
1362 * eax == ctx (1st arg)
1363 * edx == prog->bpf_func + prologue_size
1364 */
1365 RETPOLINE_EDX_BPF_JIT();
1366
1367 if (jmp_label1 == -1)
1368 jmp_label1 = cnt;
1369
1370 /* out: */
1371 *pprog = prog;
1372 }
1373
1374 /* Push the scratch stack register on top of the stack. */
emit_push_r64(const u8 src[],u8 ** pprog)1375 static inline void emit_push_r64(const u8 src[], u8 **pprog)
1376 {
1377 u8 *prog = *pprog;
1378 int cnt = 0;
1379
1380 /* mov ecx,dword ptr [ebp+off] */
1381 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
1382 /* push ecx */
1383 EMIT1(0x51);
1384
1385 /* mov ecx,dword ptr [ebp+off] */
1386 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1387 /* push ecx */
1388 EMIT1(0x51);
1389
1390 *pprog = prog;
1391 }
1392
get_cond_jmp_opcode(const u8 op,bool is_cmp_lo)1393 static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
1394 {
1395 u8 jmp_cond;
1396
1397 /* Convert BPF opcode to x86 */
1398 switch (op) {
1399 case BPF_JEQ:
1400 jmp_cond = IA32_JE;
1401 break;
1402 case BPF_JSET:
1403 case BPF_JNE:
1404 jmp_cond = IA32_JNE;
1405 break;
1406 case BPF_JGT:
1407 /* GT is unsigned '>', JA in x86 */
1408 jmp_cond = IA32_JA;
1409 break;
1410 case BPF_JLT:
1411 /* LT is unsigned '<', JB in x86 */
1412 jmp_cond = IA32_JB;
1413 break;
1414 case BPF_JGE:
1415 /* GE is unsigned '>=', JAE in x86 */
1416 jmp_cond = IA32_JAE;
1417 break;
1418 case BPF_JLE:
1419 /* LE is unsigned '<=', JBE in x86 */
1420 jmp_cond = IA32_JBE;
1421 break;
1422 case BPF_JSGT:
1423 if (!is_cmp_lo)
1424 /* Signed '>', GT in x86 */
1425 jmp_cond = IA32_JG;
1426 else
1427 /* GT is unsigned '>', JA in x86 */
1428 jmp_cond = IA32_JA;
1429 break;
1430 case BPF_JSLT:
1431 if (!is_cmp_lo)
1432 /* Signed '<', LT in x86 */
1433 jmp_cond = IA32_JL;
1434 else
1435 /* LT is unsigned '<', JB in x86 */
1436 jmp_cond = IA32_JB;
1437 break;
1438 case BPF_JSGE:
1439 if (!is_cmp_lo)
1440 /* Signed '>=', GE in x86 */
1441 jmp_cond = IA32_JGE;
1442 else
1443 /* GE is unsigned '>=', JAE in x86 */
1444 jmp_cond = IA32_JAE;
1445 break;
1446 case BPF_JSLE:
1447 if (!is_cmp_lo)
1448 /* Signed '<=', LE in x86 */
1449 jmp_cond = IA32_JLE;
1450 else
1451 /* LE is unsigned '<=', JBE in x86 */
1452 jmp_cond = IA32_JBE;
1453 break;
1454 default: /* to silence GCC warning */
1455 jmp_cond = COND_JMP_OPCODE_INVALID;
1456 break;
1457 }
1458
1459 return jmp_cond;
1460 }
1461
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,int oldproglen,struct jit_context * ctx)1462 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
1463 int oldproglen, struct jit_context *ctx)
1464 {
1465 struct bpf_insn *insn = bpf_prog->insnsi;
1466 int insn_cnt = bpf_prog->len;
1467 bool seen_exit = false;
1468 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1469 int i, cnt = 0;
1470 int proglen = 0;
1471 u8 *prog = temp;
1472
1473 emit_prologue(&prog, bpf_prog->aux->stack_depth);
1474
1475 for (i = 0; i < insn_cnt; i++, insn++) {
1476 const s32 imm32 = insn->imm;
1477 const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1478 const bool dstk = insn->dst_reg == BPF_REG_AX ? false : true;
1479 const bool sstk = insn->src_reg == BPF_REG_AX ? false : true;
1480 const u8 code = insn->code;
1481 const u8 *dst = bpf2ia32[insn->dst_reg];
1482 const u8 *src = bpf2ia32[insn->src_reg];
1483 const u8 *r0 = bpf2ia32[BPF_REG_0];
1484 s64 jmp_offset;
1485 u8 jmp_cond;
1486 int ilen;
1487 u8 *func;
1488
1489 switch (code) {
1490 /* ALU operations */
1491 /* dst = src */
1492 case BPF_ALU | BPF_MOV | BPF_K:
1493 case BPF_ALU | BPF_MOV | BPF_X:
1494 case BPF_ALU64 | BPF_MOV | BPF_K:
1495 case BPF_ALU64 | BPF_MOV | BPF_X:
1496 switch (BPF_SRC(code)) {
1497 case BPF_X:
1498 if (imm32 == 1) {
1499 /* Special mov32 for zext. */
1500 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1501 break;
1502 }
1503 emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
1504 &prog, bpf_prog->aux);
1505 break;
1506 case BPF_K:
1507 /* Sign-extend immediate value to dst reg */
1508 emit_ia32_mov_i64(is64, dst, imm32,
1509 dstk, &prog);
1510 break;
1511 }
1512 break;
1513 /* dst = dst + src/imm */
1514 /* dst = dst - src/imm */
1515 /* dst = dst | src/imm */
1516 /* dst = dst & src/imm */
1517 /* dst = dst ^ src/imm */
1518 /* dst = dst * src/imm */
1519 /* dst = dst << src */
1520 /* dst = dst >> src */
1521 case BPF_ALU | BPF_ADD | BPF_K:
1522 case BPF_ALU | BPF_ADD | BPF_X:
1523 case BPF_ALU | BPF_SUB | BPF_K:
1524 case BPF_ALU | BPF_SUB | BPF_X:
1525 case BPF_ALU | BPF_OR | BPF_K:
1526 case BPF_ALU | BPF_OR | BPF_X:
1527 case BPF_ALU | BPF_AND | BPF_K:
1528 case BPF_ALU | BPF_AND | BPF_X:
1529 case BPF_ALU | BPF_XOR | BPF_K:
1530 case BPF_ALU | BPF_XOR | BPF_X:
1531 case BPF_ALU64 | BPF_ADD | BPF_K:
1532 case BPF_ALU64 | BPF_ADD | BPF_X:
1533 case BPF_ALU64 | BPF_SUB | BPF_K:
1534 case BPF_ALU64 | BPF_SUB | BPF_X:
1535 case BPF_ALU64 | BPF_OR | BPF_K:
1536 case BPF_ALU64 | BPF_OR | BPF_X:
1537 case BPF_ALU64 | BPF_AND | BPF_K:
1538 case BPF_ALU64 | BPF_AND | BPF_X:
1539 case BPF_ALU64 | BPF_XOR | BPF_K:
1540 case BPF_ALU64 | BPF_XOR | BPF_X:
1541 switch (BPF_SRC(code)) {
1542 case BPF_X:
1543 emit_ia32_alu_r64(is64, BPF_OP(code), dst,
1544 src, dstk, sstk, &prog,
1545 bpf_prog->aux);
1546 break;
1547 case BPF_K:
1548 emit_ia32_alu_i64(is64, BPF_OP(code), dst,
1549 imm32, dstk, &prog,
1550 bpf_prog->aux);
1551 break;
1552 }
1553 break;
1554 case BPF_ALU | BPF_MUL | BPF_K:
1555 case BPF_ALU | BPF_MUL | BPF_X:
1556 switch (BPF_SRC(code)) {
1557 case BPF_X:
1558 emit_ia32_mul_r(dst_lo, src_lo, dstk,
1559 sstk, &prog);
1560 break;
1561 case BPF_K:
1562 /* mov ecx,imm32*/
1563 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1564 imm32);
1565 emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
1566 false, &prog);
1567 break;
1568 }
1569 if (!bpf_prog->aux->verifier_zext)
1570 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1571 break;
1572 case BPF_ALU | BPF_LSH | BPF_X:
1573 case BPF_ALU | BPF_RSH | BPF_X:
1574 case BPF_ALU | BPF_ARSH | BPF_K:
1575 case BPF_ALU | BPF_ARSH | BPF_X:
1576 switch (BPF_SRC(code)) {
1577 case BPF_X:
1578 emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
1579 dstk, sstk, &prog);
1580 break;
1581 case BPF_K:
1582 /* mov ecx,imm32*/
1583 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1584 imm32);
1585 emit_ia32_shift_r(BPF_OP(code), dst_lo,
1586 IA32_ECX, dstk, false,
1587 &prog);
1588 break;
1589 }
1590 if (!bpf_prog->aux->verifier_zext)
1591 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1592 break;
1593 /* dst = dst / src(imm) */
1594 /* dst = dst % src(imm) */
1595 case BPF_ALU | BPF_DIV | BPF_K:
1596 case BPF_ALU | BPF_DIV | BPF_X:
1597 case BPF_ALU | BPF_MOD | BPF_K:
1598 case BPF_ALU | BPF_MOD | BPF_X:
1599 switch (BPF_SRC(code)) {
1600 case BPF_X:
1601 emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1602 src_lo, dstk, sstk, &prog);
1603 break;
1604 case BPF_K:
1605 /* mov ecx,imm32*/
1606 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1607 imm32);
1608 emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1609 IA32_ECX, dstk, false,
1610 &prog);
1611 break;
1612 }
1613 if (!bpf_prog->aux->verifier_zext)
1614 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1615 break;
1616 case BPF_ALU64 | BPF_DIV | BPF_K:
1617 case BPF_ALU64 | BPF_DIV | BPF_X:
1618 case BPF_ALU64 | BPF_MOD | BPF_K:
1619 case BPF_ALU64 | BPF_MOD | BPF_X:
1620 goto notyet;
1621 /* dst = dst >> imm */
1622 /* dst = dst << imm */
1623 case BPF_ALU | BPF_RSH | BPF_K:
1624 case BPF_ALU | BPF_LSH | BPF_K:
1625 if (unlikely(imm32 > 31))
1626 return -EINVAL;
1627 /* mov ecx,imm32*/
1628 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
1629 emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
1630 false, &prog);
1631 if (!bpf_prog->aux->verifier_zext)
1632 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1633 break;
1634 /* dst = dst << imm */
1635 case BPF_ALU64 | BPF_LSH | BPF_K:
1636 if (unlikely(imm32 > 63))
1637 return -EINVAL;
1638 emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
1639 break;
1640 /* dst = dst >> imm */
1641 case BPF_ALU64 | BPF_RSH | BPF_K:
1642 if (unlikely(imm32 > 63))
1643 return -EINVAL;
1644 emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
1645 break;
1646 /* dst = dst << src */
1647 case BPF_ALU64 | BPF_LSH | BPF_X:
1648 emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
1649 break;
1650 /* dst = dst >> src */
1651 case BPF_ALU64 | BPF_RSH | BPF_X:
1652 emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
1653 break;
1654 /* dst = dst >> src (signed) */
1655 case BPF_ALU64 | BPF_ARSH | BPF_X:
1656 emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
1657 break;
1658 /* dst = dst >> imm (signed) */
1659 case BPF_ALU64 | BPF_ARSH | BPF_K:
1660 if (unlikely(imm32 > 63))
1661 return -EINVAL;
1662 emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
1663 break;
1664 /* dst = ~dst */
1665 case BPF_ALU | BPF_NEG:
1666 emit_ia32_alu_i(is64, false, BPF_OP(code),
1667 dst_lo, 0, dstk, &prog);
1668 if (!bpf_prog->aux->verifier_zext)
1669 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1670 break;
1671 /* dst = ~dst (64 bit) */
1672 case BPF_ALU64 | BPF_NEG:
1673 emit_ia32_neg64(dst, dstk, &prog);
1674 break;
1675 /* dst = dst * src/imm */
1676 case BPF_ALU64 | BPF_MUL | BPF_X:
1677 case BPF_ALU64 | BPF_MUL | BPF_K:
1678 switch (BPF_SRC(code)) {
1679 case BPF_X:
1680 emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
1681 break;
1682 case BPF_K:
1683 emit_ia32_mul_i64(dst, imm32, dstk, &prog);
1684 break;
1685 }
1686 break;
1687 /* dst = htole(dst) */
1688 case BPF_ALU | BPF_END | BPF_FROM_LE:
1689 emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
1690 bpf_prog->aux);
1691 break;
1692 /* dst = htobe(dst) */
1693 case BPF_ALU | BPF_END | BPF_FROM_BE:
1694 emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
1695 bpf_prog->aux);
1696 break;
1697 /* dst = imm64 */
1698 case BPF_LD | BPF_IMM | BPF_DW: {
1699 s32 hi, lo = imm32;
1700
1701 hi = insn[1].imm;
1702 emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
1703 emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
1704 insn++;
1705 i++;
1706 break;
1707 }
1708 /* ST: *(u8*)(dst_reg + off) = imm */
1709 case BPF_ST | BPF_MEM | BPF_H:
1710 case BPF_ST | BPF_MEM | BPF_B:
1711 case BPF_ST | BPF_MEM | BPF_W:
1712 case BPF_ST | BPF_MEM | BPF_DW:
1713 if (dstk)
1714 /* mov eax,dword ptr [ebp+off] */
1715 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1716 STACK_VAR(dst_lo));
1717 else
1718 /* mov eax,dst_lo */
1719 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1720
1721 switch (BPF_SIZE(code)) {
1722 case BPF_B:
1723 EMIT(0xC6, 1); break;
1724 case BPF_H:
1725 EMIT2(0x66, 0xC7); break;
1726 case BPF_W:
1727 case BPF_DW:
1728 EMIT(0xC7, 1); break;
1729 }
1730
1731 if (is_imm8(insn->off))
1732 EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
1733 else
1734 EMIT1_off32(add_1reg(0x80, IA32_EAX),
1735 insn->off);
1736 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
1737
1738 if (BPF_SIZE(code) == BPF_DW) {
1739 u32 hi;
1740
1741 hi = imm32 & (1<<31) ? (u32)~0 : 0;
1742 EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
1743 insn->off + 4);
1744 EMIT(hi, 4);
1745 }
1746 break;
1747
1748 /* STX: *(u8*)(dst_reg + off) = src_reg */
1749 case BPF_STX | BPF_MEM | BPF_B:
1750 case BPF_STX | BPF_MEM | BPF_H:
1751 case BPF_STX | BPF_MEM | BPF_W:
1752 case BPF_STX | BPF_MEM | BPF_DW:
1753 if (dstk)
1754 /* mov eax,dword ptr [ebp+off] */
1755 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1756 STACK_VAR(dst_lo));
1757 else
1758 /* mov eax,dst_lo */
1759 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1760
1761 if (sstk)
1762 /* mov edx,dword ptr [ebp+off] */
1763 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1764 STACK_VAR(src_lo));
1765 else
1766 /* mov edx,src_lo */
1767 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
1768
1769 switch (BPF_SIZE(code)) {
1770 case BPF_B:
1771 EMIT(0x88, 1); break;
1772 case BPF_H:
1773 EMIT2(0x66, 0x89); break;
1774 case BPF_W:
1775 case BPF_DW:
1776 EMIT(0x89, 1); break;
1777 }
1778
1779 if (is_imm8(insn->off))
1780 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1781 insn->off);
1782 else
1783 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1784 insn->off);
1785
1786 if (BPF_SIZE(code) == BPF_DW) {
1787 if (sstk)
1788 /* mov edi,dword ptr [ebp+off] */
1789 EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
1790 IA32_EDX),
1791 STACK_VAR(src_hi));
1792 else
1793 /* mov edi,src_hi */
1794 EMIT2(0x8B, add_2reg(0xC0, src_hi,
1795 IA32_EDX));
1796 EMIT1(0x89);
1797 if (is_imm8(insn->off + 4)) {
1798 EMIT2(add_2reg(0x40, IA32_EAX,
1799 IA32_EDX),
1800 insn->off + 4);
1801 } else {
1802 EMIT1(add_2reg(0x80, IA32_EAX,
1803 IA32_EDX));
1804 EMIT(insn->off + 4, 4);
1805 }
1806 }
1807 break;
1808
1809 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1810 case BPF_LDX | BPF_MEM | BPF_B:
1811 case BPF_LDX | BPF_MEM | BPF_H:
1812 case BPF_LDX | BPF_MEM | BPF_W:
1813 case BPF_LDX | BPF_MEM | BPF_DW:
1814 if (sstk)
1815 /* mov eax,dword ptr [ebp+off] */
1816 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1817 STACK_VAR(src_lo));
1818 else
1819 /* mov eax,dword ptr [ebp+off] */
1820 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
1821
1822 switch (BPF_SIZE(code)) {
1823 case BPF_B:
1824 EMIT2(0x0F, 0xB6); break;
1825 case BPF_H:
1826 EMIT2(0x0F, 0xB7); break;
1827 case BPF_W:
1828 case BPF_DW:
1829 EMIT(0x8B, 1); break;
1830 }
1831
1832 if (is_imm8(insn->off))
1833 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1834 insn->off);
1835 else
1836 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1837 insn->off);
1838
1839 if (dstk)
1840 /* mov dword ptr [ebp+off],edx */
1841 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1842 STACK_VAR(dst_lo));
1843 else
1844 /* mov dst_lo,edx */
1845 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
1846 switch (BPF_SIZE(code)) {
1847 case BPF_B:
1848 case BPF_H:
1849 case BPF_W:
1850 if (!bpf_prog->aux->verifier_zext)
1851 break;
1852 if (dstk) {
1853 EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
1854 STACK_VAR(dst_hi));
1855 EMIT(0x0, 4);
1856 } else {
1857 EMIT3(0xC7, add_1reg(0xC0, dst_hi), 0);
1858 }
1859 break;
1860 case BPF_DW:
1861 EMIT2_off32(0x8B,
1862 add_2reg(0x80, IA32_EAX, IA32_EDX),
1863 insn->off + 4);
1864 if (dstk)
1865 EMIT3(0x89,
1866 add_2reg(0x40, IA32_EBP,
1867 IA32_EDX),
1868 STACK_VAR(dst_hi));
1869 else
1870 EMIT2(0x89,
1871 add_2reg(0xC0, dst_hi, IA32_EDX));
1872 break;
1873 default:
1874 break;
1875 }
1876 break;
1877 /* call */
1878 case BPF_JMP | BPF_CALL:
1879 {
1880 const u8 *r1 = bpf2ia32[BPF_REG_1];
1881 const u8 *r2 = bpf2ia32[BPF_REG_2];
1882 const u8 *r3 = bpf2ia32[BPF_REG_3];
1883 const u8 *r4 = bpf2ia32[BPF_REG_4];
1884 const u8 *r5 = bpf2ia32[BPF_REG_5];
1885
1886 if (insn->src_reg == BPF_PSEUDO_CALL)
1887 goto notyet;
1888
1889 func = (u8 *) __bpf_call_base + imm32;
1890 jmp_offset = func - (image + addrs[i]);
1891
1892 if (!imm32 || !is_simm32(jmp_offset)) {
1893 pr_err("unsupported BPF func %d addr %p image %p\n",
1894 imm32, func, image);
1895 return -EINVAL;
1896 }
1897
1898 /* mov eax,dword ptr [ebp+off] */
1899 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1900 STACK_VAR(r1[0]));
1901 /* mov edx,dword ptr [ebp+off] */
1902 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1903 STACK_VAR(r1[1]));
1904
1905 emit_push_r64(r5, &prog);
1906 emit_push_r64(r4, &prog);
1907 emit_push_r64(r3, &prog);
1908 emit_push_r64(r2, &prog);
1909
1910 EMIT1_off32(0xE8, jmp_offset + 9);
1911
1912 /* mov dword ptr [ebp+off],eax */
1913 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1914 STACK_VAR(r0[0]));
1915 /* mov dword ptr [ebp+off],edx */
1916 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1917 STACK_VAR(r0[1]));
1918
1919 /* add esp,32 */
1920 EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
1921 break;
1922 }
1923 case BPF_JMP | BPF_TAIL_CALL:
1924 emit_bpf_tail_call(&prog);
1925 break;
1926
1927 /* cond jump */
1928 case BPF_JMP | BPF_JEQ | BPF_X:
1929 case BPF_JMP | BPF_JNE | BPF_X:
1930 case BPF_JMP | BPF_JGT | BPF_X:
1931 case BPF_JMP | BPF_JLT | BPF_X:
1932 case BPF_JMP | BPF_JGE | BPF_X:
1933 case BPF_JMP | BPF_JLE | BPF_X:
1934 case BPF_JMP32 | BPF_JEQ | BPF_X:
1935 case BPF_JMP32 | BPF_JNE | BPF_X:
1936 case BPF_JMP32 | BPF_JGT | BPF_X:
1937 case BPF_JMP32 | BPF_JLT | BPF_X:
1938 case BPF_JMP32 | BPF_JGE | BPF_X:
1939 case BPF_JMP32 | BPF_JLE | BPF_X:
1940 case BPF_JMP32 | BPF_JSGT | BPF_X:
1941 case BPF_JMP32 | BPF_JSLE | BPF_X:
1942 case BPF_JMP32 | BPF_JSLT | BPF_X:
1943 case BPF_JMP32 | BPF_JSGE | BPF_X: {
1944 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
1945 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
1946 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
1947 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
1948 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
1949
1950 if (dstk) {
1951 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1952 STACK_VAR(dst_lo));
1953 if (is_jmp64)
1954 EMIT3(0x8B,
1955 add_2reg(0x40, IA32_EBP,
1956 IA32_EDX),
1957 STACK_VAR(dst_hi));
1958 }
1959
1960 if (sstk) {
1961 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
1962 STACK_VAR(src_lo));
1963 if (is_jmp64)
1964 EMIT3(0x8B,
1965 add_2reg(0x40, IA32_EBP,
1966 IA32_EBX),
1967 STACK_VAR(src_hi));
1968 }
1969
1970 if (is_jmp64) {
1971 /* cmp dreg_hi,sreg_hi */
1972 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
1973 EMIT2(IA32_JNE, 2);
1974 }
1975 /* cmp dreg_lo,sreg_lo */
1976 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
1977 goto emit_cond_jmp;
1978 }
1979 case BPF_JMP | BPF_JSGT | BPF_X:
1980 case BPF_JMP | BPF_JSLE | BPF_X:
1981 case BPF_JMP | BPF_JSLT | BPF_X:
1982 case BPF_JMP | BPF_JSGE | BPF_X: {
1983 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
1984 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
1985 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
1986 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
1987
1988 if (dstk) {
1989 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1990 STACK_VAR(dst_lo));
1991 EMIT3(0x8B,
1992 add_2reg(0x40, IA32_EBP,
1993 IA32_EDX),
1994 STACK_VAR(dst_hi));
1995 }
1996
1997 if (sstk) {
1998 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
1999 STACK_VAR(src_lo));
2000 EMIT3(0x8B,
2001 add_2reg(0x40, IA32_EBP,
2002 IA32_EBX),
2003 STACK_VAR(src_hi));
2004 }
2005
2006 /* cmp dreg_hi,sreg_hi */
2007 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2008 EMIT2(IA32_JNE, 10);
2009 /* cmp dreg_lo,sreg_lo */
2010 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2011 goto emit_cond_jmp_signed;
2012 }
2013 case BPF_JMP | BPF_JSET | BPF_X:
2014 case BPF_JMP32 | BPF_JSET | BPF_X: {
2015 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2016 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2017 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2018 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2019 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2020
2021 if (dstk) {
2022 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2023 STACK_VAR(dst_lo));
2024 if (is_jmp64)
2025 EMIT3(0x8B,
2026 add_2reg(0x40, IA32_EBP,
2027 IA32_EDX),
2028 STACK_VAR(dst_hi));
2029 }
2030
2031 if (sstk) {
2032 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2033 STACK_VAR(src_lo));
2034 if (is_jmp64)
2035 EMIT3(0x8B,
2036 add_2reg(0x40, IA32_EBP,
2037 IA32_EBX),
2038 STACK_VAR(src_hi));
2039 }
2040 /* and dreg_lo,sreg_lo */
2041 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2042 /* and dreg_hi,sreg_hi */
2043 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2044 /* or dreg_lo,dreg_hi */
2045 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2046 goto emit_cond_jmp;
2047 }
2048 case BPF_JMP | BPF_JSET | BPF_K:
2049 case BPF_JMP32 | BPF_JSET | BPF_K: {
2050 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2051 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2052 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2053 u8 sreg_lo = IA32_ECX;
2054 u8 sreg_hi = IA32_EBX;
2055 u32 hi;
2056
2057 if (dstk) {
2058 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2059 STACK_VAR(dst_lo));
2060 if (is_jmp64)
2061 EMIT3(0x8B,
2062 add_2reg(0x40, IA32_EBP,
2063 IA32_EDX),
2064 STACK_VAR(dst_hi));
2065 }
2066
2067 /* mov ecx,imm32 */
2068 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
2069
2070 /* and dreg_lo,sreg_lo */
2071 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2072 if (is_jmp64) {
2073 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2074 /* mov ebx,imm32 */
2075 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
2076 /* and dreg_hi,sreg_hi */
2077 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2078 /* or dreg_lo,dreg_hi */
2079 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2080 }
2081 goto emit_cond_jmp;
2082 }
2083 case BPF_JMP | BPF_JEQ | BPF_K:
2084 case BPF_JMP | BPF_JNE | BPF_K:
2085 case BPF_JMP | BPF_JGT | BPF_K:
2086 case BPF_JMP | BPF_JLT | BPF_K:
2087 case BPF_JMP | BPF_JGE | BPF_K:
2088 case BPF_JMP | BPF_JLE | BPF_K:
2089 case BPF_JMP32 | BPF_JEQ | BPF_K:
2090 case BPF_JMP32 | BPF_JNE | BPF_K:
2091 case BPF_JMP32 | BPF_JGT | BPF_K:
2092 case BPF_JMP32 | BPF_JLT | BPF_K:
2093 case BPF_JMP32 | BPF_JGE | BPF_K:
2094 case BPF_JMP32 | BPF_JLE | BPF_K:
2095 case BPF_JMP32 | BPF_JSGT | BPF_K:
2096 case BPF_JMP32 | BPF_JSLE | BPF_K:
2097 case BPF_JMP32 | BPF_JSLT | BPF_K:
2098 case BPF_JMP32 | BPF_JSGE | BPF_K: {
2099 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2100 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2101 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2102 u8 sreg_lo = IA32_ECX;
2103 u8 sreg_hi = IA32_EBX;
2104 u32 hi;
2105
2106 if (dstk) {
2107 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2108 STACK_VAR(dst_lo));
2109 if (is_jmp64)
2110 EMIT3(0x8B,
2111 add_2reg(0x40, IA32_EBP,
2112 IA32_EDX),
2113 STACK_VAR(dst_hi));
2114 }
2115
2116 /* mov ecx,imm32 */
2117 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2118 if (is_jmp64) {
2119 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2120 /* mov ebx,imm32 */
2121 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2122 /* cmp dreg_hi,sreg_hi */
2123 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2124 EMIT2(IA32_JNE, 2);
2125 }
2126 /* cmp dreg_lo,sreg_lo */
2127 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2128
2129 emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2130 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2131 return -EFAULT;
2132 jmp_offset = addrs[i + insn->off] - addrs[i];
2133 if (is_imm8(jmp_offset)) {
2134 EMIT2(jmp_cond, jmp_offset);
2135 } else if (is_simm32(jmp_offset)) {
2136 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2137 } else {
2138 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2139 return -EFAULT;
2140 }
2141 break;
2142 }
2143 case BPF_JMP | BPF_JSGT | BPF_K:
2144 case BPF_JMP | BPF_JSLE | BPF_K:
2145 case BPF_JMP | BPF_JSLT | BPF_K:
2146 case BPF_JMP | BPF_JSGE | BPF_K: {
2147 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2148 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2149 u8 sreg_lo = IA32_ECX;
2150 u8 sreg_hi = IA32_EBX;
2151 u32 hi;
2152
2153 if (dstk) {
2154 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2155 STACK_VAR(dst_lo));
2156 EMIT3(0x8B,
2157 add_2reg(0x40, IA32_EBP,
2158 IA32_EDX),
2159 STACK_VAR(dst_hi));
2160 }
2161
2162 /* mov ecx,imm32 */
2163 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2164 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2165 /* mov ebx,imm32 */
2166 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2167 /* cmp dreg_hi,sreg_hi */
2168 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2169 EMIT2(IA32_JNE, 10);
2170 /* cmp dreg_lo,sreg_lo */
2171 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2172
2173 /*
2174 * For simplicity of branch offset computation,
2175 * let's use fixed jump coding here.
2176 */
2177 emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */
2178 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
2179 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2180 return -EFAULT;
2181 jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
2182 if (is_simm32(jmp_offset)) {
2183 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2184 } else {
2185 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2186 return -EFAULT;
2187 }
2188 EMIT2(0xEB, 6);
2189
2190 /* Check the condition for high 32-bit comparison */
2191 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2192 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2193 return -EFAULT;
2194 jmp_offset = addrs[i + insn->off] - addrs[i];
2195 if (is_simm32(jmp_offset)) {
2196 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2197 } else {
2198 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2199 return -EFAULT;
2200 }
2201 break;
2202 }
2203 case BPF_JMP | BPF_JA:
2204 if (insn->off == -1)
2205 /* -1 jmp instructions will always jump
2206 * backwards two bytes. Explicitly handling
2207 * this case avoids wasting too many passes
2208 * when there are long sequences of replaced
2209 * dead code.
2210 */
2211 jmp_offset = -2;
2212 else
2213 jmp_offset = addrs[i + insn->off] - addrs[i];
2214
2215 if (!jmp_offset)
2216 /* Optimize out nop jumps */
2217 break;
2218 emit_jmp:
2219 if (is_imm8(jmp_offset)) {
2220 EMIT2(0xEB, jmp_offset);
2221 } else if (is_simm32(jmp_offset)) {
2222 EMIT1_off32(0xE9, jmp_offset);
2223 } else {
2224 pr_err("jmp gen bug %llx\n", jmp_offset);
2225 return -EFAULT;
2226 }
2227 break;
2228 /* STX XADD: lock *(u32 *)(dst + off) += src */
2229 case BPF_STX | BPF_XADD | BPF_W:
2230 /* STX XADD: lock *(u64 *)(dst + off) += src */
2231 case BPF_STX | BPF_XADD | BPF_DW:
2232 goto notyet;
2233 case BPF_JMP | BPF_EXIT:
2234 if (seen_exit) {
2235 jmp_offset = ctx->cleanup_addr - addrs[i];
2236 goto emit_jmp;
2237 }
2238 seen_exit = true;
2239 /* Update cleanup_addr */
2240 ctx->cleanup_addr = proglen;
2241 emit_epilogue(&prog, bpf_prog->aux->stack_depth);
2242 break;
2243 notyet:
2244 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2245 return -EFAULT;
2246 default:
2247 /*
2248 * This error will be seen if new instruction was added
2249 * to interpreter, but not to JIT or if there is junk in
2250 * bpf_prog
2251 */
2252 pr_err("bpf_jit: unknown opcode %02x\n", code);
2253 return -EINVAL;
2254 }
2255
2256 ilen = prog - temp;
2257 if (ilen > BPF_MAX_INSN_SIZE) {
2258 pr_err("bpf_jit: fatal insn size error\n");
2259 return -EFAULT;
2260 }
2261
2262 if (image) {
2263 if (unlikely(proglen + ilen > oldproglen)) {
2264 pr_err("bpf_jit: fatal error\n");
2265 return -EFAULT;
2266 }
2267 memcpy(image + proglen, temp, ilen);
2268 }
2269 proglen += ilen;
2270 addrs[i] = proglen;
2271 prog = temp;
2272 }
2273 return proglen;
2274 }
2275
bpf_jit_needs_zext(void)2276 bool bpf_jit_needs_zext(void)
2277 {
2278 return true;
2279 }
2280
bpf_int_jit_compile(struct bpf_prog * prog)2281 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2282 {
2283 struct bpf_binary_header *header = NULL;
2284 struct bpf_prog *tmp, *orig_prog = prog;
2285 int proglen, oldproglen = 0;
2286 struct jit_context ctx = {};
2287 bool tmp_blinded = false;
2288 u8 *image = NULL;
2289 int *addrs;
2290 int pass;
2291 int i;
2292
2293 if (!prog->jit_requested)
2294 return orig_prog;
2295
2296 tmp = bpf_jit_blind_constants(prog);
2297 /*
2298 * If blinding was requested and we failed during blinding,
2299 * we must fall back to the interpreter.
2300 */
2301 if (IS_ERR(tmp))
2302 return orig_prog;
2303 if (tmp != prog) {
2304 tmp_blinded = true;
2305 prog = tmp;
2306 }
2307
2308 addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
2309 if (!addrs) {
2310 prog = orig_prog;
2311 goto out;
2312 }
2313
2314 /*
2315 * Before first pass, make a rough estimation of addrs[]
2316 * each BPF instruction is translated to less than 64 bytes
2317 */
2318 for (proglen = 0, i = 0; i < prog->len; i++) {
2319 proglen += 64;
2320 addrs[i] = proglen;
2321 }
2322 ctx.cleanup_addr = proglen;
2323
2324 /*
2325 * JITed image shrinks with every pass and the loop iterates
2326 * until the image stops shrinking. Very large BPF programs
2327 * may converge on the last pass. In such case do one more
2328 * pass to emit the final image.
2329 */
2330 for (pass = 0; pass < 20 || image; pass++) {
2331 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2332 if (proglen <= 0) {
2333 out_image:
2334 image = NULL;
2335 if (header)
2336 bpf_jit_binary_free(header);
2337 prog = orig_prog;
2338 goto out_addrs;
2339 }
2340 if (image) {
2341 if (proglen != oldproglen) {
2342 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2343 proglen, oldproglen);
2344 goto out_image;
2345 }
2346 break;
2347 }
2348 if (proglen == oldproglen) {
2349 header = bpf_jit_binary_alloc(proglen, &image,
2350 1, jit_fill_hole);
2351 if (!header) {
2352 prog = orig_prog;
2353 goto out_addrs;
2354 }
2355 }
2356 oldproglen = proglen;
2357 cond_resched();
2358 }
2359
2360 if (bpf_jit_enable > 1)
2361 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2362
2363 if (image) {
2364 bpf_jit_binary_lock_ro(header);
2365 prog->bpf_func = (void *)image;
2366 prog->jited = 1;
2367 prog->jited_len = proglen;
2368 } else {
2369 prog = orig_prog;
2370 }
2371
2372 out_addrs:
2373 kfree(addrs);
2374 out:
2375 if (tmp_blinded)
2376 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2377 tmp : orig_prog);
2378 return prog;
2379 }
2380