1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
4 *
5 * Author: Wang YanQing (udknight@gmail.com)
6 * The code based on code and ideas from:
7 * Eric Dumazet (eric.dumazet@gmail.com)
8 * and from:
9 * Shubham Bansal <illusionist.neo@gmail.com>
10 */
11
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <asm/cacheflush.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <linux/bpf.h>
19
20 /*
21 * eBPF prog stack layout:
22 *
23 * high
24 * original ESP => +-----+
25 * | | callee saved registers
26 * +-----+
27 * | ... | eBPF JIT scratch space
28 * BPF_FP,IA32_EBP => +-----+
29 * | ... | eBPF prog stack
30 * +-----+
31 * |RSVD | JIT scratchpad
32 * current ESP => +-----+
33 * | |
34 * | ... | Function call stack
35 * | |
36 * +-----+
37 * low
38 *
39 * The callee saved registers:
40 *
41 * high
42 * original ESP => +------------------+ \
43 * | ebp | |
44 * current EBP => +------------------+ } callee saved registers
45 * | ebx,esi,edi | |
46 * +------------------+ /
47 * low
48 */
49
emit_code(u8 * ptr,u32 bytes,unsigned int len)50 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
51 {
52 if (len == 1)
53 *ptr = bytes;
54 else if (len == 2)
55 *(u16 *)ptr = bytes;
56 else {
57 *(u32 *)ptr = bytes;
58 barrier();
59 }
60 return ptr + len;
61 }
62
63 #define EMIT(bytes, len) \
64 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
65
66 #define EMIT1(b1) EMIT(b1, 1)
67 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
68 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
69 #define EMIT4(b1, b2, b3, b4) \
70 EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
71
72 #define EMIT1_off32(b1, off) \
73 do { EMIT1(b1); EMIT(off, 4); } while (0)
74 #define EMIT2_off32(b1, b2, off) \
75 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
76 #define EMIT3_off32(b1, b2, b3, off) \
77 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
78 #define EMIT4_off32(b1, b2, b3, b4, off) \
79 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
80
81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
82
is_imm8(int value)83 static bool is_imm8(int value)
84 {
85 return value <= 127 && value >= -128;
86 }
87
is_simm32(s64 value)88 static bool is_simm32(s64 value)
89 {
90 return value == (s64) (s32) value;
91 }
92
93 #define STACK_OFFSET(k) (k)
94 #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
95
96 #define IA32_EAX (0x0)
97 #define IA32_EBX (0x3)
98 #define IA32_ECX (0x1)
99 #define IA32_EDX (0x2)
100 #define IA32_ESI (0x6)
101 #define IA32_EDI (0x7)
102 #define IA32_EBP (0x5)
103 #define IA32_ESP (0x4)
104
105 /*
106 * List of x86 cond jumps opcodes (. + s8)
107 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
108 */
109 #define IA32_JB 0x72
110 #define IA32_JAE 0x73
111 #define IA32_JE 0x74
112 #define IA32_JNE 0x75
113 #define IA32_JBE 0x76
114 #define IA32_JA 0x77
115 #define IA32_JL 0x7C
116 #define IA32_JGE 0x7D
117 #define IA32_JLE 0x7E
118 #define IA32_JG 0x7F
119
120 #define COND_JMP_OPCODE_INVALID (0xFF)
121
122 /*
123 * Map eBPF registers to IA32 32bit registers or stack scratch space.
124 *
125 * 1. All the registers, R0-R10, are mapped to scratch space on stack.
126 * 2. We need two 64 bit temp registers to do complex operations on eBPF
127 * registers.
128 * 3. For performance reason, the BPF_REG_AX for blinding constant, is
129 * mapped to real hardware register pair, IA32_ESI and IA32_EDI.
130 *
131 * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
132 * registers, we have to map each eBPF registers with two IA32 32 bit regs
133 * or scratch memory space and we have to build eBPF 64 bit register from those.
134 *
135 * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
136 */
137 static const u8 bpf2ia32[][2] = {
138 /* Return value from in-kernel function, and exit value from eBPF */
139 [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
140
141 /* The arguments from eBPF program to in-kernel function */
142 /* Stored on stack scratch space */
143 [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
144 [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
145 [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
146 [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
147 [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
148
149 /* Callee saved registers that in-kernel function will preserve */
150 /* Stored on stack scratch space */
151 [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
152 [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
153 [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
154 [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
155
156 /* Read only Frame Pointer to access Stack */
157 [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
158
159 /* Temporary register for blinding constants. */
160 [BPF_REG_AX] = {IA32_ESI, IA32_EDI},
161
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
164 };
165
166 #define dst_lo dst[0]
167 #define dst_hi dst[1]
168 #define src_lo src[0]
169 #define src_hi src[1]
170
171 #define STACK_ALIGNMENT 8
172 /*
173 * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
174 * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
175 * BPF_REG_FP, BPF_REG_AX and Tail call counts.
176 */
177 #define SCRATCH_SIZE 96
178
179 /* Total stack size used in JITed code */
180 #define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
181
182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
183
184 /* Get the offset of eBPF REGISTERs stored on scratch space. */
185 #define STACK_VAR(off) (off)
186
187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)188 static u8 add_1reg(u8 byte, u32 dst_reg)
189 {
190 return byte + dst_reg;
191 }
192
193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)194 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
195 {
196 return byte + dst_reg + (src_reg << 3);
197 }
198
jit_fill_hole(void * area,unsigned int size)199 static void jit_fill_hole(void *area, unsigned int size)
200 {
201 /* Fill whole space with int3 instructions */
202 memset(area, 0xcc, size);
203 }
204
emit_ia32_mov_i(const u8 dst,const u32 val,bool dstk,u8 ** pprog)205 static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
206 u8 **pprog)
207 {
208 u8 *prog = *pprog;
209 int cnt = 0;
210
211 if (dstk) {
212 if (val == 0) {
213 /* xor eax,eax */
214 EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
215 /* mov dword ptr [ebp+off],eax */
216 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
217 STACK_VAR(dst));
218 } else {
219 EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
220 STACK_VAR(dst), val);
221 }
222 } else {
223 if (val == 0)
224 EMIT2(0x33, add_2reg(0xC0, dst, dst));
225 else
226 EMIT2_off32(0xC7, add_1reg(0xC0, dst),
227 val);
228 }
229 *pprog = prog;
230 }
231
232 /* dst = imm (4 bytes)*/
emit_ia32_mov_r(const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)233 static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
234 bool sstk, u8 **pprog)
235 {
236 u8 *prog = *pprog;
237 int cnt = 0;
238 u8 sreg = sstk ? IA32_EAX : src;
239
240 if (sstk)
241 /* mov eax,dword ptr [ebp+off] */
242 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
243 if (dstk)
244 /* mov dword ptr [ebp+off],eax */
245 EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
246 else
247 /* mov dst,sreg */
248 EMIT2(0x89, add_2reg(0xC0, dst, sreg));
249
250 *pprog = prog;
251 }
252
253 /* dst = src */
emit_ia32_mov_r64(const bool is64,const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog,const struct bpf_prog_aux * aux)254 static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
255 const u8 src[], bool dstk,
256 bool sstk, u8 **pprog,
257 const struct bpf_prog_aux *aux)
258 {
259 emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
260 if (is64)
261 /* complete 8 byte move */
262 emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
263 else if (!aux->verifier_zext)
264 /* zero out high 4 bytes */
265 emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
266 }
267
268 /* Sign extended move */
emit_ia32_mov_i64(const bool is64,const u8 dst[],const u32 val,bool dstk,u8 ** pprog)269 static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
270 const u32 val, bool dstk, u8 **pprog)
271 {
272 u32 hi = 0;
273
274 if (is64 && (val & (1<<31)))
275 hi = (u32)~0;
276 emit_ia32_mov_i(dst_lo, val, dstk, pprog);
277 emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
278 }
279
280 /*
281 * ALU operation (32 bit)
282 * dst = dst * src
283 */
emit_ia32_mul_r(const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)284 static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
285 bool sstk, u8 **pprog)
286 {
287 u8 *prog = *pprog;
288 int cnt = 0;
289 u8 sreg = sstk ? IA32_ECX : src;
290
291 if (sstk)
292 /* mov ecx,dword ptr [ebp+off] */
293 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
294
295 if (dstk)
296 /* mov eax,dword ptr [ebp+off] */
297 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
298 else
299 /* mov eax,dst */
300 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
301
302
303 EMIT2(0xF7, add_1reg(0xE0, sreg));
304
305 if (dstk)
306 /* mov dword ptr [ebp+off],eax */
307 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
308 STACK_VAR(dst));
309 else
310 /* mov dst,eax */
311 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
312
313 *pprog = prog;
314 }
315
emit_ia32_to_le_r64(const u8 dst[],s32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)316 static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
317 bool dstk, u8 **pprog,
318 const struct bpf_prog_aux *aux)
319 {
320 u8 *prog = *pprog;
321 int cnt = 0;
322 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
323 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
324
325 if (dstk && val != 64) {
326 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
327 STACK_VAR(dst_lo));
328 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
329 STACK_VAR(dst_hi));
330 }
331 switch (val) {
332 case 16:
333 /*
334 * Emit 'movzwl eax,ax' to zero extend 16-bit
335 * into 64 bit
336 */
337 EMIT2(0x0F, 0xB7);
338 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
339 if (!aux->verifier_zext)
340 /* xor dreg_hi,dreg_hi */
341 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
342 break;
343 case 32:
344 if (!aux->verifier_zext)
345 /* xor dreg_hi,dreg_hi */
346 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
347 break;
348 case 64:
349 /* nop */
350 break;
351 }
352
353 if (dstk && val != 64) {
354 /* mov dword ptr [ebp+off],dreg_lo */
355 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
356 STACK_VAR(dst_lo));
357 /* mov dword ptr [ebp+off],dreg_hi */
358 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
359 STACK_VAR(dst_hi));
360 }
361 *pprog = prog;
362 }
363
emit_ia32_to_be_r64(const u8 dst[],s32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)364 static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
365 bool dstk, u8 **pprog,
366 const struct bpf_prog_aux *aux)
367 {
368 u8 *prog = *pprog;
369 int cnt = 0;
370 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
371 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
372
373 if (dstk) {
374 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
375 STACK_VAR(dst_lo));
376 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
377 STACK_VAR(dst_hi));
378 }
379 switch (val) {
380 case 16:
381 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
382 EMIT1(0x66);
383 EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
384
385 EMIT2(0x0F, 0xB7);
386 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
387
388 if (!aux->verifier_zext)
389 /* xor dreg_hi,dreg_hi */
390 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
391 break;
392 case 32:
393 /* Emit 'bswap eax' to swap lower 4 bytes */
394 EMIT1(0x0F);
395 EMIT1(add_1reg(0xC8, dreg_lo));
396
397 if (!aux->verifier_zext)
398 /* xor dreg_hi,dreg_hi */
399 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
400 break;
401 case 64:
402 /* Emit 'bswap eax' to swap lower 4 bytes */
403 EMIT1(0x0F);
404 EMIT1(add_1reg(0xC8, dreg_lo));
405
406 /* Emit 'bswap edx' to swap lower 4 bytes */
407 EMIT1(0x0F);
408 EMIT1(add_1reg(0xC8, dreg_hi));
409
410 /* mov ecx,dreg_hi */
411 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
412 /* mov dreg_hi,dreg_lo */
413 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
414 /* mov dreg_lo,ecx */
415 EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
416
417 break;
418 }
419 if (dstk) {
420 /* mov dword ptr [ebp+off],dreg_lo */
421 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
422 STACK_VAR(dst_lo));
423 /* mov dword ptr [ebp+off],dreg_hi */
424 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
425 STACK_VAR(dst_hi));
426 }
427 *pprog = prog;
428 }
429
430 /*
431 * ALU operation (32 bit)
432 * dst = dst (div|mod) src
433 */
emit_ia32_div_mod_r(const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)434 static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
435 bool dstk, bool sstk, u8 **pprog)
436 {
437 u8 *prog = *pprog;
438 int cnt = 0;
439
440 if (sstk)
441 /* mov ecx,dword ptr [ebp+off] */
442 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
443 STACK_VAR(src));
444 else if (src != IA32_ECX)
445 /* mov ecx,src */
446 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
447
448 if (dstk)
449 /* mov eax,dword ptr [ebp+off] */
450 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
451 STACK_VAR(dst));
452 else
453 /* mov eax,dst */
454 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
455
456 /* xor edx,edx */
457 EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
458 /* div ecx */
459 EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
460
461 if (op == BPF_MOD) {
462 if (dstk)
463 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
464 STACK_VAR(dst));
465 else
466 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
467 } else {
468 if (dstk)
469 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
470 STACK_VAR(dst));
471 else
472 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
473 }
474 *pprog = prog;
475 }
476
477 /*
478 * ALU operation (32 bit)
479 * dst = dst (shift) src
480 */
emit_ia32_shift_r(const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)481 static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
482 bool dstk, bool sstk, u8 **pprog)
483 {
484 u8 *prog = *pprog;
485 int cnt = 0;
486 u8 dreg = dstk ? IA32_EAX : dst;
487 u8 b2;
488
489 if (dstk)
490 /* mov eax,dword ptr [ebp+off] */
491 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
492
493 if (sstk)
494 /* mov ecx,dword ptr [ebp+off] */
495 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
496 else if (src != IA32_ECX)
497 /* mov ecx,src */
498 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
499
500 switch (op) {
501 case BPF_LSH:
502 b2 = 0xE0; break;
503 case BPF_RSH:
504 b2 = 0xE8; break;
505 case BPF_ARSH:
506 b2 = 0xF8; break;
507 default:
508 return;
509 }
510 EMIT2(0xD3, add_1reg(b2, dreg));
511
512 if (dstk)
513 /* mov dword ptr [ebp+off],dreg */
514 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
515 *pprog = prog;
516 }
517
518 /*
519 * ALU operation (32 bit)
520 * dst = dst (op) src
521 */
emit_ia32_alu_r(const bool is64,const bool hi,const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)522 static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
523 const u8 dst, const u8 src, bool dstk,
524 bool sstk, u8 **pprog)
525 {
526 u8 *prog = *pprog;
527 int cnt = 0;
528 u8 sreg = sstk ? IA32_EAX : src;
529 u8 dreg = dstk ? IA32_EDX : dst;
530
531 if (sstk)
532 /* mov eax,dword ptr [ebp+off] */
533 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
534
535 if (dstk)
536 /* mov eax,dword ptr [ebp+off] */
537 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
538
539 switch (BPF_OP(op)) {
540 /* dst = dst + src */
541 case BPF_ADD:
542 if (hi && is64)
543 EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
544 else
545 EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
546 break;
547 /* dst = dst - src */
548 case BPF_SUB:
549 if (hi && is64)
550 EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
551 else
552 EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
553 break;
554 /* dst = dst | src */
555 case BPF_OR:
556 EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
557 break;
558 /* dst = dst & src */
559 case BPF_AND:
560 EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
561 break;
562 /* dst = dst ^ src */
563 case BPF_XOR:
564 EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
565 break;
566 }
567
568 if (dstk)
569 /* mov dword ptr [ebp+off],dreg */
570 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
571 STACK_VAR(dst));
572 *pprog = prog;
573 }
574
575 /* ALU operation (64 bit) */
emit_ia32_alu_r64(const bool is64,const u8 op,const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog,const struct bpf_prog_aux * aux)576 static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
577 const u8 dst[], const u8 src[],
578 bool dstk, bool sstk,
579 u8 **pprog, const struct bpf_prog_aux *aux)
580 {
581 u8 *prog = *pprog;
582
583 emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
584 if (is64)
585 emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
586 &prog);
587 else if (!aux->verifier_zext)
588 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
589 *pprog = prog;
590 }
591
592 /*
593 * ALU operation (32 bit)
594 * dst = dst (op) val
595 */
emit_ia32_alu_i(const bool is64,const bool hi,const u8 op,const u8 dst,const s32 val,bool dstk,u8 ** pprog)596 static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
597 const u8 dst, const s32 val, bool dstk,
598 u8 **pprog)
599 {
600 u8 *prog = *pprog;
601 int cnt = 0;
602 u8 dreg = dstk ? IA32_EAX : dst;
603 u8 sreg = IA32_EDX;
604
605 if (dstk)
606 /* mov eax,dword ptr [ebp+off] */
607 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
608
609 if (!is_imm8(val))
610 /* mov edx,imm32*/
611 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
612
613 switch (op) {
614 /* dst = dst + val */
615 case BPF_ADD:
616 if (hi && is64) {
617 if (is_imm8(val))
618 EMIT3(0x83, add_1reg(0xD0, dreg), val);
619 else
620 EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
621 } else {
622 if (is_imm8(val))
623 EMIT3(0x83, add_1reg(0xC0, dreg), val);
624 else
625 EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
626 }
627 break;
628 /* dst = dst - val */
629 case BPF_SUB:
630 if (hi && is64) {
631 if (is_imm8(val))
632 EMIT3(0x83, add_1reg(0xD8, dreg), val);
633 else
634 EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
635 } else {
636 if (is_imm8(val))
637 EMIT3(0x83, add_1reg(0xE8, dreg), val);
638 else
639 EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
640 }
641 break;
642 /* dst = dst | val */
643 case BPF_OR:
644 if (is_imm8(val))
645 EMIT3(0x83, add_1reg(0xC8, dreg), val);
646 else
647 EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
648 break;
649 /* dst = dst & val */
650 case BPF_AND:
651 if (is_imm8(val))
652 EMIT3(0x83, add_1reg(0xE0, dreg), val);
653 else
654 EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
655 break;
656 /* dst = dst ^ val */
657 case BPF_XOR:
658 if (is_imm8(val))
659 EMIT3(0x83, add_1reg(0xF0, dreg), val);
660 else
661 EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
662 break;
663 case BPF_NEG:
664 EMIT2(0xF7, add_1reg(0xD8, dreg));
665 break;
666 }
667
668 if (dstk)
669 /* mov dword ptr [ebp+off],dreg */
670 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
671 STACK_VAR(dst));
672 *pprog = prog;
673 }
674
675 /* ALU operation (64 bit) */
emit_ia32_alu_i64(const bool is64,const u8 op,const u8 dst[],const u32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)676 static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
677 const u8 dst[], const u32 val,
678 bool dstk, u8 **pprog,
679 const struct bpf_prog_aux *aux)
680 {
681 u8 *prog = *pprog;
682 u32 hi = 0;
683
684 if (is64 && (val & (1<<31)))
685 hi = (u32)~0;
686
687 emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
688 if (is64)
689 emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
690 else if (!aux->verifier_zext)
691 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
692
693 *pprog = prog;
694 }
695
696 /* dst = ~dst (64 bit) */
emit_ia32_neg64(const u8 dst[],bool dstk,u8 ** pprog)697 static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
698 {
699 u8 *prog = *pprog;
700 int cnt = 0;
701 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
702 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
703
704 if (dstk) {
705 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
706 STACK_VAR(dst_lo));
707 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
708 STACK_VAR(dst_hi));
709 }
710
711 /* neg dreg_lo */
712 EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
713 /* adc dreg_hi,0x0 */
714 EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
715 /* neg dreg_hi */
716 EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
717
718 if (dstk) {
719 /* mov dword ptr [ebp+off],dreg_lo */
720 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
721 STACK_VAR(dst_lo));
722 /* mov dword ptr [ebp+off],dreg_hi */
723 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
724 STACK_VAR(dst_hi));
725 }
726 *pprog = prog;
727 }
728
729 /* dst = dst << src */
emit_ia32_lsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)730 static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
731 bool dstk, bool sstk, u8 **pprog)
732 {
733 u8 *prog = *pprog;
734 int cnt = 0;
735 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
736 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
737
738 if (dstk) {
739 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
740 STACK_VAR(dst_lo));
741 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
742 STACK_VAR(dst_hi));
743 }
744
745 if (sstk)
746 /* mov ecx,dword ptr [ebp+off] */
747 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
748 STACK_VAR(src_lo));
749 else
750 /* mov ecx,src_lo */
751 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
752
753 /* shld dreg_hi,dreg_lo,cl */
754 EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
755 /* shl dreg_lo,cl */
756 EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
757
758 /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
759
760 /* cmp ecx,32 */
761 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
762 /* skip the next two instructions (4 bytes) when < 32 */
763 EMIT2(IA32_JB, 4);
764
765 /* mov dreg_hi,dreg_lo */
766 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
767 /* xor dreg_lo,dreg_lo */
768 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
769
770 if (dstk) {
771 /* mov dword ptr [ebp+off],dreg_lo */
772 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
773 STACK_VAR(dst_lo));
774 /* mov dword ptr [ebp+off],dreg_hi */
775 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
776 STACK_VAR(dst_hi));
777 }
778 /* out: */
779 *pprog = prog;
780 }
781
782 /* dst = dst >> src (signed)*/
emit_ia32_arsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)783 static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
784 bool dstk, bool sstk, u8 **pprog)
785 {
786 u8 *prog = *pprog;
787 int cnt = 0;
788 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
789 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
790
791 if (dstk) {
792 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
793 STACK_VAR(dst_lo));
794 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
795 STACK_VAR(dst_hi));
796 }
797
798 if (sstk)
799 /* mov ecx,dword ptr [ebp+off] */
800 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
801 STACK_VAR(src_lo));
802 else
803 /* mov ecx,src_lo */
804 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
805
806 /* shrd dreg_lo,dreg_hi,cl */
807 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
808 /* sar dreg_hi,cl */
809 EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
810
811 /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
812
813 /* cmp ecx,32 */
814 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
815 /* skip the next two instructions (5 bytes) when < 32 */
816 EMIT2(IA32_JB, 5);
817
818 /* mov dreg_lo,dreg_hi */
819 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
820 /* sar dreg_hi,31 */
821 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
822
823 if (dstk) {
824 /* mov dword ptr [ebp+off],dreg_lo */
825 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
826 STACK_VAR(dst_lo));
827 /* mov dword ptr [ebp+off],dreg_hi */
828 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
829 STACK_VAR(dst_hi));
830 }
831 /* out: */
832 *pprog = prog;
833 }
834
835 /* dst = dst >> src */
emit_ia32_rsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)836 static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
837 bool sstk, u8 **pprog)
838 {
839 u8 *prog = *pprog;
840 int cnt = 0;
841 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
842 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
843
844 if (dstk) {
845 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
846 STACK_VAR(dst_lo));
847 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
848 STACK_VAR(dst_hi));
849 }
850
851 if (sstk)
852 /* mov ecx,dword ptr [ebp+off] */
853 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
854 STACK_VAR(src_lo));
855 else
856 /* mov ecx,src_lo */
857 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
858
859 /* shrd dreg_lo,dreg_hi,cl */
860 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
861 /* shr dreg_hi,cl */
862 EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
863
864 /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
865
866 /* cmp ecx,32 */
867 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
868 /* skip the next two instructions (4 bytes) when < 32 */
869 EMIT2(IA32_JB, 4);
870
871 /* mov dreg_lo,dreg_hi */
872 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
873 /* xor dreg_hi,dreg_hi */
874 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
875
876 if (dstk) {
877 /* mov dword ptr [ebp+off],dreg_lo */
878 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
879 STACK_VAR(dst_lo));
880 /* mov dword ptr [ebp+off],dreg_hi */
881 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
882 STACK_VAR(dst_hi));
883 }
884 /* out: */
885 *pprog = prog;
886 }
887
888 /* dst = dst << val */
emit_ia32_lsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)889 static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
890 bool dstk, u8 **pprog)
891 {
892 u8 *prog = *pprog;
893 int cnt = 0;
894 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
895 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
896
897 if (dstk) {
898 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
899 STACK_VAR(dst_lo));
900 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
901 STACK_VAR(dst_hi));
902 }
903 /* Do LSH operation */
904 if (val < 32) {
905 /* shld dreg_hi,dreg_lo,imm8 */
906 EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
907 /* shl dreg_lo,imm8 */
908 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
909 } else if (val >= 32 && val < 64) {
910 u32 value = val - 32;
911
912 /* shl dreg_lo,imm8 */
913 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
914 /* mov dreg_hi,dreg_lo */
915 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
916 /* xor dreg_lo,dreg_lo */
917 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
918 } else {
919 /* xor dreg_lo,dreg_lo */
920 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
921 /* xor dreg_hi,dreg_hi */
922 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
923 }
924
925 if (dstk) {
926 /* mov dword ptr [ebp+off],dreg_lo */
927 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
928 STACK_VAR(dst_lo));
929 /* mov dword ptr [ebp+off],dreg_hi */
930 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
931 STACK_VAR(dst_hi));
932 }
933 *pprog = prog;
934 }
935
936 /* dst = dst >> val */
emit_ia32_rsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)937 static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
938 bool dstk, u8 **pprog)
939 {
940 u8 *prog = *pprog;
941 int cnt = 0;
942 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
943 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
944
945 if (dstk) {
946 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
947 STACK_VAR(dst_lo));
948 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
949 STACK_VAR(dst_hi));
950 }
951
952 /* Do RSH operation */
953 if (val < 32) {
954 /* shrd dreg_lo,dreg_hi,imm8 */
955 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
956 /* shr dreg_hi,imm8 */
957 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
958 } else if (val >= 32 && val < 64) {
959 u32 value = val - 32;
960
961 /* shr dreg_hi,imm8 */
962 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
963 /* mov dreg_lo,dreg_hi */
964 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
965 /* xor dreg_hi,dreg_hi */
966 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
967 } else {
968 /* xor dreg_lo,dreg_lo */
969 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
970 /* xor dreg_hi,dreg_hi */
971 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
972 }
973
974 if (dstk) {
975 /* mov dword ptr [ebp+off],dreg_lo */
976 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
977 STACK_VAR(dst_lo));
978 /* mov dword ptr [ebp+off],dreg_hi */
979 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
980 STACK_VAR(dst_hi));
981 }
982 *pprog = prog;
983 }
984
985 /* dst = dst >> val (signed) */
emit_ia32_arsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)986 static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
987 bool dstk, u8 **pprog)
988 {
989 u8 *prog = *pprog;
990 int cnt = 0;
991 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
992 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
993
994 if (dstk) {
995 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
996 STACK_VAR(dst_lo));
997 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
998 STACK_VAR(dst_hi));
999 }
1000 /* Do RSH operation */
1001 if (val < 32) {
1002 /* shrd dreg_lo,dreg_hi,imm8 */
1003 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
1004 /* ashr dreg_hi,imm8 */
1005 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
1006 } else if (val >= 32 && val < 64) {
1007 u32 value = val - 32;
1008
1009 /* ashr dreg_hi,imm8 */
1010 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
1011 /* mov dreg_lo,dreg_hi */
1012 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1013
1014 /* ashr dreg_hi,imm8 */
1015 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1016 } else {
1017 /* ashr dreg_hi,imm8 */
1018 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1019 /* mov dreg_lo,dreg_hi */
1020 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1021 }
1022
1023 if (dstk) {
1024 /* mov dword ptr [ebp+off],dreg_lo */
1025 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
1026 STACK_VAR(dst_lo));
1027 /* mov dword ptr [ebp+off],dreg_hi */
1028 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
1029 STACK_VAR(dst_hi));
1030 }
1031 *pprog = prog;
1032 }
1033
emit_ia32_mul_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)1034 static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
1035 bool sstk, u8 **pprog)
1036 {
1037 u8 *prog = *pprog;
1038 int cnt = 0;
1039
1040 if (dstk)
1041 /* mov eax,dword ptr [ebp+off] */
1042 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1043 STACK_VAR(dst_hi));
1044 else
1045 /* mov eax,dst_hi */
1046 EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
1047
1048 if (sstk)
1049 /* mul dword ptr [ebp+off] */
1050 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1051 else
1052 /* mul src_lo */
1053 EMIT2(0xF7, add_1reg(0xE0, src_lo));
1054
1055 /* mov ecx,eax */
1056 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1057
1058 if (dstk)
1059 /* mov eax,dword ptr [ebp+off] */
1060 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1061 STACK_VAR(dst_lo));
1062 else
1063 /* mov eax,dst_lo */
1064 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1065
1066 if (sstk)
1067 /* mul dword ptr [ebp+off] */
1068 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
1069 else
1070 /* mul src_hi */
1071 EMIT2(0xF7, add_1reg(0xE0, src_hi));
1072
1073 /* add eax,eax */
1074 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1075
1076 if (dstk)
1077 /* mov eax,dword ptr [ebp+off] */
1078 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1079 STACK_VAR(dst_lo));
1080 else
1081 /* mov eax,dst_lo */
1082 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1083
1084 if (sstk)
1085 /* mul dword ptr [ebp+off] */
1086 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1087 else
1088 /* mul src_lo */
1089 EMIT2(0xF7, add_1reg(0xE0, src_lo));
1090
1091 /* add ecx,edx */
1092 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1093
1094 if (dstk) {
1095 /* mov dword ptr [ebp+off],eax */
1096 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1097 STACK_VAR(dst_lo));
1098 /* mov dword ptr [ebp+off],ecx */
1099 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1100 STACK_VAR(dst_hi));
1101 } else {
1102 /* mov dst_lo,eax */
1103 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1104 /* mov dst_hi,ecx */
1105 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1106 }
1107
1108 *pprog = prog;
1109 }
1110
emit_ia32_mul_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)1111 static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
1112 bool dstk, u8 **pprog)
1113 {
1114 u8 *prog = *pprog;
1115 int cnt = 0;
1116 u32 hi;
1117
1118 hi = val & (1<<31) ? (u32)~0 : 0;
1119 /* movl eax,imm32 */
1120 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1121 if (dstk)
1122 /* mul dword ptr [ebp+off] */
1123 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
1124 else
1125 /* mul dst_hi */
1126 EMIT2(0xF7, add_1reg(0xE0, dst_hi));
1127
1128 /* mov ecx,eax */
1129 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1130
1131 /* movl eax,imm32 */
1132 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
1133 if (dstk)
1134 /* mul dword ptr [ebp+off] */
1135 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1136 else
1137 /* mul dst_lo */
1138 EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1139 /* add ecx,eax */
1140 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1141
1142 /* movl eax,imm32 */
1143 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1144 if (dstk)
1145 /* mul dword ptr [ebp+off] */
1146 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1147 else
1148 /* mul dst_lo */
1149 EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1150
1151 /* add ecx,edx */
1152 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1153
1154 if (dstk) {
1155 /* mov dword ptr [ebp+off],eax */
1156 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1157 STACK_VAR(dst_lo));
1158 /* mov dword ptr [ebp+off],ecx */
1159 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1160 STACK_VAR(dst_hi));
1161 } else {
1162 /* mov dword ptr [ebp+off],eax */
1163 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1164 /* mov dword ptr [ebp+off],ecx */
1165 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1166 }
1167
1168 *pprog = prog;
1169 }
1170
bpf_size_to_x86_bytes(int bpf_size)1171 static int bpf_size_to_x86_bytes(int bpf_size)
1172 {
1173 if (bpf_size == BPF_W)
1174 return 4;
1175 else if (bpf_size == BPF_H)
1176 return 2;
1177 else if (bpf_size == BPF_B)
1178 return 1;
1179 else if (bpf_size == BPF_DW)
1180 return 4; /* imm32 */
1181 else
1182 return 0;
1183 }
1184
1185 struct jit_context {
1186 int cleanup_addr; /* Epilogue code offset */
1187 };
1188
1189 /* Maximum number of bytes emitted while JITing one eBPF insn */
1190 #define BPF_MAX_INSN_SIZE 128
1191 #define BPF_INSN_SAFETY 64
1192
1193 #define PROLOGUE_SIZE 35
1194
1195 /*
1196 * Emit prologue code for BPF program and check it's size.
1197 * bpf_tail_call helper will skip it while jumping into another program.
1198 */
emit_prologue(u8 ** pprog,u32 stack_depth)1199 static void emit_prologue(u8 **pprog, u32 stack_depth)
1200 {
1201 u8 *prog = *pprog;
1202 int cnt = 0;
1203 const u8 *r1 = bpf2ia32[BPF_REG_1];
1204 const u8 fplo = bpf2ia32[BPF_REG_FP][0];
1205 const u8 fphi = bpf2ia32[BPF_REG_FP][1];
1206 const u8 *tcc = bpf2ia32[TCALL_CNT];
1207
1208 /* push ebp */
1209 EMIT1(0x55);
1210 /* mov ebp,esp */
1211 EMIT2(0x89, 0xE5);
1212 /* push edi */
1213 EMIT1(0x57);
1214 /* push esi */
1215 EMIT1(0x56);
1216 /* push ebx */
1217 EMIT1(0x53);
1218
1219 /* sub esp,STACK_SIZE */
1220 EMIT2_off32(0x81, 0xEC, STACK_SIZE);
1221 /* sub ebp,SCRATCH_SIZE+12*/
1222 EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
1223 /* xor ebx,ebx */
1224 EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
1225
1226 /* Set up BPF prog stack base register */
1227 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
1228 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
1229
1230 /* Move BPF_CTX (EAX) to BPF_REG_R1 */
1231 /* mov dword ptr [ebp+off],eax */
1232 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1233 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
1234
1235 /* Initialize Tail Count */
1236 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
1237 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1238
1239 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
1240 *pprog = prog;
1241 }
1242
1243 /* Emit epilogue code for BPF program */
emit_epilogue(u8 ** pprog,u32 stack_depth)1244 static void emit_epilogue(u8 **pprog, u32 stack_depth)
1245 {
1246 u8 *prog = *pprog;
1247 const u8 *r0 = bpf2ia32[BPF_REG_0];
1248 int cnt = 0;
1249
1250 /* mov eax,dword ptr [ebp+off]*/
1251 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
1252 /* mov edx,dword ptr [ebp+off]*/
1253 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
1254
1255 /* add ebp,SCRATCH_SIZE+12*/
1256 EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
1257
1258 /* mov ebx,dword ptr [ebp-12]*/
1259 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
1260 /* mov esi,dword ptr [ebp-8]*/
1261 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
1262 /* mov edi,dword ptr [ebp-4]*/
1263 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
1264
1265 EMIT1(0xC9); /* leave */
1266 EMIT1(0xC3); /* ret */
1267 *pprog = prog;
1268 }
1269
1270 /*
1271 * Generate the following code:
1272 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
1273 * if (index >= array->map.max_entries)
1274 * goto out;
1275 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
1276 * goto out;
1277 * prog = array->ptrs[index];
1278 * if (prog == NULL)
1279 * goto out;
1280 * goto *(prog->bpf_func + prologue_size);
1281 * out:
1282 */
emit_bpf_tail_call(u8 ** pprog)1283 static void emit_bpf_tail_call(u8 **pprog)
1284 {
1285 u8 *prog = *pprog;
1286 int cnt = 0;
1287 const u8 *r1 = bpf2ia32[BPF_REG_1];
1288 const u8 *r2 = bpf2ia32[BPF_REG_2];
1289 const u8 *r3 = bpf2ia32[BPF_REG_3];
1290 const u8 *tcc = bpf2ia32[TCALL_CNT];
1291 u32 lo, hi;
1292 static int jmp_label1 = -1;
1293
1294 /*
1295 * if (index >= array->map.max_entries)
1296 * goto out;
1297 */
1298 /* mov eax,dword ptr [ebp+off] */
1299 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
1300 /* mov edx,dword ptr [ebp+off] */
1301 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
1302
1303 /* cmp dword ptr [eax+off],edx */
1304 EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
1305 offsetof(struct bpf_array, map.max_entries));
1306 /* jbe out */
1307 EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
1308
1309 /*
1310 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1311 * goto out;
1312 */
1313 lo = (u32)MAX_TAIL_CALL_CNT;
1314 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1315 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1316 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1317
1318 /* cmp edx,hi */
1319 EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
1320 EMIT2(IA32_JNE, 3);
1321 /* cmp ecx,lo */
1322 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
1323
1324 /* ja out */
1325 EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
1326
1327 /* add eax,0x1 */
1328 EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
1329 /* adc ebx,0x0 */
1330 EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
1331
1332 /* mov dword ptr [ebp+off],eax */
1333 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1334 /* mov dword ptr [ebp+off],edx */
1335 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1336
1337 /* prog = array->ptrs[index]; */
1338 /* mov edx, [eax + edx * 4 + offsetof(...)] */
1339 EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
1340
1341 /*
1342 * if (prog == NULL)
1343 * goto out;
1344 */
1345 /* test edx,edx */
1346 EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
1347 /* je out */
1348 EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
1349
1350 /* goto *(prog->bpf_func + prologue_size); */
1351 /* mov edx, dword ptr [edx + 32] */
1352 EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
1353 offsetof(struct bpf_prog, bpf_func));
1354 /* add edx,prologue_size */
1355 EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
1356
1357 /* mov eax,dword ptr [ebp+off] */
1358 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1359
1360 /*
1361 * Now we're ready to jump into next BPF program:
1362 * eax == ctx (1st arg)
1363 * edx == prog->bpf_func + prologue_size
1364 */
1365 RETPOLINE_EDX_BPF_JIT();
1366
1367 if (jmp_label1 == -1)
1368 jmp_label1 = cnt;
1369
1370 /* out: */
1371 *pprog = prog;
1372 }
1373
1374 /* Push the scratch stack register on top of the stack. */
emit_push_r64(const u8 src[],u8 ** pprog)1375 static inline void emit_push_r64(const u8 src[], u8 **pprog)
1376 {
1377 u8 *prog = *pprog;
1378 int cnt = 0;
1379
1380 /* mov ecx,dword ptr [ebp+off] */
1381 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
1382 /* push ecx */
1383 EMIT1(0x51);
1384
1385 /* mov ecx,dword ptr [ebp+off] */
1386 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1387 /* push ecx */
1388 EMIT1(0x51);
1389
1390 *pprog = prog;
1391 }
1392
emit_push_r32(const u8 src[],u8 ** pprog)1393 static void emit_push_r32(const u8 src[], u8 **pprog)
1394 {
1395 u8 *prog = *pprog;
1396 int cnt = 0;
1397
1398 /* mov ecx,dword ptr [ebp+off] */
1399 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1400 /* push ecx */
1401 EMIT1(0x51);
1402
1403 *pprog = prog;
1404 }
1405
get_cond_jmp_opcode(const u8 op,bool is_cmp_lo)1406 static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
1407 {
1408 u8 jmp_cond;
1409
1410 /* Convert BPF opcode to x86 */
1411 switch (op) {
1412 case BPF_JEQ:
1413 jmp_cond = IA32_JE;
1414 break;
1415 case BPF_JSET:
1416 case BPF_JNE:
1417 jmp_cond = IA32_JNE;
1418 break;
1419 case BPF_JGT:
1420 /* GT is unsigned '>', JA in x86 */
1421 jmp_cond = IA32_JA;
1422 break;
1423 case BPF_JLT:
1424 /* LT is unsigned '<', JB in x86 */
1425 jmp_cond = IA32_JB;
1426 break;
1427 case BPF_JGE:
1428 /* GE is unsigned '>=', JAE in x86 */
1429 jmp_cond = IA32_JAE;
1430 break;
1431 case BPF_JLE:
1432 /* LE is unsigned '<=', JBE in x86 */
1433 jmp_cond = IA32_JBE;
1434 break;
1435 case BPF_JSGT:
1436 if (!is_cmp_lo)
1437 /* Signed '>', GT in x86 */
1438 jmp_cond = IA32_JG;
1439 else
1440 /* GT is unsigned '>', JA in x86 */
1441 jmp_cond = IA32_JA;
1442 break;
1443 case BPF_JSLT:
1444 if (!is_cmp_lo)
1445 /* Signed '<', LT in x86 */
1446 jmp_cond = IA32_JL;
1447 else
1448 /* LT is unsigned '<', JB in x86 */
1449 jmp_cond = IA32_JB;
1450 break;
1451 case BPF_JSGE:
1452 if (!is_cmp_lo)
1453 /* Signed '>=', GE in x86 */
1454 jmp_cond = IA32_JGE;
1455 else
1456 /* GE is unsigned '>=', JAE in x86 */
1457 jmp_cond = IA32_JAE;
1458 break;
1459 case BPF_JSLE:
1460 if (!is_cmp_lo)
1461 /* Signed '<=', LE in x86 */
1462 jmp_cond = IA32_JLE;
1463 else
1464 /* LE is unsigned '<=', JBE in x86 */
1465 jmp_cond = IA32_JBE;
1466 break;
1467 default: /* to silence GCC warning */
1468 jmp_cond = COND_JMP_OPCODE_INVALID;
1469 break;
1470 }
1471
1472 return jmp_cond;
1473 }
1474
1475 /* i386 kernel compiles with "-mregparm=3". From gcc document:
1476 *
1477 * ==== snippet ====
1478 * regparm (number)
1479 * On x86-32 targets, the regparm attribute causes the compiler
1480 * to pass arguments number one to (number) if they are of integral
1481 * type in registers EAX, EDX, and ECX instead of on the stack.
1482 * Functions that take a variable number of arguments continue
1483 * to be passed all of their arguments on the stack.
1484 * ==== snippet ====
1485 *
1486 * The first three args of a function will be considered for
1487 * putting into the 32bit register EAX, EDX, and ECX.
1488 *
1489 * Two 32bit registers are used to pass a 64bit arg.
1490 *
1491 * For example,
1492 * void foo(u32 a, u32 b, u32 c, u32 d):
1493 * u32 a: EAX
1494 * u32 b: EDX
1495 * u32 c: ECX
1496 * u32 d: stack
1497 *
1498 * void foo(u64 a, u32 b, u32 c):
1499 * u64 a: EAX (lo32) EDX (hi32)
1500 * u32 b: ECX
1501 * u32 c: stack
1502 *
1503 * void foo(u32 a, u64 b, u32 c):
1504 * u32 a: EAX
1505 * u64 b: EDX (lo32) ECX (hi32)
1506 * u32 c: stack
1507 *
1508 * void foo(u32 a, u32 b, u64 c):
1509 * u32 a: EAX
1510 * u32 b: EDX
1511 * u64 c: stack
1512 *
1513 * The return value will be stored in the EAX (and EDX for 64bit value).
1514 *
1515 * For example,
1516 * u32 foo(u32 a, u32 b, u32 c):
1517 * return value: EAX
1518 *
1519 * u64 foo(u32 a, u32 b, u32 c):
1520 * return value: EAX (lo32) EDX (hi32)
1521 *
1522 * Notes:
1523 * The verifier only accepts function having integer and pointers
1524 * as its args and return value, so it does not have
1525 * struct-by-value.
1526 *
1527 * emit_kfunc_call() finds out the btf_func_model by calling
1528 * bpf_jit_find_kfunc_model(). A btf_func_model
1529 * has the details about the number of args, size of each arg,
1530 * and the size of the return value.
1531 *
1532 * It first decides how many args can be passed by EAX, EDX, and ECX.
1533 * That will decide what args should be pushed to the stack:
1534 * [first_stack_regno, last_stack_regno] are the bpf regnos
1535 * that should be pushed to the stack.
1536 *
1537 * It will first push all args to the stack because the push
1538 * will need to use ECX. Then, it moves
1539 * [BPF_REG_1, first_stack_regno) to EAX, EDX, and ECX.
1540 *
1541 * When emitting a call (0xE8), it needs to figure out
1542 * the jmp_offset relative to the jit-insn address immediately
1543 * following the call (0xE8) instruction. At this point, it knows
1544 * the end of the jit-insn address after completely translated the
1545 * current (BPF_JMP | BPF_CALL) bpf-insn. It is passed as "end_addr"
1546 * to the emit_kfunc_call(). Thus, it can learn the "immediate-follow-call"
1547 * address by figuring out how many jit-insn is generated between
1548 * the call (0xE8) and the end_addr:
1549 * - 0-1 jit-insn (3 bytes each) to restore the esp pointer if there
1550 * is arg pushed to the stack.
1551 * - 0-2 jit-insns (3 bytes each) to handle the return value.
1552 */
emit_kfunc_call(const struct bpf_prog * bpf_prog,u8 * end_addr,const struct bpf_insn * insn,u8 ** pprog)1553 static int emit_kfunc_call(const struct bpf_prog *bpf_prog, u8 *end_addr,
1554 const struct bpf_insn *insn, u8 **pprog)
1555 {
1556 const u8 arg_regs[] = { IA32_EAX, IA32_EDX, IA32_ECX };
1557 int i, cnt = 0, first_stack_regno, last_stack_regno;
1558 int free_arg_regs = ARRAY_SIZE(arg_regs);
1559 const struct btf_func_model *fm;
1560 int bytes_in_stack = 0;
1561 const u8 *cur_arg_reg;
1562 u8 *prog = *pprog;
1563 s64 jmp_offset;
1564
1565 fm = bpf_jit_find_kfunc_model(bpf_prog, insn);
1566 if (!fm)
1567 return -EINVAL;
1568
1569 first_stack_regno = BPF_REG_1;
1570 for (i = 0; i < fm->nr_args; i++) {
1571 int regs_needed = fm->arg_size[i] > sizeof(u32) ? 2 : 1;
1572
1573 if (regs_needed > free_arg_regs)
1574 break;
1575
1576 free_arg_regs -= regs_needed;
1577 first_stack_regno++;
1578 }
1579
1580 /* Push the args to the stack */
1581 last_stack_regno = BPF_REG_0 + fm->nr_args;
1582 for (i = last_stack_regno; i >= first_stack_regno; i--) {
1583 if (fm->arg_size[i - 1] > sizeof(u32)) {
1584 emit_push_r64(bpf2ia32[i], &prog);
1585 bytes_in_stack += 8;
1586 } else {
1587 emit_push_r32(bpf2ia32[i], &prog);
1588 bytes_in_stack += 4;
1589 }
1590 }
1591
1592 cur_arg_reg = &arg_regs[0];
1593 for (i = BPF_REG_1; i < first_stack_regno; i++) {
1594 /* mov e[adc]x,dword ptr [ebp+off] */
1595 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
1596 STACK_VAR(bpf2ia32[i][0]));
1597 if (fm->arg_size[i - 1] > sizeof(u32))
1598 /* mov e[adc]x,dword ptr [ebp+off] */
1599 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
1600 STACK_VAR(bpf2ia32[i][1]));
1601 }
1602
1603 if (bytes_in_stack)
1604 /* add esp,"bytes_in_stack" */
1605 end_addr -= 3;
1606
1607 /* mov dword ptr [ebp+off],edx */
1608 if (fm->ret_size > sizeof(u32))
1609 end_addr -= 3;
1610
1611 /* mov dword ptr [ebp+off],eax */
1612 if (fm->ret_size)
1613 end_addr -= 3;
1614
1615 jmp_offset = (u8 *)__bpf_call_base + insn->imm - end_addr;
1616 if (!is_simm32(jmp_offset)) {
1617 pr_err("unsupported BPF kernel function jmp_offset:%lld\n",
1618 jmp_offset);
1619 return -EINVAL;
1620 }
1621
1622 EMIT1_off32(0xE8, jmp_offset);
1623
1624 if (fm->ret_size)
1625 /* mov dword ptr [ebp+off],eax */
1626 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1627 STACK_VAR(bpf2ia32[BPF_REG_0][0]));
1628
1629 if (fm->ret_size > sizeof(u32))
1630 /* mov dword ptr [ebp+off],edx */
1631 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1632 STACK_VAR(bpf2ia32[BPF_REG_0][1]));
1633
1634 if (bytes_in_stack)
1635 /* add esp,"bytes_in_stack" */
1636 EMIT3(0x83, add_1reg(0xC0, IA32_ESP), bytes_in_stack);
1637
1638 *pprog = prog;
1639
1640 return 0;
1641 }
1642
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,int oldproglen,struct jit_context * ctx)1643 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
1644 int oldproglen, struct jit_context *ctx)
1645 {
1646 struct bpf_insn *insn = bpf_prog->insnsi;
1647 int insn_cnt = bpf_prog->len;
1648 bool seen_exit = false;
1649 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1650 int i, cnt = 0;
1651 int proglen = 0;
1652 u8 *prog = temp;
1653
1654 emit_prologue(&prog, bpf_prog->aux->stack_depth);
1655
1656 for (i = 0; i < insn_cnt; i++, insn++) {
1657 const s32 imm32 = insn->imm;
1658 const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1659 const bool dstk = insn->dst_reg != BPF_REG_AX;
1660 const bool sstk = insn->src_reg != BPF_REG_AX;
1661 const u8 code = insn->code;
1662 const u8 *dst = bpf2ia32[insn->dst_reg];
1663 const u8 *src = bpf2ia32[insn->src_reg];
1664 const u8 *r0 = bpf2ia32[BPF_REG_0];
1665 s64 jmp_offset;
1666 u8 jmp_cond;
1667 int ilen;
1668 u8 *func;
1669
1670 switch (code) {
1671 /* ALU operations */
1672 /* dst = src */
1673 case BPF_ALU | BPF_MOV | BPF_K:
1674 case BPF_ALU | BPF_MOV | BPF_X:
1675 case BPF_ALU64 | BPF_MOV | BPF_K:
1676 case BPF_ALU64 | BPF_MOV | BPF_X:
1677 switch (BPF_SRC(code)) {
1678 case BPF_X:
1679 if (imm32 == 1) {
1680 /* Special mov32 for zext. */
1681 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1682 break;
1683 }
1684 emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
1685 &prog, bpf_prog->aux);
1686 break;
1687 case BPF_K:
1688 /* Sign-extend immediate value to dst reg */
1689 emit_ia32_mov_i64(is64, dst, imm32,
1690 dstk, &prog);
1691 break;
1692 }
1693 break;
1694 /* dst = dst + src/imm */
1695 /* dst = dst - src/imm */
1696 /* dst = dst | src/imm */
1697 /* dst = dst & src/imm */
1698 /* dst = dst ^ src/imm */
1699 /* dst = dst * src/imm */
1700 /* dst = dst << src */
1701 /* dst = dst >> src */
1702 case BPF_ALU | BPF_ADD | BPF_K:
1703 case BPF_ALU | BPF_ADD | BPF_X:
1704 case BPF_ALU | BPF_SUB | BPF_K:
1705 case BPF_ALU | BPF_SUB | BPF_X:
1706 case BPF_ALU | BPF_OR | BPF_K:
1707 case BPF_ALU | BPF_OR | BPF_X:
1708 case BPF_ALU | BPF_AND | BPF_K:
1709 case BPF_ALU | BPF_AND | BPF_X:
1710 case BPF_ALU | BPF_XOR | BPF_K:
1711 case BPF_ALU | BPF_XOR | BPF_X:
1712 case BPF_ALU64 | BPF_ADD | BPF_K:
1713 case BPF_ALU64 | BPF_ADD | BPF_X:
1714 case BPF_ALU64 | BPF_SUB | BPF_K:
1715 case BPF_ALU64 | BPF_SUB | BPF_X:
1716 case BPF_ALU64 | BPF_OR | BPF_K:
1717 case BPF_ALU64 | BPF_OR | BPF_X:
1718 case BPF_ALU64 | BPF_AND | BPF_K:
1719 case BPF_ALU64 | BPF_AND | BPF_X:
1720 case BPF_ALU64 | BPF_XOR | BPF_K:
1721 case BPF_ALU64 | BPF_XOR | BPF_X:
1722 switch (BPF_SRC(code)) {
1723 case BPF_X:
1724 emit_ia32_alu_r64(is64, BPF_OP(code), dst,
1725 src, dstk, sstk, &prog,
1726 bpf_prog->aux);
1727 break;
1728 case BPF_K:
1729 emit_ia32_alu_i64(is64, BPF_OP(code), dst,
1730 imm32, dstk, &prog,
1731 bpf_prog->aux);
1732 break;
1733 }
1734 break;
1735 case BPF_ALU | BPF_MUL | BPF_K:
1736 case BPF_ALU | BPF_MUL | BPF_X:
1737 switch (BPF_SRC(code)) {
1738 case BPF_X:
1739 emit_ia32_mul_r(dst_lo, src_lo, dstk,
1740 sstk, &prog);
1741 break;
1742 case BPF_K:
1743 /* mov ecx,imm32*/
1744 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1745 imm32);
1746 emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
1747 false, &prog);
1748 break;
1749 }
1750 if (!bpf_prog->aux->verifier_zext)
1751 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1752 break;
1753 case BPF_ALU | BPF_LSH | BPF_X:
1754 case BPF_ALU | BPF_RSH | BPF_X:
1755 case BPF_ALU | BPF_ARSH | BPF_K:
1756 case BPF_ALU | BPF_ARSH | BPF_X:
1757 switch (BPF_SRC(code)) {
1758 case BPF_X:
1759 emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
1760 dstk, sstk, &prog);
1761 break;
1762 case BPF_K:
1763 /* mov ecx,imm32*/
1764 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1765 imm32);
1766 emit_ia32_shift_r(BPF_OP(code), dst_lo,
1767 IA32_ECX, dstk, false,
1768 &prog);
1769 break;
1770 }
1771 if (!bpf_prog->aux->verifier_zext)
1772 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1773 break;
1774 /* dst = dst / src(imm) */
1775 /* dst = dst % src(imm) */
1776 case BPF_ALU | BPF_DIV | BPF_K:
1777 case BPF_ALU | BPF_DIV | BPF_X:
1778 case BPF_ALU | BPF_MOD | BPF_K:
1779 case BPF_ALU | BPF_MOD | BPF_X:
1780 switch (BPF_SRC(code)) {
1781 case BPF_X:
1782 emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1783 src_lo, dstk, sstk, &prog);
1784 break;
1785 case BPF_K:
1786 /* mov ecx,imm32*/
1787 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1788 imm32);
1789 emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1790 IA32_ECX, dstk, false,
1791 &prog);
1792 break;
1793 }
1794 if (!bpf_prog->aux->verifier_zext)
1795 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1796 break;
1797 case BPF_ALU64 | BPF_DIV | BPF_K:
1798 case BPF_ALU64 | BPF_DIV | BPF_X:
1799 case BPF_ALU64 | BPF_MOD | BPF_K:
1800 case BPF_ALU64 | BPF_MOD | BPF_X:
1801 goto notyet;
1802 /* dst = dst >> imm */
1803 /* dst = dst << imm */
1804 case BPF_ALU | BPF_RSH | BPF_K:
1805 case BPF_ALU | BPF_LSH | BPF_K:
1806 if (unlikely(imm32 > 31))
1807 return -EINVAL;
1808 /* mov ecx,imm32*/
1809 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
1810 emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
1811 false, &prog);
1812 if (!bpf_prog->aux->verifier_zext)
1813 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1814 break;
1815 /* dst = dst << imm */
1816 case BPF_ALU64 | BPF_LSH | BPF_K:
1817 if (unlikely(imm32 > 63))
1818 return -EINVAL;
1819 emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
1820 break;
1821 /* dst = dst >> imm */
1822 case BPF_ALU64 | BPF_RSH | BPF_K:
1823 if (unlikely(imm32 > 63))
1824 return -EINVAL;
1825 emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
1826 break;
1827 /* dst = dst << src */
1828 case BPF_ALU64 | BPF_LSH | BPF_X:
1829 emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
1830 break;
1831 /* dst = dst >> src */
1832 case BPF_ALU64 | BPF_RSH | BPF_X:
1833 emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
1834 break;
1835 /* dst = dst >> src (signed) */
1836 case BPF_ALU64 | BPF_ARSH | BPF_X:
1837 emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
1838 break;
1839 /* dst = dst >> imm (signed) */
1840 case BPF_ALU64 | BPF_ARSH | BPF_K:
1841 if (unlikely(imm32 > 63))
1842 return -EINVAL;
1843 emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
1844 break;
1845 /* dst = ~dst */
1846 case BPF_ALU | BPF_NEG:
1847 emit_ia32_alu_i(is64, false, BPF_OP(code),
1848 dst_lo, 0, dstk, &prog);
1849 if (!bpf_prog->aux->verifier_zext)
1850 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1851 break;
1852 /* dst = ~dst (64 bit) */
1853 case BPF_ALU64 | BPF_NEG:
1854 emit_ia32_neg64(dst, dstk, &prog);
1855 break;
1856 /* dst = dst * src/imm */
1857 case BPF_ALU64 | BPF_MUL | BPF_X:
1858 case BPF_ALU64 | BPF_MUL | BPF_K:
1859 switch (BPF_SRC(code)) {
1860 case BPF_X:
1861 emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
1862 break;
1863 case BPF_K:
1864 emit_ia32_mul_i64(dst, imm32, dstk, &prog);
1865 break;
1866 }
1867 break;
1868 /* dst = htole(dst) */
1869 case BPF_ALU | BPF_END | BPF_FROM_LE:
1870 emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
1871 bpf_prog->aux);
1872 break;
1873 /* dst = htobe(dst) */
1874 case BPF_ALU | BPF_END | BPF_FROM_BE:
1875 emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
1876 bpf_prog->aux);
1877 break;
1878 /* dst = imm64 */
1879 case BPF_LD | BPF_IMM | BPF_DW: {
1880 s32 hi, lo = imm32;
1881
1882 hi = insn[1].imm;
1883 emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
1884 emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
1885 insn++;
1886 i++;
1887 break;
1888 }
1889 /* speculation barrier */
1890 case BPF_ST | BPF_NOSPEC:
1891 if (boot_cpu_has(X86_FEATURE_XMM2))
1892 /* Emit 'lfence' */
1893 EMIT3(0x0F, 0xAE, 0xE8);
1894 break;
1895 /* ST: *(u8*)(dst_reg + off) = imm */
1896 case BPF_ST | BPF_MEM | BPF_H:
1897 case BPF_ST | BPF_MEM | BPF_B:
1898 case BPF_ST | BPF_MEM | BPF_W:
1899 case BPF_ST | BPF_MEM | BPF_DW:
1900 if (dstk)
1901 /* mov eax,dword ptr [ebp+off] */
1902 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1903 STACK_VAR(dst_lo));
1904 else
1905 /* mov eax,dst_lo */
1906 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1907
1908 switch (BPF_SIZE(code)) {
1909 case BPF_B:
1910 EMIT(0xC6, 1); break;
1911 case BPF_H:
1912 EMIT2(0x66, 0xC7); break;
1913 case BPF_W:
1914 case BPF_DW:
1915 EMIT(0xC7, 1); break;
1916 }
1917
1918 if (is_imm8(insn->off))
1919 EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
1920 else
1921 EMIT1_off32(add_1reg(0x80, IA32_EAX),
1922 insn->off);
1923 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
1924
1925 if (BPF_SIZE(code) == BPF_DW) {
1926 u32 hi;
1927
1928 hi = imm32 & (1<<31) ? (u32)~0 : 0;
1929 EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
1930 insn->off + 4);
1931 EMIT(hi, 4);
1932 }
1933 break;
1934
1935 /* STX: *(u8*)(dst_reg + off) = src_reg */
1936 case BPF_STX | BPF_MEM | BPF_B:
1937 case BPF_STX | BPF_MEM | BPF_H:
1938 case BPF_STX | BPF_MEM | BPF_W:
1939 case BPF_STX | BPF_MEM | BPF_DW:
1940 if (dstk)
1941 /* mov eax,dword ptr [ebp+off] */
1942 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1943 STACK_VAR(dst_lo));
1944 else
1945 /* mov eax,dst_lo */
1946 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1947
1948 if (sstk)
1949 /* mov edx,dword ptr [ebp+off] */
1950 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1951 STACK_VAR(src_lo));
1952 else
1953 /* mov edx,src_lo */
1954 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
1955
1956 switch (BPF_SIZE(code)) {
1957 case BPF_B:
1958 EMIT(0x88, 1); break;
1959 case BPF_H:
1960 EMIT2(0x66, 0x89); break;
1961 case BPF_W:
1962 case BPF_DW:
1963 EMIT(0x89, 1); break;
1964 }
1965
1966 if (is_imm8(insn->off))
1967 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1968 insn->off);
1969 else
1970 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1971 insn->off);
1972
1973 if (BPF_SIZE(code) == BPF_DW) {
1974 if (sstk)
1975 /* mov edi,dword ptr [ebp+off] */
1976 EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
1977 IA32_EDX),
1978 STACK_VAR(src_hi));
1979 else
1980 /* mov edi,src_hi */
1981 EMIT2(0x8B, add_2reg(0xC0, src_hi,
1982 IA32_EDX));
1983 EMIT1(0x89);
1984 if (is_imm8(insn->off + 4)) {
1985 EMIT2(add_2reg(0x40, IA32_EAX,
1986 IA32_EDX),
1987 insn->off + 4);
1988 } else {
1989 EMIT1(add_2reg(0x80, IA32_EAX,
1990 IA32_EDX));
1991 EMIT(insn->off + 4, 4);
1992 }
1993 }
1994 break;
1995
1996 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1997 case BPF_LDX | BPF_MEM | BPF_B:
1998 case BPF_LDX | BPF_MEM | BPF_H:
1999 case BPF_LDX | BPF_MEM | BPF_W:
2000 case BPF_LDX | BPF_MEM | BPF_DW:
2001 if (sstk)
2002 /* mov eax,dword ptr [ebp+off] */
2003 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2004 STACK_VAR(src_lo));
2005 else
2006 /* mov eax,dword ptr [ebp+off] */
2007 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
2008
2009 switch (BPF_SIZE(code)) {
2010 case BPF_B:
2011 EMIT2(0x0F, 0xB6); break;
2012 case BPF_H:
2013 EMIT2(0x0F, 0xB7); break;
2014 case BPF_W:
2015 case BPF_DW:
2016 EMIT(0x8B, 1); break;
2017 }
2018
2019 if (is_imm8(insn->off))
2020 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
2021 insn->off);
2022 else
2023 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
2024 insn->off);
2025
2026 if (dstk)
2027 /* mov dword ptr [ebp+off],edx */
2028 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
2029 STACK_VAR(dst_lo));
2030 else
2031 /* mov dst_lo,edx */
2032 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
2033 switch (BPF_SIZE(code)) {
2034 case BPF_B:
2035 case BPF_H:
2036 case BPF_W:
2037 if (bpf_prog->aux->verifier_zext)
2038 break;
2039 if (dstk) {
2040 EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
2041 STACK_VAR(dst_hi));
2042 EMIT(0x0, 4);
2043 } else {
2044 /* xor dst_hi,dst_hi */
2045 EMIT2(0x33,
2046 add_2reg(0xC0, dst_hi, dst_hi));
2047 }
2048 break;
2049 case BPF_DW:
2050 EMIT2_off32(0x8B,
2051 add_2reg(0x80, IA32_EAX, IA32_EDX),
2052 insn->off + 4);
2053 if (dstk)
2054 EMIT3(0x89,
2055 add_2reg(0x40, IA32_EBP,
2056 IA32_EDX),
2057 STACK_VAR(dst_hi));
2058 else
2059 EMIT2(0x89,
2060 add_2reg(0xC0, dst_hi, IA32_EDX));
2061 break;
2062 default:
2063 break;
2064 }
2065 break;
2066 /* call */
2067 case BPF_JMP | BPF_CALL:
2068 {
2069 const u8 *r1 = bpf2ia32[BPF_REG_1];
2070 const u8 *r2 = bpf2ia32[BPF_REG_2];
2071 const u8 *r3 = bpf2ia32[BPF_REG_3];
2072 const u8 *r4 = bpf2ia32[BPF_REG_4];
2073 const u8 *r5 = bpf2ia32[BPF_REG_5];
2074
2075 if (insn->src_reg == BPF_PSEUDO_CALL)
2076 goto notyet;
2077
2078 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
2079 int err;
2080
2081 err = emit_kfunc_call(bpf_prog,
2082 image + addrs[i],
2083 insn, &prog);
2084
2085 if (err)
2086 return err;
2087 break;
2088 }
2089
2090 func = (u8 *) __bpf_call_base + imm32;
2091 jmp_offset = func - (image + addrs[i]);
2092
2093 if (!imm32 || !is_simm32(jmp_offset)) {
2094 pr_err("unsupported BPF func %d addr %p image %p\n",
2095 imm32, func, image);
2096 return -EINVAL;
2097 }
2098
2099 /* mov eax,dword ptr [ebp+off] */
2100 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2101 STACK_VAR(r1[0]));
2102 /* mov edx,dword ptr [ebp+off] */
2103 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
2104 STACK_VAR(r1[1]));
2105
2106 emit_push_r64(r5, &prog);
2107 emit_push_r64(r4, &prog);
2108 emit_push_r64(r3, &prog);
2109 emit_push_r64(r2, &prog);
2110
2111 EMIT1_off32(0xE8, jmp_offset + 9);
2112
2113 /* mov dword ptr [ebp+off],eax */
2114 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
2115 STACK_VAR(r0[0]));
2116 /* mov dword ptr [ebp+off],edx */
2117 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
2118 STACK_VAR(r0[1]));
2119
2120 /* add esp,32 */
2121 EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
2122 break;
2123 }
2124 case BPF_JMP | BPF_TAIL_CALL:
2125 emit_bpf_tail_call(&prog);
2126 break;
2127
2128 /* cond jump */
2129 case BPF_JMP | BPF_JEQ | BPF_X:
2130 case BPF_JMP | BPF_JNE | BPF_X:
2131 case BPF_JMP | BPF_JGT | BPF_X:
2132 case BPF_JMP | BPF_JLT | BPF_X:
2133 case BPF_JMP | BPF_JGE | BPF_X:
2134 case BPF_JMP | BPF_JLE | BPF_X:
2135 case BPF_JMP32 | BPF_JEQ | BPF_X:
2136 case BPF_JMP32 | BPF_JNE | BPF_X:
2137 case BPF_JMP32 | BPF_JGT | BPF_X:
2138 case BPF_JMP32 | BPF_JLT | BPF_X:
2139 case BPF_JMP32 | BPF_JGE | BPF_X:
2140 case BPF_JMP32 | BPF_JLE | BPF_X:
2141 case BPF_JMP32 | BPF_JSGT | BPF_X:
2142 case BPF_JMP32 | BPF_JSLE | BPF_X:
2143 case BPF_JMP32 | BPF_JSLT | BPF_X:
2144 case BPF_JMP32 | BPF_JSGE | BPF_X: {
2145 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2146 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2147 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2148 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2149 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2150
2151 if (dstk) {
2152 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2153 STACK_VAR(dst_lo));
2154 if (is_jmp64)
2155 EMIT3(0x8B,
2156 add_2reg(0x40, IA32_EBP,
2157 IA32_EDX),
2158 STACK_VAR(dst_hi));
2159 }
2160
2161 if (sstk) {
2162 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2163 STACK_VAR(src_lo));
2164 if (is_jmp64)
2165 EMIT3(0x8B,
2166 add_2reg(0x40, IA32_EBP,
2167 IA32_EBX),
2168 STACK_VAR(src_hi));
2169 }
2170
2171 if (is_jmp64) {
2172 /* cmp dreg_hi,sreg_hi */
2173 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2174 EMIT2(IA32_JNE, 2);
2175 }
2176 /* cmp dreg_lo,sreg_lo */
2177 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2178 goto emit_cond_jmp;
2179 }
2180 case BPF_JMP | BPF_JSGT | BPF_X:
2181 case BPF_JMP | BPF_JSLE | BPF_X:
2182 case BPF_JMP | BPF_JSLT | BPF_X:
2183 case BPF_JMP | BPF_JSGE | BPF_X: {
2184 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2185 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2186 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2187 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2188
2189 if (dstk) {
2190 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2191 STACK_VAR(dst_lo));
2192 EMIT3(0x8B,
2193 add_2reg(0x40, IA32_EBP,
2194 IA32_EDX),
2195 STACK_VAR(dst_hi));
2196 }
2197
2198 if (sstk) {
2199 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2200 STACK_VAR(src_lo));
2201 EMIT3(0x8B,
2202 add_2reg(0x40, IA32_EBP,
2203 IA32_EBX),
2204 STACK_VAR(src_hi));
2205 }
2206
2207 /* cmp dreg_hi,sreg_hi */
2208 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2209 EMIT2(IA32_JNE, 10);
2210 /* cmp dreg_lo,sreg_lo */
2211 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2212 goto emit_cond_jmp_signed;
2213 }
2214 case BPF_JMP | BPF_JSET | BPF_X:
2215 case BPF_JMP32 | BPF_JSET | BPF_X: {
2216 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2217 u8 dreg_lo = IA32_EAX;
2218 u8 dreg_hi = IA32_EDX;
2219 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2220 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2221
2222 if (dstk) {
2223 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2224 STACK_VAR(dst_lo));
2225 if (is_jmp64)
2226 EMIT3(0x8B,
2227 add_2reg(0x40, IA32_EBP,
2228 IA32_EDX),
2229 STACK_VAR(dst_hi));
2230 } else {
2231 /* mov dreg_lo,dst_lo */
2232 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2233 if (is_jmp64)
2234 /* mov dreg_hi,dst_hi */
2235 EMIT2(0x89,
2236 add_2reg(0xC0, dreg_hi, dst_hi));
2237 }
2238
2239 if (sstk) {
2240 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2241 STACK_VAR(src_lo));
2242 if (is_jmp64)
2243 EMIT3(0x8B,
2244 add_2reg(0x40, IA32_EBP,
2245 IA32_EBX),
2246 STACK_VAR(src_hi));
2247 }
2248 /* and dreg_lo,sreg_lo */
2249 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2250 if (is_jmp64) {
2251 /* and dreg_hi,sreg_hi */
2252 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2253 /* or dreg_lo,dreg_hi */
2254 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2255 }
2256 goto emit_cond_jmp;
2257 }
2258 case BPF_JMP | BPF_JSET | BPF_K:
2259 case BPF_JMP32 | BPF_JSET | BPF_K: {
2260 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2261 u8 dreg_lo = IA32_EAX;
2262 u8 dreg_hi = IA32_EDX;
2263 u8 sreg_lo = IA32_ECX;
2264 u8 sreg_hi = IA32_EBX;
2265 u32 hi;
2266
2267 if (dstk) {
2268 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2269 STACK_VAR(dst_lo));
2270 if (is_jmp64)
2271 EMIT3(0x8B,
2272 add_2reg(0x40, IA32_EBP,
2273 IA32_EDX),
2274 STACK_VAR(dst_hi));
2275 } else {
2276 /* mov dreg_lo,dst_lo */
2277 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2278 if (is_jmp64)
2279 /* mov dreg_hi,dst_hi */
2280 EMIT2(0x89,
2281 add_2reg(0xC0, dreg_hi, dst_hi));
2282 }
2283
2284 /* mov ecx,imm32 */
2285 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
2286
2287 /* and dreg_lo,sreg_lo */
2288 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2289 if (is_jmp64) {
2290 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2291 /* mov ebx,imm32 */
2292 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
2293 /* and dreg_hi,sreg_hi */
2294 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2295 /* or dreg_lo,dreg_hi */
2296 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2297 }
2298 goto emit_cond_jmp;
2299 }
2300 case BPF_JMP | BPF_JEQ | BPF_K:
2301 case BPF_JMP | BPF_JNE | BPF_K:
2302 case BPF_JMP | BPF_JGT | BPF_K:
2303 case BPF_JMP | BPF_JLT | BPF_K:
2304 case BPF_JMP | BPF_JGE | BPF_K:
2305 case BPF_JMP | BPF_JLE | BPF_K:
2306 case BPF_JMP32 | BPF_JEQ | BPF_K:
2307 case BPF_JMP32 | BPF_JNE | BPF_K:
2308 case BPF_JMP32 | BPF_JGT | BPF_K:
2309 case BPF_JMP32 | BPF_JLT | BPF_K:
2310 case BPF_JMP32 | BPF_JGE | BPF_K:
2311 case BPF_JMP32 | BPF_JLE | BPF_K:
2312 case BPF_JMP32 | BPF_JSGT | BPF_K:
2313 case BPF_JMP32 | BPF_JSLE | BPF_K:
2314 case BPF_JMP32 | BPF_JSLT | BPF_K:
2315 case BPF_JMP32 | BPF_JSGE | BPF_K: {
2316 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2317 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2318 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2319 u8 sreg_lo = IA32_ECX;
2320 u8 sreg_hi = IA32_EBX;
2321 u32 hi;
2322
2323 if (dstk) {
2324 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2325 STACK_VAR(dst_lo));
2326 if (is_jmp64)
2327 EMIT3(0x8B,
2328 add_2reg(0x40, IA32_EBP,
2329 IA32_EDX),
2330 STACK_VAR(dst_hi));
2331 }
2332
2333 /* mov ecx,imm32 */
2334 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2335 if (is_jmp64) {
2336 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2337 /* mov ebx,imm32 */
2338 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2339 /* cmp dreg_hi,sreg_hi */
2340 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2341 EMIT2(IA32_JNE, 2);
2342 }
2343 /* cmp dreg_lo,sreg_lo */
2344 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2345
2346 emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2347 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2348 return -EFAULT;
2349 jmp_offset = addrs[i + insn->off] - addrs[i];
2350 if (is_imm8(jmp_offset)) {
2351 EMIT2(jmp_cond, jmp_offset);
2352 } else if (is_simm32(jmp_offset)) {
2353 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2354 } else {
2355 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2356 return -EFAULT;
2357 }
2358 break;
2359 }
2360 case BPF_JMP | BPF_JSGT | BPF_K:
2361 case BPF_JMP | BPF_JSLE | BPF_K:
2362 case BPF_JMP | BPF_JSLT | BPF_K:
2363 case BPF_JMP | BPF_JSGE | BPF_K: {
2364 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2365 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2366 u8 sreg_lo = IA32_ECX;
2367 u8 sreg_hi = IA32_EBX;
2368 u32 hi;
2369
2370 if (dstk) {
2371 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2372 STACK_VAR(dst_lo));
2373 EMIT3(0x8B,
2374 add_2reg(0x40, IA32_EBP,
2375 IA32_EDX),
2376 STACK_VAR(dst_hi));
2377 }
2378
2379 /* mov ecx,imm32 */
2380 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2381 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2382 /* mov ebx,imm32 */
2383 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2384 /* cmp dreg_hi,sreg_hi */
2385 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2386 EMIT2(IA32_JNE, 10);
2387 /* cmp dreg_lo,sreg_lo */
2388 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2389
2390 /*
2391 * For simplicity of branch offset computation,
2392 * let's use fixed jump coding here.
2393 */
2394 emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */
2395 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
2396 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2397 return -EFAULT;
2398 jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
2399 if (is_simm32(jmp_offset)) {
2400 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2401 } else {
2402 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2403 return -EFAULT;
2404 }
2405 EMIT2(0xEB, 6);
2406
2407 /* Check the condition for high 32-bit comparison */
2408 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2409 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2410 return -EFAULT;
2411 jmp_offset = addrs[i + insn->off] - addrs[i];
2412 if (is_simm32(jmp_offset)) {
2413 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2414 } else {
2415 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2416 return -EFAULT;
2417 }
2418 break;
2419 }
2420 case BPF_JMP | BPF_JA:
2421 if (insn->off == -1)
2422 /* -1 jmp instructions will always jump
2423 * backwards two bytes. Explicitly handling
2424 * this case avoids wasting too many passes
2425 * when there are long sequences of replaced
2426 * dead code.
2427 */
2428 jmp_offset = -2;
2429 else
2430 jmp_offset = addrs[i + insn->off] - addrs[i];
2431
2432 if (!jmp_offset)
2433 /* Optimize out nop jumps */
2434 break;
2435 emit_jmp:
2436 if (is_imm8(jmp_offset)) {
2437 EMIT2(0xEB, jmp_offset);
2438 } else if (is_simm32(jmp_offset)) {
2439 EMIT1_off32(0xE9, jmp_offset);
2440 } else {
2441 pr_err("jmp gen bug %llx\n", jmp_offset);
2442 return -EFAULT;
2443 }
2444 break;
2445 case BPF_STX | BPF_ATOMIC | BPF_W:
2446 case BPF_STX | BPF_ATOMIC | BPF_DW:
2447 goto notyet;
2448 case BPF_JMP | BPF_EXIT:
2449 if (seen_exit) {
2450 jmp_offset = ctx->cleanup_addr - addrs[i];
2451 goto emit_jmp;
2452 }
2453 seen_exit = true;
2454 /* Update cleanup_addr */
2455 ctx->cleanup_addr = proglen;
2456 emit_epilogue(&prog, bpf_prog->aux->stack_depth);
2457 break;
2458 notyet:
2459 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2460 return -EFAULT;
2461 default:
2462 /*
2463 * This error will be seen if new instruction was added
2464 * to interpreter, but not to JIT or if there is junk in
2465 * bpf_prog
2466 */
2467 pr_err("bpf_jit: unknown opcode %02x\n", code);
2468 return -EINVAL;
2469 }
2470
2471 ilen = prog - temp;
2472 if (ilen > BPF_MAX_INSN_SIZE) {
2473 pr_err("bpf_jit: fatal insn size error\n");
2474 return -EFAULT;
2475 }
2476
2477 if (image) {
2478 /*
2479 * When populating the image, assert that:
2480 *
2481 * i) We do not write beyond the allocated space, and
2482 * ii) addrs[i] did not change from the prior run, in order
2483 * to validate assumptions made for computing branch
2484 * displacements.
2485 */
2486 if (unlikely(proglen + ilen > oldproglen ||
2487 proglen + ilen != addrs[i])) {
2488 pr_err("bpf_jit: fatal error\n");
2489 return -EFAULT;
2490 }
2491 memcpy(image + proglen, temp, ilen);
2492 }
2493 proglen += ilen;
2494 addrs[i] = proglen;
2495 prog = temp;
2496 }
2497 return proglen;
2498 }
2499
bpf_jit_needs_zext(void)2500 bool bpf_jit_needs_zext(void)
2501 {
2502 return true;
2503 }
2504
bpf_int_jit_compile(struct bpf_prog * prog)2505 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2506 {
2507 struct bpf_binary_header *header = NULL;
2508 struct bpf_prog *tmp, *orig_prog = prog;
2509 int proglen, oldproglen = 0;
2510 struct jit_context ctx = {};
2511 bool tmp_blinded = false;
2512 u8 *image = NULL;
2513 int *addrs;
2514 int pass;
2515 int i;
2516
2517 if (!prog->jit_requested)
2518 return orig_prog;
2519
2520 tmp = bpf_jit_blind_constants(prog);
2521 /*
2522 * If blinding was requested and we failed during blinding,
2523 * we must fall back to the interpreter.
2524 */
2525 if (IS_ERR(tmp))
2526 return orig_prog;
2527 if (tmp != prog) {
2528 tmp_blinded = true;
2529 prog = tmp;
2530 }
2531
2532 addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
2533 if (!addrs) {
2534 prog = orig_prog;
2535 goto out;
2536 }
2537
2538 /*
2539 * Before first pass, make a rough estimation of addrs[]
2540 * each BPF instruction is translated to less than 64 bytes
2541 */
2542 for (proglen = 0, i = 0; i < prog->len; i++) {
2543 proglen += 64;
2544 addrs[i] = proglen;
2545 }
2546 ctx.cleanup_addr = proglen;
2547
2548 /*
2549 * JITed image shrinks with every pass and the loop iterates
2550 * until the image stops shrinking. Very large BPF programs
2551 * may converge on the last pass. In such case do one more
2552 * pass to emit the final image.
2553 */
2554 for (pass = 0; pass < 20 || image; pass++) {
2555 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2556 if (proglen <= 0) {
2557 out_image:
2558 image = NULL;
2559 if (header)
2560 bpf_jit_binary_free(header);
2561 prog = orig_prog;
2562 goto out_addrs;
2563 }
2564 if (image) {
2565 if (proglen != oldproglen) {
2566 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2567 proglen, oldproglen);
2568 goto out_image;
2569 }
2570 break;
2571 }
2572 if (proglen == oldproglen) {
2573 header = bpf_jit_binary_alloc(proglen, &image,
2574 1, jit_fill_hole);
2575 if (!header) {
2576 prog = orig_prog;
2577 goto out_addrs;
2578 }
2579 }
2580 oldproglen = proglen;
2581 cond_resched();
2582 }
2583
2584 if (bpf_jit_enable > 1)
2585 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2586
2587 if (image) {
2588 bpf_jit_binary_lock_ro(header);
2589 prog->bpf_func = (void *)image;
2590 prog->jited = 1;
2591 prog->jited_len = proglen;
2592 } else {
2593 prog = orig_prog;
2594 }
2595
2596 out_addrs:
2597 kfree(addrs);
2598 out:
2599 if (tmp_blinded)
2600 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2601 tmp : orig_prog);
2602 return prog;
2603 }
2604
bpf_jit_supports_kfunc_call(void)2605 bool bpf_jit_supports_kfunc_call(void)
2606 {
2607 return true;
2608 }
2609