1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include <linux/nospec.h>
38 #include "kvm_cache_regs.h"
39 #include "x86.h"
40
41 #include <asm/asm.h>
42 #include <asm/cpu.h>
43 #include <asm/io.h>
44 #include <asm/desc.h>
45 #include <asm/vmx.h>
46 #include <asm/virtext.h>
47 #include <asm/mce.h>
48 #include <asm/fpu/internal.h>
49 #include <asm/perf_event.h>
50 #include <asm/debugreg.h>
51 #include <asm/kexec.h>
52 #include <asm/apic.h>
53 #include <asm/irq_remapping.h>
54 #include <asm/mmu_context.h>
55 #include <asm/spec-ctrl.h>
56 #include <asm/mshyperv.h>
57
58 #include "trace.h"
59 #include "pmu.h"
60 #include "vmx_evmcs.h"
61
62 #define __ex(x) __kvm_handle_fault_on_reboot(x)
63 #define __ex_clear(x, reg) \
64 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static const struct x86_cpu_id vmx_cpu_id[] = {
70 X86_FEATURE_MATCH(X86_FEATURE_VMX),
71 {}
72 };
73 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
74
75 static bool __read_mostly enable_vpid = 1;
76 module_param_named(vpid, enable_vpid, bool, 0444);
77
78 static bool __read_mostly enable_vnmi = 1;
79 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
80
81 static bool __read_mostly flexpriority_enabled = 1;
82 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
83
84 static bool __read_mostly enable_ept = 1;
85 module_param_named(ept, enable_ept, bool, S_IRUGO);
86
87 static bool __read_mostly enable_unrestricted_guest = 1;
88 module_param_named(unrestricted_guest,
89 enable_unrestricted_guest, bool, S_IRUGO);
90
91 static bool __read_mostly enable_ept_ad_bits = 1;
92 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
93
94 static bool __read_mostly emulate_invalid_guest_state = true;
95 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
96
97 static bool __read_mostly fasteoi = 1;
98 module_param(fasteoi, bool, S_IRUGO);
99
100 static bool __read_mostly enable_apicv = 1;
101 module_param(enable_apicv, bool, S_IRUGO);
102
103 static bool __read_mostly enable_shadow_vmcs = 1;
104 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
105 /*
106 * If nested=1, nested virtualization is supported, i.e., guests may use
107 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108 * use VMX instructions.
109 */
110 static bool __read_mostly nested = 0;
111 module_param(nested, bool, S_IRUGO);
112
113 static u64 __read_mostly host_xss;
114
115 static bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 #define MSR_TYPE_R 1
119 #define MSR_TYPE_W 2
120 #define MSR_TYPE_RW 3
121
122 #define MSR_BITMAP_MODE_X2APIC 1
123 #define MSR_BITMAP_MODE_X2APIC_APICV 2
124
125 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
126
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133
134 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON \
137 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
138 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139 #define KVM_CR4_GUEST_OWNED_BITS \
140 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
141 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
142
143 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
144 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
145 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
146
147 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
148
149 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
150
151 /*
152 * Hyper-V requires all of these, so mark them as supported even though
153 * they are just treated the same as all-context.
154 */
155 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
156 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
157 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
158 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
159 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
160
161 /*
162 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
163 * ple_gap: upper bound on the amount of time between two successive
164 * executions of PAUSE in a loop. Also indicate if ple enabled.
165 * According to test, this time is usually smaller than 128 cycles.
166 * ple_window: upper bound on the amount of time a guest is allowed to execute
167 * in a PAUSE loop. Tests indicate that most spinlocks are held for
168 * less than 2^12 cycles
169 * Time is measured based on a counter that runs at the same rate as the TSC,
170 * refer SDM volume 3b section 21.6.13 & 22.1.3.
171 */
172 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
173
174 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
175 module_param(ple_window, uint, 0444);
176
177 /* Default doubles per-vcpu window every exit. */
178 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
179 module_param(ple_window_grow, uint, 0444);
180
181 /* Default resets per-vcpu window every exit to ple_window. */
182 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
183 module_param(ple_window_shrink, uint, 0444);
184
185 /* Default is to compute the maximum so we can never overflow. */
186 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
187 module_param(ple_window_max, uint, 0444);
188
189 extern const ulong vmx_return;
190
191 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
192 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
193 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
194
195 /* Storage for pre module init parameter parsing */
196 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
197
198 static const struct {
199 const char *option;
200 bool for_parse;
201 } vmentry_l1d_param[] = {
202 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
203 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
204 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
205 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
206 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
207 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
208 };
209
210 #define L1D_CACHE_ORDER 4
211 static void *vmx_l1d_flush_pages;
212
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)213 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
214 {
215 struct page *page;
216 unsigned int i;
217
218 if (!enable_ept) {
219 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
220 return 0;
221 }
222
223 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
224 u64 msr;
225
226 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
227 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
228 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
229 return 0;
230 }
231 }
232
233 /* If set to auto use the default l1tf mitigation method */
234 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
235 switch (l1tf_mitigation) {
236 case L1TF_MITIGATION_OFF:
237 l1tf = VMENTER_L1D_FLUSH_NEVER;
238 break;
239 case L1TF_MITIGATION_FLUSH_NOWARN:
240 case L1TF_MITIGATION_FLUSH:
241 case L1TF_MITIGATION_FLUSH_NOSMT:
242 l1tf = VMENTER_L1D_FLUSH_COND;
243 break;
244 case L1TF_MITIGATION_FULL:
245 case L1TF_MITIGATION_FULL_FORCE:
246 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
247 break;
248 }
249 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
250 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
251 }
252
253 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
254 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
255 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
256 if (!page)
257 return -ENOMEM;
258 vmx_l1d_flush_pages = page_address(page);
259
260 /*
261 * Initialize each page with a different pattern in
262 * order to protect against KSM in the nested
263 * virtualization case.
264 */
265 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
266 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
267 PAGE_SIZE);
268 }
269 }
270
271 l1tf_vmx_mitigation = l1tf;
272
273 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
274 static_branch_enable(&vmx_l1d_should_flush);
275 else
276 static_branch_disable(&vmx_l1d_should_flush);
277
278 if (l1tf == VMENTER_L1D_FLUSH_COND)
279 static_branch_enable(&vmx_l1d_flush_cond);
280 else
281 static_branch_disable(&vmx_l1d_flush_cond);
282 return 0;
283 }
284
vmentry_l1d_flush_parse(const char * s)285 static int vmentry_l1d_flush_parse(const char *s)
286 {
287 unsigned int i;
288
289 if (s) {
290 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
291 if (vmentry_l1d_param[i].for_parse &&
292 sysfs_streq(s, vmentry_l1d_param[i].option))
293 return i;
294 }
295 }
296 return -EINVAL;
297 }
298
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)299 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
300 {
301 int l1tf, ret;
302
303 l1tf = vmentry_l1d_flush_parse(s);
304 if (l1tf < 0)
305 return l1tf;
306
307 if (!boot_cpu_has(X86_BUG_L1TF))
308 return 0;
309
310 /*
311 * Has vmx_init() run already? If not then this is the pre init
312 * parameter parsing. In that case just store the value and let
313 * vmx_init() do the proper setup after enable_ept has been
314 * established.
315 */
316 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
317 vmentry_l1d_flush_param = l1tf;
318 return 0;
319 }
320
321 mutex_lock(&vmx_l1d_flush_mutex);
322 ret = vmx_setup_l1d_flush(l1tf);
323 mutex_unlock(&vmx_l1d_flush_mutex);
324 return ret;
325 }
326
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
328 {
329 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
330 return sprintf(s, "???\n");
331
332 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
333 }
334
335 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
336 .set = vmentry_l1d_flush_set,
337 .get = vmentry_l1d_flush_get,
338 };
339 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
340
341 enum ept_pointers_status {
342 EPT_POINTERS_CHECK = 0,
343 EPT_POINTERS_MATCH = 1,
344 EPT_POINTERS_MISMATCH = 2
345 };
346
347 struct kvm_vmx {
348 struct kvm kvm;
349
350 unsigned int tss_addr;
351 bool ept_identity_pagetable_done;
352 gpa_t ept_identity_map_addr;
353
354 enum ept_pointers_status ept_pointers_match;
355 spinlock_t ept_pointer_lock;
356 };
357
358 #define NR_AUTOLOAD_MSRS 8
359
360 struct vmcs_hdr {
361 u32 revision_id:31;
362 u32 shadow_vmcs:1;
363 };
364
365 struct vmcs {
366 struct vmcs_hdr hdr;
367 u32 abort;
368 char data[0];
369 };
370
371 /*
372 * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
373 * and whose values change infrequently, but are not constant. I.e. this is
374 * used as a write-through cache of the corresponding VMCS fields.
375 */
376 struct vmcs_host_state {
377 unsigned long cr3; /* May not match real cr3 */
378 unsigned long cr4; /* May not match real cr4 */
379 unsigned long gs_base;
380 unsigned long fs_base;
381
382 u16 fs_sel, gs_sel, ldt_sel;
383 #ifdef CONFIG_X86_64
384 u16 ds_sel, es_sel;
385 #endif
386 };
387
388 /*
389 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
390 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
391 * loaded on this CPU (so we can clear them if the CPU goes down).
392 */
393 struct loaded_vmcs {
394 struct vmcs *vmcs;
395 struct vmcs *shadow_vmcs;
396 int cpu;
397 bool launched;
398 bool nmi_known_unmasked;
399 bool hv_timer_armed;
400 /* Support for vnmi-less CPUs */
401 int soft_vnmi_blocked;
402 ktime_t entry_time;
403 s64 vnmi_blocked_time;
404 unsigned long *msr_bitmap;
405 struct list_head loaded_vmcss_on_cpu_link;
406 struct vmcs_host_state host_state;
407 };
408
409 struct shared_msr_entry {
410 unsigned index;
411 u64 data;
412 u64 mask;
413 };
414
415 /*
416 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
417 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
418 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
419 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
420 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
421 * More than one of these structures may exist, if L1 runs multiple L2 guests.
422 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
423 * underlying hardware which will be used to run L2.
424 * This structure is packed to ensure that its layout is identical across
425 * machines (necessary for live migration).
426 *
427 * IMPORTANT: Changing the layout of existing fields in this structure
428 * will break save/restore compatibility with older kvm releases. When
429 * adding new fields, either use space in the reserved padding* arrays
430 * or add the new fields to the end of the structure.
431 */
432 typedef u64 natural_width;
433 struct __packed vmcs12 {
434 /* According to the Intel spec, a VMCS region must start with the
435 * following two fields. Then follow implementation-specific data.
436 */
437 struct vmcs_hdr hdr;
438 u32 abort;
439
440 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
441 u32 padding[7]; /* room for future expansion */
442
443 u64 io_bitmap_a;
444 u64 io_bitmap_b;
445 u64 msr_bitmap;
446 u64 vm_exit_msr_store_addr;
447 u64 vm_exit_msr_load_addr;
448 u64 vm_entry_msr_load_addr;
449 u64 tsc_offset;
450 u64 virtual_apic_page_addr;
451 u64 apic_access_addr;
452 u64 posted_intr_desc_addr;
453 u64 ept_pointer;
454 u64 eoi_exit_bitmap0;
455 u64 eoi_exit_bitmap1;
456 u64 eoi_exit_bitmap2;
457 u64 eoi_exit_bitmap3;
458 u64 xss_exit_bitmap;
459 u64 guest_physical_address;
460 u64 vmcs_link_pointer;
461 u64 guest_ia32_debugctl;
462 u64 guest_ia32_pat;
463 u64 guest_ia32_efer;
464 u64 guest_ia32_perf_global_ctrl;
465 u64 guest_pdptr0;
466 u64 guest_pdptr1;
467 u64 guest_pdptr2;
468 u64 guest_pdptr3;
469 u64 guest_bndcfgs;
470 u64 host_ia32_pat;
471 u64 host_ia32_efer;
472 u64 host_ia32_perf_global_ctrl;
473 u64 vmread_bitmap;
474 u64 vmwrite_bitmap;
475 u64 vm_function_control;
476 u64 eptp_list_address;
477 u64 pml_address;
478 u64 padding64[3]; /* room for future expansion */
479 /*
480 * To allow migration of L1 (complete with its L2 guests) between
481 * machines of different natural widths (32 or 64 bit), we cannot have
482 * unsigned long fields with no explict size. We use u64 (aliased
483 * natural_width) instead. Luckily, x86 is little-endian.
484 */
485 natural_width cr0_guest_host_mask;
486 natural_width cr4_guest_host_mask;
487 natural_width cr0_read_shadow;
488 natural_width cr4_read_shadow;
489 natural_width cr3_target_value0;
490 natural_width cr3_target_value1;
491 natural_width cr3_target_value2;
492 natural_width cr3_target_value3;
493 natural_width exit_qualification;
494 natural_width guest_linear_address;
495 natural_width guest_cr0;
496 natural_width guest_cr3;
497 natural_width guest_cr4;
498 natural_width guest_es_base;
499 natural_width guest_cs_base;
500 natural_width guest_ss_base;
501 natural_width guest_ds_base;
502 natural_width guest_fs_base;
503 natural_width guest_gs_base;
504 natural_width guest_ldtr_base;
505 natural_width guest_tr_base;
506 natural_width guest_gdtr_base;
507 natural_width guest_idtr_base;
508 natural_width guest_dr7;
509 natural_width guest_rsp;
510 natural_width guest_rip;
511 natural_width guest_rflags;
512 natural_width guest_pending_dbg_exceptions;
513 natural_width guest_sysenter_esp;
514 natural_width guest_sysenter_eip;
515 natural_width host_cr0;
516 natural_width host_cr3;
517 natural_width host_cr4;
518 natural_width host_fs_base;
519 natural_width host_gs_base;
520 natural_width host_tr_base;
521 natural_width host_gdtr_base;
522 natural_width host_idtr_base;
523 natural_width host_ia32_sysenter_esp;
524 natural_width host_ia32_sysenter_eip;
525 natural_width host_rsp;
526 natural_width host_rip;
527 natural_width paddingl[8]; /* room for future expansion */
528 u32 pin_based_vm_exec_control;
529 u32 cpu_based_vm_exec_control;
530 u32 exception_bitmap;
531 u32 page_fault_error_code_mask;
532 u32 page_fault_error_code_match;
533 u32 cr3_target_count;
534 u32 vm_exit_controls;
535 u32 vm_exit_msr_store_count;
536 u32 vm_exit_msr_load_count;
537 u32 vm_entry_controls;
538 u32 vm_entry_msr_load_count;
539 u32 vm_entry_intr_info_field;
540 u32 vm_entry_exception_error_code;
541 u32 vm_entry_instruction_len;
542 u32 tpr_threshold;
543 u32 secondary_vm_exec_control;
544 u32 vm_instruction_error;
545 u32 vm_exit_reason;
546 u32 vm_exit_intr_info;
547 u32 vm_exit_intr_error_code;
548 u32 idt_vectoring_info_field;
549 u32 idt_vectoring_error_code;
550 u32 vm_exit_instruction_len;
551 u32 vmx_instruction_info;
552 u32 guest_es_limit;
553 u32 guest_cs_limit;
554 u32 guest_ss_limit;
555 u32 guest_ds_limit;
556 u32 guest_fs_limit;
557 u32 guest_gs_limit;
558 u32 guest_ldtr_limit;
559 u32 guest_tr_limit;
560 u32 guest_gdtr_limit;
561 u32 guest_idtr_limit;
562 u32 guest_es_ar_bytes;
563 u32 guest_cs_ar_bytes;
564 u32 guest_ss_ar_bytes;
565 u32 guest_ds_ar_bytes;
566 u32 guest_fs_ar_bytes;
567 u32 guest_gs_ar_bytes;
568 u32 guest_ldtr_ar_bytes;
569 u32 guest_tr_ar_bytes;
570 u32 guest_interruptibility_info;
571 u32 guest_activity_state;
572 u32 guest_sysenter_cs;
573 u32 host_ia32_sysenter_cs;
574 u32 vmx_preemption_timer_value;
575 u32 padding32[7]; /* room for future expansion */
576 u16 virtual_processor_id;
577 u16 posted_intr_nv;
578 u16 guest_es_selector;
579 u16 guest_cs_selector;
580 u16 guest_ss_selector;
581 u16 guest_ds_selector;
582 u16 guest_fs_selector;
583 u16 guest_gs_selector;
584 u16 guest_ldtr_selector;
585 u16 guest_tr_selector;
586 u16 guest_intr_status;
587 u16 host_es_selector;
588 u16 host_cs_selector;
589 u16 host_ss_selector;
590 u16 host_ds_selector;
591 u16 host_fs_selector;
592 u16 host_gs_selector;
593 u16 host_tr_selector;
594 u16 guest_pml_index;
595 };
596
597 /*
598 * For save/restore compatibility, the vmcs12 field offsets must not change.
599 */
600 #define CHECK_OFFSET(field, loc) \
601 BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \
602 "Offset of " #field " in struct vmcs12 has changed.")
603
vmx_check_vmcs12_offsets(void)604 static inline void vmx_check_vmcs12_offsets(void) {
605 CHECK_OFFSET(hdr, 0);
606 CHECK_OFFSET(abort, 4);
607 CHECK_OFFSET(launch_state, 8);
608 CHECK_OFFSET(io_bitmap_a, 40);
609 CHECK_OFFSET(io_bitmap_b, 48);
610 CHECK_OFFSET(msr_bitmap, 56);
611 CHECK_OFFSET(vm_exit_msr_store_addr, 64);
612 CHECK_OFFSET(vm_exit_msr_load_addr, 72);
613 CHECK_OFFSET(vm_entry_msr_load_addr, 80);
614 CHECK_OFFSET(tsc_offset, 88);
615 CHECK_OFFSET(virtual_apic_page_addr, 96);
616 CHECK_OFFSET(apic_access_addr, 104);
617 CHECK_OFFSET(posted_intr_desc_addr, 112);
618 CHECK_OFFSET(ept_pointer, 120);
619 CHECK_OFFSET(eoi_exit_bitmap0, 128);
620 CHECK_OFFSET(eoi_exit_bitmap1, 136);
621 CHECK_OFFSET(eoi_exit_bitmap2, 144);
622 CHECK_OFFSET(eoi_exit_bitmap3, 152);
623 CHECK_OFFSET(xss_exit_bitmap, 160);
624 CHECK_OFFSET(guest_physical_address, 168);
625 CHECK_OFFSET(vmcs_link_pointer, 176);
626 CHECK_OFFSET(guest_ia32_debugctl, 184);
627 CHECK_OFFSET(guest_ia32_pat, 192);
628 CHECK_OFFSET(guest_ia32_efer, 200);
629 CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
630 CHECK_OFFSET(guest_pdptr0, 216);
631 CHECK_OFFSET(guest_pdptr1, 224);
632 CHECK_OFFSET(guest_pdptr2, 232);
633 CHECK_OFFSET(guest_pdptr3, 240);
634 CHECK_OFFSET(guest_bndcfgs, 248);
635 CHECK_OFFSET(host_ia32_pat, 256);
636 CHECK_OFFSET(host_ia32_efer, 264);
637 CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
638 CHECK_OFFSET(vmread_bitmap, 280);
639 CHECK_OFFSET(vmwrite_bitmap, 288);
640 CHECK_OFFSET(vm_function_control, 296);
641 CHECK_OFFSET(eptp_list_address, 304);
642 CHECK_OFFSET(pml_address, 312);
643 CHECK_OFFSET(cr0_guest_host_mask, 344);
644 CHECK_OFFSET(cr4_guest_host_mask, 352);
645 CHECK_OFFSET(cr0_read_shadow, 360);
646 CHECK_OFFSET(cr4_read_shadow, 368);
647 CHECK_OFFSET(cr3_target_value0, 376);
648 CHECK_OFFSET(cr3_target_value1, 384);
649 CHECK_OFFSET(cr3_target_value2, 392);
650 CHECK_OFFSET(cr3_target_value3, 400);
651 CHECK_OFFSET(exit_qualification, 408);
652 CHECK_OFFSET(guest_linear_address, 416);
653 CHECK_OFFSET(guest_cr0, 424);
654 CHECK_OFFSET(guest_cr3, 432);
655 CHECK_OFFSET(guest_cr4, 440);
656 CHECK_OFFSET(guest_es_base, 448);
657 CHECK_OFFSET(guest_cs_base, 456);
658 CHECK_OFFSET(guest_ss_base, 464);
659 CHECK_OFFSET(guest_ds_base, 472);
660 CHECK_OFFSET(guest_fs_base, 480);
661 CHECK_OFFSET(guest_gs_base, 488);
662 CHECK_OFFSET(guest_ldtr_base, 496);
663 CHECK_OFFSET(guest_tr_base, 504);
664 CHECK_OFFSET(guest_gdtr_base, 512);
665 CHECK_OFFSET(guest_idtr_base, 520);
666 CHECK_OFFSET(guest_dr7, 528);
667 CHECK_OFFSET(guest_rsp, 536);
668 CHECK_OFFSET(guest_rip, 544);
669 CHECK_OFFSET(guest_rflags, 552);
670 CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
671 CHECK_OFFSET(guest_sysenter_esp, 568);
672 CHECK_OFFSET(guest_sysenter_eip, 576);
673 CHECK_OFFSET(host_cr0, 584);
674 CHECK_OFFSET(host_cr3, 592);
675 CHECK_OFFSET(host_cr4, 600);
676 CHECK_OFFSET(host_fs_base, 608);
677 CHECK_OFFSET(host_gs_base, 616);
678 CHECK_OFFSET(host_tr_base, 624);
679 CHECK_OFFSET(host_gdtr_base, 632);
680 CHECK_OFFSET(host_idtr_base, 640);
681 CHECK_OFFSET(host_ia32_sysenter_esp, 648);
682 CHECK_OFFSET(host_ia32_sysenter_eip, 656);
683 CHECK_OFFSET(host_rsp, 664);
684 CHECK_OFFSET(host_rip, 672);
685 CHECK_OFFSET(pin_based_vm_exec_control, 744);
686 CHECK_OFFSET(cpu_based_vm_exec_control, 748);
687 CHECK_OFFSET(exception_bitmap, 752);
688 CHECK_OFFSET(page_fault_error_code_mask, 756);
689 CHECK_OFFSET(page_fault_error_code_match, 760);
690 CHECK_OFFSET(cr3_target_count, 764);
691 CHECK_OFFSET(vm_exit_controls, 768);
692 CHECK_OFFSET(vm_exit_msr_store_count, 772);
693 CHECK_OFFSET(vm_exit_msr_load_count, 776);
694 CHECK_OFFSET(vm_entry_controls, 780);
695 CHECK_OFFSET(vm_entry_msr_load_count, 784);
696 CHECK_OFFSET(vm_entry_intr_info_field, 788);
697 CHECK_OFFSET(vm_entry_exception_error_code, 792);
698 CHECK_OFFSET(vm_entry_instruction_len, 796);
699 CHECK_OFFSET(tpr_threshold, 800);
700 CHECK_OFFSET(secondary_vm_exec_control, 804);
701 CHECK_OFFSET(vm_instruction_error, 808);
702 CHECK_OFFSET(vm_exit_reason, 812);
703 CHECK_OFFSET(vm_exit_intr_info, 816);
704 CHECK_OFFSET(vm_exit_intr_error_code, 820);
705 CHECK_OFFSET(idt_vectoring_info_field, 824);
706 CHECK_OFFSET(idt_vectoring_error_code, 828);
707 CHECK_OFFSET(vm_exit_instruction_len, 832);
708 CHECK_OFFSET(vmx_instruction_info, 836);
709 CHECK_OFFSET(guest_es_limit, 840);
710 CHECK_OFFSET(guest_cs_limit, 844);
711 CHECK_OFFSET(guest_ss_limit, 848);
712 CHECK_OFFSET(guest_ds_limit, 852);
713 CHECK_OFFSET(guest_fs_limit, 856);
714 CHECK_OFFSET(guest_gs_limit, 860);
715 CHECK_OFFSET(guest_ldtr_limit, 864);
716 CHECK_OFFSET(guest_tr_limit, 868);
717 CHECK_OFFSET(guest_gdtr_limit, 872);
718 CHECK_OFFSET(guest_idtr_limit, 876);
719 CHECK_OFFSET(guest_es_ar_bytes, 880);
720 CHECK_OFFSET(guest_cs_ar_bytes, 884);
721 CHECK_OFFSET(guest_ss_ar_bytes, 888);
722 CHECK_OFFSET(guest_ds_ar_bytes, 892);
723 CHECK_OFFSET(guest_fs_ar_bytes, 896);
724 CHECK_OFFSET(guest_gs_ar_bytes, 900);
725 CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
726 CHECK_OFFSET(guest_tr_ar_bytes, 908);
727 CHECK_OFFSET(guest_interruptibility_info, 912);
728 CHECK_OFFSET(guest_activity_state, 916);
729 CHECK_OFFSET(guest_sysenter_cs, 920);
730 CHECK_OFFSET(host_ia32_sysenter_cs, 924);
731 CHECK_OFFSET(vmx_preemption_timer_value, 928);
732 CHECK_OFFSET(virtual_processor_id, 960);
733 CHECK_OFFSET(posted_intr_nv, 962);
734 CHECK_OFFSET(guest_es_selector, 964);
735 CHECK_OFFSET(guest_cs_selector, 966);
736 CHECK_OFFSET(guest_ss_selector, 968);
737 CHECK_OFFSET(guest_ds_selector, 970);
738 CHECK_OFFSET(guest_fs_selector, 972);
739 CHECK_OFFSET(guest_gs_selector, 974);
740 CHECK_OFFSET(guest_ldtr_selector, 976);
741 CHECK_OFFSET(guest_tr_selector, 978);
742 CHECK_OFFSET(guest_intr_status, 980);
743 CHECK_OFFSET(host_es_selector, 982);
744 CHECK_OFFSET(host_cs_selector, 984);
745 CHECK_OFFSET(host_ss_selector, 986);
746 CHECK_OFFSET(host_ds_selector, 988);
747 CHECK_OFFSET(host_fs_selector, 990);
748 CHECK_OFFSET(host_gs_selector, 992);
749 CHECK_OFFSET(host_tr_selector, 994);
750 CHECK_OFFSET(guest_pml_index, 996);
751 }
752
753 /*
754 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
755 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
756 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
757 *
758 * IMPORTANT: Changing this value will break save/restore compatibility with
759 * older kvm releases.
760 */
761 #define VMCS12_REVISION 0x11e57ed0
762
763 /*
764 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
765 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
766 * current implementation, 4K are reserved to avoid future complications.
767 */
768 #define VMCS12_SIZE 0x1000
769
770 /*
771 * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
772 * supported VMCS12 field encoding.
773 */
774 #define VMCS12_MAX_FIELD_INDEX 0x17
775
776 struct nested_vmx_msrs {
777 /*
778 * We only store the "true" versions of the VMX capability MSRs. We
779 * generate the "non-true" versions by setting the must-be-1 bits
780 * according to the SDM.
781 */
782 u32 procbased_ctls_low;
783 u32 procbased_ctls_high;
784 u32 secondary_ctls_low;
785 u32 secondary_ctls_high;
786 u32 pinbased_ctls_low;
787 u32 pinbased_ctls_high;
788 u32 exit_ctls_low;
789 u32 exit_ctls_high;
790 u32 entry_ctls_low;
791 u32 entry_ctls_high;
792 u32 misc_low;
793 u32 misc_high;
794 u32 ept_caps;
795 u32 vpid_caps;
796 u64 basic;
797 u64 cr0_fixed0;
798 u64 cr0_fixed1;
799 u64 cr4_fixed0;
800 u64 cr4_fixed1;
801 u64 vmcs_enum;
802 u64 vmfunc_controls;
803 };
804
805 /*
806 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
807 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
808 */
809 struct nested_vmx {
810 /* Has the level1 guest done vmxon? */
811 bool vmxon;
812 gpa_t vmxon_ptr;
813 bool pml_full;
814
815 /* The guest-physical address of the current VMCS L1 keeps for L2 */
816 gpa_t current_vmptr;
817 /*
818 * Cache of the guest's VMCS, existing outside of guest memory.
819 * Loaded from guest memory during VMPTRLD. Flushed to guest
820 * memory during VMCLEAR and VMPTRLD.
821 */
822 struct vmcs12 *cached_vmcs12;
823 /*
824 * Cache of the guest's shadow VMCS, existing outside of guest
825 * memory. Loaded from guest memory during VM entry. Flushed
826 * to guest memory during VM exit.
827 */
828 struct vmcs12 *cached_shadow_vmcs12;
829 /*
830 * Indicates if the shadow vmcs must be updated with the
831 * data hold by vmcs12
832 */
833 bool sync_shadow_vmcs;
834 bool dirty_vmcs12;
835
836 bool change_vmcs01_virtual_apic_mode;
837
838 /* L2 must run next, and mustn't decide to exit to L1. */
839 bool nested_run_pending;
840
841 struct loaded_vmcs vmcs02;
842
843 /*
844 * Guest pages referred to in the vmcs02 with host-physical
845 * pointers, so we must keep them pinned while L2 runs.
846 */
847 struct page *apic_access_page;
848 struct page *virtual_apic_page;
849 struct page *pi_desc_page;
850 struct pi_desc *pi_desc;
851 bool pi_pending;
852 u16 posted_intr_nv;
853
854 struct hrtimer preemption_timer;
855 bool preemption_timer_expired;
856
857 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
858 u64 vmcs01_debugctl;
859 u64 vmcs01_guest_bndcfgs;
860
861 u16 vpid02;
862 u16 last_vpid;
863
864 struct nested_vmx_msrs msrs;
865
866 /* SMM related state */
867 struct {
868 /* in VMX operation on SMM entry? */
869 bool vmxon;
870 /* in guest mode on SMM entry? */
871 bool guest_mode;
872 } smm;
873 };
874
875 #define POSTED_INTR_ON 0
876 #define POSTED_INTR_SN 1
877
878 /* Posted-Interrupt Descriptor */
879 struct pi_desc {
880 u32 pir[8]; /* Posted interrupt requested */
881 union {
882 struct {
883 /* bit 256 - Outstanding Notification */
884 u16 on : 1,
885 /* bit 257 - Suppress Notification */
886 sn : 1,
887 /* bit 271:258 - Reserved */
888 rsvd_1 : 14;
889 /* bit 279:272 - Notification Vector */
890 u8 nv;
891 /* bit 287:280 - Reserved */
892 u8 rsvd_2;
893 /* bit 319:288 - Notification Destination */
894 u32 ndst;
895 };
896 u64 control;
897 };
898 u32 rsvd[6];
899 } __aligned(64);
900
pi_test_and_set_on(struct pi_desc * pi_desc)901 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
902 {
903 return test_and_set_bit(POSTED_INTR_ON,
904 (unsigned long *)&pi_desc->control);
905 }
906
pi_test_and_clear_on(struct pi_desc * pi_desc)907 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
908 {
909 return test_and_clear_bit(POSTED_INTR_ON,
910 (unsigned long *)&pi_desc->control);
911 }
912
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)913 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
914 {
915 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
916 }
917
pi_clear_sn(struct pi_desc * pi_desc)918 static inline void pi_clear_sn(struct pi_desc *pi_desc)
919 {
920 return clear_bit(POSTED_INTR_SN,
921 (unsigned long *)&pi_desc->control);
922 }
923
pi_set_sn(struct pi_desc * pi_desc)924 static inline void pi_set_sn(struct pi_desc *pi_desc)
925 {
926 return set_bit(POSTED_INTR_SN,
927 (unsigned long *)&pi_desc->control);
928 }
929
pi_clear_on(struct pi_desc * pi_desc)930 static inline void pi_clear_on(struct pi_desc *pi_desc)
931 {
932 clear_bit(POSTED_INTR_ON,
933 (unsigned long *)&pi_desc->control);
934 }
935
pi_test_on(struct pi_desc * pi_desc)936 static inline int pi_test_on(struct pi_desc *pi_desc)
937 {
938 return test_bit(POSTED_INTR_ON,
939 (unsigned long *)&pi_desc->control);
940 }
941
pi_test_sn(struct pi_desc * pi_desc)942 static inline int pi_test_sn(struct pi_desc *pi_desc)
943 {
944 return test_bit(POSTED_INTR_SN,
945 (unsigned long *)&pi_desc->control);
946 }
947
948 struct vmx_msrs {
949 unsigned int nr;
950 struct vmx_msr_entry val[NR_AUTOLOAD_MSRS];
951 };
952
953 struct vcpu_vmx {
954 struct kvm_vcpu vcpu;
955 unsigned long host_rsp;
956 u8 fail;
957 u8 msr_bitmap_mode;
958 u32 exit_intr_info;
959 u32 idt_vectoring_info;
960 ulong rflags;
961 struct shared_msr_entry *guest_msrs;
962 int nmsrs;
963 int save_nmsrs;
964 unsigned long host_idt_base;
965 #ifdef CONFIG_X86_64
966 u64 msr_host_kernel_gs_base;
967 u64 msr_guest_kernel_gs_base;
968 #endif
969
970 u64 arch_capabilities;
971 u64 spec_ctrl;
972
973 u32 vm_entry_controls_shadow;
974 u32 vm_exit_controls_shadow;
975 u32 secondary_exec_control;
976
977 /*
978 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
979 * non-nested (L1) guest, it always points to vmcs01. For a nested
980 * guest (L2), it points to a different VMCS. loaded_cpu_state points
981 * to the VMCS whose state is loaded into the CPU registers that only
982 * need to be switched when transitioning to/from the kernel; a NULL
983 * value indicates that host state is loaded.
984 */
985 struct loaded_vmcs vmcs01;
986 struct loaded_vmcs *loaded_vmcs;
987 struct loaded_vmcs *loaded_cpu_state;
988 bool __launched; /* temporary, used in vmx_vcpu_run */
989 struct msr_autoload {
990 struct vmx_msrs guest;
991 struct vmx_msrs host;
992 } msr_autoload;
993
994 struct {
995 int vm86_active;
996 ulong save_rflags;
997 struct kvm_segment segs[8];
998 } rmode;
999 struct {
1000 u32 bitmask; /* 4 bits per segment (1 bit per field) */
1001 struct kvm_save_segment {
1002 u16 selector;
1003 unsigned long base;
1004 u32 limit;
1005 u32 ar;
1006 } seg[8];
1007 } segment_cache;
1008 int vpid;
1009 bool emulation_required;
1010
1011 u32 exit_reason;
1012
1013 /* Posted interrupt descriptor */
1014 struct pi_desc pi_desc;
1015
1016 /* Support for a guest hypervisor (nested VMX) */
1017 struct nested_vmx nested;
1018
1019 /* Dynamic PLE window. */
1020 int ple_window;
1021 bool ple_window_dirty;
1022
1023 bool req_immediate_exit;
1024
1025 /* Support for PML */
1026 #define PML_ENTITY_NUM 512
1027 struct page *pml_pg;
1028
1029 /* apic deadline value in host tsc */
1030 u64 hv_deadline_tsc;
1031
1032 u64 current_tsc_ratio;
1033
1034 u32 host_pkru;
1035
1036 unsigned long host_debugctlmsr;
1037
1038 /*
1039 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
1040 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
1041 * in msr_ia32_feature_control_valid_bits.
1042 */
1043 u64 msr_ia32_feature_control;
1044 u64 msr_ia32_feature_control_valid_bits;
1045 u64 ept_pointer;
1046 };
1047
1048 enum segment_cache_field {
1049 SEG_FIELD_SEL = 0,
1050 SEG_FIELD_BASE = 1,
1051 SEG_FIELD_LIMIT = 2,
1052 SEG_FIELD_AR = 3,
1053
1054 SEG_FIELD_NR = 4
1055 };
1056
to_kvm_vmx(struct kvm * kvm)1057 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
1058 {
1059 return container_of(kvm, struct kvm_vmx, kvm);
1060 }
1061
to_vmx(struct kvm_vcpu * vcpu)1062 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
1063 {
1064 return container_of(vcpu, struct vcpu_vmx, vcpu);
1065 }
1066
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)1067 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
1068 {
1069 return &(to_vmx(vcpu)->pi_desc);
1070 }
1071
1072 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
1073 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
1074 #define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
1075 #define FIELD64(number, name) \
1076 FIELD(number, name), \
1077 [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
1078
1079
1080 static u16 shadow_read_only_fields[] = {
1081 #define SHADOW_FIELD_RO(x) x,
1082 #include "vmx_shadow_fields.h"
1083 };
1084 static int max_shadow_read_only_fields =
1085 ARRAY_SIZE(shadow_read_only_fields);
1086
1087 static u16 shadow_read_write_fields[] = {
1088 #define SHADOW_FIELD_RW(x) x,
1089 #include "vmx_shadow_fields.h"
1090 };
1091 static int max_shadow_read_write_fields =
1092 ARRAY_SIZE(shadow_read_write_fields);
1093
1094 static const unsigned short vmcs_field_to_offset_table[] = {
1095 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
1096 FIELD(POSTED_INTR_NV, posted_intr_nv),
1097 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
1098 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
1099 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
1100 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
1101 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
1102 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
1103 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
1104 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
1105 FIELD(GUEST_INTR_STATUS, guest_intr_status),
1106 FIELD(GUEST_PML_INDEX, guest_pml_index),
1107 FIELD(HOST_ES_SELECTOR, host_es_selector),
1108 FIELD(HOST_CS_SELECTOR, host_cs_selector),
1109 FIELD(HOST_SS_SELECTOR, host_ss_selector),
1110 FIELD(HOST_DS_SELECTOR, host_ds_selector),
1111 FIELD(HOST_FS_SELECTOR, host_fs_selector),
1112 FIELD(HOST_GS_SELECTOR, host_gs_selector),
1113 FIELD(HOST_TR_SELECTOR, host_tr_selector),
1114 FIELD64(IO_BITMAP_A, io_bitmap_a),
1115 FIELD64(IO_BITMAP_B, io_bitmap_b),
1116 FIELD64(MSR_BITMAP, msr_bitmap),
1117 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
1118 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
1119 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
1120 FIELD64(PML_ADDRESS, pml_address),
1121 FIELD64(TSC_OFFSET, tsc_offset),
1122 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
1123 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
1124 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
1125 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
1126 FIELD64(EPT_POINTER, ept_pointer),
1127 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
1128 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
1129 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
1130 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
1131 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
1132 FIELD64(VMREAD_BITMAP, vmread_bitmap),
1133 FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
1134 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
1135 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
1136 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
1137 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
1138 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
1139 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
1140 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
1141 FIELD64(GUEST_PDPTR0, guest_pdptr0),
1142 FIELD64(GUEST_PDPTR1, guest_pdptr1),
1143 FIELD64(GUEST_PDPTR2, guest_pdptr2),
1144 FIELD64(GUEST_PDPTR3, guest_pdptr3),
1145 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
1146 FIELD64(HOST_IA32_PAT, host_ia32_pat),
1147 FIELD64(HOST_IA32_EFER, host_ia32_efer),
1148 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
1149 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
1150 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
1151 FIELD(EXCEPTION_BITMAP, exception_bitmap),
1152 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
1153 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
1154 FIELD(CR3_TARGET_COUNT, cr3_target_count),
1155 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
1156 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
1157 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
1158 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
1159 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
1160 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
1161 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
1162 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
1163 FIELD(TPR_THRESHOLD, tpr_threshold),
1164 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
1165 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
1166 FIELD(VM_EXIT_REASON, vm_exit_reason),
1167 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
1168 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
1169 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
1170 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
1171 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
1172 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
1173 FIELD(GUEST_ES_LIMIT, guest_es_limit),
1174 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
1175 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
1176 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
1177 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
1178 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
1179 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
1180 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
1181 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
1182 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
1183 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
1184 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
1185 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
1186 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
1187 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
1188 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
1189 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
1190 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
1191 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
1192 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
1193 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
1194 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
1195 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
1196 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
1197 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
1198 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
1199 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
1200 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
1201 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
1202 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
1203 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
1204 FIELD(EXIT_QUALIFICATION, exit_qualification),
1205 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
1206 FIELD(GUEST_CR0, guest_cr0),
1207 FIELD(GUEST_CR3, guest_cr3),
1208 FIELD(GUEST_CR4, guest_cr4),
1209 FIELD(GUEST_ES_BASE, guest_es_base),
1210 FIELD(GUEST_CS_BASE, guest_cs_base),
1211 FIELD(GUEST_SS_BASE, guest_ss_base),
1212 FIELD(GUEST_DS_BASE, guest_ds_base),
1213 FIELD(GUEST_FS_BASE, guest_fs_base),
1214 FIELD(GUEST_GS_BASE, guest_gs_base),
1215 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
1216 FIELD(GUEST_TR_BASE, guest_tr_base),
1217 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
1218 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
1219 FIELD(GUEST_DR7, guest_dr7),
1220 FIELD(GUEST_RSP, guest_rsp),
1221 FIELD(GUEST_RIP, guest_rip),
1222 FIELD(GUEST_RFLAGS, guest_rflags),
1223 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
1224 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
1225 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
1226 FIELD(HOST_CR0, host_cr0),
1227 FIELD(HOST_CR3, host_cr3),
1228 FIELD(HOST_CR4, host_cr4),
1229 FIELD(HOST_FS_BASE, host_fs_base),
1230 FIELD(HOST_GS_BASE, host_gs_base),
1231 FIELD(HOST_TR_BASE, host_tr_base),
1232 FIELD(HOST_GDTR_BASE, host_gdtr_base),
1233 FIELD(HOST_IDTR_BASE, host_idtr_base),
1234 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
1235 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
1236 FIELD(HOST_RSP, host_rsp),
1237 FIELD(HOST_RIP, host_rip),
1238 };
1239
vmcs_field_to_offset(unsigned long field)1240 static inline short vmcs_field_to_offset(unsigned long field)
1241 {
1242 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
1243 unsigned short offset;
1244 unsigned index;
1245
1246 if (field >> 15)
1247 return -ENOENT;
1248
1249 index = ROL16(field, 6);
1250 if (index >= size)
1251 return -ENOENT;
1252
1253 index = array_index_nospec(index, size);
1254 offset = vmcs_field_to_offset_table[index];
1255 if (offset == 0)
1256 return -ENOENT;
1257 return offset;
1258 }
1259
get_vmcs12(struct kvm_vcpu * vcpu)1260 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
1261 {
1262 return to_vmx(vcpu)->nested.cached_vmcs12;
1263 }
1264
get_shadow_vmcs12(struct kvm_vcpu * vcpu)1265 static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
1266 {
1267 return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
1268 }
1269
1270 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
1271 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
1272 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
1273 static bool vmx_xsaves_supported(void);
1274 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1275 struct kvm_segment *var, int seg);
1276 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1277 struct kvm_segment *var, int seg);
1278 static bool guest_state_valid(struct kvm_vcpu *vcpu);
1279 static u32 vmx_segment_access_rights(struct kvm_segment *var);
1280 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
1281 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
1282 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
1283 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
1284 u16 error_code);
1285 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
1286 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
1287 u32 msr, int type);
1288
1289 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
1290 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
1291 /*
1292 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
1293 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
1294 */
1295 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
1296
1297 /*
1298 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
1299 * can find which vCPU should be waken up.
1300 */
1301 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
1302 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
1303
1304 enum {
1305 VMX_VMREAD_BITMAP,
1306 VMX_VMWRITE_BITMAP,
1307 VMX_BITMAP_NR
1308 };
1309
1310 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
1311
1312 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
1313 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
1314
1315 static bool cpu_has_load_ia32_efer;
1316 static bool cpu_has_load_perf_global_ctrl;
1317
1318 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
1319 static DEFINE_SPINLOCK(vmx_vpid_lock);
1320
1321 static struct vmcs_config {
1322 int size;
1323 int order;
1324 u32 basic_cap;
1325 u32 revision_id;
1326 u32 pin_based_exec_ctrl;
1327 u32 cpu_based_exec_ctrl;
1328 u32 cpu_based_2nd_exec_ctrl;
1329 u32 vmexit_ctrl;
1330 u32 vmentry_ctrl;
1331 struct nested_vmx_msrs nested;
1332 } vmcs_config;
1333
1334 static struct vmx_capability {
1335 u32 ept;
1336 u32 vpid;
1337 } vmx_capability;
1338
1339 #define VMX_SEGMENT_FIELD(seg) \
1340 [VCPU_SREG_##seg] = { \
1341 .selector = GUEST_##seg##_SELECTOR, \
1342 .base = GUEST_##seg##_BASE, \
1343 .limit = GUEST_##seg##_LIMIT, \
1344 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1345 }
1346
1347 static const struct kvm_vmx_segment_field {
1348 unsigned selector;
1349 unsigned base;
1350 unsigned limit;
1351 unsigned ar_bytes;
1352 } kvm_vmx_segment_fields[] = {
1353 VMX_SEGMENT_FIELD(CS),
1354 VMX_SEGMENT_FIELD(DS),
1355 VMX_SEGMENT_FIELD(ES),
1356 VMX_SEGMENT_FIELD(FS),
1357 VMX_SEGMENT_FIELD(GS),
1358 VMX_SEGMENT_FIELD(SS),
1359 VMX_SEGMENT_FIELD(TR),
1360 VMX_SEGMENT_FIELD(LDTR),
1361 };
1362
1363 static u64 host_efer;
1364
1365 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1366
1367 /*
1368 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1369 * away by decrementing the array size.
1370 */
1371 static const u32 vmx_msr_index[] = {
1372 #ifdef CONFIG_X86_64
1373 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1374 #endif
1375 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1376 };
1377
1378 DEFINE_STATIC_KEY_FALSE(enable_evmcs);
1379
1380 #define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
1381
1382 #define KVM_EVMCS_VERSION 1
1383
1384 #if IS_ENABLED(CONFIG_HYPERV)
1385 static bool __read_mostly enlightened_vmcs = true;
1386 module_param(enlightened_vmcs, bool, 0444);
1387
evmcs_write64(unsigned long field,u64 value)1388 static inline void evmcs_write64(unsigned long field, u64 value)
1389 {
1390 u16 clean_field;
1391 int offset = get_evmcs_offset(field, &clean_field);
1392
1393 if (offset < 0)
1394 return;
1395
1396 *(u64 *)((char *)current_evmcs + offset) = value;
1397
1398 current_evmcs->hv_clean_fields &= ~clean_field;
1399 }
1400
evmcs_write32(unsigned long field,u32 value)1401 static inline void evmcs_write32(unsigned long field, u32 value)
1402 {
1403 u16 clean_field;
1404 int offset = get_evmcs_offset(field, &clean_field);
1405
1406 if (offset < 0)
1407 return;
1408
1409 *(u32 *)((char *)current_evmcs + offset) = value;
1410 current_evmcs->hv_clean_fields &= ~clean_field;
1411 }
1412
evmcs_write16(unsigned long field,u16 value)1413 static inline void evmcs_write16(unsigned long field, u16 value)
1414 {
1415 u16 clean_field;
1416 int offset = get_evmcs_offset(field, &clean_field);
1417
1418 if (offset < 0)
1419 return;
1420
1421 *(u16 *)((char *)current_evmcs + offset) = value;
1422 current_evmcs->hv_clean_fields &= ~clean_field;
1423 }
1424
evmcs_read64(unsigned long field)1425 static inline u64 evmcs_read64(unsigned long field)
1426 {
1427 int offset = get_evmcs_offset(field, NULL);
1428
1429 if (offset < 0)
1430 return 0;
1431
1432 return *(u64 *)((char *)current_evmcs + offset);
1433 }
1434
evmcs_read32(unsigned long field)1435 static inline u32 evmcs_read32(unsigned long field)
1436 {
1437 int offset = get_evmcs_offset(field, NULL);
1438
1439 if (offset < 0)
1440 return 0;
1441
1442 return *(u32 *)((char *)current_evmcs + offset);
1443 }
1444
evmcs_read16(unsigned long field)1445 static inline u16 evmcs_read16(unsigned long field)
1446 {
1447 int offset = get_evmcs_offset(field, NULL);
1448
1449 if (offset < 0)
1450 return 0;
1451
1452 return *(u16 *)((char *)current_evmcs + offset);
1453 }
1454
evmcs_touch_msr_bitmap(void)1455 static inline void evmcs_touch_msr_bitmap(void)
1456 {
1457 if (unlikely(!current_evmcs))
1458 return;
1459
1460 if (current_evmcs->hv_enlightenments_control.msr_bitmap)
1461 current_evmcs->hv_clean_fields &=
1462 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
1463 }
1464
evmcs_load(u64 phys_addr)1465 static void evmcs_load(u64 phys_addr)
1466 {
1467 struct hv_vp_assist_page *vp_ap =
1468 hv_get_vp_assist_page(smp_processor_id());
1469
1470 vp_ap->current_nested_vmcs = phys_addr;
1471 vp_ap->enlighten_vmentry = 1;
1472 }
1473
evmcs_sanitize_exec_ctrls(struct vmcs_config * vmcs_conf)1474 static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
1475 {
1476 /*
1477 * Enlightened VMCSv1 doesn't support these:
1478 *
1479 * POSTED_INTR_NV = 0x00000002,
1480 * GUEST_INTR_STATUS = 0x00000810,
1481 * APIC_ACCESS_ADDR = 0x00002014,
1482 * POSTED_INTR_DESC_ADDR = 0x00002016,
1483 * EOI_EXIT_BITMAP0 = 0x0000201c,
1484 * EOI_EXIT_BITMAP1 = 0x0000201e,
1485 * EOI_EXIT_BITMAP2 = 0x00002020,
1486 * EOI_EXIT_BITMAP3 = 0x00002022,
1487 */
1488 vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
1489 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1490 ~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1491 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1492 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1493 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1494 ~SECONDARY_EXEC_APIC_REGISTER_VIRT;
1495
1496 /*
1497 * GUEST_PML_INDEX = 0x00000812,
1498 * PML_ADDRESS = 0x0000200e,
1499 */
1500 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
1501
1502 /* VM_FUNCTION_CONTROL = 0x00002018, */
1503 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
1504
1505 /*
1506 * EPTP_LIST_ADDRESS = 0x00002024,
1507 * VMREAD_BITMAP = 0x00002026,
1508 * VMWRITE_BITMAP = 0x00002028,
1509 */
1510 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
1511
1512 /*
1513 * TSC_MULTIPLIER = 0x00002032,
1514 */
1515 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
1516
1517 /*
1518 * PLE_GAP = 0x00004020,
1519 * PLE_WINDOW = 0x00004022,
1520 */
1521 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1522
1523 /*
1524 * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E,
1525 */
1526 vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1527
1528 /*
1529 * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
1530 * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
1531 */
1532 vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
1533 vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
1534
1535 /*
1536 * Currently unsupported in KVM:
1537 * GUEST_IA32_RTIT_CTL = 0x00002814,
1538 */
1539 }
1540
1541 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)1542 static void check_ept_pointer_match(struct kvm *kvm)
1543 {
1544 struct kvm_vcpu *vcpu;
1545 u64 tmp_eptp = INVALID_PAGE;
1546 int i;
1547
1548 kvm_for_each_vcpu(i, vcpu, kvm) {
1549 if (!VALID_PAGE(tmp_eptp)) {
1550 tmp_eptp = to_vmx(vcpu)->ept_pointer;
1551 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
1552 to_kvm_vmx(kvm)->ept_pointers_match
1553 = EPT_POINTERS_MISMATCH;
1554 return;
1555 }
1556 }
1557
1558 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
1559 }
1560
vmx_hv_remote_flush_tlb(struct kvm * kvm)1561 static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
1562 {
1563 int ret;
1564
1565 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
1566
1567 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
1568 check_ept_pointer_match(kvm);
1569
1570 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
1571 ret = -ENOTSUPP;
1572 goto out;
1573 }
1574
1575 /*
1576 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
1577 * base of EPT PML4 table, strip off EPT configuration information.
1578 */
1579 ret = hyperv_flush_guest_mapping(
1580 to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
1581
1582 out:
1583 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
1584 return ret;
1585 }
1586 #else /* !IS_ENABLED(CONFIG_HYPERV) */
evmcs_write64(unsigned long field,u64 value)1587 static inline void evmcs_write64(unsigned long field, u64 value) {}
evmcs_write32(unsigned long field,u32 value)1588 static inline void evmcs_write32(unsigned long field, u32 value) {}
evmcs_write16(unsigned long field,u16 value)1589 static inline void evmcs_write16(unsigned long field, u16 value) {}
evmcs_read64(unsigned long field)1590 static inline u64 evmcs_read64(unsigned long field) { return 0; }
evmcs_read32(unsigned long field)1591 static inline u32 evmcs_read32(unsigned long field) { return 0; }
evmcs_read16(unsigned long field)1592 static inline u16 evmcs_read16(unsigned long field) { return 0; }
evmcs_load(u64 phys_addr)1593 static inline void evmcs_load(u64 phys_addr) {}
evmcs_sanitize_exec_ctrls(struct vmcs_config * vmcs_conf)1594 static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
evmcs_touch_msr_bitmap(void)1595 static inline void evmcs_touch_msr_bitmap(void) {}
1596 #endif /* IS_ENABLED(CONFIG_HYPERV) */
1597
is_exception_n(u32 intr_info,u8 vector)1598 static inline bool is_exception_n(u32 intr_info, u8 vector)
1599 {
1600 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1601 INTR_INFO_VALID_MASK)) ==
1602 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1603 }
1604
is_debug(u32 intr_info)1605 static inline bool is_debug(u32 intr_info)
1606 {
1607 return is_exception_n(intr_info, DB_VECTOR);
1608 }
1609
is_breakpoint(u32 intr_info)1610 static inline bool is_breakpoint(u32 intr_info)
1611 {
1612 return is_exception_n(intr_info, BP_VECTOR);
1613 }
1614
is_page_fault(u32 intr_info)1615 static inline bool is_page_fault(u32 intr_info)
1616 {
1617 return is_exception_n(intr_info, PF_VECTOR);
1618 }
1619
is_no_device(u32 intr_info)1620 static inline bool is_no_device(u32 intr_info)
1621 {
1622 return is_exception_n(intr_info, NM_VECTOR);
1623 }
1624
is_invalid_opcode(u32 intr_info)1625 static inline bool is_invalid_opcode(u32 intr_info)
1626 {
1627 return is_exception_n(intr_info, UD_VECTOR);
1628 }
1629
is_gp_fault(u32 intr_info)1630 static inline bool is_gp_fault(u32 intr_info)
1631 {
1632 return is_exception_n(intr_info, GP_VECTOR);
1633 }
1634
is_external_interrupt(u32 intr_info)1635 static inline bool is_external_interrupt(u32 intr_info)
1636 {
1637 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1638 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1639 }
1640
is_machine_check(u32 intr_info)1641 static inline bool is_machine_check(u32 intr_info)
1642 {
1643 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1644 INTR_INFO_VALID_MASK)) ==
1645 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1646 }
1647
1648 /* Undocumented: icebp/int1 */
is_icebp(u32 intr_info)1649 static inline bool is_icebp(u32 intr_info)
1650 {
1651 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1652 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1653 }
1654
cpu_has_vmx_msr_bitmap(void)1655 static inline bool cpu_has_vmx_msr_bitmap(void)
1656 {
1657 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1658 }
1659
cpu_has_vmx_tpr_shadow(void)1660 static inline bool cpu_has_vmx_tpr_shadow(void)
1661 {
1662 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1663 }
1664
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1665 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1666 {
1667 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1668 }
1669
cpu_has_secondary_exec_ctrls(void)1670 static inline bool cpu_has_secondary_exec_ctrls(void)
1671 {
1672 return vmcs_config.cpu_based_exec_ctrl &
1673 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1674 }
1675
cpu_has_vmx_virtualize_apic_accesses(void)1676 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1677 {
1678 return vmcs_config.cpu_based_2nd_exec_ctrl &
1679 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1680 }
1681
cpu_has_vmx_virtualize_x2apic_mode(void)1682 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1683 {
1684 return vmcs_config.cpu_based_2nd_exec_ctrl &
1685 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1686 }
1687
cpu_has_vmx_apic_register_virt(void)1688 static inline bool cpu_has_vmx_apic_register_virt(void)
1689 {
1690 return vmcs_config.cpu_based_2nd_exec_ctrl &
1691 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1692 }
1693
cpu_has_vmx_virtual_intr_delivery(void)1694 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1695 {
1696 return vmcs_config.cpu_based_2nd_exec_ctrl &
1697 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1698 }
1699
cpu_has_vmx_encls_vmexit(void)1700 static inline bool cpu_has_vmx_encls_vmexit(void)
1701 {
1702 return vmcs_config.cpu_based_2nd_exec_ctrl &
1703 SECONDARY_EXEC_ENCLS_EXITING;
1704 }
1705
1706 /*
1707 * Comment's format: document - errata name - stepping - processor name.
1708 * Refer from
1709 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1710 */
1711 static u32 vmx_preemption_cpu_tfms[] = {
1712 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1713 0x000206E6,
1714 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1715 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1716 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1717 0x00020652,
1718 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1719 0x00020655,
1720 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1721 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1722 /*
1723 * 320767.pdf - AAP86 - B1 -
1724 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1725 */
1726 0x000106E5,
1727 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1728 0x000106A0,
1729 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1730 0x000106A1,
1731 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1732 0x000106A4,
1733 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1734 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1735 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1736 0x000106A5,
1737 };
1738
cpu_has_broken_vmx_preemption_timer(void)1739 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1740 {
1741 u32 eax = cpuid_eax(0x00000001), i;
1742
1743 /* Clear the reserved bits */
1744 eax &= ~(0x3U << 14 | 0xfU << 28);
1745 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1746 if (eax == vmx_preemption_cpu_tfms[i])
1747 return true;
1748
1749 return false;
1750 }
1751
cpu_has_vmx_preemption_timer(void)1752 static inline bool cpu_has_vmx_preemption_timer(void)
1753 {
1754 return vmcs_config.pin_based_exec_ctrl &
1755 PIN_BASED_VMX_PREEMPTION_TIMER;
1756 }
1757
cpu_has_vmx_posted_intr(void)1758 static inline bool cpu_has_vmx_posted_intr(void)
1759 {
1760 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1761 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1762 }
1763
cpu_has_vmx_apicv(void)1764 static inline bool cpu_has_vmx_apicv(void)
1765 {
1766 return cpu_has_vmx_apic_register_virt() &&
1767 cpu_has_vmx_virtual_intr_delivery() &&
1768 cpu_has_vmx_posted_intr();
1769 }
1770
cpu_has_vmx_flexpriority(void)1771 static inline bool cpu_has_vmx_flexpriority(void)
1772 {
1773 return cpu_has_vmx_tpr_shadow() &&
1774 cpu_has_vmx_virtualize_apic_accesses();
1775 }
1776
cpu_has_vmx_ept_execute_only(void)1777 static inline bool cpu_has_vmx_ept_execute_only(void)
1778 {
1779 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1780 }
1781
cpu_has_vmx_ept_2m_page(void)1782 static inline bool cpu_has_vmx_ept_2m_page(void)
1783 {
1784 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1785 }
1786
cpu_has_vmx_ept_1g_page(void)1787 static inline bool cpu_has_vmx_ept_1g_page(void)
1788 {
1789 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1790 }
1791
cpu_has_vmx_ept_4levels(void)1792 static inline bool cpu_has_vmx_ept_4levels(void)
1793 {
1794 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1795 }
1796
cpu_has_vmx_ept_mt_wb(void)1797 static inline bool cpu_has_vmx_ept_mt_wb(void)
1798 {
1799 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1800 }
1801
cpu_has_vmx_ept_5levels(void)1802 static inline bool cpu_has_vmx_ept_5levels(void)
1803 {
1804 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1805 }
1806
cpu_has_vmx_ept_ad_bits(void)1807 static inline bool cpu_has_vmx_ept_ad_bits(void)
1808 {
1809 return vmx_capability.ept & VMX_EPT_AD_BIT;
1810 }
1811
cpu_has_vmx_invept_context(void)1812 static inline bool cpu_has_vmx_invept_context(void)
1813 {
1814 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1815 }
1816
cpu_has_vmx_invept_global(void)1817 static inline bool cpu_has_vmx_invept_global(void)
1818 {
1819 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1820 }
1821
cpu_has_vmx_invvpid_individual_addr(void)1822 static inline bool cpu_has_vmx_invvpid_individual_addr(void)
1823 {
1824 return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
1825 }
1826
cpu_has_vmx_invvpid_single(void)1827 static inline bool cpu_has_vmx_invvpid_single(void)
1828 {
1829 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1830 }
1831
cpu_has_vmx_invvpid_global(void)1832 static inline bool cpu_has_vmx_invvpid_global(void)
1833 {
1834 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1835 }
1836
cpu_has_vmx_invvpid(void)1837 static inline bool cpu_has_vmx_invvpid(void)
1838 {
1839 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1840 }
1841
cpu_has_vmx_ept(void)1842 static inline bool cpu_has_vmx_ept(void)
1843 {
1844 return vmcs_config.cpu_based_2nd_exec_ctrl &
1845 SECONDARY_EXEC_ENABLE_EPT;
1846 }
1847
cpu_has_vmx_unrestricted_guest(void)1848 static inline bool cpu_has_vmx_unrestricted_guest(void)
1849 {
1850 return vmcs_config.cpu_based_2nd_exec_ctrl &
1851 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1852 }
1853
cpu_has_vmx_ple(void)1854 static inline bool cpu_has_vmx_ple(void)
1855 {
1856 return vmcs_config.cpu_based_2nd_exec_ctrl &
1857 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1858 }
1859
cpu_has_vmx_basic_inout(void)1860 static inline bool cpu_has_vmx_basic_inout(void)
1861 {
1862 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1863 }
1864
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1865 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1866 {
1867 return flexpriority_enabled && lapic_in_kernel(vcpu);
1868 }
1869
cpu_has_vmx_vpid(void)1870 static inline bool cpu_has_vmx_vpid(void)
1871 {
1872 return vmcs_config.cpu_based_2nd_exec_ctrl &
1873 SECONDARY_EXEC_ENABLE_VPID;
1874 }
1875
cpu_has_vmx_rdtscp(void)1876 static inline bool cpu_has_vmx_rdtscp(void)
1877 {
1878 return vmcs_config.cpu_based_2nd_exec_ctrl &
1879 SECONDARY_EXEC_RDTSCP;
1880 }
1881
cpu_has_vmx_invpcid(void)1882 static inline bool cpu_has_vmx_invpcid(void)
1883 {
1884 return vmcs_config.cpu_based_2nd_exec_ctrl &
1885 SECONDARY_EXEC_ENABLE_INVPCID;
1886 }
1887
cpu_has_virtual_nmis(void)1888 static inline bool cpu_has_virtual_nmis(void)
1889 {
1890 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1891 }
1892
cpu_has_vmx_wbinvd_exit(void)1893 static inline bool cpu_has_vmx_wbinvd_exit(void)
1894 {
1895 return vmcs_config.cpu_based_2nd_exec_ctrl &
1896 SECONDARY_EXEC_WBINVD_EXITING;
1897 }
1898
cpu_has_vmx_shadow_vmcs(void)1899 static inline bool cpu_has_vmx_shadow_vmcs(void)
1900 {
1901 u64 vmx_msr;
1902 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1903 /* check if the cpu supports writing r/o exit information fields */
1904 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1905 return false;
1906
1907 return vmcs_config.cpu_based_2nd_exec_ctrl &
1908 SECONDARY_EXEC_SHADOW_VMCS;
1909 }
1910
cpu_has_vmx_pml(void)1911 static inline bool cpu_has_vmx_pml(void)
1912 {
1913 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1914 }
1915
cpu_has_vmx_tsc_scaling(void)1916 static inline bool cpu_has_vmx_tsc_scaling(void)
1917 {
1918 return vmcs_config.cpu_based_2nd_exec_ctrl &
1919 SECONDARY_EXEC_TSC_SCALING;
1920 }
1921
cpu_has_vmx_vmfunc(void)1922 static inline bool cpu_has_vmx_vmfunc(void)
1923 {
1924 return vmcs_config.cpu_based_2nd_exec_ctrl &
1925 SECONDARY_EXEC_ENABLE_VMFUNC;
1926 }
1927
vmx_umip_emulated(void)1928 static bool vmx_umip_emulated(void)
1929 {
1930 return vmcs_config.cpu_based_2nd_exec_ctrl &
1931 SECONDARY_EXEC_DESC;
1932 }
1933
report_flexpriority(void)1934 static inline bool report_flexpriority(void)
1935 {
1936 return flexpriority_enabled;
1937 }
1938
nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu * vcpu)1939 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1940 {
1941 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
1942 }
1943
1944 /*
1945 * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
1946 * to modify any valid field of the VMCS, or are the VM-exit
1947 * information fields read-only?
1948 */
nested_cpu_has_vmwrite_any_field(struct kvm_vcpu * vcpu)1949 static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
1950 {
1951 return to_vmx(vcpu)->nested.msrs.misc_low &
1952 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
1953 }
1954
nested_cpu_has_zero_length_injection(struct kvm_vcpu * vcpu)1955 static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
1956 {
1957 return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
1958 }
1959
nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu * vcpu)1960 static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
1961 {
1962 return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
1963 CPU_BASED_MONITOR_TRAP_FLAG;
1964 }
1965
nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu * vcpu)1966 static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
1967 {
1968 return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
1969 SECONDARY_EXEC_SHADOW_VMCS;
1970 }
1971
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1972 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1973 {
1974 return vmcs12->cpu_based_vm_exec_control & bit;
1975 }
1976
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1977 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1978 {
1979 return (vmcs12->cpu_based_vm_exec_control &
1980 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1981 (vmcs12->secondary_vm_exec_control & bit);
1982 }
1983
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1984 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1985 {
1986 return vmcs12->pin_based_vm_exec_control &
1987 PIN_BASED_VMX_PREEMPTION_TIMER;
1988 }
1989
nested_cpu_has_nmi_exiting(struct vmcs12 * vmcs12)1990 static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
1991 {
1992 return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
1993 }
1994
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1995 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1996 {
1997 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1998 }
1999
nested_cpu_has_ept(struct vmcs12 * vmcs12)2000 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
2001 {
2002 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
2003 }
2004
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)2005 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
2006 {
2007 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
2008 }
2009
nested_cpu_has_pml(struct vmcs12 * vmcs12)2010 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
2011 {
2012 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
2013 }
2014
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)2015 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
2016 {
2017 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
2018 }
2019
nested_cpu_has_vpid(struct vmcs12 * vmcs12)2020 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
2021 {
2022 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
2023 }
2024
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)2025 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
2026 {
2027 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
2028 }
2029
nested_cpu_has_vid(struct vmcs12 * vmcs12)2030 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
2031 {
2032 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2033 }
2034
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)2035 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
2036 {
2037 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
2038 }
2039
nested_cpu_has_vmfunc(struct vmcs12 * vmcs12)2040 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
2041 {
2042 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
2043 }
2044
nested_cpu_has_eptp_switching(struct vmcs12 * vmcs12)2045 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
2046 {
2047 return nested_cpu_has_vmfunc(vmcs12) &&
2048 (vmcs12->vm_function_control &
2049 VMX_VMFUNC_EPTP_SWITCHING);
2050 }
2051
nested_cpu_has_shadow_vmcs(struct vmcs12 * vmcs12)2052 static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
2053 {
2054 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
2055 }
2056
is_nmi(u32 intr_info)2057 static inline bool is_nmi(u32 intr_info)
2058 {
2059 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
2060 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
2061 }
2062
2063 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
2064 u32 exit_intr_info,
2065 unsigned long exit_qualification);
2066 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
2067 struct vmcs12 *vmcs12,
2068 u32 reason, unsigned long qualification);
2069
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)2070 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
2071 {
2072 int i;
2073
2074 for (i = 0; i < vmx->nmsrs; ++i)
2075 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
2076 return i;
2077 return -1;
2078 }
2079
__invvpid(int ext,u16 vpid,gva_t gva)2080 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
2081 {
2082 struct {
2083 u64 vpid : 16;
2084 u64 rsvd : 48;
2085 u64 gva;
2086 } operand = { vpid, 0, gva };
2087 bool error;
2088
2089 asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na)
2090 : CC_OUT(na) (error) : "a"(&operand), "c"(ext)
2091 : "memory");
2092 BUG_ON(error);
2093 }
2094
__invept(int ext,u64 eptp,gpa_t gpa)2095 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
2096 {
2097 struct {
2098 u64 eptp, gpa;
2099 } operand = {eptp, gpa};
2100 bool error;
2101
2102 asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na)
2103 : CC_OUT(na) (error) : "a" (&operand), "c" (ext)
2104 : "memory");
2105 BUG_ON(error);
2106 }
2107
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)2108 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
2109 {
2110 int i;
2111
2112 i = __find_msr_index(vmx, msr);
2113 if (i >= 0)
2114 return &vmx->guest_msrs[i];
2115 return NULL;
2116 }
2117
vmcs_clear(struct vmcs * vmcs)2118 static void vmcs_clear(struct vmcs *vmcs)
2119 {
2120 u64 phys_addr = __pa(vmcs);
2121 bool error;
2122
2123 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na)
2124 : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
2125 : "memory");
2126 if (unlikely(error))
2127 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
2128 vmcs, phys_addr);
2129 }
2130
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)2131 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
2132 {
2133 vmcs_clear(loaded_vmcs->vmcs);
2134 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
2135 vmcs_clear(loaded_vmcs->shadow_vmcs);
2136 loaded_vmcs->cpu = -1;
2137 loaded_vmcs->launched = 0;
2138 }
2139
vmcs_load(struct vmcs * vmcs)2140 static void vmcs_load(struct vmcs *vmcs)
2141 {
2142 u64 phys_addr = __pa(vmcs);
2143 bool error;
2144
2145 if (static_branch_unlikely(&enable_evmcs))
2146 return evmcs_load(phys_addr);
2147
2148 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na)
2149 : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
2150 : "memory");
2151 if (unlikely(error))
2152 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
2153 vmcs, phys_addr);
2154 }
2155
2156 #ifdef CONFIG_KEXEC_CORE
2157 /*
2158 * This bitmap is used to indicate whether the vmclear
2159 * operation is enabled on all cpus. All disabled by
2160 * default.
2161 */
2162 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
2163
crash_enable_local_vmclear(int cpu)2164 static inline void crash_enable_local_vmclear(int cpu)
2165 {
2166 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
2167 }
2168
crash_disable_local_vmclear(int cpu)2169 static inline void crash_disable_local_vmclear(int cpu)
2170 {
2171 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
2172 }
2173
crash_local_vmclear_enabled(int cpu)2174 static inline int crash_local_vmclear_enabled(int cpu)
2175 {
2176 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
2177 }
2178
crash_vmclear_local_loaded_vmcss(void)2179 static void crash_vmclear_local_loaded_vmcss(void)
2180 {
2181 int cpu = raw_smp_processor_id();
2182 struct loaded_vmcs *v;
2183
2184 if (!crash_local_vmclear_enabled(cpu))
2185 return;
2186
2187 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
2188 loaded_vmcss_on_cpu_link)
2189 vmcs_clear(v->vmcs);
2190 }
2191 #else
crash_enable_local_vmclear(int cpu)2192 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)2193 static inline void crash_disable_local_vmclear(int cpu) { }
2194 #endif /* CONFIG_KEXEC_CORE */
2195
__loaded_vmcs_clear(void * arg)2196 static void __loaded_vmcs_clear(void *arg)
2197 {
2198 struct loaded_vmcs *loaded_vmcs = arg;
2199 int cpu = raw_smp_processor_id();
2200
2201 if (loaded_vmcs->cpu != cpu)
2202 return; /* vcpu migration can race with cpu offline */
2203 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
2204 per_cpu(current_vmcs, cpu) = NULL;
2205 crash_disable_local_vmclear(cpu);
2206 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
2207
2208 /*
2209 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
2210 * is before setting loaded_vmcs->vcpu to -1 which is done in
2211 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
2212 * then adds the vmcs into percpu list before it is deleted.
2213 */
2214 smp_wmb();
2215
2216 loaded_vmcs_init(loaded_vmcs);
2217 crash_enable_local_vmclear(cpu);
2218 }
2219
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)2220 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
2221 {
2222 int cpu = loaded_vmcs->cpu;
2223
2224 if (cpu != -1)
2225 smp_call_function_single(cpu,
2226 __loaded_vmcs_clear, loaded_vmcs, 1);
2227 }
2228
vpid_sync_vcpu_addr(int vpid,gva_t addr)2229 static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
2230 {
2231 if (vpid == 0)
2232 return true;
2233
2234 if (cpu_has_vmx_invvpid_individual_addr()) {
2235 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
2236 return true;
2237 }
2238
2239 return false;
2240 }
2241
vpid_sync_vcpu_single(int vpid)2242 static inline void vpid_sync_vcpu_single(int vpid)
2243 {
2244 if (vpid == 0)
2245 return;
2246
2247 if (cpu_has_vmx_invvpid_single())
2248 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2249 }
2250
vpid_sync_vcpu_global(void)2251 static inline void vpid_sync_vcpu_global(void)
2252 {
2253 if (cpu_has_vmx_invvpid_global())
2254 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
2255 }
2256
vpid_sync_context(int vpid)2257 static inline void vpid_sync_context(int vpid)
2258 {
2259 if (cpu_has_vmx_invvpid_single())
2260 vpid_sync_vcpu_single(vpid);
2261 else
2262 vpid_sync_vcpu_global();
2263 }
2264
ept_sync_global(void)2265 static inline void ept_sync_global(void)
2266 {
2267 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
2268 }
2269
ept_sync_context(u64 eptp)2270 static inline void ept_sync_context(u64 eptp)
2271 {
2272 if (cpu_has_vmx_invept_context())
2273 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
2274 else
2275 ept_sync_global();
2276 }
2277
vmcs_check16(unsigned long field)2278 static __always_inline void vmcs_check16(unsigned long field)
2279 {
2280 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
2281 "16-bit accessor invalid for 64-bit field");
2282 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2283 "16-bit accessor invalid for 64-bit high field");
2284 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2285 "16-bit accessor invalid for 32-bit high field");
2286 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2287 "16-bit accessor invalid for natural width field");
2288 }
2289
vmcs_check32(unsigned long field)2290 static __always_inline void vmcs_check32(unsigned long field)
2291 {
2292 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2293 "32-bit accessor invalid for 16-bit field");
2294 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2295 "32-bit accessor invalid for natural width field");
2296 }
2297
vmcs_check64(unsigned long field)2298 static __always_inline void vmcs_check64(unsigned long field)
2299 {
2300 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2301 "64-bit accessor invalid for 16-bit field");
2302 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2303 "64-bit accessor invalid for 64-bit high field");
2304 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2305 "64-bit accessor invalid for 32-bit field");
2306 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2307 "64-bit accessor invalid for natural width field");
2308 }
2309
vmcs_checkl(unsigned long field)2310 static __always_inline void vmcs_checkl(unsigned long field)
2311 {
2312 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2313 "Natural width accessor invalid for 16-bit field");
2314 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
2315 "Natural width accessor invalid for 64-bit field");
2316 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2317 "Natural width accessor invalid for 64-bit high field");
2318 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2319 "Natural width accessor invalid for 32-bit field");
2320 }
2321
__vmcs_readl(unsigned long field)2322 static __always_inline unsigned long __vmcs_readl(unsigned long field)
2323 {
2324 unsigned long value;
2325
2326 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
2327 : "=a"(value) : "d"(field) : "cc");
2328 return value;
2329 }
2330
vmcs_read16(unsigned long field)2331 static __always_inline u16 vmcs_read16(unsigned long field)
2332 {
2333 vmcs_check16(field);
2334 if (static_branch_unlikely(&enable_evmcs))
2335 return evmcs_read16(field);
2336 return __vmcs_readl(field);
2337 }
2338
vmcs_read32(unsigned long field)2339 static __always_inline u32 vmcs_read32(unsigned long field)
2340 {
2341 vmcs_check32(field);
2342 if (static_branch_unlikely(&enable_evmcs))
2343 return evmcs_read32(field);
2344 return __vmcs_readl(field);
2345 }
2346
vmcs_read64(unsigned long field)2347 static __always_inline u64 vmcs_read64(unsigned long field)
2348 {
2349 vmcs_check64(field);
2350 if (static_branch_unlikely(&enable_evmcs))
2351 return evmcs_read64(field);
2352 #ifdef CONFIG_X86_64
2353 return __vmcs_readl(field);
2354 #else
2355 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
2356 #endif
2357 }
2358
vmcs_readl(unsigned long field)2359 static __always_inline unsigned long vmcs_readl(unsigned long field)
2360 {
2361 vmcs_checkl(field);
2362 if (static_branch_unlikely(&enable_evmcs))
2363 return evmcs_read64(field);
2364 return __vmcs_readl(field);
2365 }
2366
vmwrite_error(unsigned long field,unsigned long value)2367 static noinline void vmwrite_error(unsigned long field, unsigned long value)
2368 {
2369 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
2370 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
2371 dump_stack();
2372 }
2373
__vmcs_writel(unsigned long field,unsigned long value)2374 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
2375 {
2376 bool error;
2377
2378 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na)
2379 : CC_OUT(na) (error) : "a"(value), "d"(field));
2380 if (unlikely(error))
2381 vmwrite_error(field, value);
2382 }
2383
vmcs_write16(unsigned long field,u16 value)2384 static __always_inline void vmcs_write16(unsigned long field, u16 value)
2385 {
2386 vmcs_check16(field);
2387 if (static_branch_unlikely(&enable_evmcs))
2388 return evmcs_write16(field, value);
2389
2390 __vmcs_writel(field, value);
2391 }
2392
vmcs_write32(unsigned long field,u32 value)2393 static __always_inline void vmcs_write32(unsigned long field, u32 value)
2394 {
2395 vmcs_check32(field);
2396 if (static_branch_unlikely(&enable_evmcs))
2397 return evmcs_write32(field, value);
2398
2399 __vmcs_writel(field, value);
2400 }
2401
vmcs_write64(unsigned long field,u64 value)2402 static __always_inline void vmcs_write64(unsigned long field, u64 value)
2403 {
2404 vmcs_check64(field);
2405 if (static_branch_unlikely(&enable_evmcs))
2406 return evmcs_write64(field, value);
2407
2408 __vmcs_writel(field, value);
2409 #ifndef CONFIG_X86_64
2410 asm volatile ("");
2411 __vmcs_writel(field+1, value >> 32);
2412 #endif
2413 }
2414
vmcs_writel(unsigned long field,unsigned long value)2415 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2416 {
2417 vmcs_checkl(field);
2418 if (static_branch_unlikely(&enable_evmcs))
2419 return evmcs_write64(field, value);
2420
2421 __vmcs_writel(field, value);
2422 }
2423
vmcs_clear_bits(unsigned long field,u32 mask)2424 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2425 {
2426 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
2427 "vmcs_clear_bits does not support 64-bit fields");
2428 if (static_branch_unlikely(&enable_evmcs))
2429 return evmcs_write32(field, evmcs_read32(field) & ~mask);
2430
2431 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2432 }
2433
vmcs_set_bits(unsigned long field,u32 mask)2434 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2435 {
2436 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
2437 "vmcs_set_bits does not support 64-bit fields");
2438 if (static_branch_unlikely(&enable_evmcs))
2439 return evmcs_write32(field, evmcs_read32(field) | mask);
2440
2441 __vmcs_writel(field, __vmcs_readl(field) | mask);
2442 }
2443
vm_entry_controls_reset_shadow(struct vcpu_vmx * vmx)2444 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
2445 {
2446 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
2447 }
2448
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)2449 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
2450 {
2451 vmcs_write32(VM_ENTRY_CONTROLS, val);
2452 vmx->vm_entry_controls_shadow = val;
2453 }
2454
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)2455 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
2456 {
2457 if (vmx->vm_entry_controls_shadow != val)
2458 vm_entry_controls_init(vmx, val);
2459 }
2460
vm_entry_controls_get(struct vcpu_vmx * vmx)2461 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
2462 {
2463 return vmx->vm_entry_controls_shadow;
2464 }
2465
2466
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)2467 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2468 {
2469 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
2470 }
2471
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)2472 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2473 {
2474 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
2475 }
2476
vm_exit_controls_reset_shadow(struct vcpu_vmx * vmx)2477 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
2478 {
2479 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
2480 }
2481
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)2482 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
2483 {
2484 vmcs_write32(VM_EXIT_CONTROLS, val);
2485 vmx->vm_exit_controls_shadow = val;
2486 }
2487
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)2488 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
2489 {
2490 if (vmx->vm_exit_controls_shadow != val)
2491 vm_exit_controls_init(vmx, val);
2492 }
2493
vm_exit_controls_get(struct vcpu_vmx * vmx)2494 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
2495 {
2496 return vmx->vm_exit_controls_shadow;
2497 }
2498
2499
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)2500 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2501 {
2502 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
2503 }
2504
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)2505 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2506 {
2507 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
2508 }
2509
vmx_segment_cache_clear(struct vcpu_vmx * vmx)2510 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
2511 {
2512 vmx->segment_cache.bitmask = 0;
2513 }
2514
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)2515 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
2516 unsigned field)
2517 {
2518 bool ret;
2519 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
2520
2521 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
2522 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
2523 vmx->segment_cache.bitmask = 0;
2524 }
2525 ret = vmx->segment_cache.bitmask & mask;
2526 vmx->segment_cache.bitmask |= mask;
2527 return ret;
2528 }
2529
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)2530 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
2531 {
2532 u16 *p = &vmx->segment_cache.seg[seg].selector;
2533
2534 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
2535 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
2536 return *p;
2537 }
2538
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)2539 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
2540 {
2541 ulong *p = &vmx->segment_cache.seg[seg].base;
2542
2543 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
2544 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
2545 return *p;
2546 }
2547
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)2548 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
2549 {
2550 u32 *p = &vmx->segment_cache.seg[seg].limit;
2551
2552 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
2553 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
2554 return *p;
2555 }
2556
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)2557 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
2558 {
2559 u32 *p = &vmx->segment_cache.seg[seg].ar;
2560
2561 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
2562 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
2563 return *p;
2564 }
2565
update_exception_bitmap(struct kvm_vcpu * vcpu)2566 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
2567 {
2568 u32 eb;
2569
2570 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
2571 (1u << DB_VECTOR) | (1u << AC_VECTOR);
2572 /*
2573 * Guest access to VMware backdoor ports could legitimately
2574 * trigger #GP because of TSS I/O permission bitmap.
2575 * We intercept those #GP and allow access to them anyway
2576 * as VMware does.
2577 */
2578 if (enable_vmware_backdoor)
2579 eb |= (1u << GP_VECTOR);
2580 if ((vcpu->guest_debug &
2581 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
2582 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
2583 eb |= 1u << BP_VECTOR;
2584 if (to_vmx(vcpu)->rmode.vm86_active)
2585 eb = ~0;
2586 if (enable_ept)
2587 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
2588
2589 /* When we are running a nested L2 guest and L1 specified for it a
2590 * certain exception bitmap, we must trap the same exceptions and pass
2591 * them to L1. When running L2, we will only handle the exceptions
2592 * specified above if L1 did not want them.
2593 */
2594 if (is_guest_mode(vcpu))
2595 eb |= get_vmcs12(vcpu)->exception_bitmap;
2596
2597 vmcs_write32(EXCEPTION_BITMAP, eb);
2598 }
2599
2600 /*
2601 * Check if MSR is intercepted for currently loaded MSR bitmap.
2602 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)2603 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
2604 {
2605 unsigned long *msr_bitmap;
2606 int f = sizeof(unsigned long);
2607
2608 if (!cpu_has_vmx_msr_bitmap())
2609 return true;
2610
2611 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
2612
2613 if (msr <= 0x1fff) {
2614 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2615 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2616 msr &= 0x1fff;
2617 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2618 }
2619
2620 return true;
2621 }
2622
2623 /*
2624 * Check if MSR is intercepted for L01 MSR bitmap.
2625 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)2626 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
2627 {
2628 unsigned long *msr_bitmap;
2629 int f = sizeof(unsigned long);
2630
2631 if (!cpu_has_vmx_msr_bitmap())
2632 return true;
2633
2634 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
2635
2636 if (msr <= 0x1fff) {
2637 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2638 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2639 msr &= 0x1fff;
2640 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2641 }
2642
2643 return true;
2644 }
2645
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)2646 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2647 unsigned long entry, unsigned long exit)
2648 {
2649 vm_entry_controls_clearbit(vmx, entry);
2650 vm_exit_controls_clearbit(vmx, exit);
2651 }
2652
find_msr(struct vmx_msrs * m,unsigned int msr)2653 static int find_msr(struct vmx_msrs *m, unsigned int msr)
2654 {
2655 unsigned int i;
2656
2657 for (i = 0; i < m->nr; ++i) {
2658 if (m->val[i].index == msr)
2659 return i;
2660 }
2661 return -ENOENT;
2662 }
2663
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)2664 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
2665 {
2666 int i;
2667 struct msr_autoload *m = &vmx->msr_autoload;
2668
2669 switch (msr) {
2670 case MSR_EFER:
2671 if (cpu_has_load_ia32_efer) {
2672 clear_atomic_switch_msr_special(vmx,
2673 VM_ENTRY_LOAD_IA32_EFER,
2674 VM_EXIT_LOAD_IA32_EFER);
2675 return;
2676 }
2677 break;
2678 case MSR_CORE_PERF_GLOBAL_CTRL:
2679 if (cpu_has_load_perf_global_ctrl) {
2680 clear_atomic_switch_msr_special(vmx,
2681 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2682 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2683 return;
2684 }
2685 break;
2686 }
2687 i = find_msr(&m->guest, msr);
2688 if (i < 0)
2689 goto skip_guest;
2690 --m->guest.nr;
2691 m->guest.val[i] = m->guest.val[m->guest.nr];
2692 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2693
2694 skip_guest:
2695 i = find_msr(&m->host, msr);
2696 if (i < 0)
2697 return;
2698
2699 --m->host.nr;
2700 m->host.val[i] = m->host.val[m->host.nr];
2701 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2702 }
2703
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)2704 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2705 unsigned long entry, unsigned long exit,
2706 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2707 u64 guest_val, u64 host_val)
2708 {
2709 vmcs_write64(guest_val_vmcs, guest_val);
2710 vmcs_write64(host_val_vmcs, host_val);
2711 vm_entry_controls_setbit(vmx, entry);
2712 vm_exit_controls_setbit(vmx, exit);
2713 }
2714
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)2715 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2716 u64 guest_val, u64 host_val, bool entry_only)
2717 {
2718 int i, j = 0;
2719 struct msr_autoload *m = &vmx->msr_autoload;
2720
2721 switch (msr) {
2722 case MSR_EFER:
2723 if (cpu_has_load_ia32_efer) {
2724 add_atomic_switch_msr_special(vmx,
2725 VM_ENTRY_LOAD_IA32_EFER,
2726 VM_EXIT_LOAD_IA32_EFER,
2727 GUEST_IA32_EFER,
2728 HOST_IA32_EFER,
2729 guest_val, host_val);
2730 return;
2731 }
2732 break;
2733 case MSR_CORE_PERF_GLOBAL_CTRL:
2734 if (cpu_has_load_perf_global_ctrl) {
2735 add_atomic_switch_msr_special(vmx,
2736 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2737 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2738 GUEST_IA32_PERF_GLOBAL_CTRL,
2739 HOST_IA32_PERF_GLOBAL_CTRL,
2740 guest_val, host_val);
2741 return;
2742 }
2743 break;
2744 case MSR_IA32_PEBS_ENABLE:
2745 /* PEBS needs a quiescent period after being disabled (to write
2746 * a record). Disabling PEBS through VMX MSR swapping doesn't
2747 * provide that period, so a CPU could write host's record into
2748 * guest's memory.
2749 */
2750 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2751 }
2752
2753 i = find_msr(&m->guest, msr);
2754 if (!entry_only)
2755 j = find_msr(&m->host, msr);
2756
2757 if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
2758 printk_once(KERN_WARNING "Not enough msr switch entries. "
2759 "Can't add msr %x\n", msr);
2760 return;
2761 }
2762 if (i < 0) {
2763 i = m->guest.nr++;
2764 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2765 }
2766 m->guest.val[i].index = msr;
2767 m->guest.val[i].value = guest_val;
2768
2769 if (entry_only)
2770 return;
2771
2772 if (j < 0) {
2773 j = m->host.nr++;
2774 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2775 }
2776 m->host.val[j].index = msr;
2777 m->host.val[j].value = host_val;
2778 }
2779
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)2780 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2781 {
2782 u64 guest_efer = vmx->vcpu.arch.efer;
2783 u64 ignore_bits = 0;
2784
2785 if (!enable_ept) {
2786 /*
2787 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2788 * host CPUID is more efficient than testing guest CPUID
2789 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2790 */
2791 if (boot_cpu_has(X86_FEATURE_SMEP))
2792 guest_efer |= EFER_NX;
2793 else if (!(guest_efer & EFER_NX))
2794 ignore_bits |= EFER_NX;
2795 }
2796
2797 /*
2798 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2799 */
2800 ignore_bits |= EFER_SCE;
2801 #ifdef CONFIG_X86_64
2802 ignore_bits |= EFER_LMA | EFER_LME;
2803 /* SCE is meaningful only in long mode on Intel */
2804 if (guest_efer & EFER_LMA)
2805 ignore_bits &= ~(u64)EFER_SCE;
2806 #endif
2807
2808 clear_atomic_switch_msr(vmx, MSR_EFER);
2809
2810 /*
2811 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2812 * On CPUs that support "load IA32_EFER", always switch EFER
2813 * atomically, since it's faster than switching it manually.
2814 */
2815 if (cpu_has_load_ia32_efer ||
2816 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2817 if (!(guest_efer & EFER_LMA))
2818 guest_efer &= ~EFER_LME;
2819 if (guest_efer != host_efer)
2820 add_atomic_switch_msr(vmx, MSR_EFER,
2821 guest_efer, host_efer, false);
2822 return false;
2823 } else {
2824 guest_efer &= ~ignore_bits;
2825 guest_efer |= host_efer & ignore_bits;
2826
2827 vmx->guest_msrs[efer_offset].data = guest_efer;
2828 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2829
2830 return true;
2831 }
2832 }
2833
2834 #ifdef CONFIG_X86_32
2835 /*
2836 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2837 * VMCS rather than the segment table. KVM uses this helper to figure
2838 * out the current bases to poke them into the VMCS before entry.
2839 */
segment_base(u16 selector)2840 static unsigned long segment_base(u16 selector)
2841 {
2842 struct desc_struct *table;
2843 unsigned long v;
2844
2845 if (!(selector & ~SEGMENT_RPL_MASK))
2846 return 0;
2847
2848 table = get_current_gdt_ro();
2849
2850 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2851 u16 ldt_selector = kvm_read_ldt();
2852
2853 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2854 return 0;
2855
2856 table = (struct desc_struct *)segment_base(ldt_selector);
2857 }
2858 v = get_desc_base(&table[selector >> 3]);
2859 return v;
2860 }
2861 #endif
2862
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)2863 static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
2864 {
2865 struct vcpu_vmx *vmx = to_vmx(vcpu);
2866 struct vmcs_host_state *host_state;
2867 #ifdef CONFIG_X86_64
2868 int cpu = raw_smp_processor_id();
2869 #endif
2870 unsigned long fs_base, gs_base;
2871 u16 fs_sel, gs_sel;
2872 int i;
2873
2874 vmx->req_immediate_exit = false;
2875
2876 if (vmx->loaded_cpu_state)
2877 return;
2878
2879 vmx->loaded_cpu_state = vmx->loaded_vmcs;
2880 host_state = &vmx->loaded_cpu_state->host_state;
2881
2882 /*
2883 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2884 * allow segment selectors with cpl > 0 or ti == 1.
2885 */
2886 host_state->ldt_sel = kvm_read_ldt();
2887
2888 #ifdef CONFIG_X86_64
2889 savesegment(ds, host_state->ds_sel);
2890 savesegment(es, host_state->es_sel);
2891
2892 gs_base = cpu_kernelmode_gs_base(cpu);
2893 if (likely(is_64bit_mm(current->mm))) {
2894 save_fsgs_for_kvm();
2895 fs_sel = current->thread.fsindex;
2896 gs_sel = current->thread.gsindex;
2897 fs_base = current->thread.fsbase;
2898 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
2899 } else {
2900 savesegment(fs, fs_sel);
2901 savesegment(gs, gs_sel);
2902 fs_base = read_msr(MSR_FS_BASE);
2903 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
2904 }
2905
2906 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2907 #else
2908 savesegment(fs, fs_sel);
2909 savesegment(gs, gs_sel);
2910 fs_base = segment_base(fs_sel);
2911 gs_base = segment_base(gs_sel);
2912 #endif
2913
2914 if (unlikely(fs_sel != host_state->fs_sel)) {
2915 if (!(fs_sel & 7))
2916 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
2917 else
2918 vmcs_write16(HOST_FS_SELECTOR, 0);
2919 host_state->fs_sel = fs_sel;
2920 }
2921 if (unlikely(gs_sel != host_state->gs_sel)) {
2922 if (!(gs_sel & 7))
2923 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
2924 else
2925 vmcs_write16(HOST_GS_SELECTOR, 0);
2926 host_state->gs_sel = gs_sel;
2927 }
2928 if (unlikely(fs_base != host_state->fs_base)) {
2929 vmcs_writel(HOST_FS_BASE, fs_base);
2930 host_state->fs_base = fs_base;
2931 }
2932 if (unlikely(gs_base != host_state->gs_base)) {
2933 vmcs_writel(HOST_GS_BASE, gs_base);
2934 host_state->gs_base = gs_base;
2935 }
2936
2937 for (i = 0; i < vmx->save_nmsrs; ++i)
2938 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2939 vmx->guest_msrs[i].data,
2940 vmx->guest_msrs[i].mask);
2941 }
2942
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)2943 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
2944 {
2945 struct vmcs_host_state *host_state;
2946
2947 if (!vmx->loaded_cpu_state)
2948 return;
2949
2950 WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
2951 host_state = &vmx->loaded_cpu_state->host_state;
2952
2953 ++vmx->vcpu.stat.host_state_reload;
2954 vmx->loaded_cpu_state = NULL;
2955
2956 #ifdef CONFIG_X86_64
2957 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2958 #endif
2959 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
2960 kvm_load_ldt(host_state->ldt_sel);
2961 #ifdef CONFIG_X86_64
2962 load_gs_index(host_state->gs_sel);
2963 #else
2964 loadsegment(gs, host_state->gs_sel);
2965 #endif
2966 }
2967 if (host_state->fs_sel & 7)
2968 loadsegment(fs, host_state->fs_sel);
2969 #ifdef CONFIG_X86_64
2970 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
2971 loadsegment(ds, host_state->ds_sel);
2972 loadsegment(es, host_state->es_sel);
2973 }
2974 #endif
2975 invalidate_tss_limit();
2976 #ifdef CONFIG_X86_64
2977 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2978 #endif
2979 load_fixmap_gdt(raw_smp_processor_id());
2980 }
2981
2982 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)2983 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
2984 {
2985 preempt_disable();
2986 if (vmx->loaded_cpu_state)
2987 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2988 preempt_enable();
2989 return vmx->msr_guest_kernel_gs_base;
2990 }
2991
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)2992 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
2993 {
2994 preempt_disable();
2995 if (vmx->loaded_cpu_state)
2996 wrmsrl(MSR_KERNEL_GS_BASE, data);
2997 preempt_enable();
2998 vmx->msr_guest_kernel_gs_base = data;
2999 }
3000 #endif
3001
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)3002 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
3003 {
3004 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
3005 struct pi_desc old, new;
3006 unsigned int dest;
3007
3008 /*
3009 * In case of hot-plug or hot-unplug, we may have to undo
3010 * vmx_vcpu_pi_put even if there is no assigned device. And we
3011 * always keep PI.NDST up to date for simplicity: it makes the
3012 * code easier, and CPU migration is not a fast path.
3013 */
3014 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
3015 return;
3016
3017 /*
3018 * First handle the simple case where no cmpxchg is necessary; just
3019 * allow posting non-urgent interrupts.
3020 *
3021 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
3022 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
3023 * expects the VCPU to be on the blocked_vcpu_list that matches
3024 * PI.NDST.
3025 */
3026 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
3027 vcpu->cpu == cpu) {
3028 pi_clear_sn(pi_desc);
3029 return;
3030 }
3031
3032 /* The full case. */
3033 do {
3034 old.control = new.control = pi_desc->control;
3035
3036 dest = cpu_physical_id(cpu);
3037
3038 if (x2apic_enabled())
3039 new.ndst = dest;
3040 else
3041 new.ndst = (dest << 8) & 0xFF00;
3042
3043 new.sn = 0;
3044 } while (cmpxchg64(&pi_desc->control, old.control,
3045 new.control) != old.control);
3046 }
3047
decache_tsc_multiplier(struct vcpu_vmx * vmx)3048 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
3049 {
3050 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
3051 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
3052 }
3053
3054 /*
3055 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
3056 * vcpu mutex is already taken.
3057 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3058 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3059 {
3060 struct vcpu_vmx *vmx = to_vmx(vcpu);
3061 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
3062
3063 if (!already_loaded) {
3064 loaded_vmcs_clear(vmx->loaded_vmcs);
3065 local_irq_disable();
3066 crash_disable_local_vmclear(cpu);
3067
3068 /*
3069 * Read loaded_vmcs->cpu should be before fetching
3070 * loaded_vmcs->loaded_vmcss_on_cpu_link.
3071 * See the comments in __loaded_vmcs_clear().
3072 */
3073 smp_rmb();
3074
3075 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
3076 &per_cpu(loaded_vmcss_on_cpu, cpu));
3077 crash_enable_local_vmclear(cpu);
3078 local_irq_enable();
3079 }
3080
3081 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
3082 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
3083 vmcs_load(vmx->loaded_vmcs->vmcs);
3084 indirect_branch_prediction_barrier();
3085 }
3086
3087 if (!already_loaded) {
3088 void *gdt = get_current_gdt_ro();
3089 unsigned long sysenter_esp;
3090
3091 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3092
3093 /*
3094 * Linux uses per-cpu TSS and GDT, so set these when switching
3095 * processors. See 22.2.4.
3096 */
3097 vmcs_writel(HOST_TR_BASE,
3098 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
3099 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
3100
3101 /*
3102 * VM exits change the host TR limit to 0x67 after a VM
3103 * exit. This is okay, since 0x67 covers everything except
3104 * the IO bitmap and have have code to handle the IO bitmap
3105 * being lost after a VM exit.
3106 */
3107 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
3108
3109 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
3110 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
3111
3112 vmx->loaded_vmcs->cpu = cpu;
3113 }
3114
3115 /* Setup TSC multiplier */
3116 if (kvm_has_tsc_control &&
3117 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
3118 decache_tsc_multiplier(vmx);
3119
3120 vmx_vcpu_pi_load(vcpu, cpu);
3121 vmx->host_pkru = read_pkru();
3122 vmx->host_debugctlmsr = get_debugctlmsr();
3123 }
3124
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)3125 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
3126 {
3127 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
3128
3129 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
3130 !irq_remapping_cap(IRQ_POSTING_CAP) ||
3131 !kvm_vcpu_apicv_active(vcpu))
3132 return;
3133
3134 /* Set SN when the vCPU is preempted */
3135 if (vcpu->preempted)
3136 pi_set_sn(pi_desc);
3137 }
3138
vmx_vcpu_put(struct kvm_vcpu * vcpu)3139 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
3140 {
3141 vmx_vcpu_pi_put(vcpu);
3142
3143 vmx_prepare_switch_to_host(to_vmx(vcpu));
3144 }
3145
emulation_required(struct kvm_vcpu * vcpu)3146 static bool emulation_required(struct kvm_vcpu *vcpu)
3147 {
3148 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3149 }
3150
3151 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
3152
3153 /*
3154 * Return the cr0 value that a nested guest would read. This is a combination
3155 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
3156 * its hypervisor (cr0_read_shadow).
3157 */
nested_read_cr0(struct vmcs12 * fields)3158 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
3159 {
3160 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
3161 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
3162 }
nested_read_cr4(struct vmcs12 * fields)3163 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
3164 {
3165 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
3166 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
3167 }
3168
vmx_get_rflags(struct kvm_vcpu * vcpu)3169 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
3170 {
3171 unsigned long rflags, save_rflags;
3172
3173 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
3174 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
3175 rflags = vmcs_readl(GUEST_RFLAGS);
3176 if (to_vmx(vcpu)->rmode.vm86_active) {
3177 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3178 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
3179 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3180 }
3181 to_vmx(vcpu)->rflags = rflags;
3182 }
3183 return to_vmx(vcpu)->rflags;
3184 }
3185
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)3186 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
3187 {
3188 unsigned long old_rflags = vmx_get_rflags(vcpu);
3189
3190 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
3191 to_vmx(vcpu)->rflags = rflags;
3192 if (to_vmx(vcpu)->rmode.vm86_active) {
3193 to_vmx(vcpu)->rmode.save_rflags = rflags;
3194 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3195 }
3196 vmcs_writel(GUEST_RFLAGS, rflags);
3197
3198 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
3199 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
3200 }
3201
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)3202 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
3203 {
3204 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3205 int ret = 0;
3206
3207 if (interruptibility & GUEST_INTR_STATE_STI)
3208 ret |= KVM_X86_SHADOW_INT_STI;
3209 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
3210 ret |= KVM_X86_SHADOW_INT_MOV_SS;
3211
3212 return ret;
3213 }
3214
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)3215 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
3216 {
3217 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3218 u32 interruptibility = interruptibility_old;
3219
3220 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
3221
3222 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
3223 interruptibility |= GUEST_INTR_STATE_MOV_SS;
3224 else if (mask & KVM_X86_SHADOW_INT_STI)
3225 interruptibility |= GUEST_INTR_STATE_STI;
3226
3227 if ((interruptibility != interruptibility_old))
3228 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
3229 }
3230
skip_emulated_instruction(struct kvm_vcpu * vcpu)3231 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
3232 {
3233 unsigned long rip;
3234
3235 rip = kvm_rip_read(vcpu);
3236 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3237 kvm_rip_write(vcpu, rip);
3238
3239 /* skipping an emulated instruction also counts */
3240 vmx_set_interrupt_shadow(vcpu, 0);
3241 }
3242
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3243 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3244 unsigned long exit_qual)
3245 {
3246 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3247 unsigned int nr = vcpu->arch.exception.nr;
3248 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3249
3250 if (vcpu->arch.exception.has_error_code) {
3251 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3252 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3253 }
3254
3255 if (kvm_exception_is_soft(nr))
3256 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3257 else
3258 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3259
3260 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3261 vmx_get_nmi_mask(vcpu))
3262 intr_info |= INTR_INFO_UNBLOCK_NMI;
3263
3264 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3265 }
3266
3267 /*
3268 * KVM wants to inject page-faults which it got to the guest. This function
3269 * checks whether in a nested guest, we need to inject them to L1 or L2.
3270 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)3271 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
3272 {
3273 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3274 unsigned int nr = vcpu->arch.exception.nr;
3275
3276 if (nr == PF_VECTOR) {
3277 if (vcpu->arch.exception.nested_apf) {
3278 *exit_qual = vcpu->arch.apf.nested_apf_token;
3279 return 1;
3280 }
3281 /*
3282 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
3283 * The fix is to add the ancillary datum (CR2 or DR6) to structs
3284 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
3285 * can be written only when inject_pending_event runs. This should be
3286 * conditional on a new capability---if the capability is disabled,
3287 * kvm_multiple_exception would write the ancillary information to
3288 * CR2 or DR6, for backwards ABI-compatibility.
3289 */
3290 if (nested_vmx_is_page_fault_vmexit(vmcs12,
3291 vcpu->arch.exception.error_code)) {
3292 *exit_qual = vcpu->arch.cr2;
3293 return 1;
3294 }
3295 } else {
3296 if (vmcs12->exception_bitmap & (1u << nr)) {
3297 if (nr == DB_VECTOR)
3298 *exit_qual = vcpu->arch.dr6;
3299 else
3300 *exit_qual = 0;
3301 return 1;
3302 }
3303 }
3304
3305 return 0;
3306 }
3307
vmx_clear_hlt(struct kvm_vcpu * vcpu)3308 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
3309 {
3310 /*
3311 * Ensure that we clear the HLT state in the VMCS. We don't need to
3312 * explicitly skip the instruction because if the HLT state is set,
3313 * then the instruction is already executing and RIP has already been
3314 * advanced.
3315 */
3316 if (kvm_hlt_in_guest(vcpu->kvm) &&
3317 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
3318 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3319 }
3320
vmx_queue_exception(struct kvm_vcpu * vcpu)3321 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
3322 {
3323 struct vcpu_vmx *vmx = to_vmx(vcpu);
3324 unsigned nr = vcpu->arch.exception.nr;
3325 bool has_error_code = vcpu->arch.exception.has_error_code;
3326 u32 error_code = vcpu->arch.exception.error_code;
3327 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3328
3329 if (has_error_code) {
3330 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
3331 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3332 }
3333
3334 if (vmx->rmode.vm86_active) {
3335 int inc_eip = 0;
3336 if (kvm_exception_is_soft(nr))
3337 inc_eip = vcpu->arch.event_exit_inst_len;
3338 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
3339 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3340 return;
3341 }
3342
3343 WARN_ON_ONCE(vmx->emulation_required);
3344
3345 if (kvm_exception_is_soft(nr)) {
3346 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3347 vmx->vcpu.arch.event_exit_inst_len);
3348 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3349 } else
3350 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3351
3352 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
3353
3354 vmx_clear_hlt(vcpu);
3355 }
3356
vmx_rdtscp_supported(void)3357 static bool vmx_rdtscp_supported(void)
3358 {
3359 return cpu_has_vmx_rdtscp();
3360 }
3361
vmx_invpcid_supported(void)3362 static bool vmx_invpcid_supported(void)
3363 {
3364 return cpu_has_vmx_invpcid();
3365 }
3366
3367 /*
3368 * Swap MSR entry in host/guest MSR entry array.
3369 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)3370 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
3371 {
3372 struct shared_msr_entry tmp;
3373
3374 tmp = vmx->guest_msrs[to];
3375 vmx->guest_msrs[to] = vmx->guest_msrs[from];
3376 vmx->guest_msrs[from] = tmp;
3377 }
3378
3379 /*
3380 * Set up the vmcs to automatically save and restore system
3381 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
3382 * mode, as fiddling with msrs is very expensive.
3383 */
setup_msrs(struct vcpu_vmx * vmx)3384 static void setup_msrs(struct vcpu_vmx *vmx)
3385 {
3386 int save_nmsrs, index;
3387
3388 save_nmsrs = 0;
3389 #ifdef CONFIG_X86_64
3390 if (is_long_mode(&vmx->vcpu)) {
3391 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
3392 if (index >= 0)
3393 move_msr_up(vmx, index, save_nmsrs++);
3394 index = __find_msr_index(vmx, MSR_LSTAR);
3395 if (index >= 0)
3396 move_msr_up(vmx, index, save_nmsrs++);
3397 index = __find_msr_index(vmx, MSR_CSTAR);
3398 if (index >= 0)
3399 move_msr_up(vmx, index, save_nmsrs++);
3400 index = __find_msr_index(vmx, MSR_TSC_AUX);
3401 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
3402 move_msr_up(vmx, index, save_nmsrs++);
3403 /*
3404 * MSR_STAR is only needed on long mode guests, and only
3405 * if efer.sce is enabled.
3406 */
3407 index = __find_msr_index(vmx, MSR_STAR);
3408 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
3409 move_msr_up(vmx, index, save_nmsrs++);
3410 }
3411 #endif
3412 index = __find_msr_index(vmx, MSR_EFER);
3413 if (index >= 0 && update_transition_efer(vmx, index))
3414 move_msr_up(vmx, index, save_nmsrs++);
3415
3416 vmx->save_nmsrs = save_nmsrs;
3417
3418 if (cpu_has_vmx_msr_bitmap())
3419 vmx_update_msr_bitmap(&vmx->vcpu);
3420 }
3421
vmx_read_l1_tsc_offset(struct kvm_vcpu * vcpu)3422 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
3423 {
3424 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3425
3426 if (is_guest_mode(vcpu) &&
3427 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
3428 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
3429
3430 return vcpu->arch.tsc_offset;
3431 }
3432
3433 /*
3434 * writes 'offset' into guest's timestamp counter offset register
3435 */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)3436 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
3437 {
3438 if (is_guest_mode(vcpu)) {
3439 /*
3440 * We're here if L1 chose not to trap WRMSR to TSC. According
3441 * to the spec, this should set L1's TSC; The offset that L1
3442 * set for L2 remains unchanged, and still needs to be added
3443 * to the newly set TSC to get L2's TSC.
3444 */
3445 struct vmcs12 *vmcs12;
3446 /* recalculate vmcs02.TSC_OFFSET: */
3447 vmcs12 = get_vmcs12(vcpu);
3448 vmcs_write64(TSC_OFFSET, offset +
3449 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
3450 vmcs12->tsc_offset : 0));
3451 } else {
3452 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
3453 vmcs_read64(TSC_OFFSET), offset);
3454 vmcs_write64(TSC_OFFSET, offset);
3455 }
3456 }
3457
3458 /*
3459 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
3460 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
3461 * all guests if the "nested" module option is off, and can also be disabled
3462 * for a single guest by disabling its VMX cpuid bit.
3463 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)3464 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
3465 {
3466 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
3467 }
3468
3469 /*
3470 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
3471 * returned for the various VMX controls MSRs when nested VMX is enabled.
3472 * The same values should also be used to verify that vmcs12 control fields are
3473 * valid during nested entry from L1 to L2.
3474 * Each of these control msrs has a low and high 32-bit half: A low bit is on
3475 * if the corresponding bit in the (32-bit) control field *must* be on, and a
3476 * bit in the high half is on if the corresponding bit in the control field
3477 * may be on. See also vmx_control_verify().
3478 */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,bool apicv)3479 static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
3480 {
3481 if (!nested) {
3482 memset(msrs, 0, sizeof(*msrs));
3483 return;
3484 }
3485
3486 /*
3487 * Note that as a general rule, the high half of the MSRs (bits in
3488 * the control fields which may be 1) should be initialized by the
3489 * intersection of the underlying hardware's MSR (i.e., features which
3490 * can be supported) and the list of features we want to expose -
3491 * because they are known to be properly supported in our code.
3492 * Also, usually, the low half of the MSRs (bits which must be 1) can
3493 * be set to 0, meaning that L1 may turn off any of these bits. The
3494 * reason is that if one of these bits is necessary, it will appear
3495 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
3496 * fields of vmcs01 and vmcs02, will turn these bits off - and
3497 * nested_vmx_exit_reflected() will not pass related exits to L1.
3498 * These rules have exceptions below.
3499 */
3500
3501 /* pin-based controls */
3502 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
3503 msrs->pinbased_ctls_low,
3504 msrs->pinbased_ctls_high);
3505 msrs->pinbased_ctls_low |=
3506 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3507 msrs->pinbased_ctls_high &=
3508 PIN_BASED_EXT_INTR_MASK |
3509 PIN_BASED_NMI_EXITING |
3510 PIN_BASED_VIRTUAL_NMIS |
3511 (apicv ? PIN_BASED_POSTED_INTR : 0);
3512 msrs->pinbased_ctls_high |=
3513 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3514 PIN_BASED_VMX_PREEMPTION_TIMER;
3515
3516 /* exit controls */
3517 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
3518 msrs->exit_ctls_low,
3519 msrs->exit_ctls_high);
3520 msrs->exit_ctls_low =
3521 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3522
3523 msrs->exit_ctls_high &=
3524 #ifdef CONFIG_X86_64
3525 VM_EXIT_HOST_ADDR_SPACE_SIZE |
3526 #endif
3527 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
3528 msrs->exit_ctls_high |=
3529 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
3530 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
3531 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
3532
3533 /* We support free control of debug control saving. */
3534 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
3535
3536 /* entry controls */
3537 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
3538 msrs->entry_ctls_low,
3539 msrs->entry_ctls_high);
3540 msrs->entry_ctls_low =
3541 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3542 msrs->entry_ctls_high &=
3543 #ifdef CONFIG_X86_64
3544 VM_ENTRY_IA32E_MODE |
3545 #endif
3546 VM_ENTRY_LOAD_IA32_PAT;
3547 msrs->entry_ctls_high |=
3548 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
3549
3550 /* We support free control of debug control loading. */
3551 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
3552
3553 /* cpu-based controls */
3554 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
3555 msrs->procbased_ctls_low,
3556 msrs->procbased_ctls_high);
3557 msrs->procbased_ctls_low =
3558 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3559 msrs->procbased_ctls_high &=
3560 CPU_BASED_VIRTUAL_INTR_PENDING |
3561 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
3562 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
3563 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
3564 CPU_BASED_CR3_STORE_EXITING |
3565 #ifdef CONFIG_X86_64
3566 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
3567 #endif
3568 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
3569 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
3570 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
3571 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
3572 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3573 /*
3574 * We can allow some features even when not supported by the
3575 * hardware. For example, L1 can specify an MSR bitmap - and we
3576 * can use it to avoid exits to L1 - even when L0 runs L2
3577 * without MSR bitmaps.
3578 */
3579 msrs->procbased_ctls_high |=
3580 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3581 CPU_BASED_USE_MSR_BITMAPS;
3582
3583 /* We support free control of CR3 access interception. */
3584 msrs->procbased_ctls_low &=
3585 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
3586
3587 /*
3588 * secondary cpu-based controls. Do not include those that
3589 * depend on CPUID bits, they are added later by vmx_cpuid_update.
3590 */
3591 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
3592 msrs->secondary_ctls_low,
3593 msrs->secondary_ctls_high);
3594 msrs->secondary_ctls_low = 0;
3595 msrs->secondary_ctls_high &=
3596 SECONDARY_EXEC_DESC |
3597 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3598 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3599 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3600 SECONDARY_EXEC_WBINVD_EXITING;
3601
3602 /*
3603 * We can emulate "VMCS shadowing," even if the hardware
3604 * doesn't support it.
3605 */
3606 msrs->secondary_ctls_high |=
3607 SECONDARY_EXEC_SHADOW_VMCS;
3608
3609 if (enable_ept) {
3610 /* nested EPT: emulate EPT also to L1 */
3611 msrs->secondary_ctls_high |=
3612 SECONDARY_EXEC_ENABLE_EPT;
3613 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
3614 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
3615 if (cpu_has_vmx_ept_execute_only())
3616 msrs->ept_caps |=
3617 VMX_EPT_EXECUTE_ONLY_BIT;
3618 msrs->ept_caps &= vmx_capability.ept;
3619 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
3620 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
3621 VMX_EPT_1GB_PAGE_BIT;
3622 if (enable_ept_ad_bits) {
3623 msrs->secondary_ctls_high |=
3624 SECONDARY_EXEC_ENABLE_PML;
3625 msrs->ept_caps |= VMX_EPT_AD_BIT;
3626 }
3627 }
3628
3629 if (cpu_has_vmx_vmfunc()) {
3630 msrs->secondary_ctls_high |=
3631 SECONDARY_EXEC_ENABLE_VMFUNC;
3632 /*
3633 * Advertise EPTP switching unconditionally
3634 * since we emulate it
3635 */
3636 if (enable_ept)
3637 msrs->vmfunc_controls =
3638 VMX_VMFUNC_EPTP_SWITCHING;
3639 }
3640
3641 /*
3642 * Old versions of KVM use the single-context version without
3643 * checking for support, so declare that it is supported even
3644 * though it is treated as global context. The alternative is
3645 * not failing the single-context invvpid, and it is worse.
3646 */
3647 if (enable_vpid) {
3648 msrs->secondary_ctls_high |=
3649 SECONDARY_EXEC_ENABLE_VPID;
3650 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
3651 VMX_VPID_EXTENT_SUPPORTED_MASK;
3652 }
3653
3654 if (enable_unrestricted_guest)
3655 msrs->secondary_ctls_high |=
3656 SECONDARY_EXEC_UNRESTRICTED_GUEST;
3657
3658 if (flexpriority_enabled)
3659 msrs->secondary_ctls_high |=
3660 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3661
3662 /* miscellaneous data */
3663 rdmsr(MSR_IA32_VMX_MISC,
3664 msrs->misc_low,
3665 msrs->misc_high);
3666 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
3667 msrs->misc_low |=
3668 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
3669 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
3670 VMX_MISC_ACTIVITY_HLT;
3671 msrs->misc_high = 0;
3672
3673 /*
3674 * This MSR reports some information about VMX support. We
3675 * should return information about the VMX we emulate for the
3676 * guest, and the VMCS structure we give it - not about the
3677 * VMX support of the underlying hardware.
3678 */
3679 msrs->basic =
3680 VMCS12_REVISION |
3681 VMX_BASIC_TRUE_CTLS |
3682 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
3683 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
3684
3685 if (cpu_has_vmx_basic_inout())
3686 msrs->basic |= VMX_BASIC_INOUT;
3687
3688 /*
3689 * These MSRs specify bits which the guest must keep fixed on
3690 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3691 * We picked the standard core2 setting.
3692 */
3693 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3694 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
3695 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
3696 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
3697
3698 /* These MSRs specify bits which the guest must keep fixed off. */
3699 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
3700 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
3701
3702 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
3703 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
3704 }
3705
3706 /*
3707 * if fixed0[i] == 1: val[i] must be 1
3708 * if fixed1[i] == 0: val[i] must be 0
3709 */
fixed_bits_valid(u64 val,u64 fixed0,u64 fixed1)3710 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
3711 {
3712 return ((val & fixed1) | fixed0) == val;
3713 }
3714
vmx_control_verify(u32 control,u32 low,u32 high)3715 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
3716 {
3717 return fixed_bits_valid(control, low, high);
3718 }
3719
vmx_control_msr(u32 low,u32 high)3720 static inline u64 vmx_control_msr(u32 low, u32 high)
3721 {
3722 return low | ((u64)high << 32);
3723 }
3724
is_bitwise_subset(u64 superset,u64 subset,u64 mask)3725 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
3726 {
3727 superset &= mask;
3728 subset &= mask;
3729
3730 return (superset | subset) == superset;
3731 }
3732
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)3733 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
3734 {
3735 const u64 feature_and_reserved =
3736 /* feature (except bit 48; see below) */
3737 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3738 /* reserved */
3739 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
3740 u64 vmx_basic = vmx->nested.msrs.basic;
3741
3742 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
3743 return -EINVAL;
3744
3745 /*
3746 * KVM does not emulate a version of VMX that constrains physical
3747 * addresses of VMX structures (e.g. VMCS) to 32-bits.
3748 */
3749 if (data & BIT_ULL(48))
3750 return -EINVAL;
3751
3752 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
3753 vmx_basic_vmcs_revision_id(data))
3754 return -EINVAL;
3755
3756 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
3757 return -EINVAL;
3758
3759 vmx->nested.msrs.basic = data;
3760 return 0;
3761 }
3762
3763 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)3764 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3765 {
3766 u64 supported;
3767 u32 *lowp, *highp;
3768
3769 switch (msr_index) {
3770 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3771 lowp = &vmx->nested.msrs.pinbased_ctls_low;
3772 highp = &vmx->nested.msrs.pinbased_ctls_high;
3773 break;
3774 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3775 lowp = &vmx->nested.msrs.procbased_ctls_low;
3776 highp = &vmx->nested.msrs.procbased_ctls_high;
3777 break;
3778 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3779 lowp = &vmx->nested.msrs.exit_ctls_low;
3780 highp = &vmx->nested.msrs.exit_ctls_high;
3781 break;
3782 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3783 lowp = &vmx->nested.msrs.entry_ctls_low;
3784 highp = &vmx->nested.msrs.entry_ctls_high;
3785 break;
3786 case MSR_IA32_VMX_PROCBASED_CTLS2:
3787 lowp = &vmx->nested.msrs.secondary_ctls_low;
3788 highp = &vmx->nested.msrs.secondary_ctls_high;
3789 break;
3790 default:
3791 BUG();
3792 }
3793
3794 supported = vmx_control_msr(*lowp, *highp);
3795
3796 /* Check must-be-1 bits are still 1. */
3797 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3798 return -EINVAL;
3799
3800 /* Check must-be-0 bits are still 0. */
3801 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3802 return -EINVAL;
3803
3804 *lowp = data;
3805 *highp = data >> 32;
3806 return 0;
3807 }
3808
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)3809 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3810 {
3811 const u64 feature_and_reserved_bits =
3812 /* feature */
3813 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3814 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3815 /* reserved */
3816 GENMASK_ULL(13, 9) | BIT_ULL(31);
3817 u64 vmx_misc;
3818
3819 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
3820 vmx->nested.msrs.misc_high);
3821
3822 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3823 return -EINVAL;
3824
3825 if ((vmx->nested.msrs.pinbased_ctls_high &
3826 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3827 vmx_misc_preemption_timer_rate(data) !=
3828 vmx_misc_preemption_timer_rate(vmx_misc))
3829 return -EINVAL;
3830
3831 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3832 return -EINVAL;
3833
3834 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3835 return -EINVAL;
3836
3837 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3838 return -EINVAL;
3839
3840 vmx->nested.msrs.misc_low = data;
3841 vmx->nested.msrs.misc_high = data >> 32;
3842
3843 /*
3844 * If L1 has read-only VM-exit information fields, use the
3845 * less permissive vmx_vmwrite_bitmap to specify write
3846 * permissions for the shadow VMCS.
3847 */
3848 if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
3849 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
3850
3851 return 0;
3852 }
3853
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)3854 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3855 {
3856 u64 vmx_ept_vpid_cap;
3857
3858 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
3859 vmx->nested.msrs.vpid_caps);
3860
3861 /* Every bit is either reserved or a feature bit. */
3862 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3863 return -EINVAL;
3864
3865 vmx->nested.msrs.ept_caps = data;
3866 vmx->nested.msrs.vpid_caps = data >> 32;
3867 return 0;
3868 }
3869
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)3870 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3871 {
3872 u64 *msr;
3873
3874 switch (msr_index) {
3875 case MSR_IA32_VMX_CR0_FIXED0:
3876 msr = &vmx->nested.msrs.cr0_fixed0;
3877 break;
3878 case MSR_IA32_VMX_CR4_FIXED0:
3879 msr = &vmx->nested.msrs.cr4_fixed0;
3880 break;
3881 default:
3882 BUG();
3883 }
3884
3885 /*
3886 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3887 * must be 1 in the restored value.
3888 */
3889 if (!is_bitwise_subset(data, *msr, -1ULL))
3890 return -EINVAL;
3891
3892 *msr = data;
3893 return 0;
3894 }
3895
3896 /*
3897 * Called when userspace is restoring VMX MSRs.
3898 *
3899 * Returns 0 on success, non-0 otherwise.
3900 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)3901 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3902 {
3903 struct vcpu_vmx *vmx = to_vmx(vcpu);
3904
3905 /*
3906 * Don't allow changes to the VMX capability MSRs while the vCPU
3907 * is in VMX operation.
3908 */
3909 if (vmx->nested.vmxon)
3910 return -EBUSY;
3911
3912 switch (msr_index) {
3913 case MSR_IA32_VMX_BASIC:
3914 return vmx_restore_vmx_basic(vmx, data);
3915 case MSR_IA32_VMX_PINBASED_CTLS:
3916 case MSR_IA32_VMX_PROCBASED_CTLS:
3917 case MSR_IA32_VMX_EXIT_CTLS:
3918 case MSR_IA32_VMX_ENTRY_CTLS:
3919 /*
3920 * The "non-true" VMX capability MSRs are generated from the
3921 * "true" MSRs, so we do not support restoring them directly.
3922 *
3923 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3924 * should restore the "true" MSRs with the must-be-1 bits
3925 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3926 * DEFAULT SETTINGS".
3927 */
3928 return -EINVAL;
3929 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3930 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3931 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3932 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3933 case MSR_IA32_VMX_PROCBASED_CTLS2:
3934 return vmx_restore_control_msr(vmx, msr_index, data);
3935 case MSR_IA32_VMX_MISC:
3936 return vmx_restore_vmx_misc(vmx, data);
3937 case MSR_IA32_VMX_CR0_FIXED0:
3938 case MSR_IA32_VMX_CR4_FIXED0:
3939 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3940 case MSR_IA32_VMX_CR0_FIXED1:
3941 case MSR_IA32_VMX_CR4_FIXED1:
3942 /*
3943 * These MSRs are generated based on the vCPU's CPUID, so we
3944 * do not support restoring them directly.
3945 */
3946 return -EINVAL;
3947 case MSR_IA32_VMX_EPT_VPID_CAP:
3948 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3949 case MSR_IA32_VMX_VMCS_ENUM:
3950 vmx->nested.msrs.vmcs_enum = data;
3951 return 0;
3952 default:
3953 /*
3954 * The rest of the VMX capability MSRs do not support restore.
3955 */
3956 return -EINVAL;
3957 }
3958 }
3959
3960 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)3961 static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
3962 {
3963 switch (msr_index) {
3964 case MSR_IA32_VMX_BASIC:
3965 *pdata = msrs->basic;
3966 break;
3967 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3968 case MSR_IA32_VMX_PINBASED_CTLS:
3969 *pdata = vmx_control_msr(
3970 msrs->pinbased_ctls_low,
3971 msrs->pinbased_ctls_high);
3972 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3973 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3974 break;
3975 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3976 case MSR_IA32_VMX_PROCBASED_CTLS:
3977 *pdata = vmx_control_msr(
3978 msrs->procbased_ctls_low,
3979 msrs->procbased_ctls_high);
3980 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3981 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3982 break;
3983 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3984 case MSR_IA32_VMX_EXIT_CTLS:
3985 *pdata = vmx_control_msr(
3986 msrs->exit_ctls_low,
3987 msrs->exit_ctls_high);
3988 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3989 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3990 break;
3991 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3992 case MSR_IA32_VMX_ENTRY_CTLS:
3993 *pdata = vmx_control_msr(
3994 msrs->entry_ctls_low,
3995 msrs->entry_ctls_high);
3996 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3997 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3998 break;
3999 case MSR_IA32_VMX_MISC:
4000 *pdata = vmx_control_msr(
4001 msrs->misc_low,
4002 msrs->misc_high);
4003 break;
4004 case MSR_IA32_VMX_CR0_FIXED0:
4005 *pdata = msrs->cr0_fixed0;
4006 break;
4007 case MSR_IA32_VMX_CR0_FIXED1:
4008 *pdata = msrs->cr0_fixed1;
4009 break;
4010 case MSR_IA32_VMX_CR4_FIXED0:
4011 *pdata = msrs->cr4_fixed0;
4012 break;
4013 case MSR_IA32_VMX_CR4_FIXED1:
4014 *pdata = msrs->cr4_fixed1;
4015 break;
4016 case MSR_IA32_VMX_VMCS_ENUM:
4017 *pdata = msrs->vmcs_enum;
4018 break;
4019 case MSR_IA32_VMX_PROCBASED_CTLS2:
4020 *pdata = vmx_control_msr(
4021 msrs->secondary_ctls_low,
4022 msrs->secondary_ctls_high);
4023 break;
4024 case MSR_IA32_VMX_EPT_VPID_CAP:
4025 *pdata = msrs->ept_caps |
4026 ((u64)msrs->vpid_caps << 32);
4027 break;
4028 case MSR_IA32_VMX_VMFUNC:
4029 *pdata = msrs->vmfunc_controls;
4030 break;
4031 default:
4032 return 1;
4033 }
4034
4035 return 0;
4036 }
4037
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)4038 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
4039 uint64_t val)
4040 {
4041 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
4042
4043 return !(val & ~valid_bits);
4044 }
4045
vmx_get_msr_feature(struct kvm_msr_entry * msr)4046 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
4047 {
4048 switch (msr->index) {
4049 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4050 if (!nested)
4051 return 1;
4052 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
4053 default:
4054 return 1;
4055 }
4056
4057 return 0;
4058 }
4059
4060 /*
4061 * Reads an msr value (of 'msr_index') into 'pdata'.
4062 * Returns 0 on success, non-0 otherwise.
4063 * Assumes vcpu_load() was already called.
4064 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4065 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4066 {
4067 struct vcpu_vmx *vmx = to_vmx(vcpu);
4068 struct shared_msr_entry *msr;
4069
4070 switch (msr_info->index) {
4071 #ifdef CONFIG_X86_64
4072 case MSR_FS_BASE:
4073 msr_info->data = vmcs_readl(GUEST_FS_BASE);
4074 break;
4075 case MSR_GS_BASE:
4076 msr_info->data = vmcs_readl(GUEST_GS_BASE);
4077 break;
4078 case MSR_KERNEL_GS_BASE:
4079 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
4080 break;
4081 #endif
4082 case MSR_EFER:
4083 return kvm_get_msr_common(vcpu, msr_info);
4084 case MSR_IA32_SPEC_CTRL:
4085 if (!msr_info->host_initiated &&
4086 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4087 return 1;
4088
4089 msr_info->data = to_vmx(vcpu)->spec_ctrl;
4090 break;
4091 case MSR_IA32_ARCH_CAPABILITIES:
4092 if (!msr_info->host_initiated &&
4093 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4094 return 1;
4095 msr_info->data = to_vmx(vcpu)->arch_capabilities;
4096 break;
4097 case MSR_IA32_SYSENTER_CS:
4098 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
4099 break;
4100 case MSR_IA32_SYSENTER_EIP:
4101 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
4102 break;
4103 case MSR_IA32_SYSENTER_ESP:
4104 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
4105 break;
4106 case MSR_IA32_BNDCFGS:
4107 if (!kvm_mpx_supported() ||
4108 (!msr_info->host_initiated &&
4109 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
4110 return 1;
4111 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
4112 break;
4113 case MSR_IA32_MCG_EXT_CTL:
4114 if (!msr_info->host_initiated &&
4115 !(vmx->msr_ia32_feature_control &
4116 FEATURE_CONTROL_LMCE))
4117 return 1;
4118 msr_info->data = vcpu->arch.mcg_ext_ctl;
4119 break;
4120 case MSR_IA32_FEATURE_CONTROL:
4121 msr_info->data = vmx->msr_ia32_feature_control;
4122 break;
4123 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4124 if (!nested_vmx_allowed(vcpu))
4125 return 1;
4126 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
4127 &msr_info->data);
4128 case MSR_IA32_XSS:
4129 if (!vmx_xsaves_supported())
4130 return 1;
4131 msr_info->data = vcpu->arch.ia32_xss;
4132 break;
4133 case MSR_TSC_AUX:
4134 if (!msr_info->host_initiated &&
4135 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4136 return 1;
4137 /* Otherwise falls through */
4138 default:
4139 msr = find_msr_entry(vmx, msr_info->index);
4140 if (msr) {
4141 msr_info->data = msr->data;
4142 break;
4143 }
4144 return kvm_get_msr_common(vcpu, msr_info);
4145 }
4146
4147 return 0;
4148 }
4149
4150 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
4151
4152 /*
4153 * Writes msr value into into the appropriate "register".
4154 * Returns 0 on success, non-0 otherwise.
4155 * Assumes vcpu_load() was already called.
4156 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4157 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4158 {
4159 struct vcpu_vmx *vmx = to_vmx(vcpu);
4160 struct shared_msr_entry *msr;
4161 int ret = 0;
4162 u32 msr_index = msr_info->index;
4163 u64 data = msr_info->data;
4164
4165 switch (msr_index) {
4166 case MSR_EFER:
4167 ret = kvm_set_msr_common(vcpu, msr_info);
4168 break;
4169 #ifdef CONFIG_X86_64
4170 case MSR_FS_BASE:
4171 vmx_segment_cache_clear(vmx);
4172 vmcs_writel(GUEST_FS_BASE, data);
4173 break;
4174 case MSR_GS_BASE:
4175 vmx_segment_cache_clear(vmx);
4176 vmcs_writel(GUEST_GS_BASE, data);
4177 break;
4178 case MSR_KERNEL_GS_BASE:
4179 vmx_write_guest_kernel_gs_base(vmx, data);
4180 break;
4181 #endif
4182 case MSR_IA32_SYSENTER_CS:
4183 vmcs_write32(GUEST_SYSENTER_CS, data);
4184 break;
4185 case MSR_IA32_SYSENTER_EIP:
4186 vmcs_writel(GUEST_SYSENTER_EIP, data);
4187 break;
4188 case MSR_IA32_SYSENTER_ESP:
4189 vmcs_writel(GUEST_SYSENTER_ESP, data);
4190 break;
4191 case MSR_IA32_BNDCFGS:
4192 if (!kvm_mpx_supported() ||
4193 (!msr_info->host_initiated &&
4194 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
4195 return 1;
4196 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4197 (data & MSR_IA32_BNDCFGS_RSVD))
4198 return 1;
4199 vmcs_write64(GUEST_BNDCFGS, data);
4200 break;
4201 case MSR_IA32_SPEC_CTRL:
4202 if (!msr_info->host_initiated &&
4203 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4204 return 1;
4205
4206 /* The STIBP bit doesn't fault even if it's not advertised */
4207 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4208 return 1;
4209
4210 vmx->spec_ctrl = data;
4211
4212 if (!data)
4213 break;
4214
4215 /*
4216 * For non-nested:
4217 * When it's written (to non-zero) for the first time, pass
4218 * it through.
4219 *
4220 * For nested:
4221 * The handling of the MSR bitmap for L2 guests is done in
4222 * nested_vmx_merge_msr_bitmap. We should not touch the
4223 * vmcs02.msr_bitmap here since it gets completely overwritten
4224 * in the merging. We update the vmcs01 here for L1 as well
4225 * since it will end up touching the MSR anyway now.
4226 */
4227 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
4228 MSR_IA32_SPEC_CTRL,
4229 MSR_TYPE_RW);
4230 break;
4231 case MSR_IA32_PRED_CMD:
4232 if (!msr_info->host_initiated &&
4233 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4234 return 1;
4235
4236 if (data & ~PRED_CMD_IBPB)
4237 return 1;
4238
4239 if (!data)
4240 break;
4241
4242 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4243
4244 /*
4245 * For non-nested:
4246 * When it's written (to non-zero) for the first time, pass
4247 * it through.
4248 *
4249 * For nested:
4250 * The handling of the MSR bitmap for L2 guests is done in
4251 * nested_vmx_merge_msr_bitmap. We should not touch the
4252 * vmcs02.msr_bitmap here since it gets completely overwritten
4253 * in the merging.
4254 */
4255 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
4256 MSR_TYPE_W);
4257 break;
4258 case MSR_IA32_ARCH_CAPABILITIES:
4259 if (!msr_info->host_initiated)
4260 return 1;
4261 vmx->arch_capabilities = data;
4262 break;
4263 case MSR_IA32_CR_PAT:
4264 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4265 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4266 return 1;
4267 vmcs_write64(GUEST_IA32_PAT, data);
4268 vcpu->arch.pat = data;
4269 break;
4270 }
4271 ret = kvm_set_msr_common(vcpu, msr_info);
4272 break;
4273 case MSR_IA32_TSC_ADJUST:
4274 ret = kvm_set_msr_common(vcpu, msr_info);
4275 break;
4276 case MSR_IA32_MCG_EXT_CTL:
4277 if ((!msr_info->host_initiated &&
4278 !(to_vmx(vcpu)->msr_ia32_feature_control &
4279 FEATURE_CONTROL_LMCE)) ||
4280 (data & ~MCG_EXT_CTL_LMCE_EN))
4281 return 1;
4282 vcpu->arch.mcg_ext_ctl = data;
4283 break;
4284 case MSR_IA32_FEATURE_CONTROL:
4285 if (!vmx_feature_control_msr_valid(vcpu, data) ||
4286 (to_vmx(vcpu)->msr_ia32_feature_control &
4287 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
4288 return 1;
4289 vmx->msr_ia32_feature_control = data;
4290 if (msr_info->host_initiated && data == 0)
4291 vmx_leave_nested(vcpu);
4292 break;
4293 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4294 if (!msr_info->host_initiated)
4295 return 1; /* they are read-only */
4296 if (!nested_vmx_allowed(vcpu))
4297 return 1;
4298 return vmx_set_vmx_msr(vcpu, msr_index, data);
4299 case MSR_IA32_XSS:
4300 if (!vmx_xsaves_supported())
4301 return 1;
4302 /*
4303 * The only supported bit as of Skylake is bit 8, but
4304 * it is not supported on KVM.
4305 */
4306 if (data != 0)
4307 return 1;
4308 vcpu->arch.ia32_xss = data;
4309 if (vcpu->arch.ia32_xss != host_xss)
4310 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
4311 vcpu->arch.ia32_xss, host_xss, false);
4312 else
4313 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
4314 break;
4315 case MSR_TSC_AUX:
4316 if (!msr_info->host_initiated &&
4317 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4318 return 1;
4319 /* Check reserved bit, higher 32 bits should be zero */
4320 if ((data >> 32) != 0)
4321 return 1;
4322 /* Otherwise falls through */
4323 default:
4324 msr = find_msr_entry(vmx, msr_index);
4325 if (msr) {
4326 u64 old_msr_data = msr->data;
4327 msr->data = data;
4328 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
4329 preempt_disable();
4330 ret = kvm_set_shared_msr(msr->index, msr->data,
4331 msr->mask);
4332 preempt_enable();
4333 if (ret)
4334 msr->data = old_msr_data;
4335 }
4336 break;
4337 }
4338 ret = kvm_set_msr_common(vcpu, msr_info);
4339 }
4340
4341 return ret;
4342 }
4343
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)4344 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
4345 {
4346 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
4347 switch (reg) {
4348 case VCPU_REGS_RSP:
4349 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
4350 break;
4351 case VCPU_REGS_RIP:
4352 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
4353 break;
4354 case VCPU_EXREG_PDPTR:
4355 if (enable_ept)
4356 ept_save_pdptrs(vcpu);
4357 break;
4358 default:
4359 break;
4360 }
4361 }
4362
cpu_has_kvm_support(void)4363 static __init int cpu_has_kvm_support(void)
4364 {
4365 return cpu_has_vmx();
4366 }
4367
vmx_disabled_by_bios(void)4368 static __init int vmx_disabled_by_bios(void)
4369 {
4370 u64 msr;
4371
4372 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
4373 if (msr & FEATURE_CONTROL_LOCKED) {
4374 /* launched w/ TXT and VMX disabled */
4375 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
4376 && tboot_enabled())
4377 return 1;
4378 /* launched w/o TXT and VMX only enabled w/ TXT */
4379 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
4380 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
4381 && !tboot_enabled()) {
4382 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
4383 "activate TXT before enabling KVM\n");
4384 return 1;
4385 }
4386 /* launched w/o TXT and VMX disabled */
4387 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
4388 && !tboot_enabled())
4389 return 1;
4390 }
4391
4392 return 0;
4393 }
4394
kvm_cpu_vmxon(u64 addr)4395 static void kvm_cpu_vmxon(u64 addr)
4396 {
4397 cr4_set_bits(X86_CR4_VMXE);
4398 intel_pt_handle_vmx(1);
4399
4400 asm volatile (ASM_VMX_VMXON_RAX
4401 : : "a"(&addr), "m"(addr)
4402 : "memory", "cc");
4403 }
4404
hardware_enable(void)4405 static int hardware_enable(void)
4406 {
4407 int cpu = raw_smp_processor_id();
4408 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
4409 u64 old, test_bits;
4410
4411 if (cr4_read_shadow() & X86_CR4_VMXE)
4412 return -EBUSY;
4413
4414 /*
4415 * This can happen if we hot-added a CPU but failed to allocate
4416 * VP assist page for it.
4417 */
4418 if (static_branch_unlikely(&enable_evmcs) &&
4419 !hv_get_vp_assist_page(cpu))
4420 return -EFAULT;
4421
4422 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
4423 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
4424 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
4425
4426 /*
4427 * Now we can enable the vmclear operation in kdump
4428 * since the loaded_vmcss_on_cpu list on this cpu
4429 * has been initialized.
4430 *
4431 * Though the cpu is not in VMX operation now, there
4432 * is no problem to enable the vmclear operation
4433 * for the loaded_vmcss_on_cpu list is empty!
4434 */
4435 crash_enable_local_vmclear(cpu);
4436
4437 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
4438
4439 test_bits = FEATURE_CONTROL_LOCKED;
4440 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4441 if (tboot_enabled())
4442 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
4443
4444 if ((old & test_bits) != test_bits) {
4445 /* enable and lock */
4446 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
4447 }
4448 kvm_cpu_vmxon(phys_addr);
4449 if (enable_ept)
4450 ept_sync_global();
4451
4452 return 0;
4453 }
4454
vmclear_local_loaded_vmcss(void)4455 static void vmclear_local_loaded_vmcss(void)
4456 {
4457 int cpu = raw_smp_processor_id();
4458 struct loaded_vmcs *v, *n;
4459
4460 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
4461 loaded_vmcss_on_cpu_link)
4462 __loaded_vmcs_clear(v);
4463 }
4464
4465
4466 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
4467 * tricks.
4468 */
kvm_cpu_vmxoff(void)4469 static void kvm_cpu_vmxoff(void)
4470 {
4471 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
4472
4473 intel_pt_handle_vmx(0);
4474 cr4_clear_bits(X86_CR4_VMXE);
4475 }
4476
hardware_disable(void)4477 static void hardware_disable(void)
4478 {
4479 vmclear_local_loaded_vmcss();
4480 kvm_cpu_vmxoff();
4481 }
4482
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)4483 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
4484 u32 msr, u32 *result)
4485 {
4486 u32 vmx_msr_low, vmx_msr_high;
4487 u32 ctl = ctl_min | ctl_opt;
4488
4489 rdmsr(msr, vmx_msr_low, vmx_msr_high);
4490
4491 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
4492 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
4493
4494 /* Ensure minimum (required) set of control bits are supported. */
4495 if (ctl_min & ~ctl)
4496 return -EIO;
4497
4498 *result = ctl;
4499 return 0;
4500 }
4501
allow_1_setting(u32 msr,u32 ctl)4502 static __init bool allow_1_setting(u32 msr, u32 ctl)
4503 {
4504 u32 vmx_msr_low, vmx_msr_high;
4505
4506 rdmsr(msr, vmx_msr_low, vmx_msr_high);
4507 return vmx_msr_high & ctl;
4508 }
4509
setup_vmcs_config(struct vmcs_config * vmcs_conf)4510 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
4511 {
4512 u32 vmx_msr_low, vmx_msr_high;
4513 u32 min, opt, min2, opt2;
4514 u32 _pin_based_exec_control = 0;
4515 u32 _cpu_based_exec_control = 0;
4516 u32 _cpu_based_2nd_exec_control = 0;
4517 u32 _vmexit_control = 0;
4518 u32 _vmentry_control = 0;
4519
4520 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
4521 min = CPU_BASED_HLT_EXITING |
4522 #ifdef CONFIG_X86_64
4523 CPU_BASED_CR8_LOAD_EXITING |
4524 CPU_BASED_CR8_STORE_EXITING |
4525 #endif
4526 CPU_BASED_CR3_LOAD_EXITING |
4527 CPU_BASED_CR3_STORE_EXITING |
4528 CPU_BASED_UNCOND_IO_EXITING |
4529 CPU_BASED_MOV_DR_EXITING |
4530 CPU_BASED_USE_TSC_OFFSETING |
4531 CPU_BASED_MWAIT_EXITING |
4532 CPU_BASED_MONITOR_EXITING |
4533 CPU_BASED_INVLPG_EXITING |
4534 CPU_BASED_RDPMC_EXITING;
4535
4536 opt = CPU_BASED_TPR_SHADOW |
4537 CPU_BASED_USE_MSR_BITMAPS |
4538 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
4539 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
4540 &_cpu_based_exec_control) < 0)
4541 return -EIO;
4542 #ifdef CONFIG_X86_64
4543 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4544 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
4545 ~CPU_BASED_CR8_STORE_EXITING;
4546 #endif
4547 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
4548 min2 = 0;
4549 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
4550 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4551 SECONDARY_EXEC_WBINVD_EXITING |
4552 SECONDARY_EXEC_ENABLE_VPID |
4553 SECONDARY_EXEC_ENABLE_EPT |
4554 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4555 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
4556 SECONDARY_EXEC_DESC |
4557 SECONDARY_EXEC_RDTSCP |
4558 SECONDARY_EXEC_ENABLE_INVPCID |
4559 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4560 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
4561 SECONDARY_EXEC_SHADOW_VMCS |
4562 SECONDARY_EXEC_XSAVES |
4563 SECONDARY_EXEC_RDSEED_EXITING |
4564 SECONDARY_EXEC_RDRAND_EXITING |
4565 SECONDARY_EXEC_ENABLE_PML |
4566 SECONDARY_EXEC_TSC_SCALING |
4567 SECONDARY_EXEC_ENABLE_VMFUNC |
4568 SECONDARY_EXEC_ENCLS_EXITING;
4569 if (adjust_vmx_controls(min2, opt2,
4570 MSR_IA32_VMX_PROCBASED_CTLS2,
4571 &_cpu_based_2nd_exec_control) < 0)
4572 return -EIO;
4573 }
4574 #ifndef CONFIG_X86_64
4575 if (!(_cpu_based_2nd_exec_control &
4576 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
4577 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
4578 #endif
4579
4580 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4581 _cpu_based_2nd_exec_control &= ~(
4582 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4583 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4584 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4585
4586 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
4587 &vmx_capability.ept, &vmx_capability.vpid);
4588
4589 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
4590 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
4591 enabled */
4592 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4593 CPU_BASED_CR3_STORE_EXITING |
4594 CPU_BASED_INVLPG_EXITING);
4595 } else if (vmx_capability.ept) {
4596 vmx_capability.ept = 0;
4597 pr_warn_once("EPT CAP should not exist if not support "
4598 "1-setting enable EPT VM-execution control\n");
4599 }
4600 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
4601 vmx_capability.vpid) {
4602 vmx_capability.vpid = 0;
4603 pr_warn_once("VPID CAP should not exist if not support "
4604 "1-setting enable VPID VM-execution control\n");
4605 }
4606
4607 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
4608 #ifdef CONFIG_X86_64
4609 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
4610 #endif
4611 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
4612 VM_EXIT_CLEAR_BNDCFGS;
4613 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
4614 &_vmexit_control) < 0)
4615 return -EIO;
4616
4617 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
4618 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
4619 PIN_BASED_VMX_PREEMPTION_TIMER;
4620 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
4621 &_pin_based_exec_control) < 0)
4622 return -EIO;
4623
4624 if (cpu_has_broken_vmx_preemption_timer())
4625 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4626 if (!(_cpu_based_2nd_exec_control &
4627 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
4628 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
4629
4630 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
4631 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
4632 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
4633 &_vmentry_control) < 0)
4634 return -EIO;
4635
4636 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
4637
4638 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4639 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
4640 return -EIO;
4641
4642 #ifdef CONFIG_X86_64
4643 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4644 if (vmx_msr_high & (1u<<16))
4645 return -EIO;
4646 #endif
4647
4648 /* Require Write-Back (WB) memory type for VMCS accesses. */
4649 if (((vmx_msr_high >> 18) & 15) != 6)
4650 return -EIO;
4651
4652 vmcs_conf->size = vmx_msr_high & 0x1fff;
4653 vmcs_conf->order = get_order(vmcs_conf->size);
4654 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
4655
4656 vmcs_conf->revision_id = vmx_msr_low;
4657
4658 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
4659 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
4660 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
4661 vmcs_conf->vmexit_ctrl = _vmexit_control;
4662 vmcs_conf->vmentry_ctrl = _vmentry_control;
4663
4664 if (static_branch_unlikely(&enable_evmcs))
4665 evmcs_sanitize_exec_ctrls(vmcs_conf);
4666
4667 cpu_has_load_ia32_efer =
4668 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4669 VM_ENTRY_LOAD_IA32_EFER)
4670 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4671 VM_EXIT_LOAD_IA32_EFER);
4672
4673 cpu_has_load_perf_global_ctrl =
4674 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4675 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
4676 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4677 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
4678
4679 /*
4680 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
4681 * but due to errata below it can't be used. Workaround is to use
4682 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4683 *
4684 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4685 *
4686 * AAK155 (model 26)
4687 * AAP115 (model 30)
4688 * AAT100 (model 37)
4689 * BC86,AAY89,BD102 (model 44)
4690 * BA97 (model 46)
4691 *
4692 */
4693 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
4694 switch (boot_cpu_data.x86_model) {
4695 case 26:
4696 case 30:
4697 case 37:
4698 case 44:
4699 case 46:
4700 cpu_has_load_perf_global_ctrl = false;
4701 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4702 "does not work properly. Using workaround\n");
4703 break;
4704 default:
4705 break;
4706 }
4707 }
4708
4709 if (boot_cpu_has(X86_FEATURE_XSAVES))
4710 rdmsrl(MSR_IA32_XSS, host_xss);
4711
4712 return 0;
4713 }
4714
alloc_vmcs_cpu(bool shadow,int cpu)4715 static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
4716 {
4717 int node = cpu_to_node(cpu);
4718 struct page *pages;
4719 struct vmcs *vmcs;
4720
4721 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
4722 if (!pages)
4723 return NULL;
4724 vmcs = page_address(pages);
4725 memset(vmcs, 0, vmcs_config.size);
4726
4727 /* KVM supports Enlightened VMCS v1 only */
4728 if (static_branch_unlikely(&enable_evmcs))
4729 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
4730 else
4731 vmcs->hdr.revision_id = vmcs_config.revision_id;
4732
4733 if (shadow)
4734 vmcs->hdr.shadow_vmcs = 1;
4735 return vmcs;
4736 }
4737
free_vmcs(struct vmcs * vmcs)4738 static void free_vmcs(struct vmcs *vmcs)
4739 {
4740 free_pages((unsigned long)vmcs, vmcs_config.order);
4741 }
4742
4743 /*
4744 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4745 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)4746 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4747 {
4748 if (!loaded_vmcs->vmcs)
4749 return;
4750 loaded_vmcs_clear(loaded_vmcs);
4751 free_vmcs(loaded_vmcs->vmcs);
4752 loaded_vmcs->vmcs = NULL;
4753 if (loaded_vmcs->msr_bitmap)
4754 free_page((unsigned long)loaded_vmcs->msr_bitmap);
4755 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
4756 }
4757
alloc_vmcs(bool shadow)4758 static struct vmcs *alloc_vmcs(bool shadow)
4759 {
4760 return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
4761 }
4762
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)4763 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4764 {
4765 loaded_vmcs->vmcs = alloc_vmcs(false);
4766 if (!loaded_vmcs->vmcs)
4767 return -ENOMEM;
4768
4769 loaded_vmcs->shadow_vmcs = NULL;
4770 loaded_vmcs_init(loaded_vmcs);
4771
4772 if (cpu_has_vmx_msr_bitmap()) {
4773 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
4774 if (!loaded_vmcs->msr_bitmap)
4775 goto out_vmcs;
4776 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
4777
4778 if (IS_ENABLED(CONFIG_HYPERV) &&
4779 static_branch_unlikely(&enable_evmcs) &&
4780 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
4781 struct hv_enlightened_vmcs *evmcs =
4782 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
4783
4784 evmcs->hv_enlightenments_control.msr_bitmap = 1;
4785 }
4786 }
4787
4788 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
4789
4790 return 0;
4791
4792 out_vmcs:
4793 free_loaded_vmcs(loaded_vmcs);
4794 return -ENOMEM;
4795 }
4796
free_kvm_area(void)4797 static void free_kvm_area(void)
4798 {
4799 int cpu;
4800
4801 for_each_possible_cpu(cpu) {
4802 free_vmcs(per_cpu(vmxarea, cpu));
4803 per_cpu(vmxarea, cpu) = NULL;
4804 }
4805 }
4806
4807 enum vmcs_field_width {
4808 VMCS_FIELD_WIDTH_U16 = 0,
4809 VMCS_FIELD_WIDTH_U64 = 1,
4810 VMCS_FIELD_WIDTH_U32 = 2,
4811 VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
4812 };
4813
vmcs_field_width(unsigned long field)4814 static inline int vmcs_field_width(unsigned long field)
4815 {
4816 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
4817 return VMCS_FIELD_WIDTH_U32;
4818 return (field >> 13) & 0x3 ;
4819 }
4820
vmcs_field_readonly(unsigned long field)4821 static inline int vmcs_field_readonly(unsigned long field)
4822 {
4823 return (((field >> 10) & 0x3) == 1);
4824 }
4825
init_vmcs_shadow_fields(void)4826 static void init_vmcs_shadow_fields(void)
4827 {
4828 int i, j;
4829
4830 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
4831 u16 field = shadow_read_only_fields[i];
4832 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
4833 (i + 1 == max_shadow_read_only_fields ||
4834 shadow_read_only_fields[i + 1] != field + 1))
4835 pr_err("Missing field from shadow_read_only_field %x\n",
4836 field + 1);
4837
4838 clear_bit(field, vmx_vmread_bitmap);
4839 #ifdef CONFIG_X86_64
4840 if (field & 1)
4841 continue;
4842 #endif
4843 if (j < i)
4844 shadow_read_only_fields[j] = field;
4845 j++;
4846 }
4847 max_shadow_read_only_fields = j;
4848
4849 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
4850 u16 field = shadow_read_write_fields[i];
4851 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
4852 (i + 1 == max_shadow_read_write_fields ||
4853 shadow_read_write_fields[i + 1] != field + 1))
4854 pr_err("Missing field from shadow_read_write_field %x\n",
4855 field + 1);
4856
4857 /*
4858 * PML and the preemption timer can be emulated, but the
4859 * processor cannot vmwrite to fields that don't exist
4860 * on bare metal.
4861 */
4862 switch (field) {
4863 case GUEST_PML_INDEX:
4864 if (!cpu_has_vmx_pml())
4865 continue;
4866 break;
4867 case VMX_PREEMPTION_TIMER_VALUE:
4868 if (!cpu_has_vmx_preemption_timer())
4869 continue;
4870 break;
4871 case GUEST_INTR_STATUS:
4872 if (!cpu_has_vmx_apicv())
4873 continue;
4874 break;
4875 default:
4876 break;
4877 }
4878
4879 clear_bit(field, vmx_vmwrite_bitmap);
4880 clear_bit(field, vmx_vmread_bitmap);
4881 #ifdef CONFIG_X86_64
4882 if (field & 1)
4883 continue;
4884 #endif
4885 if (j < i)
4886 shadow_read_write_fields[j] = field;
4887 j++;
4888 }
4889 max_shadow_read_write_fields = j;
4890 }
4891
alloc_kvm_area(void)4892 static __init int alloc_kvm_area(void)
4893 {
4894 int cpu;
4895
4896 for_each_possible_cpu(cpu) {
4897 struct vmcs *vmcs;
4898
4899 vmcs = alloc_vmcs_cpu(false, cpu);
4900 if (!vmcs) {
4901 free_kvm_area();
4902 return -ENOMEM;
4903 }
4904
4905 /*
4906 * When eVMCS is enabled, alloc_vmcs_cpu() sets
4907 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
4908 * revision_id reported by MSR_IA32_VMX_BASIC.
4909 *
4910 * However, even though not explictly documented by
4911 * TLFS, VMXArea passed as VMXON argument should
4912 * still be marked with revision_id reported by
4913 * physical CPU.
4914 */
4915 if (static_branch_unlikely(&enable_evmcs))
4916 vmcs->hdr.revision_id = vmcs_config.revision_id;
4917
4918 per_cpu(vmxarea, cpu) = vmcs;
4919 }
4920 return 0;
4921 }
4922
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)4923 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
4924 struct kvm_segment *save)
4925 {
4926 if (!emulate_invalid_guest_state) {
4927 /*
4928 * CS and SS RPL should be equal during guest entry according
4929 * to VMX spec, but in reality it is not always so. Since vcpu
4930 * is in the middle of the transition from real mode to
4931 * protected mode it is safe to assume that RPL 0 is a good
4932 * default value.
4933 */
4934 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4935 save->selector &= ~SEGMENT_RPL_MASK;
4936 save->dpl = save->selector & SEGMENT_RPL_MASK;
4937 save->s = 1;
4938 }
4939 vmx_set_segment(vcpu, save, seg);
4940 }
4941
enter_pmode(struct kvm_vcpu * vcpu)4942 static void enter_pmode(struct kvm_vcpu *vcpu)
4943 {
4944 unsigned long flags;
4945 struct vcpu_vmx *vmx = to_vmx(vcpu);
4946
4947 /*
4948 * Update real mode segment cache. It may be not up-to-date if sement
4949 * register was written while vcpu was in a guest mode.
4950 */
4951 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4952 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4953 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4954 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4955 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4956 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4957
4958 vmx->rmode.vm86_active = 0;
4959
4960 vmx_segment_cache_clear(vmx);
4961
4962 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4963
4964 flags = vmcs_readl(GUEST_RFLAGS);
4965 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4966 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
4967 vmcs_writel(GUEST_RFLAGS, flags);
4968
4969 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4970 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4971
4972 update_exception_bitmap(vcpu);
4973
4974 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4975 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4976 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4977 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4978 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4979 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4980 }
4981
fix_rmode_seg(int seg,struct kvm_segment * save)4982 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4983 {
4984 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4985 struct kvm_segment var = *save;
4986
4987 var.dpl = 0x3;
4988 if (seg == VCPU_SREG_CS)
4989 var.type = 0x3;
4990
4991 if (!emulate_invalid_guest_state) {
4992 var.selector = var.base >> 4;
4993 var.base = var.base & 0xffff0;
4994 var.limit = 0xffff;
4995 var.g = 0;
4996 var.db = 0;
4997 var.present = 1;
4998 var.s = 1;
4999 var.l = 0;
5000 var.unusable = 0;
5001 var.type = 0x3;
5002 var.avl = 0;
5003 if (save->base & 0xf)
5004 printk_once(KERN_WARNING "kvm: segment base is not "
5005 "paragraph aligned when entering "
5006 "protected mode (seg=%d)", seg);
5007 }
5008
5009 vmcs_write16(sf->selector, var.selector);
5010 vmcs_writel(sf->base, var.base);
5011 vmcs_write32(sf->limit, var.limit);
5012 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
5013 }
5014
enter_rmode(struct kvm_vcpu * vcpu)5015 static void enter_rmode(struct kvm_vcpu *vcpu)
5016 {
5017 unsigned long flags;
5018 struct vcpu_vmx *vmx = to_vmx(vcpu);
5019 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
5020
5021 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
5022 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
5023 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
5024 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
5025 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
5026 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
5027 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
5028
5029 vmx->rmode.vm86_active = 1;
5030
5031 /*
5032 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
5033 * vcpu. Warn the user that an update is overdue.
5034 */
5035 if (!kvm_vmx->tss_addr)
5036 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
5037 "called before entering vcpu\n");
5038
5039 vmx_segment_cache_clear(vmx);
5040
5041 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
5042 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
5043 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5044
5045 flags = vmcs_readl(GUEST_RFLAGS);
5046 vmx->rmode.save_rflags = flags;
5047
5048 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
5049
5050 vmcs_writel(GUEST_RFLAGS, flags);
5051 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
5052 update_exception_bitmap(vcpu);
5053
5054 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
5055 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
5056 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
5057 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
5058 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
5059 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
5060
5061 kvm_mmu_reset_context(vcpu);
5062 }
5063
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)5064 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
5065 {
5066 struct vcpu_vmx *vmx = to_vmx(vcpu);
5067 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
5068
5069 if (!msr)
5070 return;
5071
5072 vcpu->arch.efer = efer;
5073 if (efer & EFER_LMA) {
5074 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
5075 msr->data = efer;
5076 } else {
5077 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
5078
5079 msr->data = efer & ~EFER_LME;
5080 }
5081 setup_msrs(vmx);
5082 }
5083
5084 #ifdef CONFIG_X86_64
5085
enter_lmode(struct kvm_vcpu * vcpu)5086 static void enter_lmode(struct kvm_vcpu *vcpu)
5087 {
5088 u32 guest_tr_ar;
5089
5090 vmx_segment_cache_clear(to_vmx(vcpu));
5091
5092 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
5093 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
5094 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
5095 __func__);
5096 vmcs_write32(GUEST_TR_AR_BYTES,
5097 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
5098 | VMX_AR_TYPE_BUSY_64_TSS);
5099 }
5100 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
5101 }
5102
exit_lmode(struct kvm_vcpu * vcpu)5103 static void exit_lmode(struct kvm_vcpu *vcpu)
5104 {
5105 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
5106 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
5107 }
5108
5109 #endif
5110
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid,bool invalidate_gpa)5111 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
5112 bool invalidate_gpa)
5113 {
5114 if (enable_ept && (invalidate_gpa || !enable_vpid)) {
5115 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
5116 return;
5117 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
5118 } else {
5119 vpid_sync_context(vpid);
5120 }
5121 }
5122
vmx_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5123 static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5124 {
5125 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
5126 }
5127
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)5128 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
5129 {
5130 int vpid = to_vmx(vcpu)->vpid;
5131
5132 if (!vpid_sync_vcpu_addr(vpid, addr))
5133 vpid_sync_context(vpid);
5134
5135 /*
5136 * If VPIDs are not supported or enabled, then the above is a no-op.
5137 * But we don't really need a TLB flush in that case anyway, because
5138 * each VM entry/exit includes an implicit flush when VPID is 0.
5139 */
5140 }
5141
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)5142 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
5143 {
5144 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
5145
5146 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
5147 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
5148 }
5149
vmx_decache_cr3(struct kvm_vcpu * vcpu)5150 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
5151 {
5152 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
5153 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
5154 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5155 }
5156
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)5157 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
5158 {
5159 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
5160
5161 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
5162 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
5163 }
5164
ept_load_pdptrs(struct kvm_vcpu * vcpu)5165 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
5166 {
5167 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5168
5169 if (!test_bit(VCPU_EXREG_PDPTR,
5170 (unsigned long *)&vcpu->arch.regs_dirty))
5171 return;
5172
5173 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
5174 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
5175 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
5176 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
5177 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
5178 }
5179 }
5180
ept_save_pdptrs(struct kvm_vcpu * vcpu)5181 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
5182 {
5183 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5184
5185 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
5186 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
5187 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
5188 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
5189 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
5190 }
5191
5192 __set_bit(VCPU_EXREG_PDPTR,
5193 (unsigned long *)&vcpu->arch.regs_avail);
5194 __set_bit(VCPU_EXREG_PDPTR,
5195 (unsigned long *)&vcpu->arch.regs_dirty);
5196 }
5197
nested_guest_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5198 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5199 {
5200 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
5201 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
5202 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5203
5204 if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
5205 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5206 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5207 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
5208
5209 return fixed_bits_valid(val, fixed0, fixed1);
5210 }
5211
nested_host_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5212 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5213 {
5214 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
5215 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
5216
5217 return fixed_bits_valid(val, fixed0, fixed1);
5218 }
5219
nested_cr4_valid(struct kvm_vcpu * vcpu,unsigned long val)5220 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
5221 {
5222 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
5223 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
5224
5225 return fixed_bits_valid(val, fixed0, fixed1);
5226 }
5227
5228 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
5229 #define nested_guest_cr4_valid nested_cr4_valid
5230 #define nested_host_cr4_valid nested_cr4_valid
5231
5232 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
5233
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)5234 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
5235 unsigned long cr0,
5236 struct kvm_vcpu *vcpu)
5237 {
5238 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
5239 vmx_decache_cr3(vcpu);
5240 if (!(cr0 & X86_CR0_PG)) {
5241 /* From paging/starting to nonpaging */
5242 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
5243 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
5244 (CPU_BASED_CR3_LOAD_EXITING |
5245 CPU_BASED_CR3_STORE_EXITING));
5246 vcpu->arch.cr0 = cr0;
5247 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
5248 } else if (!is_paging(vcpu)) {
5249 /* From nonpaging to paging */
5250 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
5251 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
5252 ~(CPU_BASED_CR3_LOAD_EXITING |
5253 CPU_BASED_CR3_STORE_EXITING));
5254 vcpu->arch.cr0 = cr0;
5255 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
5256 }
5257
5258 if (!(cr0 & X86_CR0_WP))
5259 *hw_cr0 &= ~X86_CR0_WP;
5260 }
5261
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)5262 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
5263 {
5264 struct vcpu_vmx *vmx = to_vmx(vcpu);
5265 unsigned long hw_cr0;
5266
5267 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
5268 if (enable_unrestricted_guest)
5269 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
5270 else {
5271 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
5272
5273 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
5274 enter_pmode(vcpu);
5275
5276 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
5277 enter_rmode(vcpu);
5278 }
5279
5280 #ifdef CONFIG_X86_64
5281 if (vcpu->arch.efer & EFER_LME) {
5282 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
5283 enter_lmode(vcpu);
5284 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
5285 exit_lmode(vcpu);
5286 }
5287 #endif
5288
5289 if (enable_ept && !enable_unrestricted_guest)
5290 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
5291
5292 vmcs_writel(CR0_READ_SHADOW, cr0);
5293 vmcs_writel(GUEST_CR0, hw_cr0);
5294 vcpu->arch.cr0 = cr0;
5295
5296 /* depends on vcpu->arch.cr0 to be set to a new value */
5297 vmx->emulation_required = emulation_required(vcpu);
5298 }
5299
get_ept_level(struct kvm_vcpu * vcpu)5300 static int get_ept_level(struct kvm_vcpu *vcpu)
5301 {
5302 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
5303 return 5;
5304 return 4;
5305 }
5306
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)5307 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
5308 {
5309 u64 eptp = VMX_EPTP_MT_WB;
5310
5311 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
5312
5313 if (enable_ept_ad_bits &&
5314 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
5315 eptp |= VMX_EPTP_AD_ENABLE_BIT;
5316 eptp |= (root_hpa & PAGE_MASK);
5317
5318 return eptp;
5319 }
5320
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)5321 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
5322 {
5323 struct kvm *kvm = vcpu->kvm;
5324 unsigned long guest_cr3;
5325 u64 eptp;
5326
5327 guest_cr3 = cr3;
5328 if (enable_ept) {
5329 eptp = construct_eptp(vcpu, cr3);
5330 vmcs_write64(EPT_POINTER, eptp);
5331
5332 if (kvm_x86_ops->tlb_remote_flush) {
5333 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
5334 to_vmx(vcpu)->ept_pointer = eptp;
5335 to_kvm_vmx(kvm)->ept_pointers_match
5336 = EPT_POINTERS_CHECK;
5337 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
5338 }
5339
5340 if (enable_unrestricted_guest || is_paging(vcpu) ||
5341 is_guest_mode(vcpu))
5342 guest_cr3 = kvm_read_cr3(vcpu);
5343 else
5344 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
5345 ept_load_pdptrs(vcpu);
5346 }
5347
5348 vmcs_writel(GUEST_CR3, guest_cr3);
5349 }
5350
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)5351 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
5352 {
5353 /*
5354 * Pass through host's Machine Check Enable value to hw_cr4, which
5355 * is in force while we are in guest mode. Do not let guests control
5356 * this bit, even if host CR4.MCE == 0.
5357 */
5358 unsigned long hw_cr4;
5359
5360 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
5361 if (enable_unrestricted_guest)
5362 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
5363 else if (to_vmx(vcpu)->rmode.vm86_active)
5364 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
5365 else
5366 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
5367
5368 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
5369 if (cr4 & X86_CR4_UMIP) {
5370 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5371 SECONDARY_EXEC_DESC);
5372 hw_cr4 &= ~X86_CR4_UMIP;
5373 } else if (!is_guest_mode(vcpu) ||
5374 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
5375 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5376 SECONDARY_EXEC_DESC);
5377 }
5378
5379 if (cr4 & X86_CR4_VMXE) {
5380 /*
5381 * To use VMXON (and later other VMX instructions), a guest
5382 * must first be able to turn on cr4.VMXE (see handle_vmon()).
5383 * So basically the check on whether to allow nested VMX
5384 * is here. We operate under the default treatment of SMM,
5385 * so VMX cannot be enabled under SMM.
5386 */
5387 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
5388 return 1;
5389 }
5390
5391 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5392 return 1;
5393
5394 vcpu->arch.cr4 = cr4;
5395
5396 if (!enable_unrestricted_guest) {
5397 if (enable_ept) {
5398 if (!is_paging(vcpu)) {
5399 hw_cr4 &= ~X86_CR4_PAE;
5400 hw_cr4 |= X86_CR4_PSE;
5401 } else if (!(cr4 & X86_CR4_PAE)) {
5402 hw_cr4 &= ~X86_CR4_PAE;
5403 }
5404 }
5405
5406 /*
5407 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
5408 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
5409 * to be manually disabled when guest switches to non-paging
5410 * mode.
5411 *
5412 * If !enable_unrestricted_guest, the CPU is always running
5413 * with CR0.PG=1 and CR4 needs to be modified.
5414 * If enable_unrestricted_guest, the CPU automatically
5415 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
5416 */
5417 if (!is_paging(vcpu))
5418 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
5419 }
5420
5421 vmcs_writel(CR4_READ_SHADOW, cr4);
5422 vmcs_writel(GUEST_CR4, hw_cr4);
5423 return 0;
5424 }
5425
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5426 static void vmx_get_segment(struct kvm_vcpu *vcpu,
5427 struct kvm_segment *var, int seg)
5428 {
5429 struct vcpu_vmx *vmx = to_vmx(vcpu);
5430 u32 ar;
5431
5432 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
5433 *var = vmx->rmode.segs[seg];
5434 if (seg == VCPU_SREG_TR
5435 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
5436 return;
5437 var->base = vmx_read_guest_seg_base(vmx, seg);
5438 var->selector = vmx_read_guest_seg_selector(vmx, seg);
5439 return;
5440 }
5441 var->base = vmx_read_guest_seg_base(vmx, seg);
5442 var->limit = vmx_read_guest_seg_limit(vmx, seg);
5443 var->selector = vmx_read_guest_seg_selector(vmx, seg);
5444 ar = vmx_read_guest_seg_ar(vmx, seg);
5445 var->unusable = (ar >> 16) & 1;
5446 var->type = ar & 15;
5447 var->s = (ar >> 4) & 1;
5448 var->dpl = (ar >> 5) & 3;
5449 /*
5450 * Some userspaces do not preserve unusable property. Since usable
5451 * segment has to be present according to VMX spec we can use present
5452 * property to amend userspace bug by making unusable segment always
5453 * nonpresent. vmx_segment_access_rights() already marks nonpresent
5454 * segment as unusable.
5455 */
5456 var->present = !var->unusable;
5457 var->avl = (ar >> 12) & 1;
5458 var->l = (ar >> 13) & 1;
5459 var->db = (ar >> 14) & 1;
5460 var->g = (ar >> 15) & 1;
5461 }
5462
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)5463 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
5464 {
5465 struct kvm_segment s;
5466
5467 if (to_vmx(vcpu)->rmode.vm86_active) {
5468 vmx_get_segment(vcpu, &s, seg);
5469 return s.base;
5470 }
5471 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
5472 }
5473
vmx_get_cpl(struct kvm_vcpu * vcpu)5474 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
5475 {
5476 struct vcpu_vmx *vmx = to_vmx(vcpu);
5477
5478 if (unlikely(vmx->rmode.vm86_active))
5479 return 0;
5480 else {
5481 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
5482 return VMX_AR_DPL(ar);
5483 }
5484 }
5485
vmx_segment_access_rights(struct kvm_segment * var)5486 static u32 vmx_segment_access_rights(struct kvm_segment *var)
5487 {
5488 u32 ar;
5489
5490 if (var->unusable || !var->present)
5491 ar = 1 << 16;
5492 else {
5493 ar = var->type & 15;
5494 ar |= (var->s & 1) << 4;
5495 ar |= (var->dpl & 3) << 5;
5496 ar |= (var->present & 1) << 7;
5497 ar |= (var->avl & 1) << 12;
5498 ar |= (var->l & 1) << 13;
5499 ar |= (var->db & 1) << 14;
5500 ar |= (var->g & 1) << 15;
5501 }
5502
5503 return ar;
5504 }
5505
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5506 static void vmx_set_segment(struct kvm_vcpu *vcpu,
5507 struct kvm_segment *var, int seg)
5508 {
5509 struct vcpu_vmx *vmx = to_vmx(vcpu);
5510 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5511
5512 vmx_segment_cache_clear(vmx);
5513
5514 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
5515 vmx->rmode.segs[seg] = *var;
5516 if (seg == VCPU_SREG_TR)
5517 vmcs_write16(sf->selector, var->selector);
5518 else if (var->s)
5519 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
5520 goto out;
5521 }
5522
5523 vmcs_writel(sf->base, var->base);
5524 vmcs_write32(sf->limit, var->limit);
5525 vmcs_write16(sf->selector, var->selector);
5526
5527 /*
5528 * Fix the "Accessed" bit in AR field of segment registers for older
5529 * qemu binaries.
5530 * IA32 arch specifies that at the time of processor reset the
5531 * "Accessed" bit in the AR field of segment registers is 1. And qemu
5532 * is setting it to 0 in the userland code. This causes invalid guest
5533 * state vmexit when "unrestricted guest" mode is turned on.
5534 * Fix for this setup issue in cpu_reset is being pushed in the qemu
5535 * tree. Newer qemu binaries with that qemu fix would not need this
5536 * kvm hack.
5537 */
5538 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
5539 var->type |= 0x1; /* Accessed */
5540
5541 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
5542
5543 out:
5544 vmx->emulation_required = emulation_required(vcpu);
5545 }
5546
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)5547 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5548 {
5549 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
5550
5551 *db = (ar >> 14) & 1;
5552 *l = (ar >> 13) & 1;
5553 }
5554
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5555 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5556 {
5557 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
5558 dt->address = vmcs_readl(GUEST_IDTR_BASE);
5559 }
5560
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5561 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5562 {
5563 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
5564 vmcs_writel(GUEST_IDTR_BASE, dt->address);
5565 }
5566
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5567 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5568 {
5569 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
5570 dt->address = vmcs_readl(GUEST_GDTR_BASE);
5571 }
5572
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5573 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5574 {
5575 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
5576 vmcs_writel(GUEST_GDTR_BASE, dt->address);
5577 }
5578
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)5579 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
5580 {
5581 struct kvm_segment var;
5582 u32 ar;
5583
5584 vmx_get_segment(vcpu, &var, seg);
5585 var.dpl = 0x3;
5586 if (seg == VCPU_SREG_CS)
5587 var.type = 0x3;
5588 ar = vmx_segment_access_rights(&var);
5589
5590 if (var.base != (var.selector << 4))
5591 return false;
5592 if (var.limit != 0xffff)
5593 return false;
5594 if (ar != 0xf3)
5595 return false;
5596
5597 return true;
5598 }
5599
code_segment_valid(struct kvm_vcpu * vcpu)5600 static bool code_segment_valid(struct kvm_vcpu *vcpu)
5601 {
5602 struct kvm_segment cs;
5603 unsigned int cs_rpl;
5604
5605 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5606 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
5607
5608 if (cs.unusable)
5609 return false;
5610 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
5611 return false;
5612 if (!cs.s)
5613 return false;
5614 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
5615 if (cs.dpl > cs_rpl)
5616 return false;
5617 } else {
5618 if (cs.dpl != cs_rpl)
5619 return false;
5620 }
5621 if (!cs.present)
5622 return false;
5623
5624 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
5625 return true;
5626 }
5627
stack_segment_valid(struct kvm_vcpu * vcpu)5628 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
5629 {
5630 struct kvm_segment ss;
5631 unsigned int ss_rpl;
5632
5633 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5634 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
5635
5636 if (ss.unusable)
5637 return true;
5638 if (ss.type != 3 && ss.type != 7)
5639 return false;
5640 if (!ss.s)
5641 return false;
5642 if (ss.dpl != ss_rpl) /* DPL != RPL */
5643 return false;
5644 if (!ss.present)
5645 return false;
5646
5647 return true;
5648 }
5649
data_segment_valid(struct kvm_vcpu * vcpu,int seg)5650 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
5651 {
5652 struct kvm_segment var;
5653 unsigned int rpl;
5654
5655 vmx_get_segment(vcpu, &var, seg);
5656 rpl = var.selector & SEGMENT_RPL_MASK;
5657
5658 if (var.unusable)
5659 return true;
5660 if (!var.s)
5661 return false;
5662 if (!var.present)
5663 return false;
5664 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
5665 if (var.dpl < rpl) /* DPL < RPL */
5666 return false;
5667 }
5668
5669 /* TODO: Add other members to kvm_segment_field to allow checking for other access
5670 * rights flags
5671 */
5672 return true;
5673 }
5674
tr_valid(struct kvm_vcpu * vcpu)5675 static bool tr_valid(struct kvm_vcpu *vcpu)
5676 {
5677 struct kvm_segment tr;
5678
5679 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
5680
5681 if (tr.unusable)
5682 return false;
5683 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
5684 return false;
5685 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
5686 return false;
5687 if (!tr.present)
5688 return false;
5689
5690 return true;
5691 }
5692
ldtr_valid(struct kvm_vcpu * vcpu)5693 static bool ldtr_valid(struct kvm_vcpu *vcpu)
5694 {
5695 struct kvm_segment ldtr;
5696
5697 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
5698
5699 if (ldtr.unusable)
5700 return true;
5701 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
5702 return false;
5703 if (ldtr.type != 2)
5704 return false;
5705 if (!ldtr.present)
5706 return false;
5707
5708 return true;
5709 }
5710
cs_ss_rpl_check(struct kvm_vcpu * vcpu)5711 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
5712 {
5713 struct kvm_segment cs, ss;
5714
5715 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5716 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5717
5718 return ((cs.selector & SEGMENT_RPL_MASK) ==
5719 (ss.selector & SEGMENT_RPL_MASK));
5720 }
5721
5722 /*
5723 * Check if guest state is valid. Returns true if valid, false if
5724 * not.
5725 * We assume that registers are always usable
5726 */
guest_state_valid(struct kvm_vcpu * vcpu)5727 static bool guest_state_valid(struct kvm_vcpu *vcpu)
5728 {
5729 if (enable_unrestricted_guest)
5730 return true;
5731
5732 /* real mode guest state checks */
5733 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5734 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
5735 return false;
5736 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
5737 return false;
5738 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
5739 return false;
5740 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
5741 return false;
5742 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
5743 return false;
5744 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
5745 return false;
5746 } else {
5747 /* protected mode guest state checks */
5748 if (!cs_ss_rpl_check(vcpu))
5749 return false;
5750 if (!code_segment_valid(vcpu))
5751 return false;
5752 if (!stack_segment_valid(vcpu))
5753 return false;
5754 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
5755 return false;
5756 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
5757 return false;
5758 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
5759 return false;
5760 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
5761 return false;
5762 if (!tr_valid(vcpu))
5763 return false;
5764 if (!ldtr_valid(vcpu))
5765 return false;
5766 }
5767 /* TODO:
5768 * - Add checks on RIP
5769 * - Add checks on RFLAGS
5770 */
5771
5772 return true;
5773 }
5774
page_address_valid(struct kvm_vcpu * vcpu,gpa_t gpa)5775 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
5776 {
5777 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
5778 }
5779
init_rmode_tss(struct kvm * kvm)5780 static int init_rmode_tss(struct kvm *kvm)
5781 {
5782 gfn_t fn;
5783 u16 data = 0;
5784 int idx, r;
5785
5786 idx = srcu_read_lock(&kvm->srcu);
5787 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
5788 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5789 if (r < 0)
5790 goto out;
5791 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
5792 r = kvm_write_guest_page(kvm, fn++, &data,
5793 TSS_IOPB_BASE_OFFSET, sizeof(u16));
5794 if (r < 0)
5795 goto out;
5796 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
5797 if (r < 0)
5798 goto out;
5799 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5800 if (r < 0)
5801 goto out;
5802 data = ~0;
5803 r = kvm_write_guest_page(kvm, fn, &data,
5804 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
5805 sizeof(u8));
5806 out:
5807 srcu_read_unlock(&kvm->srcu, idx);
5808 return r;
5809 }
5810
init_rmode_identity_map(struct kvm * kvm)5811 static int init_rmode_identity_map(struct kvm *kvm)
5812 {
5813 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
5814 int i, idx, r = 0;
5815 kvm_pfn_t identity_map_pfn;
5816 u32 tmp;
5817
5818 /* Protect kvm_vmx->ept_identity_pagetable_done. */
5819 mutex_lock(&kvm->slots_lock);
5820
5821 if (likely(kvm_vmx->ept_identity_pagetable_done))
5822 goto out2;
5823
5824 if (!kvm_vmx->ept_identity_map_addr)
5825 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
5826 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
5827
5828 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
5829 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
5830 if (r < 0)
5831 goto out2;
5832
5833 idx = srcu_read_lock(&kvm->srcu);
5834 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
5835 if (r < 0)
5836 goto out;
5837 /* Set up identity-mapping pagetable for EPT in real mode */
5838 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
5839 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
5840 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
5841 r = kvm_write_guest_page(kvm, identity_map_pfn,
5842 &tmp, i * sizeof(tmp), sizeof(tmp));
5843 if (r < 0)
5844 goto out;
5845 }
5846 kvm_vmx->ept_identity_pagetable_done = true;
5847
5848 out:
5849 srcu_read_unlock(&kvm->srcu, idx);
5850
5851 out2:
5852 mutex_unlock(&kvm->slots_lock);
5853 return r;
5854 }
5855
seg_setup(int seg)5856 static void seg_setup(int seg)
5857 {
5858 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5859 unsigned int ar;
5860
5861 vmcs_write16(sf->selector, 0);
5862 vmcs_writel(sf->base, 0);
5863 vmcs_write32(sf->limit, 0xffff);
5864 ar = 0x93;
5865 if (seg == VCPU_SREG_CS)
5866 ar |= 0x08; /* code segment */
5867
5868 vmcs_write32(sf->ar_bytes, ar);
5869 }
5870
alloc_apic_access_page(struct kvm * kvm)5871 static int alloc_apic_access_page(struct kvm *kvm)
5872 {
5873 struct page *page;
5874 int r = 0;
5875
5876 mutex_lock(&kvm->slots_lock);
5877 if (kvm->arch.apic_access_page_done)
5878 goto out;
5879 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
5880 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
5881 if (r)
5882 goto out;
5883
5884 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
5885 if (is_error_page(page)) {
5886 r = -EFAULT;
5887 goto out;
5888 }
5889
5890 /*
5891 * Do not pin the page in memory, so that memory hot-unplug
5892 * is able to migrate it.
5893 */
5894 put_page(page);
5895 kvm->arch.apic_access_page_done = true;
5896 out:
5897 mutex_unlock(&kvm->slots_lock);
5898 return r;
5899 }
5900
allocate_vpid(void)5901 static int allocate_vpid(void)
5902 {
5903 int vpid;
5904
5905 if (!enable_vpid)
5906 return 0;
5907 spin_lock(&vmx_vpid_lock);
5908 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
5909 if (vpid < VMX_NR_VPIDS)
5910 __set_bit(vpid, vmx_vpid_bitmap);
5911 else
5912 vpid = 0;
5913 spin_unlock(&vmx_vpid_lock);
5914 return vpid;
5915 }
5916
free_vpid(int vpid)5917 static void free_vpid(int vpid)
5918 {
5919 if (!enable_vpid || vpid == 0)
5920 return;
5921 spin_lock(&vmx_vpid_lock);
5922 __clear_bit(vpid, vmx_vpid_bitmap);
5923 spin_unlock(&vmx_vpid_lock);
5924 }
5925
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)5926 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5927 u32 msr, int type)
5928 {
5929 int f = sizeof(unsigned long);
5930
5931 if (!cpu_has_vmx_msr_bitmap())
5932 return;
5933
5934 if (static_branch_unlikely(&enable_evmcs))
5935 evmcs_touch_msr_bitmap();
5936
5937 /*
5938 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5939 * have the write-low and read-high bitmap offsets the wrong way round.
5940 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5941 */
5942 if (msr <= 0x1fff) {
5943 if (type & MSR_TYPE_R)
5944 /* read-low */
5945 __clear_bit(msr, msr_bitmap + 0x000 / f);
5946
5947 if (type & MSR_TYPE_W)
5948 /* write-low */
5949 __clear_bit(msr, msr_bitmap + 0x800 / f);
5950
5951 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5952 msr &= 0x1fff;
5953 if (type & MSR_TYPE_R)
5954 /* read-high */
5955 __clear_bit(msr, msr_bitmap + 0x400 / f);
5956
5957 if (type & MSR_TYPE_W)
5958 /* write-high */
5959 __clear_bit(msr, msr_bitmap + 0xc00 / f);
5960
5961 }
5962 }
5963
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)5964 static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5965 u32 msr, int type)
5966 {
5967 int f = sizeof(unsigned long);
5968
5969 if (!cpu_has_vmx_msr_bitmap())
5970 return;
5971
5972 if (static_branch_unlikely(&enable_evmcs))
5973 evmcs_touch_msr_bitmap();
5974
5975 /*
5976 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5977 * have the write-low and read-high bitmap offsets the wrong way round.
5978 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5979 */
5980 if (msr <= 0x1fff) {
5981 if (type & MSR_TYPE_R)
5982 /* read-low */
5983 __set_bit(msr, msr_bitmap + 0x000 / f);
5984
5985 if (type & MSR_TYPE_W)
5986 /* write-low */
5987 __set_bit(msr, msr_bitmap + 0x800 / f);
5988
5989 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5990 msr &= 0x1fff;
5991 if (type & MSR_TYPE_R)
5992 /* read-high */
5993 __set_bit(msr, msr_bitmap + 0x400 / f);
5994
5995 if (type & MSR_TYPE_W)
5996 /* write-high */
5997 __set_bit(msr, msr_bitmap + 0xc00 / f);
5998
5999 }
6000 }
6001
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)6002 static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
6003 u32 msr, int type, bool value)
6004 {
6005 if (value)
6006 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
6007 else
6008 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
6009 }
6010
6011 /*
6012 * If a msr is allowed by L0, we should check whether it is allowed by L1.
6013 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
6014 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)6015 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
6016 unsigned long *msr_bitmap_nested,
6017 u32 msr, int type)
6018 {
6019 int f = sizeof(unsigned long);
6020
6021 /*
6022 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
6023 * have the write-low and read-high bitmap offsets the wrong way round.
6024 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
6025 */
6026 if (msr <= 0x1fff) {
6027 if (type & MSR_TYPE_R &&
6028 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
6029 /* read-low */
6030 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
6031
6032 if (type & MSR_TYPE_W &&
6033 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
6034 /* write-low */
6035 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
6036
6037 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
6038 msr &= 0x1fff;
6039 if (type & MSR_TYPE_R &&
6040 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
6041 /* read-high */
6042 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
6043
6044 if (type & MSR_TYPE_W &&
6045 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
6046 /* write-high */
6047 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
6048
6049 }
6050 }
6051
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)6052 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
6053 {
6054 u8 mode = 0;
6055
6056 if (cpu_has_secondary_exec_ctrls() &&
6057 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
6058 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
6059 mode |= MSR_BITMAP_MODE_X2APIC;
6060 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
6061 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
6062 }
6063
6064 return mode;
6065 }
6066
6067 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
6068
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)6069 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
6070 u8 mode)
6071 {
6072 int msr;
6073
6074 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
6075 unsigned word = msr / BITS_PER_LONG;
6076 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
6077 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
6078 }
6079
6080 if (mode & MSR_BITMAP_MODE_X2APIC) {
6081 /*
6082 * TPR reads and writes can be virtualized even if virtual interrupt
6083 * delivery is not in use.
6084 */
6085 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
6086 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
6087 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
6088 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
6089 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
6090 }
6091 }
6092 }
6093
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)6094 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
6095 {
6096 struct vcpu_vmx *vmx = to_vmx(vcpu);
6097 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
6098 u8 mode = vmx_msr_bitmap_mode(vcpu);
6099 u8 changed = mode ^ vmx->msr_bitmap_mode;
6100
6101 if (!changed)
6102 return;
6103
6104 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
6105 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
6106
6107 vmx->msr_bitmap_mode = mode;
6108 }
6109
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)6110 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
6111 {
6112 return enable_apicv;
6113 }
6114
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)6115 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
6116 {
6117 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6118 gfn_t gfn;
6119
6120 /*
6121 * Don't need to mark the APIC access page dirty; it is never
6122 * written to by the CPU during APIC virtualization.
6123 */
6124
6125 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
6126 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
6127 kvm_vcpu_mark_page_dirty(vcpu, gfn);
6128 }
6129
6130 if (nested_cpu_has_posted_intr(vmcs12)) {
6131 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
6132 kvm_vcpu_mark_page_dirty(vcpu, gfn);
6133 }
6134 }
6135
6136
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)6137 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
6138 {
6139 struct vcpu_vmx *vmx = to_vmx(vcpu);
6140 int max_irr;
6141 void *vapic_page;
6142 u16 status;
6143
6144 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
6145 return;
6146
6147 vmx->nested.pi_pending = false;
6148 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
6149 return;
6150
6151 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
6152 if (max_irr != 256) {
6153 vapic_page = kmap(vmx->nested.virtual_apic_page);
6154 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
6155 vapic_page, &max_irr);
6156 kunmap(vmx->nested.virtual_apic_page);
6157
6158 status = vmcs_read16(GUEST_INTR_STATUS);
6159 if ((u8)max_irr > ((u8)status & 0xff)) {
6160 status &= ~0xff;
6161 status |= (u8)max_irr;
6162 vmcs_write16(GUEST_INTR_STATUS, status);
6163 }
6164 }
6165
6166 nested_mark_vmcs12_pages_dirty(vcpu);
6167 }
6168
vmx_get_rvi(void)6169 static u8 vmx_get_rvi(void)
6170 {
6171 return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
6172 }
6173
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)6174 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
6175 {
6176 struct vcpu_vmx *vmx = to_vmx(vcpu);
6177 void *vapic_page;
6178 u32 vppr;
6179 int rvi;
6180
6181 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
6182 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
6183 WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
6184 return false;
6185
6186 rvi = vmx_get_rvi();
6187
6188 vapic_page = kmap(vmx->nested.virtual_apic_page);
6189 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
6190 kunmap(vmx->nested.virtual_apic_page);
6191
6192 return ((rvi & 0xf0) > (vppr & 0xf0));
6193 }
6194
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)6195 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
6196 bool nested)
6197 {
6198 #ifdef CONFIG_SMP
6199 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
6200
6201 if (vcpu->mode == IN_GUEST_MODE) {
6202 /*
6203 * The vector of interrupt to be delivered to vcpu had
6204 * been set in PIR before this function.
6205 *
6206 * Following cases will be reached in this block, and
6207 * we always send a notification event in all cases as
6208 * explained below.
6209 *
6210 * Case 1: vcpu keeps in non-root mode. Sending a
6211 * notification event posts the interrupt to vcpu.
6212 *
6213 * Case 2: vcpu exits to root mode and is still
6214 * runnable. PIR will be synced to vIRR before the
6215 * next vcpu entry. Sending a notification event in
6216 * this case has no effect, as vcpu is not in root
6217 * mode.
6218 *
6219 * Case 3: vcpu exits to root mode and is blocked.
6220 * vcpu_block() has already synced PIR to vIRR and
6221 * never blocks vcpu if vIRR is not cleared. Therefore,
6222 * a blocked vcpu here does not wait for any requested
6223 * interrupts in PIR, and sending a notification event
6224 * which has no effect is safe here.
6225 */
6226
6227 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
6228 return true;
6229 }
6230 #endif
6231 return false;
6232 }
6233
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)6234 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
6235 int vector)
6236 {
6237 struct vcpu_vmx *vmx = to_vmx(vcpu);
6238
6239 if (is_guest_mode(vcpu) &&
6240 vector == vmx->nested.posted_intr_nv) {
6241 /*
6242 * If a posted intr is not recognized by hardware,
6243 * we will accomplish it in the next vmentry.
6244 */
6245 vmx->nested.pi_pending = true;
6246 kvm_make_request(KVM_REQ_EVENT, vcpu);
6247 /* the PIR and ON have been set by L1. */
6248 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
6249 kvm_vcpu_kick(vcpu);
6250 return 0;
6251 }
6252 return -1;
6253 }
6254 /*
6255 * Send interrupt to vcpu via posted interrupt way.
6256 * 1. If target vcpu is running(non-root mode), send posted interrupt
6257 * notification to vcpu and hardware will sync PIR to vIRR atomically.
6258 * 2. If target vcpu isn't running(root mode), kick it to pick up the
6259 * interrupt from PIR in next vmentry.
6260 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)6261 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
6262 {
6263 struct vcpu_vmx *vmx = to_vmx(vcpu);
6264 int r;
6265
6266 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
6267 if (!r)
6268 return;
6269
6270 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
6271 return;
6272
6273 /* If a previous notification has sent the IPI, nothing to do. */
6274 if (pi_test_and_set_on(&vmx->pi_desc))
6275 return;
6276
6277 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
6278 kvm_vcpu_kick(vcpu);
6279 }
6280
6281 /*
6282 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
6283 * will not change in the lifetime of the guest.
6284 * Note that host-state that does change is set elsewhere. E.g., host-state
6285 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
6286 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)6287 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
6288 {
6289 u32 low32, high32;
6290 unsigned long tmpl;
6291 struct desc_ptr dt;
6292 unsigned long cr0, cr3, cr4;
6293
6294 cr0 = read_cr0();
6295 WARN_ON(cr0 & X86_CR0_TS);
6296 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
6297
6298 /*
6299 * Save the most likely value for this task's CR3 in the VMCS.
6300 * We can't use __get_current_cr3_fast() because we're not atomic.
6301 */
6302 cr3 = __read_cr3();
6303 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
6304 vmx->loaded_vmcs->host_state.cr3 = cr3;
6305
6306 /* Save the most likely value for this task's CR4 in the VMCS. */
6307 cr4 = cr4_read_shadow();
6308 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
6309 vmx->loaded_vmcs->host_state.cr4 = cr4;
6310
6311 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
6312 #ifdef CONFIG_X86_64
6313 /*
6314 * Load null selectors, so we can avoid reloading them in
6315 * vmx_prepare_switch_to_host(), in case userspace uses
6316 * the null selectors too (the expected case).
6317 */
6318 vmcs_write16(HOST_DS_SELECTOR, 0);
6319 vmcs_write16(HOST_ES_SELECTOR, 0);
6320 #else
6321 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
6322 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
6323 #endif
6324 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
6325 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
6326
6327 store_idt(&dt);
6328 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
6329 vmx->host_idt_base = dt.address;
6330
6331 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
6332
6333 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
6334 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
6335 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
6336 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
6337
6338 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
6339 rdmsr(MSR_IA32_CR_PAT, low32, high32);
6340 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
6341 }
6342 }
6343
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)6344 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
6345 {
6346 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
6347 if (enable_ept)
6348 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
6349 if (is_guest_mode(&vmx->vcpu))
6350 vmx->vcpu.arch.cr4_guest_owned_bits &=
6351 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
6352 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
6353 }
6354
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)6355 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
6356 {
6357 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
6358
6359 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
6360 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
6361
6362 if (!enable_vnmi)
6363 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
6364
6365 /* Enable the preemption timer dynamically */
6366 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
6367 return pin_based_exec_ctrl;
6368 }
6369
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)6370 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
6371 {
6372 struct vcpu_vmx *vmx = to_vmx(vcpu);
6373
6374 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6375 if (cpu_has_secondary_exec_ctrls()) {
6376 if (kvm_vcpu_apicv_active(vcpu))
6377 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
6378 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6379 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6380 else
6381 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6382 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6383 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6384 }
6385
6386 if (cpu_has_vmx_msr_bitmap())
6387 vmx_update_msr_bitmap(vcpu);
6388 }
6389
vmx_exec_control(struct vcpu_vmx * vmx)6390 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
6391 {
6392 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
6393
6394 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
6395 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
6396
6397 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
6398 exec_control &= ~CPU_BASED_TPR_SHADOW;
6399 #ifdef CONFIG_X86_64
6400 exec_control |= CPU_BASED_CR8_STORE_EXITING |
6401 CPU_BASED_CR8_LOAD_EXITING;
6402 #endif
6403 }
6404 if (!enable_ept)
6405 exec_control |= CPU_BASED_CR3_STORE_EXITING |
6406 CPU_BASED_CR3_LOAD_EXITING |
6407 CPU_BASED_INVLPG_EXITING;
6408 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
6409 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
6410 CPU_BASED_MONITOR_EXITING);
6411 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
6412 exec_control &= ~CPU_BASED_HLT_EXITING;
6413 return exec_control;
6414 }
6415
vmx_rdrand_supported(void)6416 static bool vmx_rdrand_supported(void)
6417 {
6418 return vmcs_config.cpu_based_2nd_exec_ctrl &
6419 SECONDARY_EXEC_RDRAND_EXITING;
6420 }
6421
vmx_rdseed_supported(void)6422 static bool vmx_rdseed_supported(void)
6423 {
6424 return vmcs_config.cpu_based_2nd_exec_ctrl &
6425 SECONDARY_EXEC_RDSEED_EXITING;
6426 }
6427
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)6428 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
6429 {
6430 struct kvm_vcpu *vcpu = &vmx->vcpu;
6431
6432 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
6433
6434 if (!cpu_need_virtualize_apic_accesses(vcpu))
6435 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6436 if (vmx->vpid == 0)
6437 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
6438 if (!enable_ept) {
6439 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
6440 enable_unrestricted_guest = 0;
6441 }
6442 if (!enable_unrestricted_guest)
6443 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
6444 if (kvm_pause_in_guest(vmx->vcpu.kvm))
6445 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
6446 if (!kvm_vcpu_apicv_active(vcpu))
6447 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
6448 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6449 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6450
6451 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
6452 * in vmx_set_cr4. */
6453 exec_control &= ~SECONDARY_EXEC_DESC;
6454
6455 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
6456 (handle_vmptrld).
6457 We can NOT enable shadow_vmcs here because we don't have yet
6458 a current VMCS12
6459 */
6460 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6461
6462 if (!enable_pml)
6463 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
6464
6465 if (vmx_xsaves_supported()) {
6466 /* Exposing XSAVES only when XSAVE is exposed */
6467 bool xsaves_enabled =
6468 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
6469 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
6470
6471 if (!xsaves_enabled)
6472 exec_control &= ~SECONDARY_EXEC_XSAVES;
6473
6474 if (nested) {
6475 if (xsaves_enabled)
6476 vmx->nested.msrs.secondary_ctls_high |=
6477 SECONDARY_EXEC_XSAVES;
6478 else
6479 vmx->nested.msrs.secondary_ctls_high &=
6480 ~SECONDARY_EXEC_XSAVES;
6481 }
6482 }
6483
6484 if (vmx_rdtscp_supported()) {
6485 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
6486 if (!rdtscp_enabled)
6487 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6488
6489 if (nested) {
6490 if (rdtscp_enabled)
6491 vmx->nested.msrs.secondary_ctls_high |=
6492 SECONDARY_EXEC_RDTSCP;
6493 else
6494 vmx->nested.msrs.secondary_ctls_high &=
6495 ~SECONDARY_EXEC_RDTSCP;
6496 }
6497 }
6498
6499 if (vmx_invpcid_supported()) {
6500 /* Exposing INVPCID only when PCID is exposed */
6501 bool invpcid_enabled =
6502 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
6503 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
6504
6505 if (!invpcid_enabled) {
6506 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6507 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
6508 }
6509
6510 if (nested) {
6511 if (invpcid_enabled)
6512 vmx->nested.msrs.secondary_ctls_high |=
6513 SECONDARY_EXEC_ENABLE_INVPCID;
6514 else
6515 vmx->nested.msrs.secondary_ctls_high &=
6516 ~SECONDARY_EXEC_ENABLE_INVPCID;
6517 }
6518 }
6519
6520 if (vmx_rdrand_supported()) {
6521 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
6522 if (rdrand_enabled)
6523 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
6524
6525 if (nested) {
6526 if (rdrand_enabled)
6527 vmx->nested.msrs.secondary_ctls_high |=
6528 SECONDARY_EXEC_RDRAND_EXITING;
6529 else
6530 vmx->nested.msrs.secondary_ctls_high &=
6531 ~SECONDARY_EXEC_RDRAND_EXITING;
6532 }
6533 }
6534
6535 if (vmx_rdseed_supported()) {
6536 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
6537 if (rdseed_enabled)
6538 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
6539
6540 if (nested) {
6541 if (rdseed_enabled)
6542 vmx->nested.msrs.secondary_ctls_high |=
6543 SECONDARY_EXEC_RDSEED_EXITING;
6544 else
6545 vmx->nested.msrs.secondary_ctls_high &=
6546 ~SECONDARY_EXEC_RDSEED_EXITING;
6547 }
6548 }
6549
6550 vmx->secondary_exec_control = exec_control;
6551 }
6552
ept_set_mmio_spte_mask(void)6553 static void ept_set_mmio_spte_mask(void)
6554 {
6555 /*
6556 * EPT Misconfigurations can be generated if the value of bits 2:0
6557 * of an EPT paging-structure entry is 110b (write/execute).
6558 */
6559 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
6560 VMX_EPT_MISCONFIG_WX_VALUE);
6561 }
6562
6563 #define VMX_XSS_EXIT_BITMAP 0
6564 /*
6565 * Sets up the vmcs for emulated real mode.
6566 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)6567 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6568 {
6569 int i;
6570
6571 if (enable_shadow_vmcs) {
6572 /*
6573 * At vCPU creation, "VMWRITE to any supported field
6574 * in the VMCS" is supported, so use the more
6575 * permissive vmx_vmread_bitmap to specify both read
6576 * and write permissions for the shadow VMCS.
6577 */
6578 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6579 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
6580 }
6581 if (cpu_has_vmx_msr_bitmap())
6582 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
6583
6584 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
6585
6586 /* Control */
6587 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6588 vmx->hv_deadline_tsc = -1;
6589
6590 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6591
6592 if (cpu_has_secondary_exec_ctrls()) {
6593 vmx_compute_secondary_exec_control(vmx);
6594 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6595 vmx->secondary_exec_control);
6596 }
6597
6598 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
6599 vmcs_write64(EOI_EXIT_BITMAP0, 0);
6600 vmcs_write64(EOI_EXIT_BITMAP1, 0);
6601 vmcs_write64(EOI_EXIT_BITMAP2, 0);
6602 vmcs_write64(EOI_EXIT_BITMAP3, 0);
6603
6604 vmcs_write16(GUEST_INTR_STATUS, 0);
6605
6606 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
6607 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
6608 }
6609
6610 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
6611 vmcs_write32(PLE_GAP, ple_gap);
6612 vmx->ple_window = ple_window;
6613 vmx->ple_window_dirty = true;
6614 }
6615
6616 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
6617 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6618 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
6619
6620 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
6621 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
6622 vmx_set_constant_host_state(vmx);
6623 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
6624 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
6625
6626 if (cpu_has_vmx_vmfunc())
6627 vmcs_write64(VM_FUNCTION_CONTROL, 0);
6628
6629 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
6630 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
6631 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
6632 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
6633 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
6634
6635 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6636 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6637
6638 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6639 u32 index = vmx_msr_index[i];
6640 u32 data_low, data_high;
6641 int j = vmx->nmsrs;
6642
6643 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6644 continue;
6645 if (wrmsr_safe(index, data_low, data_high) < 0)
6646 continue;
6647 vmx->guest_msrs[j].index = i;
6648 vmx->guest_msrs[j].data = 0;
6649 vmx->guest_msrs[j].mask = -1ull;
6650 ++vmx->nmsrs;
6651 }
6652
6653 vmx->arch_capabilities = kvm_get_arch_capabilities();
6654
6655 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6656
6657 /* 22.2.1, 20.8.1 */
6658 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
6659
6660 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
6661 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
6662
6663 set_cr4_guest_host_mask(vmx);
6664
6665 if (vmx_xsaves_supported())
6666 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
6667
6668 if (enable_pml) {
6669 ASSERT(vmx->pml_pg);
6670 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
6671 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6672 }
6673
6674 if (cpu_has_vmx_encls_vmexit())
6675 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
6676 }
6677
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)6678 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
6679 {
6680 struct vcpu_vmx *vmx = to_vmx(vcpu);
6681 struct msr_data apic_base_msr;
6682 u64 cr0;
6683
6684 vmx->rmode.vm86_active = 0;
6685 vmx->spec_ctrl = 0;
6686
6687 vcpu->arch.microcode_version = 0x100000000ULL;
6688 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
6689 kvm_set_cr8(vcpu, 0);
6690
6691 if (!init_event) {
6692 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
6693 MSR_IA32_APICBASE_ENABLE;
6694 if (kvm_vcpu_is_reset_bsp(vcpu))
6695 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
6696 apic_base_msr.host_initiated = true;
6697 kvm_set_apic_base(vcpu, &apic_base_msr);
6698 }
6699
6700 vmx_segment_cache_clear(vmx);
6701
6702 seg_setup(VCPU_SREG_CS);
6703 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
6704 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
6705
6706 seg_setup(VCPU_SREG_DS);
6707 seg_setup(VCPU_SREG_ES);
6708 seg_setup(VCPU_SREG_FS);
6709 seg_setup(VCPU_SREG_GS);
6710 seg_setup(VCPU_SREG_SS);
6711
6712 vmcs_write16(GUEST_TR_SELECTOR, 0);
6713 vmcs_writel(GUEST_TR_BASE, 0);
6714 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
6715 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
6716
6717 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
6718 vmcs_writel(GUEST_LDTR_BASE, 0);
6719 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
6720 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
6721
6722 if (!init_event) {
6723 vmcs_write32(GUEST_SYSENTER_CS, 0);
6724 vmcs_writel(GUEST_SYSENTER_ESP, 0);
6725 vmcs_writel(GUEST_SYSENTER_EIP, 0);
6726 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
6727 }
6728
6729 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6730 kvm_rip_write(vcpu, 0xfff0);
6731
6732 vmcs_writel(GUEST_GDTR_BASE, 0);
6733 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
6734
6735 vmcs_writel(GUEST_IDTR_BASE, 0);
6736 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
6737
6738 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
6739 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
6740 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
6741 if (kvm_mpx_supported())
6742 vmcs_write64(GUEST_BNDCFGS, 0);
6743
6744 setup_msrs(vmx);
6745
6746 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
6747
6748 if (cpu_has_vmx_tpr_shadow() && !init_event) {
6749 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
6750 if (cpu_need_tpr_shadow(vcpu))
6751 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
6752 __pa(vcpu->arch.apic->regs));
6753 vmcs_write32(TPR_THRESHOLD, 0);
6754 }
6755
6756 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6757
6758 if (vmx->vpid != 0)
6759 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6760
6761 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
6762 vmx->vcpu.arch.cr0 = cr0;
6763 vmx_set_cr0(vcpu, cr0); /* enter rmode */
6764 vmx_set_cr4(vcpu, 0);
6765 vmx_set_efer(vcpu, 0);
6766
6767 update_exception_bitmap(vcpu);
6768
6769 vpid_sync_context(vmx->vpid);
6770 if (init_event)
6771 vmx_clear_hlt(vcpu);
6772 }
6773
6774 /*
6775 * In nested virtualization, check if L1 asked to exit on external interrupts.
6776 * For most existing hypervisors, this will always return true.
6777 */
nested_exit_on_intr(struct kvm_vcpu * vcpu)6778 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
6779 {
6780 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6781 PIN_BASED_EXT_INTR_MASK;
6782 }
6783
6784 /*
6785 * In nested virtualization, check if L1 has set
6786 * VM_EXIT_ACK_INTR_ON_EXIT
6787 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)6788 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
6789 {
6790 return get_vmcs12(vcpu)->vm_exit_controls &
6791 VM_EXIT_ACK_INTR_ON_EXIT;
6792 }
6793
nested_exit_on_nmi(struct kvm_vcpu * vcpu)6794 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
6795 {
6796 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
6797 }
6798
enable_irq_window(struct kvm_vcpu * vcpu)6799 static void enable_irq_window(struct kvm_vcpu *vcpu)
6800 {
6801 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6802 CPU_BASED_VIRTUAL_INTR_PENDING);
6803 }
6804
enable_nmi_window(struct kvm_vcpu * vcpu)6805 static void enable_nmi_window(struct kvm_vcpu *vcpu)
6806 {
6807 if (!enable_vnmi ||
6808 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
6809 enable_irq_window(vcpu);
6810 return;
6811 }
6812
6813 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6814 CPU_BASED_VIRTUAL_NMI_PENDING);
6815 }
6816
vmx_inject_irq(struct kvm_vcpu * vcpu)6817 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
6818 {
6819 struct vcpu_vmx *vmx = to_vmx(vcpu);
6820 uint32_t intr;
6821 int irq = vcpu->arch.interrupt.nr;
6822
6823 trace_kvm_inj_virq(irq);
6824
6825 ++vcpu->stat.irq_injections;
6826 if (vmx->rmode.vm86_active) {
6827 int inc_eip = 0;
6828 if (vcpu->arch.interrupt.soft)
6829 inc_eip = vcpu->arch.event_exit_inst_len;
6830 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
6831 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6832 return;
6833 }
6834 intr = irq | INTR_INFO_VALID_MASK;
6835 if (vcpu->arch.interrupt.soft) {
6836 intr |= INTR_TYPE_SOFT_INTR;
6837 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6838 vmx->vcpu.arch.event_exit_inst_len);
6839 } else
6840 intr |= INTR_TYPE_EXT_INTR;
6841 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
6842
6843 vmx_clear_hlt(vcpu);
6844 }
6845
vmx_inject_nmi(struct kvm_vcpu * vcpu)6846 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
6847 {
6848 struct vcpu_vmx *vmx = to_vmx(vcpu);
6849
6850 if (!enable_vnmi) {
6851 /*
6852 * Tracking the NMI-blocked state in software is built upon
6853 * finding the next open IRQ window. This, in turn, depends on
6854 * well-behaving guests: They have to keep IRQs disabled at
6855 * least as long as the NMI handler runs. Otherwise we may
6856 * cause NMI nesting, maybe breaking the guest. But as this is
6857 * highly unlikely, we can live with the residual risk.
6858 */
6859 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
6860 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6861 }
6862
6863 ++vcpu->stat.nmi_injections;
6864 vmx->loaded_vmcs->nmi_known_unmasked = false;
6865
6866 if (vmx->rmode.vm86_active) {
6867 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
6868 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6869 return;
6870 }
6871
6872 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6873 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
6874
6875 vmx_clear_hlt(vcpu);
6876 }
6877
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)6878 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
6879 {
6880 struct vcpu_vmx *vmx = to_vmx(vcpu);
6881 bool masked;
6882
6883 if (!enable_vnmi)
6884 return vmx->loaded_vmcs->soft_vnmi_blocked;
6885 if (vmx->loaded_vmcs->nmi_known_unmasked)
6886 return false;
6887 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
6888 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6889 return masked;
6890 }
6891
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)6892 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
6893 {
6894 struct vcpu_vmx *vmx = to_vmx(vcpu);
6895
6896 if (!enable_vnmi) {
6897 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
6898 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
6899 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6900 }
6901 } else {
6902 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6903 if (masked)
6904 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6905 GUEST_INTR_STATE_NMI);
6906 else
6907 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
6908 GUEST_INTR_STATE_NMI);
6909 }
6910 }
6911
vmx_nmi_allowed(struct kvm_vcpu * vcpu)6912 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
6913 {
6914 if (to_vmx(vcpu)->nested.nested_run_pending)
6915 return 0;
6916
6917 if (!enable_vnmi &&
6918 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6919 return 0;
6920
6921 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6922 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6923 | GUEST_INTR_STATE_NMI));
6924 }
6925
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)6926 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6927 {
6928 return (!to_vmx(vcpu)->nested.nested_run_pending &&
6929 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
6930 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6931 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
6932 }
6933
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)6934 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6935 {
6936 int ret;
6937
6938 if (enable_unrestricted_guest)
6939 return 0;
6940
6941 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6942 PAGE_SIZE * 3);
6943 if (ret)
6944 return ret;
6945 to_kvm_vmx(kvm)->tss_addr = addr;
6946 return init_rmode_tss(kvm);
6947 }
6948
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6949 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
6950 {
6951 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
6952 return 0;
6953 }
6954
rmode_exception(struct kvm_vcpu * vcpu,int vec)6955 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6956 {
6957 switch (vec) {
6958 case BP_VECTOR:
6959 /*
6960 * Update instruction length as we may reinject the exception
6961 * from user space while in guest debugging mode.
6962 */
6963 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6964 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6965 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6966 return false;
6967 /* fall through */
6968 case DB_VECTOR:
6969 if (vcpu->guest_debug &
6970 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6971 return false;
6972 /* fall through */
6973 case DE_VECTOR:
6974 case OF_VECTOR:
6975 case BR_VECTOR:
6976 case UD_VECTOR:
6977 case DF_VECTOR:
6978 case SS_VECTOR:
6979 case GP_VECTOR:
6980 case MF_VECTOR:
6981 return true;
6982 break;
6983 }
6984 return false;
6985 }
6986
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)6987 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6988 int vec, u32 err_code)
6989 {
6990 /*
6991 * Instruction with address size override prefix opcode 0x67
6992 * Cause the #SS fault with 0 error code in VM86 mode.
6993 */
6994 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6995 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6996 if (vcpu->arch.halt_request) {
6997 vcpu->arch.halt_request = 0;
6998 return kvm_vcpu_halt(vcpu);
6999 }
7000 return 1;
7001 }
7002 return 0;
7003 }
7004
7005 /*
7006 * Forward all other exceptions that are valid in real mode.
7007 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
7008 * the required debugging infrastructure rework.
7009 */
7010 kvm_queue_exception(vcpu, vec);
7011 return 1;
7012 }
7013
7014 /*
7015 * Trigger machine check on the host. We assume all the MSRs are already set up
7016 * by the CPU and that we still run on the same CPU as the MCE occurred on.
7017 * We pass a fake environment to the machine check handler because we want
7018 * the guest to be always treated like user space, no matter what context
7019 * it used internally.
7020 */
kvm_machine_check(void)7021 static void kvm_machine_check(void)
7022 {
7023 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
7024 struct pt_regs regs = {
7025 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
7026 .flags = X86_EFLAGS_IF,
7027 };
7028
7029 do_machine_check(®s, 0);
7030 #endif
7031 }
7032
handle_machine_check(struct kvm_vcpu * vcpu)7033 static int handle_machine_check(struct kvm_vcpu *vcpu)
7034 {
7035 /* already handled by vcpu_run */
7036 return 1;
7037 }
7038
handle_exception(struct kvm_vcpu * vcpu)7039 static int handle_exception(struct kvm_vcpu *vcpu)
7040 {
7041 struct vcpu_vmx *vmx = to_vmx(vcpu);
7042 struct kvm_run *kvm_run = vcpu->run;
7043 u32 intr_info, ex_no, error_code;
7044 unsigned long cr2, rip, dr6;
7045 u32 vect_info;
7046 enum emulation_result er;
7047
7048 vect_info = vmx->idt_vectoring_info;
7049 intr_info = vmx->exit_intr_info;
7050
7051 if (is_machine_check(intr_info))
7052 return handle_machine_check(vcpu);
7053
7054 if (is_nmi(intr_info))
7055 return 1; /* already handled by vmx_vcpu_run() */
7056
7057 if (is_invalid_opcode(intr_info))
7058 return handle_ud(vcpu);
7059
7060 error_code = 0;
7061 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
7062 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7063
7064 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
7065 WARN_ON_ONCE(!enable_vmware_backdoor);
7066 er = kvm_emulate_instruction(vcpu,
7067 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
7068 if (er == EMULATE_USER_EXIT)
7069 return 0;
7070 else if (er != EMULATE_DONE)
7071 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
7072 return 1;
7073 }
7074
7075 /*
7076 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
7077 * MMIO, it is better to report an internal error.
7078 * See the comments in vmx_handle_exit.
7079 */
7080 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
7081 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
7082 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7083 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
7084 vcpu->run->internal.ndata = 3;
7085 vcpu->run->internal.data[0] = vect_info;
7086 vcpu->run->internal.data[1] = intr_info;
7087 vcpu->run->internal.data[2] = error_code;
7088 return 0;
7089 }
7090
7091 if (is_page_fault(intr_info)) {
7092 cr2 = vmcs_readl(EXIT_QUALIFICATION);
7093 /* EPT won't cause page fault directly */
7094 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
7095 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
7096 }
7097
7098 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
7099
7100 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
7101 return handle_rmode_exception(vcpu, ex_no, error_code);
7102
7103 switch (ex_no) {
7104 case AC_VECTOR:
7105 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
7106 return 1;
7107 case DB_VECTOR:
7108 dr6 = vmcs_readl(EXIT_QUALIFICATION);
7109 if (!(vcpu->guest_debug &
7110 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
7111 vcpu->arch.dr6 &= ~15;
7112 vcpu->arch.dr6 |= dr6 | DR6_RTM;
7113 if (is_icebp(intr_info))
7114 skip_emulated_instruction(vcpu);
7115
7116 kvm_queue_exception(vcpu, DB_VECTOR);
7117 return 1;
7118 }
7119 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
7120 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
7121 /* fall through */
7122 case BP_VECTOR:
7123 /*
7124 * Update instruction length as we may reinject #BP from
7125 * user space while in guest debugging mode. Reading it for
7126 * #DB as well causes no harm, it is not used in that case.
7127 */
7128 vmx->vcpu.arch.event_exit_inst_len =
7129 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7130 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7131 rip = kvm_rip_read(vcpu);
7132 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
7133 kvm_run->debug.arch.exception = ex_no;
7134 break;
7135 default:
7136 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
7137 kvm_run->ex.exception = ex_no;
7138 kvm_run->ex.error_code = error_code;
7139 break;
7140 }
7141 return 0;
7142 }
7143
handle_external_interrupt(struct kvm_vcpu * vcpu)7144 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
7145 {
7146 ++vcpu->stat.irq_exits;
7147 return 1;
7148 }
7149
handle_triple_fault(struct kvm_vcpu * vcpu)7150 static int handle_triple_fault(struct kvm_vcpu *vcpu)
7151 {
7152 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7153 vcpu->mmio_needed = 0;
7154 return 0;
7155 }
7156
handle_io(struct kvm_vcpu * vcpu)7157 static int handle_io(struct kvm_vcpu *vcpu)
7158 {
7159 unsigned long exit_qualification;
7160 int size, in, string;
7161 unsigned port;
7162
7163 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7164 string = (exit_qualification & 16) != 0;
7165
7166 ++vcpu->stat.io_exits;
7167
7168 if (string)
7169 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7170
7171 port = exit_qualification >> 16;
7172 size = (exit_qualification & 7) + 1;
7173 in = (exit_qualification & 8) != 0;
7174
7175 return kvm_fast_pio(vcpu, size, port, in);
7176 }
7177
7178 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)7179 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
7180 {
7181 /*
7182 * Patch in the VMCALL instruction:
7183 */
7184 hypercall[0] = 0x0f;
7185 hypercall[1] = 0x01;
7186 hypercall[2] = 0xc1;
7187 }
7188
7189 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)7190 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
7191 {
7192 if (is_guest_mode(vcpu)) {
7193 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7194 unsigned long orig_val = val;
7195
7196 /*
7197 * We get here when L2 changed cr0 in a way that did not change
7198 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
7199 * but did change L0 shadowed bits. So we first calculate the
7200 * effective cr0 value that L1 would like to write into the
7201 * hardware. It consists of the L2-owned bits from the new
7202 * value combined with the L1-owned bits from L1's guest_cr0.
7203 */
7204 val = (val & ~vmcs12->cr0_guest_host_mask) |
7205 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
7206
7207 if (!nested_guest_cr0_valid(vcpu, val))
7208 return 1;
7209
7210 if (kvm_set_cr0(vcpu, val))
7211 return 1;
7212 vmcs_writel(CR0_READ_SHADOW, orig_val);
7213 return 0;
7214 } else {
7215 if (to_vmx(vcpu)->nested.vmxon &&
7216 !nested_host_cr0_valid(vcpu, val))
7217 return 1;
7218
7219 return kvm_set_cr0(vcpu, val);
7220 }
7221 }
7222
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)7223 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
7224 {
7225 if (is_guest_mode(vcpu)) {
7226 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7227 unsigned long orig_val = val;
7228
7229 /* analogously to handle_set_cr0 */
7230 val = (val & ~vmcs12->cr4_guest_host_mask) |
7231 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
7232 if (kvm_set_cr4(vcpu, val))
7233 return 1;
7234 vmcs_writel(CR4_READ_SHADOW, orig_val);
7235 return 0;
7236 } else
7237 return kvm_set_cr4(vcpu, val);
7238 }
7239
handle_desc(struct kvm_vcpu * vcpu)7240 static int handle_desc(struct kvm_vcpu *vcpu)
7241 {
7242 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
7243 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7244 }
7245
handle_cr(struct kvm_vcpu * vcpu)7246 static int handle_cr(struct kvm_vcpu *vcpu)
7247 {
7248 unsigned long exit_qualification, val;
7249 int cr;
7250 int reg;
7251 int err;
7252 int ret;
7253
7254 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7255 cr = exit_qualification & 15;
7256 reg = (exit_qualification >> 8) & 15;
7257 switch ((exit_qualification >> 4) & 3) {
7258 case 0: /* mov to cr */
7259 val = kvm_register_readl(vcpu, reg);
7260 trace_kvm_cr_write(cr, val);
7261 switch (cr) {
7262 case 0:
7263 err = handle_set_cr0(vcpu, val);
7264 return kvm_complete_insn_gp(vcpu, err);
7265 case 3:
7266 WARN_ON_ONCE(enable_unrestricted_guest);
7267 err = kvm_set_cr3(vcpu, val);
7268 return kvm_complete_insn_gp(vcpu, err);
7269 case 4:
7270 err = handle_set_cr4(vcpu, val);
7271 return kvm_complete_insn_gp(vcpu, err);
7272 case 8: {
7273 u8 cr8_prev = kvm_get_cr8(vcpu);
7274 u8 cr8 = (u8)val;
7275 err = kvm_set_cr8(vcpu, cr8);
7276 ret = kvm_complete_insn_gp(vcpu, err);
7277 if (lapic_in_kernel(vcpu))
7278 return ret;
7279 if (cr8_prev <= cr8)
7280 return ret;
7281 /*
7282 * TODO: we might be squashing a
7283 * KVM_GUESTDBG_SINGLESTEP-triggered
7284 * KVM_EXIT_DEBUG here.
7285 */
7286 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
7287 return 0;
7288 }
7289 }
7290 break;
7291 case 2: /* clts */
7292 WARN_ONCE(1, "Guest should always own CR0.TS");
7293 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
7294 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
7295 return kvm_skip_emulated_instruction(vcpu);
7296 case 1: /*mov from cr*/
7297 switch (cr) {
7298 case 3:
7299 WARN_ON_ONCE(enable_unrestricted_guest);
7300 val = kvm_read_cr3(vcpu);
7301 kvm_register_write(vcpu, reg, val);
7302 trace_kvm_cr_read(cr, val);
7303 return kvm_skip_emulated_instruction(vcpu);
7304 case 8:
7305 val = kvm_get_cr8(vcpu);
7306 kvm_register_write(vcpu, reg, val);
7307 trace_kvm_cr_read(cr, val);
7308 return kvm_skip_emulated_instruction(vcpu);
7309 }
7310 break;
7311 case 3: /* lmsw */
7312 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7313 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
7314 kvm_lmsw(vcpu, val);
7315
7316 return kvm_skip_emulated_instruction(vcpu);
7317 default:
7318 break;
7319 }
7320 vcpu->run->exit_reason = 0;
7321 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
7322 (int)(exit_qualification >> 4) & 3, cr);
7323 return 0;
7324 }
7325
handle_dr(struct kvm_vcpu * vcpu)7326 static int handle_dr(struct kvm_vcpu *vcpu)
7327 {
7328 unsigned long exit_qualification;
7329 int dr, dr7, reg;
7330
7331 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7332 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
7333
7334 /* First, if DR does not exist, trigger UD */
7335 if (!kvm_require_dr(vcpu, dr))
7336 return 1;
7337
7338 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
7339 if (!kvm_require_cpl(vcpu, 0))
7340 return 1;
7341 dr7 = vmcs_readl(GUEST_DR7);
7342 if (dr7 & DR7_GD) {
7343 /*
7344 * As the vm-exit takes precedence over the debug trap, we
7345 * need to emulate the latter, either for the host or the
7346 * guest debugging itself.
7347 */
7348 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7349 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
7350 vcpu->run->debug.arch.dr7 = dr7;
7351 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7352 vcpu->run->debug.arch.exception = DB_VECTOR;
7353 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
7354 return 0;
7355 } else {
7356 vcpu->arch.dr6 &= ~15;
7357 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
7358 kvm_queue_exception(vcpu, DB_VECTOR);
7359 return 1;
7360 }
7361 }
7362
7363 if (vcpu->guest_debug == 0) {
7364 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7365 CPU_BASED_MOV_DR_EXITING);
7366
7367 /*
7368 * No more DR vmexits; force a reload of the debug registers
7369 * and reenter on this instruction. The next vmexit will
7370 * retrieve the full state of the debug registers.
7371 */
7372 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
7373 return 1;
7374 }
7375
7376 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
7377 if (exit_qualification & TYPE_MOV_FROM_DR) {
7378 unsigned long val;
7379
7380 if (kvm_get_dr(vcpu, dr, &val))
7381 return 1;
7382 kvm_register_write(vcpu, reg, val);
7383 } else
7384 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
7385 return 1;
7386
7387 return kvm_skip_emulated_instruction(vcpu);
7388 }
7389
vmx_get_dr6(struct kvm_vcpu * vcpu)7390 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
7391 {
7392 return vcpu->arch.dr6;
7393 }
7394
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)7395 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
7396 {
7397 }
7398
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)7399 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
7400 {
7401 get_debugreg(vcpu->arch.db[0], 0);
7402 get_debugreg(vcpu->arch.db[1], 1);
7403 get_debugreg(vcpu->arch.db[2], 2);
7404 get_debugreg(vcpu->arch.db[3], 3);
7405 get_debugreg(vcpu->arch.dr6, 6);
7406 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
7407
7408 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
7409 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
7410 }
7411
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)7412 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
7413 {
7414 vmcs_writel(GUEST_DR7, val);
7415 }
7416
handle_cpuid(struct kvm_vcpu * vcpu)7417 static int handle_cpuid(struct kvm_vcpu *vcpu)
7418 {
7419 return kvm_emulate_cpuid(vcpu);
7420 }
7421
handle_rdmsr(struct kvm_vcpu * vcpu)7422 static int handle_rdmsr(struct kvm_vcpu *vcpu)
7423 {
7424 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
7425 struct msr_data msr_info;
7426
7427 msr_info.index = ecx;
7428 msr_info.host_initiated = false;
7429 if (vmx_get_msr(vcpu, &msr_info)) {
7430 trace_kvm_msr_read_ex(ecx);
7431 kvm_inject_gp(vcpu, 0);
7432 return 1;
7433 }
7434
7435 trace_kvm_msr_read(ecx, msr_info.data);
7436
7437 /* FIXME: handling of bits 32:63 of rax, rdx */
7438 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
7439 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
7440 return kvm_skip_emulated_instruction(vcpu);
7441 }
7442
handle_wrmsr(struct kvm_vcpu * vcpu)7443 static int handle_wrmsr(struct kvm_vcpu *vcpu)
7444 {
7445 struct msr_data msr;
7446 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
7447 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
7448 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
7449
7450 msr.data = data;
7451 msr.index = ecx;
7452 msr.host_initiated = false;
7453 if (kvm_set_msr(vcpu, &msr) != 0) {
7454 trace_kvm_msr_write_ex(ecx, data);
7455 kvm_inject_gp(vcpu, 0);
7456 return 1;
7457 }
7458
7459 trace_kvm_msr_write(ecx, data);
7460 return kvm_skip_emulated_instruction(vcpu);
7461 }
7462
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)7463 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
7464 {
7465 kvm_apic_update_ppr(vcpu);
7466 return 1;
7467 }
7468
handle_interrupt_window(struct kvm_vcpu * vcpu)7469 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
7470 {
7471 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7472 CPU_BASED_VIRTUAL_INTR_PENDING);
7473
7474 kvm_make_request(KVM_REQ_EVENT, vcpu);
7475
7476 ++vcpu->stat.irq_window_exits;
7477 return 1;
7478 }
7479
handle_halt(struct kvm_vcpu * vcpu)7480 static int handle_halt(struct kvm_vcpu *vcpu)
7481 {
7482 return kvm_emulate_halt(vcpu);
7483 }
7484
handle_vmcall(struct kvm_vcpu * vcpu)7485 static int handle_vmcall(struct kvm_vcpu *vcpu)
7486 {
7487 return kvm_emulate_hypercall(vcpu);
7488 }
7489
handle_invd(struct kvm_vcpu * vcpu)7490 static int handle_invd(struct kvm_vcpu *vcpu)
7491 {
7492 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7493 }
7494
handle_invlpg(struct kvm_vcpu * vcpu)7495 static int handle_invlpg(struct kvm_vcpu *vcpu)
7496 {
7497 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7498
7499 kvm_mmu_invlpg(vcpu, exit_qualification);
7500 return kvm_skip_emulated_instruction(vcpu);
7501 }
7502
handle_rdpmc(struct kvm_vcpu * vcpu)7503 static int handle_rdpmc(struct kvm_vcpu *vcpu)
7504 {
7505 int err;
7506
7507 err = kvm_rdpmc(vcpu);
7508 return kvm_complete_insn_gp(vcpu, err);
7509 }
7510
handle_wbinvd(struct kvm_vcpu * vcpu)7511 static int handle_wbinvd(struct kvm_vcpu *vcpu)
7512 {
7513 return kvm_emulate_wbinvd(vcpu);
7514 }
7515
handle_xsetbv(struct kvm_vcpu * vcpu)7516 static int handle_xsetbv(struct kvm_vcpu *vcpu)
7517 {
7518 u64 new_bv = kvm_read_edx_eax(vcpu);
7519 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
7520
7521 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
7522 return kvm_skip_emulated_instruction(vcpu);
7523 return 1;
7524 }
7525
handle_xsaves(struct kvm_vcpu * vcpu)7526 static int handle_xsaves(struct kvm_vcpu *vcpu)
7527 {
7528 kvm_skip_emulated_instruction(vcpu);
7529 WARN(1, "this should never happen\n");
7530 return 1;
7531 }
7532
handle_xrstors(struct kvm_vcpu * vcpu)7533 static int handle_xrstors(struct kvm_vcpu *vcpu)
7534 {
7535 kvm_skip_emulated_instruction(vcpu);
7536 WARN(1, "this should never happen\n");
7537 return 1;
7538 }
7539
handle_apic_access(struct kvm_vcpu * vcpu)7540 static int handle_apic_access(struct kvm_vcpu *vcpu)
7541 {
7542 if (likely(fasteoi)) {
7543 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7544 int access_type, offset;
7545
7546 access_type = exit_qualification & APIC_ACCESS_TYPE;
7547 offset = exit_qualification & APIC_ACCESS_OFFSET;
7548 /*
7549 * Sane guest uses MOV to write EOI, with written value
7550 * not cared. So make a short-circuit here by avoiding
7551 * heavy instruction emulation.
7552 */
7553 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
7554 (offset == APIC_EOI)) {
7555 kvm_lapic_set_eoi(vcpu);
7556 return kvm_skip_emulated_instruction(vcpu);
7557 }
7558 }
7559 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7560 }
7561
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)7562 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
7563 {
7564 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7565 int vector = exit_qualification & 0xff;
7566
7567 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
7568 kvm_apic_set_eoi_accelerated(vcpu, vector);
7569 return 1;
7570 }
7571
handle_apic_write(struct kvm_vcpu * vcpu)7572 static int handle_apic_write(struct kvm_vcpu *vcpu)
7573 {
7574 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7575 u32 offset = exit_qualification & 0xfff;
7576
7577 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
7578 kvm_apic_write_nodecode(vcpu, offset);
7579 return 1;
7580 }
7581
handle_task_switch(struct kvm_vcpu * vcpu)7582 static int handle_task_switch(struct kvm_vcpu *vcpu)
7583 {
7584 struct vcpu_vmx *vmx = to_vmx(vcpu);
7585 unsigned long exit_qualification;
7586 bool has_error_code = false;
7587 u32 error_code = 0;
7588 u16 tss_selector;
7589 int reason, type, idt_v, idt_index;
7590
7591 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7592 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
7593 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
7594
7595 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7596
7597 reason = (u32)exit_qualification >> 30;
7598 if (reason == TASK_SWITCH_GATE && idt_v) {
7599 switch (type) {
7600 case INTR_TYPE_NMI_INTR:
7601 vcpu->arch.nmi_injected = false;
7602 vmx_set_nmi_mask(vcpu, true);
7603 break;
7604 case INTR_TYPE_EXT_INTR:
7605 case INTR_TYPE_SOFT_INTR:
7606 kvm_clear_interrupt_queue(vcpu);
7607 break;
7608 case INTR_TYPE_HARD_EXCEPTION:
7609 if (vmx->idt_vectoring_info &
7610 VECTORING_INFO_DELIVER_CODE_MASK) {
7611 has_error_code = true;
7612 error_code =
7613 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7614 }
7615 /* fall through */
7616 case INTR_TYPE_SOFT_EXCEPTION:
7617 kvm_clear_exception_queue(vcpu);
7618 break;
7619 default:
7620 break;
7621 }
7622 }
7623 tss_selector = exit_qualification;
7624
7625 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
7626 type != INTR_TYPE_EXT_INTR &&
7627 type != INTR_TYPE_NMI_INTR))
7628 skip_emulated_instruction(vcpu);
7629
7630 if (kvm_task_switch(vcpu, tss_selector,
7631 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
7632 has_error_code, error_code) == EMULATE_FAIL) {
7633 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7634 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7635 vcpu->run->internal.ndata = 0;
7636 return 0;
7637 }
7638
7639 /*
7640 * TODO: What about debug traps on tss switch?
7641 * Are we supposed to inject them and update dr6?
7642 */
7643
7644 return 1;
7645 }
7646
handle_ept_violation(struct kvm_vcpu * vcpu)7647 static int handle_ept_violation(struct kvm_vcpu *vcpu)
7648 {
7649 unsigned long exit_qualification;
7650 gpa_t gpa;
7651 u64 error_code;
7652
7653 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7654
7655 /*
7656 * EPT violation happened while executing iret from NMI,
7657 * "blocked by NMI" bit has to be set before next VM entry.
7658 * There are errata that may cause this bit to not be set:
7659 * AAK134, BY25.
7660 */
7661 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7662 enable_vnmi &&
7663 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7664 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
7665
7666 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
7667 trace_kvm_page_fault(gpa, exit_qualification);
7668
7669 /* Is it a read fault? */
7670 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
7671 ? PFERR_USER_MASK : 0;
7672 /* Is it a write fault? */
7673 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
7674 ? PFERR_WRITE_MASK : 0;
7675 /* Is it a fetch fault? */
7676 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
7677 ? PFERR_FETCH_MASK : 0;
7678 /* ept page table entry is present? */
7679 error_code |= (exit_qualification &
7680 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
7681 EPT_VIOLATION_EXECUTABLE))
7682 ? PFERR_PRESENT_MASK : 0;
7683
7684 error_code |= (exit_qualification & 0x100) != 0 ?
7685 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
7686
7687 vcpu->arch.exit_qualification = exit_qualification;
7688 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
7689 }
7690
handle_ept_misconfig(struct kvm_vcpu * vcpu)7691 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
7692 {
7693 gpa_t gpa;
7694
7695 /*
7696 * A nested guest cannot optimize MMIO vmexits, because we have an
7697 * nGPA here instead of the required GPA.
7698 */
7699 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
7700 if (!is_guest_mode(vcpu) &&
7701 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
7702 trace_kvm_fast_mmio(gpa);
7703 /*
7704 * Doing kvm_skip_emulated_instruction() depends on undefined
7705 * behavior: Intel's manual doesn't mandate
7706 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
7707 * occurs and while on real hardware it was observed to be set,
7708 * other hypervisors (namely Hyper-V) don't set it, we end up
7709 * advancing IP with some random value. Disable fast mmio when
7710 * running nested and keep it for real hardware in hope that
7711 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
7712 */
7713 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
7714 return kvm_skip_emulated_instruction(vcpu);
7715 else
7716 return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
7717 EMULATE_DONE;
7718 }
7719
7720 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
7721 }
7722
handle_nmi_window(struct kvm_vcpu * vcpu)7723 static int handle_nmi_window(struct kvm_vcpu *vcpu)
7724 {
7725 WARN_ON_ONCE(!enable_vnmi);
7726 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7727 CPU_BASED_VIRTUAL_NMI_PENDING);
7728 ++vcpu->stat.nmi_window_exits;
7729 kvm_make_request(KVM_REQ_EVENT, vcpu);
7730
7731 return 1;
7732 }
7733
handle_invalid_guest_state(struct kvm_vcpu * vcpu)7734 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
7735 {
7736 struct vcpu_vmx *vmx = to_vmx(vcpu);
7737 enum emulation_result err = EMULATE_DONE;
7738 int ret = 1;
7739 u32 cpu_exec_ctrl;
7740 bool intr_window_requested;
7741 unsigned count = 130;
7742
7743 /*
7744 * We should never reach the point where we are emulating L2
7745 * due to invalid guest state as that means we incorrectly
7746 * allowed a nested VMEntry with an invalid vmcs12.
7747 */
7748 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
7749
7750 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7751 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
7752
7753 while (vmx->emulation_required && count-- != 0) {
7754 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
7755 return handle_interrupt_window(&vmx->vcpu);
7756
7757 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
7758 return 1;
7759
7760 err = kvm_emulate_instruction(vcpu, 0);
7761
7762 if (err == EMULATE_USER_EXIT) {
7763 ++vcpu->stat.mmio_exits;
7764 ret = 0;
7765 goto out;
7766 }
7767
7768 if (err != EMULATE_DONE)
7769 goto emulation_error;
7770
7771 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
7772 vcpu->arch.exception.pending)
7773 goto emulation_error;
7774
7775 if (vcpu->arch.halt_request) {
7776 vcpu->arch.halt_request = 0;
7777 ret = kvm_vcpu_halt(vcpu);
7778 goto out;
7779 }
7780
7781 if (signal_pending(current))
7782 goto out;
7783 if (need_resched())
7784 schedule();
7785 }
7786
7787 out:
7788 return ret;
7789
7790 emulation_error:
7791 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7792 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7793 vcpu->run->internal.ndata = 0;
7794 return 0;
7795 }
7796
grow_ple_window(struct kvm_vcpu * vcpu)7797 static void grow_ple_window(struct kvm_vcpu *vcpu)
7798 {
7799 struct vcpu_vmx *vmx = to_vmx(vcpu);
7800 int old = vmx->ple_window;
7801
7802 vmx->ple_window = __grow_ple_window(old, ple_window,
7803 ple_window_grow,
7804 ple_window_max);
7805
7806 if (vmx->ple_window != old)
7807 vmx->ple_window_dirty = true;
7808
7809 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
7810 }
7811
shrink_ple_window(struct kvm_vcpu * vcpu)7812 static void shrink_ple_window(struct kvm_vcpu *vcpu)
7813 {
7814 struct vcpu_vmx *vmx = to_vmx(vcpu);
7815 int old = vmx->ple_window;
7816
7817 vmx->ple_window = __shrink_ple_window(old, ple_window,
7818 ple_window_shrink,
7819 ple_window);
7820
7821 if (vmx->ple_window != old)
7822 vmx->ple_window_dirty = true;
7823
7824 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
7825 }
7826
7827 /*
7828 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7829 */
wakeup_handler(void)7830 static void wakeup_handler(void)
7831 {
7832 struct kvm_vcpu *vcpu;
7833 int cpu = smp_processor_id();
7834
7835 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7836 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
7837 blocked_vcpu_list) {
7838 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7839
7840 if (pi_test_on(pi_desc) == 1)
7841 kvm_vcpu_kick(vcpu);
7842 }
7843 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7844 }
7845
vmx_enable_tdp(void)7846 static void vmx_enable_tdp(void)
7847 {
7848 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
7849 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
7850 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
7851 0ull, VMX_EPT_EXECUTABLE_MASK,
7852 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
7853 VMX_EPT_RWX_MASK, 0ull);
7854
7855 ept_set_mmio_spte_mask();
7856 kvm_enable_tdp();
7857 }
7858
hardware_setup(void)7859 static __init int hardware_setup(void)
7860 {
7861 unsigned long host_bndcfgs;
7862 int r = -ENOMEM, i;
7863
7864 rdmsrl_safe(MSR_EFER, &host_efer);
7865
7866 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7867 kvm_define_shared_msr(i, vmx_msr_index[i]);
7868
7869 for (i = 0; i < VMX_BITMAP_NR; i++) {
7870 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
7871 if (!vmx_bitmap[i])
7872 goto out;
7873 }
7874
7875 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
7876 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
7877
7878 if (setup_vmcs_config(&vmcs_config) < 0) {
7879 r = -EIO;
7880 goto out;
7881 }
7882
7883 if (boot_cpu_has(X86_FEATURE_NX))
7884 kvm_enable_efer_bits(EFER_NX);
7885
7886 if (boot_cpu_has(X86_FEATURE_MPX)) {
7887 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7888 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7889 }
7890
7891 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7892 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7893 enable_vpid = 0;
7894
7895 if (!cpu_has_vmx_ept() ||
7896 !cpu_has_vmx_ept_4levels() ||
7897 !cpu_has_vmx_ept_mt_wb() ||
7898 !cpu_has_vmx_invept_global())
7899 enable_ept = 0;
7900
7901 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7902 enable_ept_ad_bits = 0;
7903
7904 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7905 enable_unrestricted_guest = 0;
7906
7907 if (!cpu_has_vmx_flexpriority())
7908 flexpriority_enabled = 0;
7909
7910 if (!cpu_has_virtual_nmis())
7911 enable_vnmi = 0;
7912
7913 /*
7914 * set_apic_access_page_addr() is used to reload apic access
7915 * page upon invalidation. No need to do anything if not
7916 * using the APIC_ACCESS_ADDR VMCS field.
7917 */
7918 if (!flexpriority_enabled)
7919 kvm_x86_ops->set_apic_access_page_addr = NULL;
7920
7921 if (!cpu_has_vmx_tpr_shadow())
7922 kvm_x86_ops->update_cr8_intercept = NULL;
7923
7924 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7925 kvm_disable_largepages();
7926
7927 #if IS_ENABLED(CONFIG_HYPERV)
7928 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7929 && enable_ept)
7930 kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
7931 #endif
7932
7933 if (!cpu_has_vmx_ple()) {
7934 ple_gap = 0;
7935 ple_window = 0;
7936 ple_window_grow = 0;
7937 ple_window_max = 0;
7938 ple_window_shrink = 0;
7939 }
7940
7941 if (!cpu_has_vmx_apicv()) {
7942 enable_apicv = 0;
7943 kvm_x86_ops->sync_pir_to_irr = NULL;
7944 }
7945
7946 if (cpu_has_vmx_tsc_scaling()) {
7947 kvm_has_tsc_control = true;
7948 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7949 kvm_tsc_scaling_ratio_frac_bits = 48;
7950 }
7951
7952 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7953
7954 if (enable_ept)
7955 vmx_enable_tdp();
7956 else
7957 kvm_disable_tdp();
7958
7959 if (!nested) {
7960 kvm_x86_ops->get_nested_state = NULL;
7961 kvm_x86_ops->set_nested_state = NULL;
7962 }
7963
7964 /*
7965 * Only enable PML when hardware supports PML feature, and both EPT
7966 * and EPT A/D bit features are enabled -- PML depends on them to work.
7967 */
7968 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7969 enable_pml = 0;
7970
7971 if (!enable_pml) {
7972 kvm_x86_ops->slot_enable_log_dirty = NULL;
7973 kvm_x86_ops->slot_disable_log_dirty = NULL;
7974 kvm_x86_ops->flush_log_dirty = NULL;
7975 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7976 }
7977
7978 if (!cpu_has_vmx_preemption_timer())
7979 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7980
7981 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7982 u64 vmx_msr;
7983
7984 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7985 cpu_preemption_timer_multi =
7986 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7987 } else {
7988 kvm_x86_ops->set_hv_timer = NULL;
7989 kvm_x86_ops->cancel_hv_timer = NULL;
7990 }
7991
7992 if (!cpu_has_vmx_shadow_vmcs())
7993 enable_shadow_vmcs = 0;
7994 if (enable_shadow_vmcs)
7995 init_vmcs_shadow_fields();
7996
7997 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7998 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
7999
8000 kvm_mce_cap_supported |= MCG_LMCE_P;
8001
8002 return alloc_kvm_area();
8003
8004 out:
8005 for (i = 0; i < VMX_BITMAP_NR; i++)
8006 free_page((unsigned long)vmx_bitmap[i]);
8007
8008 return r;
8009 }
8010
hardware_unsetup(void)8011 static __exit void hardware_unsetup(void)
8012 {
8013 int i;
8014
8015 for (i = 0; i < VMX_BITMAP_NR; i++)
8016 free_page((unsigned long)vmx_bitmap[i]);
8017
8018 free_kvm_area();
8019 }
8020
8021 /*
8022 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
8023 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
8024 */
handle_pause(struct kvm_vcpu * vcpu)8025 static int handle_pause(struct kvm_vcpu *vcpu)
8026 {
8027 if (!kvm_pause_in_guest(vcpu->kvm))
8028 grow_ple_window(vcpu);
8029
8030 /*
8031 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
8032 * VM-execution control is ignored if CPL > 0. OTOH, KVM
8033 * never set PAUSE_EXITING and just set PLE if supported,
8034 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
8035 */
8036 kvm_vcpu_on_spin(vcpu, true);
8037 return kvm_skip_emulated_instruction(vcpu);
8038 }
8039
handle_nop(struct kvm_vcpu * vcpu)8040 static int handle_nop(struct kvm_vcpu *vcpu)
8041 {
8042 return kvm_skip_emulated_instruction(vcpu);
8043 }
8044
handle_mwait(struct kvm_vcpu * vcpu)8045 static int handle_mwait(struct kvm_vcpu *vcpu)
8046 {
8047 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
8048 return handle_nop(vcpu);
8049 }
8050
handle_invalid_op(struct kvm_vcpu * vcpu)8051 static int handle_invalid_op(struct kvm_vcpu *vcpu)
8052 {
8053 kvm_queue_exception(vcpu, UD_VECTOR);
8054 return 1;
8055 }
8056
handle_monitor_trap(struct kvm_vcpu * vcpu)8057 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
8058 {
8059 return 1;
8060 }
8061
handle_monitor(struct kvm_vcpu * vcpu)8062 static int handle_monitor(struct kvm_vcpu *vcpu)
8063 {
8064 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
8065 return handle_nop(vcpu);
8066 }
8067
8068 /*
8069 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
8070 * set the success or error code of an emulated VMX instruction, as specified
8071 * by Vol 2B, VMX Instruction Reference, "Conventions".
8072 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)8073 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
8074 {
8075 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
8076 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
8077 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
8078 }
8079
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)8080 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
8081 {
8082 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
8083 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
8084 X86_EFLAGS_SF | X86_EFLAGS_OF))
8085 | X86_EFLAGS_CF);
8086 }
8087
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)8088 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
8089 u32 vm_instruction_error)
8090 {
8091 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
8092 /*
8093 * failValid writes the error number to the current VMCS, which
8094 * can't be done there isn't a current VMCS.
8095 */
8096 nested_vmx_failInvalid(vcpu);
8097 return;
8098 }
8099 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
8100 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
8101 X86_EFLAGS_SF | X86_EFLAGS_OF))
8102 | X86_EFLAGS_ZF);
8103 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
8104 /*
8105 * We don't need to force a shadow sync because
8106 * VM_INSTRUCTION_ERROR is not shadowed
8107 */
8108 }
8109
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)8110 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
8111 {
8112 /* TODO: not to reset guest simply here. */
8113 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8114 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
8115 }
8116
vmx_preemption_timer_fn(struct hrtimer * timer)8117 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
8118 {
8119 struct vcpu_vmx *vmx =
8120 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
8121
8122 vmx->nested.preemption_timer_expired = true;
8123 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
8124 kvm_vcpu_kick(&vmx->vcpu);
8125
8126 return HRTIMER_NORESTART;
8127 }
8128
8129 /*
8130 * Decode the memory-address operand of a vmx instruction, as recorded on an
8131 * exit caused by such an instruction (run by a guest hypervisor).
8132 * On success, returns 0. When the operand is invalid, returns 1 and throws
8133 * #UD or #GP.
8134 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)8135 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
8136 unsigned long exit_qualification,
8137 u32 vmx_instruction_info, bool wr, gva_t *ret)
8138 {
8139 gva_t off;
8140 bool exn;
8141 struct kvm_segment s;
8142
8143 /*
8144 * According to Vol. 3B, "Information for VM Exits Due to Instruction
8145 * Execution", on an exit, vmx_instruction_info holds most of the
8146 * addressing components of the operand. Only the displacement part
8147 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
8148 * For how an actual address is calculated from all these components,
8149 * refer to Vol. 1, "Operand Addressing".
8150 */
8151 int scaling = vmx_instruction_info & 3;
8152 int addr_size = (vmx_instruction_info >> 7) & 7;
8153 bool is_reg = vmx_instruction_info & (1u << 10);
8154 int seg_reg = (vmx_instruction_info >> 15) & 7;
8155 int index_reg = (vmx_instruction_info >> 18) & 0xf;
8156 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
8157 int base_reg = (vmx_instruction_info >> 23) & 0xf;
8158 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
8159
8160 if (is_reg) {
8161 kvm_queue_exception(vcpu, UD_VECTOR);
8162 return 1;
8163 }
8164
8165 /* Addr = segment_base + offset */
8166 /* offset = base + [index * scale] + displacement */
8167 off = exit_qualification; /* holds the displacement */
8168 if (base_is_valid)
8169 off += kvm_register_read(vcpu, base_reg);
8170 if (index_is_valid)
8171 off += kvm_register_read(vcpu, index_reg)<<scaling;
8172 vmx_get_segment(vcpu, &s, seg_reg);
8173 *ret = s.base + off;
8174
8175 if (addr_size == 1) /* 32 bit */
8176 *ret &= 0xffffffff;
8177
8178 /* Checks for #GP/#SS exceptions. */
8179 exn = false;
8180 if (is_long_mode(vcpu)) {
8181 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
8182 * non-canonical form. This is the only check on the memory
8183 * destination for long mode!
8184 */
8185 exn = is_noncanonical_address(*ret, vcpu);
8186 } else if (is_protmode(vcpu)) {
8187 /* Protected mode: apply checks for segment validity in the
8188 * following order:
8189 * - segment type check (#GP(0) may be thrown)
8190 * - usability check (#GP(0)/#SS(0))
8191 * - limit check (#GP(0)/#SS(0))
8192 */
8193 if (wr)
8194 /* #GP(0) if the destination operand is located in a
8195 * read-only data segment or any code segment.
8196 */
8197 exn = ((s.type & 0xa) == 0 || (s.type & 8));
8198 else
8199 /* #GP(0) if the source operand is located in an
8200 * execute-only code segment
8201 */
8202 exn = ((s.type & 0xa) == 8);
8203 if (exn) {
8204 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8205 return 1;
8206 }
8207 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
8208 */
8209 exn = (s.unusable != 0);
8210 /* Protected mode: #GP(0)/#SS(0) if the memory
8211 * operand is outside the segment limit.
8212 */
8213 exn = exn || (off + sizeof(u64) > s.limit);
8214 }
8215 if (exn) {
8216 kvm_queue_exception_e(vcpu,
8217 seg_reg == VCPU_SREG_SS ?
8218 SS_VECTOR : GP_VECTOR,
8219 0);
8220 return 1;
8221 }
8222
8223 return 0;
8224 }
8225
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer)8226 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
8227 {
8228 gva_t gva;
8229 struct x86_exception e;
8230
8231 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8232 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
8233 return 1;
8234
8235 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
8236 kvm_inject_page_fault(vcpu, &e);
8237 return 1;
8238 }
8239
8240 return 0;
8241 }
8242
8243 /*
8244 * Allocate a shadow VMCS and associate it with the currently loaded
8245 * VMCS, unless such a shadow VMCS already exists. The newly allocated
8246 * VMCS is also VMCLEARed, so that it is ready for use.
8247 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)8248 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
8249 {
8250 struct vcpu_vmx *vmx = to_vmx(vcpu);
8251 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
8252
8253 /*
8254 * We should allocate a shadow vmcs for vmcs01 only when L1
8255 * executes VMXON and free it when L1 executes VMXOFF.
8256 * As it is invalid to execute VMXON twice, we shouldn't reach
8257 * here when vmcs01 already have an allocated shadow vmcs.
8258 */
8259 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
8260
8261 if (!loaded_vmcs->shadow_vmcs) {
8262 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
8263 if (loaded_vmcs->shadow_vmcs)
8264 vmcs_clear(loaded_vmcs->shadow_vmcs);
8265 }
8266 return loaded_vmcs->shadow_vmcs;
8267 }
8268
enter_vmx_operation(struct kvm_vcpu * vcpu)8269 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
8270 {
8271 struct vcpu_vmx *vmx = to_vmx(vcpu);
8272 int r;
8273
8274 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
8275 if (r < 0)
8276 goto out_vmcs02;
8277
8278 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
8279 if (!vmx->nested.cached_vmcs12)
8280 goto out_cached_vmcs12;
8281
8282 vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
8283 if (!vmx->nested.cached_shadow_vmcs12)
8284 goto out_cached_shadow_vmcs12;
8285
8286 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
8287 goto out_shadow_vmcs;
8288
8289 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
8290 HRTIMER_MODE_REL_PINNED);
8291 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
8292
8293 vmx->nested.vpid02 = allocate_vpid();
8294
8295 vmx->nested.vmxon = true;
8296 return 0;
8297
8298 out_shadow_vmcs:
8299 kfree(vmx->nested.cached_shadow_vmcs12);
8300
8301 out_cached_shadow_vmcs12:
8302 kfree(vmx->nested.cached_vmcs12);
8303
8304 out_cached_vmcs12:
8305 free_loaded_vmcs(&vmx->nested.vmcs02);
8306
8307 out_vmcs02:
8308 return -ENOMEM;
8309 }
8310
8311 /*
8312 * Emulate the VMXON instruction.
8313 * Currently, we just remember that VMX is active, and do not save or even
8314 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
8315 * do not currently need to store anything in that guest-allocated memory
8316 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
8317 * argument is different from the VMXON pointer (which the spec says they do).
8318 */
handle_vmon(struct kvm_vcpu * vcpu)8319 static int handle_vmon(struct kvm_vcpu *vcpu)
8320 {
8321 int ret;
8322 gpa_t vmptr;
8323 struct page *page;
8324 struct vcpu_vmx *vmx = to_vmx(vcpu);
8325 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
8326 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8327
8328 /*
8329 * The Intel VMX Instruction Reference lists a bunch of bits that are
8330 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
8331 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
8332 * Otherwise, we should fail with #UD. But most faulting conditions
8333 * have already been checked by hardware, prior to the VM-exit for
8334 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
8335 * that bit set to 1 in non-root mode.
8336 */
8337 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
8338 kvm_queue_exception(vcpu, UD_VECTOR);
8339 return 1;
8340 }
8341
8342 /* CPL=0 must be checked manually. */
8343 if (vmx_get_cpl(vcpu)) {
8344 kvm_inject_gp(vcpu, 0);
8345 return 1;
8346 }
8347
8348 if (vmx->nested.vmxon) {
8349 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
8350 return kvm_skip_emulated_instruction(vcpu);
8351 }
8352
8353 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
8354 != VMXON_NEEDED_FEATURES) {
8355 kvm_inject_gp(vcpu, 0);
8356 return 1;
8357 }
8358
8359 if (nested_vmx_get_vmptr(vcpu, &vmptr))
8360 return 1;
8361
8362 /*
8363 * SDM 3: 24.11.5
8364 * The first 4 bytes of VMXON region contain the supported
8365 * VMCS revision identifier
8366 *
8367 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
8368 * which replaces physical address width with 32
8369 */
8370 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8371 nested_vmx_failInvalid(vcpu);
8372 return kvm_skip_emulated_instruction(vcpu);
8373 }
8374
8375 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8376 if (is_error_page(page)) {
8377 nested_vmx_failInvalid(vcpu);
8378 return kvm_skip_emulated_instruction(vcpu);
8379 }
8380 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
8381 kunmap(page);
8382 kvm_release_page_clean(page);
8383 nested_vmx_failInvalid(vcpu);
8384 return kvm_skip_emulated_instruction(vcpu);
8385 }
8386 kunmap(page);
8387 kvm_release_page_clean(page);
8388
8389 vmx->nested.vmxon_ptr = vmptr;
8390 ret = enter_vmx_operation(vcpu);
8391 if (ret)
8392 return ret;
8393
8394 nested_vmx_succeed(vcpu);
8395 return kvm_skip_emulated_instruction(vcpu);
8396 }
8397
8398 /*
8399 * Intel's VMX Instruction Reference specifies a common set of prerequisites
8400 * for running VMX instructions (except VMXON, whose prerequisites are
8401 * slightly different). It also specifies what exception to inject otherwise.
8402 * Note that many of these exceptions have priority over VM exits, so they
8403 * don't have to be checked again here.
8404 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)8405 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
8406 {
8407 if (!to_vmx(vcpu)->nested.vmxon) {
8408 kvm_queue_exception(vcpu, UD_VECTOR);
8409 return 0;
8410 }
8411
8412 if (vmx_get_cpl(vcpu)) {
8413 kvm_inject_gp(vcpu, 0);
8414 return 0;
8415 }
8416
8417 return 1;
8418 }
8419
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)8420 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
8421 {
8422 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
8423 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8424 }
8425
nested_release_vmcs12(struct vcpu_vmx * vmx)8426 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
8427 {
8428 if (vmx->nested.current_vmptr == -1ull)
8429 return;
8430
8431 if (enable_shadow_vmcs) {
8432 /* copy to memory all shadowed fields in case
8433 they were modified */
8434 copy_shadow_to_vmcs12(vmx);
8435 vmx->nested.sync_shadow_vmcs = false;
8436 vmx_disable_shadow_vmcs(vmx);
8437 }
8438 vmx->nested.posted_intr_nv = -1;
8439
8440 /* Flush VMCS12 to guest memory */
8441 kvm_vcpu_write_guest_page(&vmx->vcpu,
8442 vmx->nested.current_vmptr >> PAGE_SHIFT,
8443 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
8444
8445 vmx->nested.current_vmptr = -1ull;
8446 }
8447
8448 /*
8449 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
8450 * just stops using VMX.
8451 */
free_nested(struct vcpu_vmx * vmx)8452 static void free_nested(struct vcpu_vmx *vmx)
8453 {
8454 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
8455 return;
8456
8457 vmx->nested.vmxon = false;
8458 vmx->nested.smm.vmxon = false;
8459 free_vpid(vmx->nested.vpid02);
8460 vmx->nested.posted_intr_nv = -1;
8461 vmx->nested.current_vmptr = -1ull;
8462 if (enable_shadow_vmcs) {
8463 vmx_disable_shadow_vmcs(vmx);
8464 vmcs_clear(vmx->vmcs01.shadow_vmcs);
8465 free_vmcs(vmx->vmcs01.shadow_vmcs);
8466 vmx->vmcs01.shadow_vmcs = NULL;
8467 }
8468 kfree(vmx->nested.cached_vmcs12);
8469 kfree(vmx->nested.cached_shadow_vmcs12);
8470 /* Unpin physical memory we referred to in the vmcs02 */
8471 if (vmx->nested.apic_access_page) {
8472 kvm_release_page_dirty(vmx->nested.apic_access_page);
8473 vmx->nested.apic_access_page = NULL;
8474 }
8475 if (vmx->nested.virtual_apic_page) {
8476 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
8477 vmx->nested.virtual_apic_page = NULL;
8478 }
8479 if (vmx->nested.pi_desc_page) {
8480 kunmap(vmx->nested.pi_desc_page);
8481 kvm_release_page_dirty(vmx->nested.pi_desc_page);
8482 vmx->nested.pi_desc_page = NULL;
8483 vmx->nested.pi_desc = NULL;
8484 }
8485
8486 free_loaded_vmcs(&vmx->nested.vmcs02);
8487 }
8488
8489 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)8490 static int handle_vmoff(struct kvm_vcpu *vcpu)
8491 {
8492 if (!nested_vmx_check_permission(vcpu))
8493 return 1;
8494 free_nested(to_vmx(vcpu));
8495 nested_vmx_succeed(vcpu);
8496 return kvm_skip_emulated_instruction(vcpu);
8497 }
8498
8499 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)8500 static int handle_vmclear(struct kvm_vcpu *vcpu)
8501 {
8502 struct vcpu_vmx *vmx = to_vmx(vcpu);
8503 u32 zero = 0;
8504 gpa_t vmptr;
8505
8506 if (!nested_vmx_check_permission(vcpu))
8507 return 1;
8508
8509 if (nested_vmx_get_vmptr(vcpu, &vmptr))
8510 return 1;
8511
8512 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8513 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
8514 return kvm_skip_emulated_instruction(vcpu);
8515 }
8516
8517 if (vmptr == vmx->nested.vmxon_ptr) {
8518 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
8519 return kvm_skip_emulated_instruction(vcpu);
8520 }
8521
8522 if (vmptr == vmx->nested.current_vmptr)
8523 nested_release_vmcs12(vmx);
8524
8525 kvm_vcpu_write_guest(vcpu,
8526 vmptr + offsetof(struct vmcs12, launch_state),
8527 &zero, sizeof(zero));
8528
8529 nested_vmx_succeed(vcpu);
8530 return kvm_skip_emulated_instruction(vcpu);
8531 }
8532
8533 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
8534
8535 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)8536 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
8537 {
8538 return nested_vmx_run(vcpu, true);
8539 }
8540
8541 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)8542 static int handle_vmresume(struct kvm_vcpu *vcpu)
8543 {
8544
8545 return nested_vmx_run(vcpu, false);
8546 }
8547
8548 /*
8549 * Read a vmcs12 field. Since these can have varying lengths and we return
8550 * one type, we chose the biggest type (u64) and zero-extend the return value
8551 * to that size. Note that the caller, handle_vmread, might need to use only
8552 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
8553 * 64-bit fields are to be returned).
8554 */
vmcs12_read_any(struct vmcs12 * vmcs12,unsigned long field,u64 * ret)8555 static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
8556 unsigned long field, u64 *ret)
8557 {
8558 short offset = vmcs_field_to_offset(field);
8559 char *p;
8560
8561 if (offset < 0)
8562 return offset;
8563
8564 p = (char *)vmcs12 + offset;
8565
8566 switch (vmcs_field_width(field)) {
8567 case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
8568 *ret = *((natural_width *)p);
8569 return 0;
8570 case VMCS_FIELD_WIDTH_U16:
8571 *ret = *((u16 *)p);
8572 return 0;
8573 case VMCS_FIELD_WIDTH_U32:
8574 *ret = *((u32 *)p);
8575 return 0;
8576 case VMCS_FIELD_WIDTH_U64:
8577 *ret = *((u64 *)p);
8578 return 0;
8579 default:
8580 WARN_ON(1);
8581 return -ENOENT;
8582 }
8583 }
8584
8585
vmcs12_write_any(struct vmcs12 * vmcs12,unsigned long field,u64 field_value)8586 static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
8587 unsigned long field, u64 field_value){
8588 short offset = vmcs_field_to_offset(field);
8589 char *p = (char *)vmcs12 + offset;
8590 if (offset < 0)
8591 return offset;
8592
8593 switch (vmcs_field_width(field)) {
8594 case VMCS_FIELD_WIDTH_U16:
8595 *(u16 *)p = field_value;
8596 return 0;
8597 case VMCS_FIELD_WIDTH_U32:
8598 *(u32 *)p = field_value;
8599 return 0;
8600 case VMCS_FIELD_WIDTH_U64:
8601 *(u64 *)p = field_value;
8602 return 0;
8603 case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
8604 *(natural_width *)p = field_value;
8605 return 0;
8606 default:
8607 WARN_ON(1);
8608 return -ENOENT;
8609 }
8610
8611 }
8612
8613 /*
8614 * Copy the writable VMCS shadow fields back to the VMCS12, in case
8615 * they have been modified by the L1 guest. Note that the "read-only"
8616 * VM-exit information fields are actually writable if the vCPU is
8617 * configured to support "VMWRITE to any supported field in the VMCS."
8618 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)8619 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
8620 {
8621 const u16 *fields[] = {
8622 shadow_read_write_fields,
8623 shadow_read_only_fields
8624 };
8625 const int max_fields[] = {
8626 max_shadow_read_write_fields,
8627 max_shadow_read_only_fields
8628 };
8629 int i, q;
8630 unsigned long field;
8631 u64 field_value;
8632 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
8633
8634 preempt_disable();
8635
8636 vmcs_load(shadow_vmcs);
8637
8638 for (q = 0; q < ARRAY_SIZE(fields); q++) {
8639 for (i = 0; i < max_fields[q]; i++) {
8640 field = fields[q][i];
8641 field_value = __vmcs_readl(field);
8642 vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
8643 }
8644 /*
8645 * Skip the VM-exit information fields if they are read-only.
8646 */
8647 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
8648 break;
8649 }
8650
8651 vmcs_clear(shadow_vmcs);
8652 vmcs_load(vmx->loaded_vmcs->vmcs);
8653
8654 preempt_enable();
8655 }
8656
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)8657 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
8658 {
8659 const u16 *fields[] = {
8660 shadow_read_write_fields,
8661 shadow_read_only_fields
8662 };
8663 const int max_fields[] = {
8664 max_shadow_read_write_fields,
8665 max_shadow_read_only_fields
8666 };
8667 int i, q;
8668 unsigned long field;
8669 u64 field_value = 0;
8670 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
8671
8672 vmcs_load(shadow_vmcs);
8673
8674 for (q = 0; q < ARRAY_SIZE(fields); q++) {
8675 for (i = 0; i < max_fields[q]; i++) {
8676 field = fields[q][i];
8677 vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
8678 __vmcs_writel(field, field_value);
8679 }
8680 }
8681
8682 vmcs_clear(shadow_vmcs);
8683 vmcs_load(vmx->loaded_vmcs->vmcs);
8684 }
8685
8686 /*
8687 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
8688 * used before) all generate the same failure when it is missing.
8689 */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)8690 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
8691 {
8692 struct vcpu_vmx *vmx = to_vmx(vcpu);
8693 if (vmx->nested.current_vmptr == -1ull) {
8694 nested_vmx_failInvalid(vcpu);
8695 return 0;
8696 }
8697 return 1;
8698 }
8699
handle_vmread(struct kvm_vcpu * vcpu)8700 static int handle_vmread(struct kvm_vcpu *vcpu)
8701 {
8702 unsigned long field;
8703 u64 field_value;
8704 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8705 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8706 gva_t gva = 0;
8707 struct vmcs12 *vmcs12;
8708
8709 if (!nested_vmx_check_permission(vcpu))
8710 return 1;
8711
8712 if (!nested_vmx_check_vmcs12(vcpu))
8713 return kvm_skip_emulated_instruction(vcpu);
8714
8715 if (!is_guest_mode(vcpu))
8716 vmcs12 = get_vmcs12(vcpu);
8717 else {
8718 /*
8719 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
8720 * to shadowed-field sets the ALU flags for VMfailInvalid.
8721 */
8722 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
8723 nested_vmx_failInvalid(vcpu);
8724 return kvm_skip_emulated_instruction(vcpu);
8725 }
8726 vmcs12 = get_shadow_vmcs12(vcpu);
8727 }
8728
8729 /* Decode instruction info and find the field to read */
8730 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8731 /* Read the field, zero-extended to a u64 field_value */
8732 if (vmcs12_read_any(vmcs12, field, &field_value) < 0) {
8733 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8734 return kvm_skip_emulated_instruction(vcpu);
8735 }
8736 /*
8737 * Now copy part of this value to register or memory, as requested.
8738 * Note that the number of bits actually copied is 32 or 64 depending
8739 * on the guest's mode (32 or 64 bit), not on the given field's length.
8740 */
8741 if (vmx_instruction_info & (1u << 10)) {
8742 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
8743 field_value);
8744 } else {
8745 if (get_vmx_mem_address(vcpu, exit_qualification,
8746 vmx_instruction_info, true, &gva))
8747 return 1;
8748 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
8749 kvm_write_guest_virt_system(vcpu, gva, &field_value,
8750 (is_long_mode(vcpu) ? 8 : 4), NULL);
8751 }
8752
8753 nested_vmx_succeed(vcpu);
8754 return kvm_skip_emulated_instruction(vcpu);
8755 }
8756
8757
handle_vmwrite(struct kvm_vcpu * vcpu)8758 static int handle_vmwrite(struct kvm_vcpu *vcpu)
8759 {
8760 unsigned long field;
8761 gva_t gva;
8762 struct vcpu_vmx *vmx = to_vmx(vcpu);
8763 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8764 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8765
8766 /* The value to write might be 32 or 64 bits, depending on L1's long
8767 * mode, and eventually we need to write that into a field of several
8768 * possible lengths. The code below first zero-extends the value to 64
8769 * bit (field_value), and then copies only the appropriate number of
8770 * bits into the vmcs12 field.
8771 */
8772 u64 field_value = 0;
8773 struct x86_exception e;
8774 struct vmcs12 *vmcs12;
8775
8776 if (!nested_vmx_check_permission(vcpu))
8777 return 1;
8778
8779 if (!nested_vmx_check_vmcs12(vcpu))
8780 return kvm_skip_emulated_instruction(vcpu);
8781
8782 if (vmx_instruction_info & (1u << 10))
8783 field_value = kvm_register_readl(vcpu,
8784 (((vmx_instruction_info) >> 3) & 0xf));
8785 else {
8786 if (get_vmx_mem_address(vcpu, exit_qualification,
8787 vmx_instruction_info, false, &gva))
8788 return 1;
8789 if (kvm_read_guest_virt(vcpu, gva, &field_value,
8790 (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
8791 kvm_inject_page_fault(vcpu, &e);
8792 return 1;
8793 }
8794 }
8795
8796
8797 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8798 /*
8799 * If the vCPU supports "VMWRITE to any supported field in the
8800 * VMCS," then the "read-only" fields are actually read/write.
8801 */
8802 if (vmcs_field_readonly(field) &&
8803 !nested_cpu_has_vmwrite_any_field(vcpu)) {
8804 nested_vmx_failValid(vcpu,
8805 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
8806 return kvm_skip_emulated_instruction(vcpu);
8807 }
8808
8809 if (!is_guest_mode(vcpu))
8810 vmcs12 = get_vmcs12(vcpu);
8811 else {
8812 /*
8813 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
8814 * to shadowed-field sets the ALU flags for VMfailInvalid.
8815 */
8816 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
8817 nested_vmx_failInvalid(vcpu);
8818 return kvm_skip_emulated_instruction(vcpu);
8819 }
8820 vmcs12 = get_shadow_vmcs12(vcpu);
8821
8822 }
8823
8824 if (vmcs12_write_any(vmcs12, field, field_value) < 0) {
8825 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8826 return kvm_skip_emulated_instruction(vcpu);
8827 }
8828
8829 /*
8830 * Do not track vmcs12 dirty-state if in guest-mode
8831 * as we actually dirty shadow vmcs12 instead of vmcs12.
8832 */
8833 if (!is_guest_mode(vcpu)) {
8834 switch (field) {
8835 #define SHADOW_FIELD_RW(x) case x:
8836 #include "vmx_shadow_fields.h"
8837 /*
8838 * The fields that can be updated by L1 without a vmexit are
8839 * always updated in the vmcs02, the others go down the slow
8840 * path of prepare_vmcs02.
8841 */
8842 break;
8843 default:
8844 vmx->nested.dirty_vmcs12 = true;
8845 break;
8846 }
8847 }
8848
8849 nested_vmx_succeed(vcpu);
8850 return kvm_skip_emulated_instruction(vcpu);
8851 }
8852
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)8853 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
8854 {
8855 vmx->nested.current_vmptr = vmptr;
8856 if (enable_shadow_vmcs) {
8857 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
8858 SECONDARY_EXEC_SHADOW_VMCS);
8859 vmcs_write64(VMCS_LINK_POINTER,
8860 __pa(vmx->vmcs01.shadow_vmcs));
8861 vmx->nested.sync_shadow_vmcs = true;
8862 }
8863 vmx->nested.dirty_vmcs12 = true;
8864 }
8865
8866 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)8867 static int handle_vmptrld(struct kvm_vcpu *vcpu)
8868 {
8869 struct vcpu_vmx *vmx = to_vmx(vcpu);
8870 gpa_t vmptr;
8871
8872 if (!nested_vmx_check_permission(vcpu))
8873 return 1;
8874
8875 if (nested_vmx_get_vmptr(vcpu, &vmptr))
8876 return 1;
8877
8878 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8879 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
8880 return kvm_skip_emulated_instruction(vcpu);
8881 }
8882
8883 if (vmptr == vmx->nested.vmxon_ptr) {
8884 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
8885 return kvm_skip_emulated_instruction(vcpu);
8886 }
8887
8888 if (vmx->nested.current_vmptr != vmptr) {
8889 struct vmcs12 *new_vmcs12;
8890 struct page *page;
8891 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8892 if (is_error_page(page)) {
8893 nested_vmx_failInvalid(vcpu);
8894 return kvm_skip_emulated_instruction(vcpu);
8895 }
8896 new_vmcs12 = kmap(page);
8897 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
8898 (new_vmcs12->hdr.shadow_vmcs &&
8899 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
8900 kunmap(page);
8901 kvm_release_page_clean(page);
8902 nested_vmx_failValid(vcpu,
8903 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
8904 return kvm_skip_emulated_instruction(vcpu);
8905 }
8906
8907 nested_release_vmcs12(vmx);
8908 /*
8909 * Load VMCS12 from guest memory since it is not already
8910 * cached.
8911 */
8912 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
8913 kunmap(page);
8914 kvm_release_page_clean(page);
8915
8916 set_current_vmptr(vmx, vmptr);
8917 }
8918
8919 nested_vmx_succeed(vcpu);
8920 return kvm_skip_emulated_instruction(vcpu);
8921 }
8922
8923 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)8924 static int handle_vmptrst(struct kvm_vcpu *vcpu)
8925 {
8926 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
8927 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8928 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
8929 struct x86_exception e;
8930 gva_t gva;
8931
8932 if (!nested_vmx_check_permission(vcpu))
8933 return 1;
8934
8935 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
8936 return 1;
8937 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
8938 if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
8939 sizeof(gpa_t), &e)) {
8940 kvm_inject_page_fault(vcpu, &e);
8941 return 1;
8942 }
8943 nested_vmx_succeed(vcpu);
8944 return kvm_skip_emulated_instruction(vcpu);
8945 }
8946
8947 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)8948 static int handle_invept(struct kvm_vcpu *vcpu)
8949 {
8950 struct vcpu_vmx *vmx = to_vmx(vcpu);
8951 u32 vmx_instruction_info, types;
8952 unsigned long type;
8953 gva_t gva;
8954 struct x86_exception e;
8955 struct {
8956 u64 eptp, gpa;
8957 } operand;
8958
8959 if (!(vmx->nested.msrs.secondary_ctls_high &
8960 SECONDARY_EXEC_ENABLE_EPT) ||
8961 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
8962 kvm_queue_exception(vcpu, UD_VECTOR);
8963 return 1;
8964 }
8965
8966 if (!nested_vmx_check_permission(vcpu))
8967 return 1;
8968
8969 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8970 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8971
8972 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
8973
8974 if (type >= 32 || !(types & (1 << type))) {
8975 nested_vmx_failValid(vcpu,
8976 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8977 return kvm_skip_emulated_instruction(vcpu);
8978 }
8979
8980 /* According to the Intel VMX instruction reference, the memory
8981 * operand is read even if it isn't needed (e.g., for type==global)
8982 */
8983 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8984 vmx_instruction_info, false, &gva))
8985 return 1;
8986 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
8987 kvm_inject_page_fault(vcpu, &e);
8988 return 1;
8989 }
8990
8991 switch (type) {
8992 case VMX_EPT_EXTENT_GLOBAL:
8993 /*
8994 * TODO: track mappings and invalidate
8995 * single context requests appropriately
8996 */
8997 case VMX_EPT_EXTENT_CONTEXT:
8998 kvm_mmu_sync_roots(vcpu);
8999 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9000 nested_vmx_succeed(vcpu);
9001 break;
9002 default:
9003 BUG_ON(1);
9004 break;
9005 }
9006
9007 return kvm_skip_emulated_instruction(vcpu);
9008 }
9009
handle_invvpid(struct kvm_vcpu * vcpu)9010 static int handle_invvpid(struct kvm_vcpu *vcpu)
9011 {
9012 struct vcpu_vmx *vmx = to_vmx(vcpu);
9013 u32 vmx_instruction_info;
9014 unsigned long type, types;
9015 gva_t gva;
9016 struct x86_exception e;
9017 struct {
9018 u64 vpid;
9019 u64 gla;
9020 } operand;
9021
9022 if (!(vmx->nested.msrs.secondary_ctls_high &
9023 SECONDARY_EXEC_ENABLE_VPID) ||
9024 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
9025 kvm_queue_exception(vcpu, UD_VECTOR);
9026 return 1;
9027 }
9028
9029 if (!nested_vmx_check_permission(vcpu))
9030 return 1;
9031
9032 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9033 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
9034
9035 types = (vmx->nested.msrs.vpid_caps &
9036 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
9037
9038 if (type >= 32 || !(types & (1 << type))) {
9039 nested_vmx_failValid(vcpu,
9040 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9041 return kvm_skip_emulated_instruction(vcpu);
9042 }
9043
9044 /* according to the intel vmx instruction reference, the memory
9045 * operand is read even if it isn't needed (e.g., for type==global)
9046 */
9047 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
9048 vmx_instruction_info, false, &gva))
9049 return 1;
9050 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
9051 kvm_inject_page_fault(vcpu, &e);
9052 return 1;
9053 }
9054 if (operand.vpid >> 16) {
9055 nested_vmx_failValid(vcpu,
9056 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9057 return kvm_skip_emulated_instruction(vcpu);
9058 }
9059
9060 switch (type) {
9061 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
9062 if (!operand.vpid ||
9063 is_noncanonical_address(operand.gla, vcpu)) {
9064 nested_vmx_failValid(vcpu,
9065 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9066 return kvm_skip_emulated_instruction(vcpu);
9067 }
9068 if (cpu_has_vmx_invvpid_individual_addr() &&
9069 vmx->nested.vpid02) {
9070 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
9071 vmx->nested.vpid02, operand.gla);
9072 } else
9073 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
9074 break;
9075 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
9076 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
9077 if (!operand.vpid) {
9078 nested_vmx_failValid(vcpu,
9079 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9080 return kvm_skip_emulated_instruction(vcpu);
9081 }
9082 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
9083 break;
9084 case VMX_VPID_EXTENT_ALL_CONTEXT:
9085 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
9086 break;
9087 default:
9088 WARN_ON_ONCE(1);
9089 return kvm_skip_emulated_instruction(vcpu);
9090 }
9091
9092 nested_vmx_succeed(vcpu);
9093
9094 return kvm_skip_emulated_instruction(vcpu);
9095 }
9096
handle_invpcid(struct kvm_vcpu * vcpu)9097 static int handle_invpcid(struct kvm_vcpu *vcpu)
9098 {
9099 u32 vmx_instruction_info;
9100 unsigned long type;
9101 bool pcid_enabled;
9102 gva_t gva;
9103 struct x86_exception e;
9104 unsigned i;
9105 unsigned long roots_to_free = 0;
9106 struct {
9107 u64 pcid;
9108 u64 gla;
9109 } operand;
9110
9111 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
9112 kvm_queue_exception(vcpu, UD_VECTOR);
9113 return 1;
9114 }
9115
9116 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9117 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
9118
9119 if (type > 3) {
9120 kvm_inject_gp(vcpu, 0);
9121 return 1;
9122 }
9123
9124 /* According to the Intel instruction reference, the memory operand
9125 * is read even if it isn't needed (e.g., for type==all)
9126 */
9127 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
9128 vmx_instruction_info, false, &gva))
9129 return 1;
9130
9131 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
9132 kvm_inject_page_fault(vcpu, &e);
9133 return 1;
9134 }
9135
9136 if (operand.pcid >> 12 != 0) {
9137 kvm_inject_gp(vcpu, 0);
9138 return 1;
9139 }
9140
9141 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
9142
9143 switch (type) {
9144 case INVPCID_TYPE_INDIV_ADDR:
9145 if ((!pcid_enabled && (operand.pcid != 0)) ||
9146 is_noncanonical_address(operand.gla, vcpu)) {
9147 kvm_inject_gp(vcpu, 0);
9148 return 1;
9149 }
9150 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
9151 return kvm_skip_emulated_instruction(vcpu);
9152
9153 case INVPCID_TYPE_SINGLE_CTXT:
9154 if (!pcid_enabled && (operand.pcid != 0)) {
9155 kvm_inject_gp(vcpu, 0);
9156 return 1;
9157 }
9158
9159 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
9160 kvm_mmu_sync_roots(vcpu);
9161 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9162 }
9163
9164 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
9165 if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3)
9166 == operand.pcid)
9167 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
9168
9169 kvm_mmu_free_roots(vcpu, roots_to_free);
9170 /*
9171 * If neither the current cr3 nor any of the prev_roots use the
9172 * given PCID, then nothing needs to be done here because a
9173 * resync will happen anyway before switching to any other CR3.
9174 */
9175
9176 return kvm_skip_emulated_instruction(vcpu);
9177
9178 case INVPCID_TYPE_ALL_NON_GLOBAL:
9179 /*
9180 * Currently, KVM doesn't mark global entries in the shadow
9181 * page tables, so a non-global flush just degenerates to a
9182 * global flush. If needed, we could optimize this later by
9183 * keeping track of global entries in shadow page tables.
9184 */
9185
9186 /* fall-through */
9187 case INVPCID_TYPE_ALL_INCL_GLOBAL:
9188 kvm_mmu_unload(vcpu);
9189 return kvm_skip_emulated_instruction(vcpu);
9190
9191 default:
9192 BUG(); /* We have already checked above that type <= 3 */
9193 }
9194 }
9195
handle_pml_full(struct kvm_vcpu * vcpu)9196 static int handle_pml_full(struct kvm_vcpu *vcpu)
9197 {
9198 unsigned long exit_qualification;
9199
9200 trace_kvm_pml_full(vcpu->vcpu_id);
9201
9202 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
9203
9204 /*
9205 * PML buffer FULL happened while executing iret from NMI,
9206 * "blocked by NMI" bit has to be set before next VM entry.
9207 */
9208 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
9209 enable_vnmi &&
9210 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
9211 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9212 GUEST_INTR_STATE_NMI);
9213
9214 /*
9215 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
9216 * here.., and there's no userspace involvement needed for PML.
9217 */
9218 return 1;
9219 }
9220
handle_preemption_timer(struct kvm_vcpu * vcpu)9221 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
9222 {
9223 if (!to_vmx(vcpu)->req_immediate_exit)
9224 kvm_lapic_expired_hv_timer(vcpu);
9225 return 1;
9226 }
9227
valid_ept_address(struct kvm_vcpu * vcpu,u64 address)9228 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
9229 {
9230 struct vcpu_vmx *vmx = to_vmx(vcpu);
9231 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9232
9233 /* Check for memory type validity */
9234 switch (address & VMX_EPTP_MT_MASK) {
9235 case VMX_EPTP_MT_UC:
9236 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
9237 return false;
9238 break;
9239 case VMX_EPTP_MT_WB:
9240 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
9241 return false;
9242 break;
9243 default:
9244 return false;
9245 }
9246
9247 /* only 4 levels page-walk length are valid */
9248 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
9249 return false;
9250
9251 /* Reserved bits should not be set */
9252 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
9253 return false;
9254
9255 /* AD, if set, should be supported */
9256 if (address & VMX_EPTP_AD_ENABLE_BIT) {
9257 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
9258 return false;
9259 }
9260
9261 return true;
9262 }
9263
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9264 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
9265 struct vmcs12 *vmcs12)
9266 {
9267 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
9268 u64 address;
9269 bool accessed_dirty;
9270 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
9271
9272 if (!nested_cpu_has_eptp_switching(vmcs12) ||
9273 !nested_cpu_has_ept(vmcs12))
9274 return 1;
9275
9276 if (index >= VMFUNC_EPTP_ENTRIES)
9277 return 1;
9278
9279
9280 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
9281 &address, index * 8, 8))
9282 return 1;
9283
9284 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
9285
9286 /*
9287 * If the (L2) guest does a vmfunc to the currently
9288 * active ept pointer, we don't have to do anything else
9289 */
9290 if (vmcs12->ept_pointer != address) {
9291 if (!valid_ept_address(vcpu, address))
9292 return 1;
9293
9294 kvm_mmu_unload(vcpu);
9295 mmu->ept_ad = accessed_dirty;
9296 mmu->base_role.ad_disabled = !accessed_dirty;
9297 vmcs12->ept_pointer = address;
9298 /*
9299 * TODO: Check what's the correct approach in case
9300 * mmu reload fails. Currently, we just let the next
9301 * reload potentially fail
9302 */
9303 kvm_mmu_reload(vcpu);
9304 }
9305
9306 return 0;
9307 }
9308
handle_vmfunc(struct kvm_vcpu * vcpu)9309 static int handle_vmfunc(struct kvm_vcpu *vcpu)
9310 {
9311 struct vcpu_vmx *vmx = to_vmx(vcpu);
9312 struct vmcs12 *vmcs12;
9313 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
9314
9315 /*
9316 * VMFUNC is only supported for nested guests, but we always enable the
9317 * secondary control for simplicity; for non-nested mode, fake that we
9318 * didn't by injecting #UD.
9319 */
9320 if (!is_guest_mode(vcpu)) {
9321 kvm_queue_exception(vcpu, UD_VECTOR);
9322 return 1;
9323 }
9324
9325 vmcs12 = get_vmcs12(vcpu);
9326 if ((vmcs12->vm_function_control & (1 << function)) == 0)
9327 goto fail;
9328
9329 switch (function) {
9330 case 0:
9331 if (nested_vmx_eptp_switching(vcpu, vmcs12))
9332 goto fail;
9333 break;
9334 default:
9335 goto fail;
9336 }
9337 return kvm_skip_emulated_instruction(vcpu);
9338
9339 fail:
9340 nested_vmx_vmexit(vcpu, vmx->exit_reason,
9341 vmcs_read32(VM_EXIT_INTR_INFO),
9342 vmcs_readl(EXIT_QUALIFICATION));
9343 return 1;
9344 }
9345
handle_encls(struct kvm_vcpu * vcpu)9346 static int handle_encls(struct kvm_vcpu *vcpu)
9347 {
9348 /*
9349 * SGX virtualization is not yet supported. There is no software
9350 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
9351 * to prevent the guest from executing ENCLS.
9352 */
9353 kvm_queue_exception(vcpu, UD_VECTOR);
9354 return 1;
9355 }
9356
9357 /*
9358 * The exit handlers return 1 if the exit was handled fully and guest execution
9359 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
9360 * to be done to userspace and return 0.
9361 */
9362 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
9363 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
9364 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
9365 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
9366 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
9367 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
9368 [EXIT_REASON_CR_ACCESS] = handle_cr,
9369 [EXIT_REASON_DR_ACCESS] = handle_dr,
9370 [EXIT_REASON_CPUID] = handle_cpuid,
9371 [EXIT_REASON_MSR_READ] = handle_rdmsr,
9372 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
9373 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
9374 [EXIT_REASON_HLT] = handle_halt,
9375 [EXIT_REASON_INVD] = handle_invd,
9376 [EXIT_REASON_INVLPG] = handle_invlpg,
9377 [EXIT_REASON_RDPMC] = handle_rdpmc,
9378 [EXIT_REASON_VMCALL] = handle_vmcall,
9379 [EXIT_REASON_VMCLEAR] = handle_vmclear,
9380 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
9381 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
9382 [EXIT_REASON_VMPTRST] = handle_vmptrst,
9383 [EXIT_REASON_VMREAD] = handle_vmread,
9384 [EXIT_REASON_VMRESUME] = handle_vmresume,
9385 [EXIT_REASON_VMWRITE] = handle_vmwrite,
9386 [EXIT_REASON_VMOFF] = handle_vmoff,
9387 [EXIT_REASON_VMON] = handle_vmon,
9388 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
9389 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
9390 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
9391 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
9392 [EXIT_REASON_WBINVD] = handle_wbinvd,
9393 [EXIT_REASON_XSETBV] = handle_xsetbv,
9394 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
9395 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
9396 [EXIT_REASON_GDTR_IDTR] = handle_desc,
9397 [EXIT_REASON_LDTR_TR] = handle_desc,
9398 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
9399 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
9400 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
9401 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
9402 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
9403 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
9404 [EXIT_REASON_INVEPT] = handle_invept,
9405 [EXIT_REASON_INVVPID] = handle_invvpid,
9406 [EXIT_REASON_RDRAND] = handle_invalid_op,
9407 [EXIT_REASON_RDSEED] = handle_invalid_op,
9408 [EXIT_REASON_XSAVES] = handle_xsaves,
9409 [EXIT_REASON_XRSTORS] = handle_xrstors,
9410 [EXIT_REASON_PML_FULL] = handle_pml_full,
9411 [EXIT_REASON_INVPCID] = handle_invpcid,
9412 [EXIT_REASON_VMFUNC] = handle_vmfunc,
9413 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
9414 [EXIT_REASON_ENCLS] = handle_encls,
9415 };
9416
9417 static const int kvm_vmx_max_exit_handlers =
9418 ARRAY_SIZE(kvm_vmx_exit_handlers);
9419
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9420 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
9421 struct vmcs12 *vmcs12)
9422 {
9423 unsigned long exit_qualification;
9424 gpa_t bitmap, last_bitmap;
9425 unsigned int port;
9426 int size;
9427 u8 b;
9428
9429 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9430 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
9431
9432 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
9433
9434 port = exit_qualification >> 16;
9435 size = (exit_qualification & 7) + 1;
9436
9437 last_bitmap = (gpa_t)-1;
9438 b = -1;
9439
9440 while (size > 0) {
9441 if (port < 0x8000)
9442 bitmap = vmcs12->io_bitmap_a;
9443 else if (port < 0x10000)
9444 bitmap = vmcs12->io_bitmap_b;
9445 else
9446 return true;
9447 bitmap += (port & 0x7fff) / 8;
9448
9449 if (last_bitmap != bitmap)
9450 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
9451 return true;
9452 if (b & (1 << (port & 7)))
9453 return true;
9454
9455 port++;
9456 size--;
9457 last_bitmap = bitmap;
9458 }
9459
9460 return false;
9461 }
9462
9463 /*
9464 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
9465 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
9466 * disinterest in the current event (read or write a specific MSR) by using an
9467 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
9468 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)9469 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
9470 struct vmcs12 *vmcs12, u32 exit_reason)
9471 {
9472 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
9473 gpa_t bitmap;
9474
9475 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9476 return true;
9477
9478 /*
9479 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
9480 * for the four combinations of read/write and low/high MSR numbers.
9481 * First we need to figure out which of the four to use:
9482 */
9483 bitmap = vmcs12->msr_bitmap;
9484 if (exit_reason == EXIT_REASON_MSR_WRITE)
9485 bitmap += 2048;
9486 if (msr_index >= 0xc0000000) {
9487 msr_index -= 0xc0000000;
9488 bitmap += 1024;
9489 }
9490
9491 /* Then read the msr_index'th bit from this bitmap: */
9492 if (msr_index < 1024*8) {
9493 unsigned char b;
9494 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
9495 return true;
9496 return 1 & (b >> (msr_index & 7));
9497 } else
9498 return true; /* let L1 handle the wrong parameter */
9499 }
9500
9501 /*
9502 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
9503 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
9504 * intercept (via guest_host_mask etc.) the current event.
9505 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9506 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
9507 struct vmcs12 *vmcs12)
9508 {
9509 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
9510 int cr = exit_qualification & 15;
9511 int reg;
9512 unsigned long val;
9513
9514 switch ((exit_qualification >> 4) & 3) {
9515 case 0: /* mov to cr */
9516 reg = (exit_qualification >> 8) & 15;
9517 val = kvm_register_readl(vcpu, reg);
9518 switch (cr) {
9519 case 0:
9520 if (vmcs12->cr0_guest_host_mask &
9521 (val ^ vmcs12->cr0_read_shadow))
9522 return true;
9523 break;
9524 case 3:
9525 if ((vmcs12->cr3_target_count >= 1 &&
9526 vmcs12->cr3_target_value0 == val) ||
9527 (vmcs12->cr3_target_count >= 2 &&
9528 vmcs12->cr3_target_value1 == val) ||
9529 (vmcs12->cr3_target_count >= 3 &&
9530 vmcs12->cr3_target_value2 == val) ||
9531 (vmcs12->cr3_target_count >= 4 &&
9532 vmcs12->cr3_target_value3 == val))
9533 return false;
9534 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
9535 return true;
9536 break;
9537 case 4:
9538 if (vmcs12->cr4_guest_host_mask &
9539 (vmcs12->cr4_read_shadow ^ val))
9540 return true;
9541 break;
9542 case 8:
9543 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
9544 return true;
9545 break;
9546 }
9547 break;
9548 case 2: /* clts */
9549 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
9550 (vmcs12->cr0_read_shadow & X86_CR0_TS))
9551 return true;
9552 break;
9553 case 1: /* mov from cr */
9554 switch (cr) {
9555 case 3:
9556 if (vmcs12->cpu_based_vm_exec_control &
9557 CPU_BASED_CR3_STORE_EXITING)
9558 return true;
9559 break;
9560 case 8:
9561 if (vmcs12->cpu_based_vm_exec_control &
9562 CPU_BASED_CR8_STORE_EXITING)
9563 return true;
9564 break;
9565 }
9566 break;
9567 case 3: /* lmsw */
9568 /*
9569 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
9570 * cr0. Other attempted changes are ignored, with no exit.
9571 */
9572 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
9573 if (vmcs12->cr0_guest_host_mask & 0xe &
9574 (val ^ vmcs12->cr0_read_shadow))
9575 return true;
9576 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
9577 !(vmcs12->cr0_read_shadow & 0x1) &&
9578 (val & 0x1))
9579 return true;
9580 break;
9581 }
9582 return false;
9583 }
9584
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)9585 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
9586 struct vmcs12 *vmcs12, gpa_t bitmap)
9587 {
9588 u32 vmx_instruction_info;
9589 unsigned long field;
9590 u8 b;
9591
9592 if (!nested_cpu_has_shadow_vmcs(vmcs12))
9593 return true;
9594
9595 /* Decode instruction info and find the field to access */
9596 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9597 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
9598
9599 /* Out-of-range fields always cause a VM exit from L2 to L1 */
9600 if (field >> 15)
9601 return true;
9602
9603 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
9604 return true;
9605
9606 return 1 & (b >> (field & 7));
9607 }
9608
9609 /*
9610 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
9611 * should handle it ourselves in L0 (and then continue L2). Only call this
9612 * when in is_guest_mode (L2).
9613 */
nested_vmx_exit_reflected(struct kvm_vcpu * vcpu,u32 exit_reason)9614 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
9615 {
9616 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9617 struct vcpu_vmx *vmx = to_vmx(vcpu);
9618 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9619
9620 if (vmx->nested.nested_run_pending)
9621 return false;
9622
9623 if (unlikely(vmx->fail)) {
9624 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
9625 vmcs_read32(VM_INSTRUCTION_ERROR));
9626 return true;
9627 }
9628
9629 /*
9630 * The host physical addresses of some pages of guest memory
9631 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
9632 * Page). The CPU may write to these pages via their host
9633 * physical address while L2 is running, bypassing any
9634 * address-translation-based dirty tracking (e.g. EPT write
9635 * protection).
9636 *
9637 * Mark them dirty on every exit from L2 to prevent them from
9638 * getting out of sync with dirty tracking.
9639 */
9640 nested_mark_vmcs12_pages_dirty(vcpu);
9641
9642 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
9643 vmcs_readl(EXIT_QUALIFICATION),
9644 vmx->idt_vectoring_info,
9645 intr_info,
9646 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9647 KVM_ISA_VMX);
9648
9649 switch (exit_reason) {
9650 case EXIT_REASON_EXCEPTION_NMI:
9651 if (is_nmi(intr_info))
9652 return false;
9653 else if (is_page_fault(intr_info))
9654 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
9655 else if (is_no_device(intr_info) &&
9656 !(vmcs12->guest_cr0 & X86_CR0_TS))
9657 return false;
9658 else if (is_debug(intr_info) &&
9659 vcpu->guest_debug &
9660 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
9661 return false;
9662 else if (is_breakpoint(intr_info) &&
9663 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
9664 return false;
9665 return vmcs12->exception_bitmap &
9666 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
9667 case EXIT_REASON_EXTERNAL_INTERRUPT:
9668 return false;
9669 case EXIT_REASON_TRIPLE_FAULT:
9670 return true;
9671 case EXIT_REASON_PENDING_INTERRUPT:
9672 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
9673 case EXIT_REASON_NMI_WINDOW:
9674 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
9675 case EXIT_REASON_TASK_SWITCH:
9676 return true;
9677 case EXIT_REASON_CPUID:
9678 return true;
9679 case EXIT_REASON_HLT:
9680 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
9681 case EXIT_REASON_INVD:
9682 return true;
9683 case EXIT_REASON_INVLPG:
9684 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
9685 case EXIT_REASON_RDPMC:
9686 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
9687 case EXIT_REASON_RDRAND:
9688 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
9689 case EXIT_REASON_RDSEED:
9690 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
9691 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
9692 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
9693 case EXIT_REASON_VMREAD:
9694 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
9695 vmcs12->vmread_bitmap);
9696 case EXIT_REASON_VMWRITE:
9697 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
9698 vmcs12->vmwrite_bitmap);
9699 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
9700 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
9701 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
9702 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
9703 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
9704 /*
9705 * VMX instructions trap unconditionally. This allows L1 to
9706 * emulate them for its L2 guest, i.e., allows 3-level nesting!
9707 */
9708 return true;
9709 case EXIT_REASON_CR_ACCESS:
9710 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
9711 case EXIT_REASON_DR_ACCESS:
9712 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
9713 case EXIT_REASON_IO_INSTRUCTION:
9714 return nested_vmx_exit_handled_io(vcpu, vmcs12);
9715 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
9716 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
9717 case EXIT_REASON_MSR_READ:
9718 case EXIT_REASON_MSR_WRITE:
9719 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
9720 case EXIT_REASON_INVALID_STATE:
9721 return true;
9722 case EXIT_REASON_MWAIT_INSTRUCTION:
9723 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
9724 case EXIT_REASON_MONITOR_TRAP_FLAG:
9725 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
9726 case EXIT_REASON_MONITOR_INSTRUCTION:
9727 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
9728 case EXIT_REASON_PAUSE_INSTRUCTION:
9729 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
9730 nested_cpu_has2(vmcs12,
9731 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
9732 case EXIT_REASON_MCE_DURING_VMENTRY:
9733 return false;
9734 case EXIT_REASON_TPR_BELOW_THRESHOLD:
9735 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
9736 case EXIT_REASON_APIC_ACCESS:
9737 case EXIT_REASON_APIC_WRITE:
9738 case EXIT_REASON_EOI_INDUCED:
9739 /*
9740 * The controls for "virtualize APIC accesses," "APIC-
9741 * register virtualization," and "virtual-interrupt
9742 * delivery" only come from vmcs12.
9743 */
9744 return true;
9745 case EXIT_REASON_EPT_VIOLATION:
9746 /*
9747 * L0 always deals with the EPT violation. If nested EPT is
9748 * used, and the nested mmu code discovers that the address is
9749 * missing in the guest EPT table (EPT12), the EPT violation
9750 * will be injected with nested_ept_inject_page_fault()
9751 */
9752 return false;
9753 case EXIT_REASON_EPT_MISCONFIG:
9754 /*
9755 * L2 never uses directly L1's EPT, but rather L0's own EPT
9756 * table (shadow on EPT) or a merged EPT table that L0 built
9757 * (EPT on EPT). So any problems with the structure of the
9758 * table is L0's fault.
9759 */
9760 return false;
9761 case EXIT_REASON_INVPCID:
9762 return
9763 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
9764 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
9765 case EXIT_REASON_WBINVD:
9766 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
9767 case EXIT_REASON_XSETBV:
9768 return true;
9769 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
9770 /*
9771 * This should never happen, since it is not possible to
9772 * set XSS to a non-zero value---neither in L1 nor in L2.
9773 * If if it were, XSS would have to be checked against
9774 * the XSS exit bitmap in vmcs12.
9775 */
9776 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
9777 case EXIT_REASON_PREEMPTION_TIMER:
9778 return false;
9779 case EXIT_REASON_PML_FULL:
9780 /* We emulate PML support to L1. */
9781 return false;
9782 case EXIT_REASON_VMFUNC:
9783 /* VM functions are emulated through L2->L0 vmexits. */
9784 return false;
9785 case EXIT_REASON_ENCLS:
9786 /* SGX is never exposed to L1 */
9787 return false;
9788 default:
9789 return true;
9790 }
9791 }
9792
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason)9793 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
9794 {
9795 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9796
9797 /*
9798 * At this point, the exit interruption info in exit_intr_info
9799 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
9800 * we need to query the in-kernel LAPIC.
9801 */
9802 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
9803 if ((exit_intr_info &
9804 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9805 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
9806 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9807 vmcs12->vm_exit_intr_error_code =
9808 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9809 }
9810
9811 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
9812 vmcs_readl(EXIT_QUALIFICATION));
9813 return 1;
9814 }
9815
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)9816 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
9817 {
9818 *info1 = vmcs_readl(EXIT_QUALIFICATION);
9819 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
9820 }
9821
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)9822 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
9823 {
9824 if (vmx->pml_pg) {
9825 __free_page(vmx->pml_pg);
9826 vmx->pml_pg = NULL;
9827 }
9828 }
9829
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)9830 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
9831 {
9832 struct vcpu_vmx *vmx = to_vmx(vcpu);
9833 u64 *pml_buf;
9834 u16 pml_idx;
9835
9836 pml_idx = vmcs_read16(GUEST_PML_INDEX);
9837
9838 /* Do nothing if PML buffer is empty */
9839 if (pml_idx == (PML_ENTITY_NUM - 1))
9840 return;
9841
9842 /* PML index always points to next available PML buffer entity */
9843 if (pml_idx >= PML_ENTITY_NUM)
9844 pml_idx = 0;
9845 else
9846 pml_idx++;
9847
9848 pml_buf = page_address(vmx->pml_pg);
9849 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
9850 u64 gpa;
9851
9852 gpa = pml_buf[pml_idx];
9853 WARN_ON(gpa & (PAGE_SIZE - 1));
9854 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
9855 }
9856
9857 /* reset PML index */
9858 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
9859 }
9860
9861 /*
9862 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
9863 * Called before reporting dirty_bitmap to userspace.
9864 */
kvm_flush_pml_buffers(struct kvm * kvm)9865 static void kvm_flush_pml_buffers(struct kvm *kvm)
9866 {
9867 int i;
9868 struct kvm_vcpu *vcpu;
9869 /*
9870 * We only need to kick vcpu out of guest mode here, as PML buffer
9871 * is flushed at beginning of all VMEXITs, and it's obvious that only
9872 * vcpus running in guest are possible to have unflushed GPAs in PML
9873 * buffer.
9874 */
9875 kvm_for_each_vcpu(i, vcpu, kvm)
9876 kvm_vcpu_kick(vcpu);
9877 }
9878
vmx_dump_sel(char * name,uint32_t sel)9879 static void vmx_dump_sel(char *name, uint32_t sel)
9880 {
9881 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
9882 name, vmcs_read16(sel),
9883 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
9884 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
9885 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
9886 }
9887
vmx_dump_dtsel(char * name,uint32_t limit)9888 static void vmx_dump_dtsel(char *name, uint32_t limit)
9889 {
9890 pr_err("%s limit=0x%08x, base=0x%016lx\n",
9891 name, vmcs_read32(limit),
9892 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
9893 }
9894
dump_vmcs(void)9895 static void dump_vmcs(void)
9896 {
9897 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
9898 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
9899 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
9900 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
9901 u32 secondary_exec_control = 0;
9902 unsigned long cr4 = vmcs_readl(GUEST_CR4);
9903 u64 efer = vmcs_read64(GUEST_IA32_EFER);
9904 int i, n;
9905
9906 if (cpu_has_secondary_exec_ctrls())
9907 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9908
9909 pr_err("*** Guest State ***\n");
9910 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9911 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
9912 vmcs_readl(CR0_GUEST_HOST_MASK));
9913 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9914 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
9915 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
9916 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
9917 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
9918 {
9919 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
9920 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
9921 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
9922 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
9923 }
9924 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
9925 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
9926 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
9927 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
9928 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9929 vmcs_readl(GUEST_SYSENTER_ESP),
9930 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
9931 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
9932 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
9933 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
9934 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
9935 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
9936 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
9937 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
9938 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
9939 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
9940 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
9941 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
9942 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
9943 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9944 efer, vmcs_read64(GUEST_IA32_PAT));
9945 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
9946 vmcs_read64(GUEST_IA32_DEBUGCTL),
9947 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
9948 if (cpu_has_load_perf_global_ctrl &&
9949 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
9950 pr_err("PerfGlobCtl = 0x%016llx\n",
9951 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
9952 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
9953 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
9954 pr_err("Interruptibility = %08x ActivityState = %08x\n",
9955 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
9956 vmcs_read32(GUEST_ACTIVITY_STATE));
9957 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
9958 pr_err("InterruptStatus = %04x\n",
9959 vmcs_read16(GUEST_INTR_STATUS));
9960
9961 pr_err("*** Host State ***\n");
9962 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
9963 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
9964 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
9965 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
9966 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
9967 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
9968 vmcs_read16(HOST_TR_SELECTOR));
9969 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
9970 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
9971 vmcs_readl(HOST_TR_BASE));
9972 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
9973 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
9974 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
9975 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
9976 vmcs_readl(HOST_CR4));
9977 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9978 vmcs_readl(HOST_IA32_SYSENTER_ESP),
9979 vmcs_read32(HOST_IA32_SYSENTER_CS),
9980 vmcs_readl(HOST_IA32_SYSENTER_EIP));
9981 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
9982 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9983 vmcs_read64(HOST_IA32_EFER),
9984 vmcs_read64(HOST_IA32_PAT));
9985 if (cpu_has_load_perf_global_ctrl &&
9986 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9987 pr_err("PerfGlobCtl = 0x%016llx\n",
9988 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
9989
9990 pr_err("*** Control State ***\n");
9991 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
9992 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
9993 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
9994 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
9995 vmcs_read32(EXCEPTION_BITMAP),
9996 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
9997 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
9998 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
9999 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
10000 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
10001 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
10002 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
10003 vmcs_read32(VM_EXIT_INTR_INFO),
10004 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
10005 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
10006 pr_err(" reason=%08x qualification=%016lx\n",
10007 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
10008 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
10009 vmcs_read32(IDT_VECTORING_INFO_FIELD),
10010 vmcs_read32(IDT_VECTORING_ERROR_CODE));
10011 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
10012 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
10013 pr_err("TSC Multiplier = 0x%016llx\n",
10014 vmcs_read64(TSC_MULTIPLIER));
10015 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
10016 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
10017 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
10018 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
10019 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
10020 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
10021 n = vmcs_read32(CR3_TARGET_COUNT);
10022 for (i = 0; i + 1 < n; i += 4)
10023 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
10024 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
10025 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
10026 if (i < n)
10027 pr_err("CR3 target%u=%016lx\n",
10028 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
10029 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
10030 pr_err("PLE Gap=%08x Window=%08x\n",
10031 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
10032 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
10033 pr_err("Virtual processor ID = 0x%04x\n",
10034 vmcs_read16(VIRTUAL_PROCESSOR_ID));
10035 }
10036
10037 /*
10038 * The guest has exited. See if we can fix it or if we need userspace
10039 * assistance.
10040 */
vmx_handle_exit(struct kvm_vcpu * vcpu)10041 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
10042 {
10043 struct vcpu_vmx *vmx = to_vmx(vcpu);
10044 u32 exit_reason = vmx->exit_reason;
10045 u32 vectoring_info = vmx->idt_vectoring_info;
10046
10047 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
10048
10049 /*
10050 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
10051 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
10052 * querying dirty_bitmap, we only need to kick all vcpus out of guest
10053 * mode as if vcpus is in root mode, the PML buffer must has been
10054 * flushed already.
10055 */
10056 if (enable_pml)
10057 vmx_flush_pml_buffer(vcpu);
10058
10059 /* If guest state is invalid, start emulating */
10060 if (vmx->emulation_required)
10061 return handle_invalid_guest_state(vcpu);
10062
10063 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
10064 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
10065
10066 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
10067 dump_vmcs();
10068 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
10069 vcpu->run->fail_entry.hardware_entry_failure_reason
10070 = exit_reason;
10071 return 0;
10072 }
10073
10074 if (unlikely(vmx->fail)) {
10075 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
10076 vcpu->run->fail_entry.hardware_entry_failure_reason
10077 = vmcs_read32(VM_INSTRUCTION_ERROR);
10078 return 0;
10079 }
10080
10081 /*
10082 * Note:
10083 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
10084 * delivery event since it indicates guest is accessing MMIO.
10085 * The vm-exit can be triggered again after return to guest that
10086 * will cause infinite loop.
10087 */
10088 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
10089 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
10090 exit_reason != EXIT_REASON_EPT_VIOLATION &&
10091 exit_reason != EXIT_REASON_PML_FULL &&
10092 exit_reason != EXIT_REASON_TASK_SWITCH)) {
10093 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10094 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
10095 vcpu->run->internal.ndata = 3;
10096 vcpu->run->internal.data[0] = vectoring_info;
10097 vcpu->run->internal.data[1] = exit_reason;
10098 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
10099 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
10100 vcpu->run->internal.ndata++;
10101 vcpu->run->internal.data[3] =
10102 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
10103 }
10104 return 0;
10105 }
10106
10107 if (unlikely(!enable_vnmi &&
10108 vmx->loaded_vmcs->soft_vnmi_blocked)) {
10109 if (vmx_interrupt_allowed(vcpu)) {
10110 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
10111 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
10112 vcpu->arch.nmi_pending) {
10113 /*
10114 * This CPU don't support us in finding the end of an
10115 * NMI-blocked window if the guest runs with IRQs
10116 * disabled. So we pull the trigger after 1 s of
10117 * futile waiting, but inform the user about this.
10118 */
10119 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
10120 "state on VCPU %d after 1 s timeout\n",
10121 __func__, vcpu->vcpu_id);
10122 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
10123 }
10124 }
10125
10126 if (exit_reason < kvm_vmx_max_exit_handlers
10127 && kvm_vmx_exit_handlers[exit_reason])
10128 return kvm_vmx_exit_handlers[exit_reason](vcpu);
10129 else {
10130 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
10131 exit_reason);
10132 kvm_queue_exception(vcpu, UD_VECTOR);
10133 return 1;
10134 }
10135 }
10136
10137 /*
10138 * Software based L1D cache flush which is used when microcode providing
10139 * the cache control MSR is not loaded.
10140 *
10141 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
10142 * flush it is required to read in 64 KiB because the replacement algorithm
10143 * is not exactly LRU. This could be sized at runtime via topology
10144 * information but as all relevant affected CPUs have 32KiB L1D cache size
10145 * there is no point in doing so.
10146 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)10147 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
10148 {
10149 int size = PAGE_SIZE << L1D_CACHE_ORDER;
10150
10151 /*
10152 * This code is only executed when the the flush mode is 'cond' or
10153 * 'always'
10154 */
10155 if (static_branch_likely(&vmx_l1d_flush_cond)) {
10156 bool flush_l1d;
10157
10158 /*
10159 * Clear the per-vcpu flush bit, it gets set again
10160 * either from vcpu_run() or from one of the unsafe
10161 * VMEXIT handlers.
10162 */
10163 flush_l1d = vcpu->arch.l1tf_flush_l1d;
10164 vcpu->arch.l1tf_flush_l1d = false;
10165
10166 /*
10167 * Clear the per-cpu flush bit, it gets set again from
10168 * the interrupt handlers.
10169 */
10170 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
10171 kvm_clear_cpu_l1tf_flush_l1d();
10172
10173 if (!flush_l1d)
10174 return;
10175 }
10176
10177 vcpu->stat.l1d_flush++;
10178
10179 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
10180 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
10181 return;
10182 }
10183
10184 asm volatile(
10185 /* First ensure the pages are in the TLB */
10186 "xorl %%eax, %%eax\n"
10187 ".Lpopulate_tlb:\n\t"
10188 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
10189 "addl $4096, %%eax\n\t"
10190 "cmpl %%eax, %[size]\n\t"
10191 "jne .Lpopulate_tlb\n\t"
10192 "xorl %%eax, %%eax\n\t"
10193 "cpuid\n\t"
10194 /* Now fill the cache */
10195 "xorl %%eax, %%eax\n"
10196 ".Lfill_cache:\n"
10197 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
10198 "addl $64, %%eax\n\t"
10199 "cmpl %%eax, %[size]\n\t"
10200 "jne .Lfill_cache\n\t"
10201 "lfence\n"
10202 :: [flush_pages] "r" (vmx_l1d_flush_pages),
10203 [size] "r" (size)
10204 : "eax", "ebx", "ecx", "edx");
10205 }
10206
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)10207 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
10208 {
10209 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10210
10211 if (is_guest_mode(vcpu) &&
10212 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10213 return;
10214
10215 if (irr == -1 || tpr < irr) {
10216 vmcs_write32(TPR_THRESHOLD, 0);
10217 return;
10218 }
10219
10220 vmcs_write32(TPR_THRESHOLD, irr);
10221 }
10222
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)10223 static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
10224 {
10225 u32 sec_exec_control;
10226
10227 if (!lapic_in_kernel(vcpu))
10228 return;
10229
10230 if (!flexpriority_enabled &&
10231 !cpu_has_vmx_virtualize_x2apic_mode())
10232 return;
10233
10234 /* Postpone execution until vmcs01 is the current VMCS. */
10235 if (is_guest_mode(vcpu)) {
10236 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
10237 return;
10238 }
10239
10240 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
10241 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10242 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
10243
10244 switch (kvm_get_apic_mode(vcpu)) {
10245 case LAPIC_MODE_INVALID:
10246 WARN_ONCE(true, "Invalid local APIC state");
10247 case LAPIC_MODE_DISABLED:
10248 break;
10249 case LAPIC_MODE_XAPIC:
10250 if (flexpriority_enabled) {
10251 sec_exec_control |=
10252 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10253 vmx_flush_tlb(vcpu, true);
10254 }
10255 break;
10256 case LAPIC_MODE_X2APIC:
10257 if (cpu_has_vmx_virtualize_x2apic_mode())
10258 sec_exec_control |=
10259 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
10260 break;
10261 }
10262 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
10263
10264 vmx_update_msr_bitmap(vcpu);
10265 }
10266
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)10267 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
10268 {
10269 if (!is_guest_mode(vcpu)) {
10270 vmcs_write64(APIC_ACCESS_ADDR, hpa);
10271 vmx_flush_tlb(vcpu, true);
10272 }
10273 }
10274
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)10275 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
10276 {
10277 u16 status;
10278 u8 old;
10279
10280 if (max_isr == -1)
10281 max_isr = 0;
10282
10283 status = vmcs_read16(GUEST_INTR_STATUS);
10284 old = status >> 8;
10285 if (max_isr != old) {
10286 status &= 0xff;
10287 status |= max_isr << 8;
10288 vmcs_write16(GUEST_INTR_STATUS, status);
10289 }
10290 }
10291
vmx_set_rvi(int vector)10292 static void vmx_set_rvi(int vector)
10293 {
10294 u16 status;
10295 u8 old;
10296
10297 if (vector == -1)
10298 vector = 0;
10299
10300 status = vmcs_read16(GUEST_INTR_STATUS);
10301 old = (u8)status & 0xff;
10302 if ((u8)vector != old) {
10303 status &= ~0xff;
10304 status |= (u8)vector;
10305 vmcs_write16(GUEST_INTR_STATUS, status);
10306 }
10307 }
10308
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)10309 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
10310 {
10311 /*
10312 * When running L2, updating RVI is only relevant when
10313 * vmcs12 virtual-interrupt-delivery enabled.
10314 * However, it can be enabled only when L1 also
10315 * intercepts external-interrupts and in that case
10316 * we should not update vmcs02 RVI but instead intercept
10317 * interrupt. Therefore, do nothing when running L2.
10318 */
10319 if (!is_guest_mode(vcpu))
10320 vmx_set_rvi(max_irr);
10321 }
10322
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)10323 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
10324 {
10325 struct vcpu_vmx *vmx = to_vmx(vcpu);
10326 int max_irr;
10327 bool max_irr_updated;
10328
10329 WARN_ON(!vcpu->arch.apicv_active);
10330 if (pi_test_on(&vmx->pi_desc)) {
10331 pi_clear_on(&vmx->pi_desc);
10332 /*
10333 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
10334 * But on x86 this is just a compiler barrier anyway.
10335 */
10336 smp_mb__after_atomic();
10337 max_irr_updated =
10338 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
10339
10340 /*
10341 * If we are running L2 and L1 has a new pending interrupt
10342 * which can be injected, we should re-evaluate
10343 * what should be done with this new L1 interrupt.
10344 * If L1 intercepts external-interrupts, we should
10345 * exit from L2 to L1. Otherwise, interrupt should be
10346 * delivered directly to L2.
10347 */
10348 if (is_guest_mode(vcpu) && max_irr_updated) {
10349 if (nested_exit_on_intr(vcpu))
10350 kvm_vcpu_exiting_guest_mode(vcpu);
10351 else
10352 kvm_make_request(KVM_REQ_EVENT, vcpu);
10353 }
10354 } else {
10355 max_irr = kvm_lapic_find_highest_irr(vcpu);
10356 }
10357 vmx_hwapic_irr_update(vcpu, max_irr);
10358 return max_irr;
10359 }
10360
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)10361 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
10362 {
10363 u8 rvi = vmx_get_rvi();
10364 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
10365
10366 return ((rvi & 0xf0) > (vppr & 0xf0));
10367 }
10368
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)10369 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
10370 {
10371 if (!kvm_vcpu_apicv_active(vcpu))
10372 return;
10373
10374 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
10375 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
10376 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
10377 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
10378 }
10379
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)10380 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
10381 {
10382 struct vcpu_vmx *vmx = to_vmx(vcpu);
10383
10384 pi_clear_on(&vmx->pi_desc);
10385 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
10386 }
10387
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)10388 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
10389 {
10390 u32 exit_intr_info = 0;
10391 u16 basic_exit_reason = (u16)vmx->exit_reason;
10392
10393 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
10394 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
10395 return;
10396
10397 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
10398 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
10399 vmx->exit_intr_info = exit_intr_info;
10400
10401 /* if exit due to PF check for async PF */
10402 if (is_page_fault(exit_intr_info))
10403 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
10404
10405 /* Handle machine checks before interrupts are enabled */
10406 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
10407 is_machine_check(exit_intr_info))
10408 kvm_machine_check();
10409
10410 /* We need to handle NMIs before interrupts are enabled */
10411 if (is_nmi(exit_intr_info)) {
10412 kvm_before_interrupt(&vmx->vcpu);
10413 asm("int $2");
10414 kvm_after_interrupt(&vmx->vcpu);
10415 }
10416 }
10417
vmx_handle_external_intr(struct kvm_vcpu * vcpu)10418 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
10419 {
10420 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
10421
10422 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
10423 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
10424 unsigned int vector;
10425 unsigned long entry;
10426 gate_desc *desc;
10427 struct vcpu_vmx *vmx = to_vmx(vcpu);
10428 #ifdef CONFIG_X86_64
10429 unsigned long tmp;
10430 #endif
10431
10432 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
10433 desc = (gate_desc *)vmx->host_idt_base + vector;
10434 entry = gate_offset(desc);
10435 asm volatile(
10436 #ifdef CONFIG_X86_64
10437 "mov %%" _ASM_SP ", %[sp]\n\t"
10438 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
10439 "push $%c[ss]\n\t"
10440 "push %[sp]\n\t"
10441 #endif
10442 "pushf\n\t"
10443 __ASM_SIZE(push) " $%c[cs]\n\t"
10444 CALL_NOSPEC
10445 :
10446 #ifdef CONFIG_X86_64
10447 [sp]"=&r"(tmp),
10448 #endif
10449 ASM_CALL_CONSTRAINT
10450 :
10451 THUNK_TARGET(entry),
10452 [ss]"i"(__KERNEL_DS),
10453 [cs]"i"(__KERNEL_CS)
10454 );
10455 }
10456 }
10457 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
10458
vmx_has_emulated_msr(int index)10459 static bool vmx_has_emulated_msr(int index)
10460 {
10461 switch (index) {
10462 case MSR_IA32_SMBASE:
10463 /*
10464 * We cannot do SMM unless we can run the guest in big
10465 * real mode.
10466 */
10467 return enable_unrestricted_guest || emulate_invalid_guest_state;
10468 case MSR_AMD64_VIRT_SPEC_CTRL:
10469 /* This is AMD only. */
10470 return false;
10471 default:
10472 return true;
10473 }
10474 }
10475
vmx_mpx_supported(void)10476 static bool vmx_mpx_supported(void)
10477 {
10478 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
10479 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
10480 }
10481
vmx_xsaves_supported(void)10482 static bool vmx_xsaves_supported(void)
10483 {
10484 return vmcs_config.cpu_based_2nd_exec_ctrl &
10485 SECONDARY_EXEC_XSAVES;
10486 }
10487
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)10488 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
10489 {
10490 u32 exit_intr_info;
10491 bool unblock_nmi;
10492 u8 vector;
10493 bool idtv_info_valid;
10494
10495 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
10496
10497 if (enable_vnmi) {
10498 if (vmx->loaded_vmcs->nmi_known_unmasked)
10499 return;
10500 /*
10501 * Can't use vmx->exit_intr_info since we're not sure what
10502 * the exit reason is.
10503 */
10504 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
10505 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
10506 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
10507 /*
10508 * SDM 3: 27.7.1.2 (September 2008)
10509 * Re-set bit "block by NMI" before VM entry if vmexit caused by
10510 * a guest IRET fault.
10511 * SDM 3: 23.2.2 (September 2008)
10512 * Bit 12 is undefined in any of the following cases:
10513 * If the VM exit sets the valid bit in the IDT-vectoring
10514 * information field.
10515 * If the VM exit is due to a double fault.
10516 */
10517 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
10518 vector != DF_VECTOR && !idtv_info_valid)
10519 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
10520 GUEST_INTR_STATE_NMI);
10521 else
10522 vmx->loaded_vmcs->nmi_known_unmasked =
10523 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
10524 & GUEST_INTR_STATE_NMI);
10525 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
10526 vmx->loaded_vmcs->vnmi_blocked_time +=
10527 ktime_to_ns(ktime_sub(ktime_get(),
10528 vmx->loaded_vmcs->entry_time));
10529 }
10530
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)10531 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
10532 u32 idt_vectoring_info,
10533 int instr_len_field,
10534 int error_code_field)
10535 {
10536 u8 vector;
10537 int type;
10538 bool idtv_info_valid;
10539
10540 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
10541
10542 vcpu->arch.nmi_injected = false;
10543 kvm_clear_exception_queue(vcpu);
10544 kvm_clear_interrupt_queue(vcpu);
10545
10546 if (!idtv_info_valid)
10547 return;
10548
10549 kvm_make_request(KVM_REQ_EVENT, vcpu);
10550
10551 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
10552 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
10553
10554 switch (type) {
10555 case INTR_TYPE_NMI_INTR:
10556 vcpu->arch.nmi_injected = true;
10557 /*
10558 * SDM 3: 27.7.1.2 (September 2008)
10559 * Clear bit "block by NMI" before VM entry if a NMI
10560 * delivery faulted.
10561 */
10562 vmx_set_nmi_mask(vcpu, false);
10563 break;
10564 case INTR_TYPE_SOFT_EXCEPTION:
10565 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
10566 /* fall through */
10567 case INTR_TYPE_HARD_EXCEPTION:
10568 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
10569 u32 err = vmcs_read32(error_code_field);
10570 kvm_requeue_exception_e(vcpu, vector, err);
10571 } else
10572 kvm_requeue_exception(vcpu, vector);
10573 break;
10574 case INTR_TYPE_SOFT_INTR:
10575 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
10576 /* fall through */
10577 case INTR_TYPE_EXT_INTR:
10578 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
10579 break;
10580 default:
10581 break;
10582 }
10583 }
10584
vmx_complete_interrupts(struct vcpu_vmx * vmx)10585 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
10586 {
10587 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
10588 VM_EXIT_INSTRUCTION_LEN,
10589 IDT_VECTORING_ERROR_CODE);
10590 }
10591
vmx_cancel_injection(struct kvm_vcpu * vcpu)10592 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
10593 {
10594 __vmx_complete_interrupts(vcpu,
10595 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
10596 VM_ENTRY_INSTRUCTION_LEN,
10597 VM_ENTRY_EXCEPTION_ERROR_CODE);
10598
10599 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10600 }
10601
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)10602 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
10603 {
10604 int i, nr_msrs;
10605 struct perf_guest_switch_msr *msrs;
10606
10607 msrs = perf_guest_get_msrs(&nr_msrs);
10608
10609 if (!msrs)
10610 return;
10611
10612 for (i = 0; i < nr_msrs; i++)
10613 if (msrs[i].host == msrs[i].guest)
10614 clear_atomic_switch_msr(vmx, msrs[i].msr);
10615 else
10616 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
10617 msrs[i].host, false);
10618 }
10619
vmx_arm_hv_timer(struct vcpu_vmx * vmx,u32 val)10620 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
10621 {
10622 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
10623 if (!vmx->loaded_vmcs->hv_timer_armed)
10624 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10625 PIN_BASED_VMX_PREEMPTION_TIMER);
10626 vmx->loaded_vmcs->hv_timer_armed = true;
10627 }
10628
vmx_update_hv_timer(struct kvm_vcpu * vcpu)10629 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
10630 {
10631 struct vcpu_vmx *vmx = to_vmx(vcpu);
10632 u64 tscl;
10633 u32 delta_tsc;
10634
10635 if (vmx->req_immediate_exit) {
10636 vmx_arm_hv_timer(vmx, 0);
10637 return;
10638 }
10639
10640 if (vmx->hv_deadline_tsc != -1) {
10641 tscl = rdtsc();
10642 if (vmx->hv_deadline_tsc > tscl)
10643 /* set_hv_timer ensures the delta fits in 32-bits */
10644 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
10645 cpu_preemption_timer_multi);
10646 else
10647 delta_tsc = 0;
10648
10649 vmx_arm_hv_timer(vmx, delta_tsc);
10650 return;
10651 }
10652
10653 if (vmx->loaded_vmcs->hv_timer_armed)
10654 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10655 PIN_BASED_VMX_PREEMPTION_TIMER);
10656 vmx->loaded_vmcs->hv_timer_armed = false;
10657 }
10658
vmx_vcpu_run(struct kvm_vcpu * vcpu)10659 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
10660 {
10661 struct vcpu_vmx *vmx = to_vmx(vcpu);
10662 unsigned long cr3, cr4, evmcs_rsp;
10663
10664 /* Record the guest's net vcpu time for enforced NMI injections. */
10665 if (unlikely(!enable_vnmi &&
10666 vmx->loaded_vmcs->soft_vnmi_blocked))
10667 vmx->loaded_vmcs->entry_time = ktime_get();
10668
10669 /* Don't enter VMX if guest state is invalid, let the exit handler
10670 start emulation until we arrive back to a valid state */
10671 if (vmx->emulation_required)
10672 return;
10673
10674 if (vmx->ple_window_dirty) {
10675 vmx->ple_window_dirty = false;
10676 vmcs_write32(PLE_WINDOW, vmx->ple_window);
10677 }
10678
10679 if (vmx->nested.sync_shadow_vmcs) {
10680 copy_vmcs12_to_shadow(vmx);
10681 vmx->nested.sync_shadow_vmcs = false;
10682 }
10683
10684 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
10685 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
10686 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
10687 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
10688
10689 cr3 = __get_current_cr3_fast();
10690 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
10691 vmcs_writel(HOST_CR3, cr3);
10692 vmx->loaded_vmcs->host_state.cr3 = cr3;
10693 }
10694
10695 cr4 = cr4_read_shadow();
10696 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
10697 vmcs_writel(HOST_CR4, cr4);
10698 vmx->loaded_vmcs->host_state.cr4 = cr4;
10699 }
10700
10701 /* When single-stepping over STI and MOV SS, we must clear the
10702 * corresponding interruptibility bits in the guest state. Otherwise
10703 * vmentry fails as it then expects bit 14 (BS) in pending debug
10704 * exceptions being set, but that's not correct for the guest debugging
10705 * case. */
10706 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10707 vmx_set_interrupt_shadow(vcpu, 0);
10708
10709 if (static_cpu_has(X86_FEATURE_PKU) &&
10710 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
10711 vcpu->arch.pkru != vmx->host_pkru)
10712 __write_pkru(vcpu->arch.pkru);
10713
10714 atomic_switch_perf_msrs(vmx);
10715
10716 vmx_update_hv_timer(vcpu);
10717
10718 /*
10719 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
10720 * it's non-zero. Since vmentry is serialising on affected CPUs, there
10721 * is no need to worry about the conditional branch over the wrmsr
10722 * being speculatively taken.
10723 */
10724 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
10725
10726 vmx->__launched = vmx->loaded_vmcs->launched;
10727
10728 evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
10729 (unsigned long)¤t_evmcs->host_rsp : 0;
10730
10731 if (static_branch_unlikely(&vmx_l1d_should_flush))
10732 vmx_l1d_flush(vcpu);
10733
10734 asm(
10735 /* Store host registers */
10736 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
10737 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
10738 "push %%" _ASM_CX " \n\t"
10739 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
10740 "je 1f \n\t"
10741 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
10742 /* Avoid VMWRITE when Enlightened VMCS is in use */
10743 "test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
10744 "jz 2f \n\t"
10745 "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
10746 "jmp 1f \n\t"
10747 "2: \n\t"
10748 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
10749 "1: \n\t"
10750 /* Reload cr2 if changed */
10751 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
10752 "mov %%cr2, %%" _ASM_DX " \n\t"
10753 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
10754 "je 3f \n\t"
10755 "mov %%" _ASM_AX", %%cr2 \n\t"
10756 "3: \n\t"
10757 /* Check if vmlaunch of vmresume is needed */
10758 "cmpl $0, %c[launched](%0) \n\t"
10759 /* Load guest registers. Don't clobber flags. */
10760 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
10761 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
10762 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
10763 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
10764 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
10765 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
10766 #ifdef CONFIG_X86_64
10767 "mov %c[r8](%0), %%r8 \n\t"
10768 "mov %c[r9](%0), %%r9 \n\t"
10769 "mov %c[r10](%0), %%r10 \n\t"
10770 "mov %c[r11](%0), %%r11 \n\t"
10771 "mov %c[r12](%0), %%r12 \n\t"
10772 "mov %c[r13](%0), %%r13 \n\t"
10773 "mov %c[r14](%0), %%r14 \n\t"
10774 "mov %c[r15](%0), %%r15 \n\t"
10775 #endif
10776 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
10777
10778 /* Enter guest mode */
10779 "jne 1f \n\t"
10780 __ex(ASM_VMX_VMLAUNCH) "\n\t"
10781 "jmp 2f \n\t"
10782 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
10783 "2: "
10784 /* Save guest registers, load host registers, keep flags */
10785 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
10786 "pop %0 \n\t"
10787 "setbe %c[fail](%0)\n\t"
10788 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
10789 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
10790 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
10791 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
10792 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
10793 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
10794 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
10795 #ifdef CONFIG_X86_64
10796 "mov %%r8, %c[r8](%0) \n\t"
10797 "mov %%r9, %c[r9](%0) \n\t"
10798 "mov %%r10, %c[r10](%0) \n\t"
10799 "mov %%r11, %c[r11](%0) \n\t"
10800 "mov %%r12, %c[r12](%0) \n\t"
10801 "mov %%r13, %c[r13](%0) \n\t"
10802 "mov %%r14, %c[r14](%0) \n\t"
10803 "mov %%r15, %c[r15](%0) \n\t"
10804 "xor %%r8d, %%r8d \n\t"
10805 "xor %%r9d, %%r9d \n\t"
10806 "xor %%r10d, %%r10d \n\t"
10807 "xor %%r11d, %%r11d \n\t"
10808 "xor %%r12d, %%r12d \n\t"
10809 "xor %%r13d, %%r13d \n\t"
10810 "xor %%r14d, %%r14d \n\t"
10811 "xor %%r15d, %%r15d \n\t"
10812 #endif
10813 "mov %%cr2, %%" _ASM_AX " \n\t"
10814 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
10815
10816 "xor %%eax, %%eax \n\t"
10817 "xor %%ebx, %%ebx \n\t"
10818 "xor %%esi, %%esi \n\t"
10819 "xor %%edi, %%edi \n\t"
10820 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
10821 ".pushsection .rodata \n\t"
10822 ".global vmx_return \n\t"
10823 "vmx_return: " _ASM_PTR " 2b \n\t"
10824 ".popsection"
10825 : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
10826 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
10827 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
10828 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
10829 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
10830 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
10831 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
10832 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
10833 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
10834 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
10835 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
10836 #ifdef CONFIG_X86_64
10837 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
10838 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
10839 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
10840 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
10841 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
10842 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
10843 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
10844 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
10845 #endif
10846 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
10847 [wordsize]"i"(sizeof(ulong))
10848 : "cc", "memory"
10849 #ifdef CONFIG_X86_64
10850 , "rax", "rbx", "rdi"
10851 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
10852 #else
10853 , "eax", "ebx", "edi"
10854 #endif
10855 );
10856
10857 /*
10858 * We do not use IBRS in the kernel. If this vCPU has used the
10859 * SPEC_CTRL MSR it may have left it on; save the value and
10860 * turn it off. This is much more efficient than blindly adding
10861 * it to the atomic save/restore list. Especially as the former
10862 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
10863 *
10864 * For non-nested case:
10865 * If the L01 MSR bitmap does not intercept the MSR, then we need to
10866 * save it.
10867 *
10868 * For nested case:
10869 * If the L02 MSR bitmap does not intercept the MSR, then we need to
10870 * save it.
10871 */
10872 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
10873 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
10874
10875 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
10876
10877 /* Eliminate branch target predictions from guest mode */
10878 vmexit_fill_RSB();
10879
10880 /* All fields are clean at this point */
10881 if (static_branch_unlikely(&enable_evmcs))
10882 current_evmcs->hv_clean_fields |=
10883 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
10884
10885 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
10886 if (vmx->host_debugctlmsr)
10887 update_debugctlmsr(vmx->host_debugctlmsr);
10888
10889 #ifndef CONFIG_X86_64
10890 /*
10891 * The sysexit path does not restore ds/es, so we must set them to
10892 * a reasonable value ourselves.
10893 *
10894 * We can't defer this to vmx_prepare_switch_to_host() since that
10895 * function may be executed in interrupt context, which saves and
10896 * restore segments around it, nullifying its effect.
10897 */
10898 loadsegment(ds, __USER_DS);
10899 loadsegment(es, __USER_DS);
10900 #endif
10901
10902 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
10903 | (1 << VCPU_EXREG_RFLAGS)
10904 | (1 << VCPU_EXREG_PDPTR)
10905 | (1 << VCPU_EXREG_SEGMENTS)
10906 | (1 << VCPU_EXREG_CR3));
10907 vcpu->arch.regs_dirty = 0;
10908
10909 /*
10910 * eager fpu is enabled if PKEY is supported and CR4 is switched
10911 * back on host, so it is safe to read guest PKRU from current
10912 * XSAVE.
10913 */
10914 if (static_cpu_has(X86_FEATURE_PKU) &&
10915 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
10916 vcpu->arch.pkru = __read_pkru();
10917 if (vcpu->arch.pkru != vmx->host_pkru)
10918 __write_pkru(vmx->host_pkru);
10919 }
10920
10921 vmx->nested.nested_run_pending = 0;
10922 vmx->idt_vectoring_info = 0;
10923
10924 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
10925 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
10926 return;
10927
10928 vmx->loaded_vmcs->launched = 1;
10929 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
10930
10931 vmx_complete_atomic_exit(vmx);
10932 vmx_recover_nmi_blocking(vmx);
10933 vmx_complete_interrupts(vmx);
10934 }
10935 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
10936
vmx_vm_alloc(void)10937 static struct kvm *vmx_vm_alloc(void)
10938 {
10939 struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
10940 return &kvm_vmx->kvm;
10941 }
10942
vmx_vm_free(struct kvm * kvm)10943 static void vmx_vm_free(struct kvm *kvm)
10944 {
10945 vfree(to_kvm_vmx(kvm));
10946 }
10947
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)10948 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
10949 {
10950 struct vcpu_vmx *vmx = to_vmx(vcpu);
10951 int cpu;
10952
10953 if (vmx->loaded_vmcs == vmcs)
10954 return;
10955
10956 cpu = get_cpu();
10957 vmx_vcpu_put(vcpu);
10958 vmx->loaded_vmcs = vmcs;
10959 vmx_vcpu_load(vcpu, cpu);
10960 put_cpu();
10961 }
10962
10963 /*
10964 * Ensure that the current vmcs of the logical processor is the
10965 * vmcs01 of the vcpu before calling free_nested().
10966 */
vmx_free_vcpu_nested(struct kvm_vcpu * vcpu)10967 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
10968 {
10969 struct vcpu_vmx *vmx = to_vmx(vcpu);
10970
10971 vcpu_load(vcpu);
10972 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10973 free_nested(vmx);
10974 vcpu_put(vcpu);
10975 }
10976
vmx_free_vcpu(struct kvm_vcpu * vcpu)10977 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
10978 {
10979 struct vcpu_vmx *vmx = to_vmx(vcpu);
10980
10981 if (enable_pml)
10982 vmx_destroy_pml_buffer(vmx);
10983 free_vpid(vmx->vpid);
10984 leave_guest_mode(vcpu);
10985 vmx_free_vcpu_nested(vcpu);
10986 free_loaded_vmcs(vmx->loaded_vmcs);
10987 kfree(vmx->guest_msrs);
10988 kvm_vcpu_uninit(vcpu);
10989 kmem_cache_free(kvm_vcpu_cache, vmx);
10990 }
10991
vmx_create_vcpu(struct kvm * kvm,unsigned int id)10992 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
10993 {
10994 int err;
10995 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
10996 unsigned long *msr_bitmap;
10997 int cpu;
10998
10999 if (!vmx)
11000 return ERR_PTR(-ENOMEM);
11001
11002 vmx->vpid = allocate_vpid();
11003
11004 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
11005 if (err)
11006 goto free_vcpu;
11007
11008 err = -ENOMEM;
11009
11010 /*
11011 * If PML is turned on, failure on enabling PML just results in failure
11012 * of creating the vcpu, therefore we can simplify PML logic (by
11013 * avoiding dealing with cases, such as enabling PML partially on vcpus
11014 * for the guest, etc.
11015 */
11016 if (enable_pml) {
11017 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
11018 if (!vmx->pml_pg)
11019 goto uninit_vcpu;
11020 }
11021
11022 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
11023 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
11024 > PAGE_SIZE);
11025
11026 if (!vmx->guest_msrs)
11027 goto free_pml;
11028
11029 err = alloc_loaded_vmcs(&vmx->vmcs01);
11030 if (err < 0)
11031 goto free_msrs;
11032
11033 msr_bitmap = vmx->vmcs01.msr_bitmap;
11034 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
11035 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
11036 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
11037 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
11038 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
11039 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
11040 vmx->msr_bitmap_mode = 0;
11041
11042 vmx->loaded_vmcs = &vmx->vmcs01;
11043 cpu = get_cpu();
11044 vmx_vcpu_load(&vmx->vcpu, cpu);
11045 vmx->vcpu.cpu = cpu;
11046 vmx_vcpu_setup(vmx);
11047 vmx_vcpu_put(&vmx->vcpu);
11048 put_cpu();
11049 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
11050 err = alloc_apic_access_page(kvm);
11051 if (err)
11052 goto free_vmcs;
11053 }
11054
11055 if (enable_ept && !enable_unrestricted_guest) {
11056 err = init_rmode_identity_map(kvm);
11057 if (err)
11058 goto free_vmcs;
11059 }
11060
11061 if (nested)
11062 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
11063 kvm_vcpu_apicv_active(&vmx->vcpu));
11064
11065 vmx->nested.posted_intr_nv = -1;
11066 vmx->nested.current_vmptr = -1ull;
11067
11068 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
11069
11070 /*
11071 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
11072 * or POSTED_INTR_WAKEUP_VECTOR.
11073 */
11074 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
11075 vmx->pi_desc.sn = 1;
11076
11077 return &vmx->vcpu;
11078
11079 free_vmcs:
11080 free_loaded_vmcs(vmx->loaded_vmcs);
11081 free_msrs:
11082 kfree(vmx->guest_msrs);
11083 free_pml:
11084 vmx_destroy_pml_buffer(vmx);
11085 uninit_vcpu:
11086 kvm_vcpu_uninit(&vmx->vcpu);
11087 free_vcpu:
11088 free_vpid(vmx->vpid);
11089 kmem_cache_free(kvm_vcpu_cache, vmx);
11090 return ERR_PTR(err);
11091 }
11092
11093 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
11094 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
11095
vmx_vm_init(struct kvm * kvm)11096 static int vmx_vm_init(struct kvm *kvm)
11097 {
11098 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
11099
11100 if (!ple_gap)
11101 kvm->arch.pause_in_guest = true;
11102
11103 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
11104 switch (l1tf_mitigation) {
11105 case L1TF_MITIGATION_OFF:
11106 case L1TF_MITIGATION_FLUSH_NOWARN:
11107 /* 'I explicitly don't care' is set */
11108 break;
11109 case L1TF_MITIGATION_FLUSH:
11110 case L1TF_MITIGATION_FLUSH_NOSMT:
11111 case L1TF_MITIGATION_FULL:
11112 /*
11113 * Warn upon starting the first VM in a potentially
11114 * insecure environment.
11115 */
11116 if (cpu_smt_control == CPU_SMT_ENABLED)
11117 pr_warn_once(L1TF_MSG_SMT);
11118 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
11119 pr_warn_once(L1TF_MSG_L1D);
11120 break;
11121 case L1TF_MITIGATION_FULL_FORCE:
11122 /* Flush is enforced */
11123 break;
11124 }
11125 }
11126 return 0;
11127 }
11128
vmx_check_processor_compat(void * rtn)11129 static void __init vmx_check_processor_compat(void *rtn)
11130 {
11131 struct vmcs_config vmcs_conf;
11132
11133 *(int *)rtn = 0;
11134 if (setup_vmcs_config(&vmcs_conf) < 0)
11135 *(int *)rtn = -EIO;
11136 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
11137 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
11138 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
11139 smp_processor_id());
11140 *(int *)rtn = -EIO;
11141 }
11142 }
11143
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)11144 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
11145 {
11146 u8 cache;
11147 u64 ipat = 0;
11148
11149 /* For VT-d and EPT combination
11150 * 1. MMIO: always map as UC
11151 * 2. EPT with VT-d:
11152 * a. VT-d without snooping control feature: can't guarantee the
11153 * result, try to trust guest.
11154 * b. VT-d with snooping control feature: snooping control feature of
11155 * VT-d engine can guarantee the cache correctness. Just set it
11156 * to WB to keep consistent with host. So the same as item 3.
11157 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
11158 * consistent with host MTRR
11159 */
11160 if (is_mmio) {
11161 cache = MTRR_TYPE_UNCACHABLE;
11162 goto exit;
11163 }
11164
11165 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
11166 ipat = VMX_EPT_IPAT_BIT;
11167 cache = MTRR_TYPE_WRBACK;
11168 goto exit;
11169 }
11170
11171 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
11172 ipat = VMX_EPT_IPAT_BIT;
11173 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
11174 cache = MTRR_TYPE_WRBACK;
11175 else
11176 cache = MTRR_TYPE_UNCACHABLE;
11177 goto exit;
11178 }
11179
11180 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
11181
11182 exit:
11183 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
11184 }
11185
vmx_get_lpage_level(void)11186 static int vmx_get_lpage_level(void)
11187 {
11188 if (enable_ept && !cpu_has_vmx_ept_1g_page())
11189 return PT_DIRECTORY_LEVEL;
11190 else
11191 /* For shadow and EPT supported 1GB page */
11192 return PT_PDPE_LEVEL;
11193 }
11194
vmcs_set_secondary_exec_control(u32 new_ctl)11195 static void vmcs_set_secondary_exec_control(u32 new_ctl)
11196 {
11197 /*
11198 * These bits in the secondary execution controls field
11199 * are dynamic, the others are mostly based on the hypervisor
11200 * architecture and the guest's CPUID. Do not touch the
11201 * dynamic bits.
11202 */
11203 u32 mask =
11204 SECONDARY_EXEC_SHADOW_VMCS |
11205 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
11206 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
11207 SECONDARY_EXEC_DESC;
11208
11209 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
11210
11211 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
11212 (new_ctl & ~mask) | (cur_ctl & mask));
11213 }
11214
11215 /*
11216 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
11217 * (indicating "allowed-1") if they are supported in the guest's CPUID.
11218 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)11219 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
11220 {
11221 struct vcpu_vmx *vmx = to_vmx(vcpu);
11222 struct kvm_cpuid_entry2 *entry;
11223
11224 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
11225 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
11226
11227 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
11228 if (entry && (entry->_reg & (_cpuid_mask))) \
11229 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
11230 } while (0)
11231
11232 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
11233 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
11234 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
11235 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
11236 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
11237 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
11238 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
11239 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
11240 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
11241 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
11242 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
11243 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
11244 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
11245 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
11246 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
11247
11248 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
11249 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
11250 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
11251 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
11252 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
11253 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
11254
11255 #undef cr4_fixed1_update
11256 }
11257
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)11258 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
11259 {
11260 struct vcpu_vmx *vmx = to_vmx(vcpu);
11261
11262 if (kvm_mpx_supported()) {
11263 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
11264
11265 if (mpx_enabled) {
11266 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
11267 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
11268 } else {
11269 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
11270 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
11271 }
11272 }
11273 }
11274
vmx_cpuid_update(struct kvm_vcpu * vcpu)11275 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
11276 {
11277 struct vcpu_vmx *vmx = to_vmx(vcpu);
11278
11279 if (cpu_has_secondary_exec_ctrls()) {
11280 vmx_compute_secondary_exec_control(vmx);
11281 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
11282 }
11283
11284 if (nested_vmx_allowed(vcpu))
11285 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11286 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
11287 else
11288 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11289 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
11290
11291 if (nested_vmx_allowed(vcpu)) {
11292 nested_vmx_cr_fixed1_bits_update(vcpu);
11293 nested_vmx_entry_exit_ctls_update(vcpu);
11294 }
11295 }
11296
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)11297 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
11298 {
11299 if (func == 1 && nested)
11300 entry->ecx |= bit(X86_FEATURE_VMX);
11301 }
11302
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)11303 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
11304 struct x86_exception *fault)
11305 {
11306 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11307 struct vcpu_vmx *vmx = to_vmx(vcpu);
11308 u32 exit_reason;
11309 unsigned long exit_qualification = vcpu->arch.exit_qualification;
11310
11311 if (vmx->nested.pml_full) {
11312 exit_reason = EXIT_REASON_PML_FULL;
11313 vmx->nested.pml_full = false;
11314 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
11315 } else if (fault->error_code & PFERR_RSVD_MASK)
11316 exit_reason = EXIT_REASON_EPT_MISCONFIG;
11317 else
11318 exit_reason = EXIT_REASON_EPT_VIOLATION;
11319
11320 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
11321 vmcs12->guest_physical_address = fault->address;
11322 }
11323
nested_ept_ad_enabled(struct kvm_vcpu * vcpu)11324 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
11325 {
11326 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
11327 }
11328
11329 /* Callbacks for nested_ept_init_mmu_context: */
11330
nested_ept_get_cr3(struct kvm_vcpu * vcpu)11331 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
11332 {
11333 /* return the page table to be shadowed - in our case, EPT12 */
11334 return get_vmcs12(vcpu)->ept_pointer;
11335 }
11336
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)11337 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
11338 {
11339 WARN_ON(mmu_is_nested(vcpu));
11340 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
11341 return 1;
11342
11343 kvm_init_shadow_ept_mmu(vcpu,
11344 to_vmx(vcpu)->nested.msrs.ept_caps &
11345 VMX_EPT_EXECUTE_ONLY_BIT,
11346 nested_ept_ad_enabled(vcpu),
11347 nested_ept_get_cr3(vcpu));
11348 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
11349 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
11350 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
11351
11352 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
11353 return 0;
11354 }
11355
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)11356 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
11357 {
11358 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
11359 }
11360
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)11361 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
11362 u16 error_code)
11363 {
11364 bool inequality, bit;
11365
11366 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
11367 inequality =
11368 (error_code & vmcs12->page_fault_error_code_mask) !=
11369 vmcs12->page_fault_error_code_match;
11370 return inequality ^ bit;
11371 }
11372
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)11373 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
11374 struct x86_exception *fault)
11375 {
11376 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11377
11378 WARN_ON(!is_guest_mode(vcpu));
11379
11380 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
11381 !to_vmx(vcpu)->nested.nested_run_pending) {
11382 vmcs12->vm_exit_intr_error_code = fault->error_code;
11383 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11384 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
11385 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
11386 fault->address);
11387 } else {
11388 kvm_inject_page_fault(vcpu, fault);
11389 }
11390 }
11391
11392 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
11393 struct vmcs12 *vmcs12);
11394
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)11395 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
11396 {
11397 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11398 struct vcpu_vmx *vmx = to_vmx(vcpu);
11399 struct page *page;
11400 u64 hpa;
11401
11402 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11403 /*
11404 * Translate L1 physical address to host physical
11405 * address for vmcs02. Keep the page pinned, so this
11406 * physical address remains valid. We keep a reference
11407 * to it so we can release it later.
11408 */
11409 if (vmx->nested.apic_access_page) { /* shouldn't happen */
11410 kvm_release_page_dirty(vmx->nested.apic_access_page);
11411 vmx->nested.apic_access_page = NULL;
11412 }
11413 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
11414 /*
11415 * If translation failed, no matter: This feature asks
11416 * to exit when accessing the given address, and if it
11417 * can never be accessed, this feature won't do
11418 * anything anyway.
11419 */
11420 if (!is_error_page(page)) {
11421 vmx->nested.apic_access_page = page;
11422 hpa = page_to_phys(vmx->nested.apic_access_page);
11423 vmcs_write64(APIC_ACCESS_ADDR, hpa);
11424 } else {
11425 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
11426 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
11427 }
11428 }
11429
11430 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
11431 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
11432 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11433 vmx->nested.virtual_apic_page = NULL;
11434 }
11435 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
11436
11437 /*
11438 * If translation failed, VM entry will fail because
11439 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
11440 * Failing the vm entry is _not_ what the processor
11441 * does but it's basically the only possibility we
11442 * have. We could still enter the guest if CR8 load
11443 * exits are enabled, CR8 store exits are enabled, and
11444 * virtualize APIC access is disabled; in this case
11445 * the processor would never use the TPR shadow and we
11446 * could simply clear the bit from the execution
11447 * control. But such a configuration is useless, so
11448 * let's keep the code simple.
11449 */
11450 if (!is_error_page(page)) {
11451 vmx->nested.virtual_apic_page = page;
11452 hpa = page_to_phys(vmx->nested.virtual_apic_page);
11453 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
11454 }
11455 }
11456
11457 if (nested_cpu_has_posted_intr(vmcs12)) {
11458 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
11459 kunmap(vmx->nested.pi_desc_page);
11460 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11461 vmx->nested.pi_desc_page = NULL;
11462 }
11463 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
11464 if (is_error_page(page))
11465 return;
11466 vmx->nested.pi_desc_page = page;
11467 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
11468 vmx->nested.pi_desc =
11469 (struct pi_desc *)((void *)vmx->nested.pi_desc +
11470 (unsigned long)(vmcs12->posted_intr_desc_addr &
11471 (PAGE_SIZE - 1)));
11472 vmcs_write64(POSTED_INTR_DESC_ADDR,
11473 page_to_phys(vmx->nested.pi_desc_page) +
11474 (unsigned long)(vmcs12->posted_intr_desc_addr &
11475 (PAGE_SIZE - 1)));
11476 }
11477 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
11478 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
11479 CPU_BASED_USE_MSR_BITMAPS);
11480 else
11481 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
11482 CPU_BASED_USE_MSR_BITMAPS);
11483 }
11484
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)11485 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
11486 {
11487 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
11488 struct vcpu_vmx *vmx = to_vmx(vcpu);
11489
11490 /*
11491 * A timer value of zero is architecturally guaranteed to cause
11492 * a VMExit prior to executing any instructions in the guest.
11493 */
11494 if (preemption_timeout == 0) {
11495 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
11496 return;
11497 }
11498
11499 if (vcpu->arch.virtual_tsc_khz == 0)
11500 return;
11501
11502 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11503 preemption_timeout *= 1000000;
11504 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
11505 hrtimer_start(&vmx->nested.preemption_timer,
11506 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
11507 }
11508
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11509 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
11510 struct vmcs12 *vmcs12)
11511 {
11512 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
11513 return 0;
11514
11515 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
11516 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
11517 return -EINVAL;
11518
11519 return 0;
11520 }
11521
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11522 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
11523 struct vmcs12 *vmcs12)
11524 {
11525 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
11526 return 0;
11527
11528 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
11529 return -EINVAL;
11530
11531 return 0;
11532 }
11533
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11534 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
11535 struct vmcs12 *vmcs12)
11536 {
11537 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
11538 return 0;
11539
11540 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
11541 return -EINVAL;
11542
11543 return 0;
11544 }
11545
11546 /*
11547 * Merge L0's and L1's MSR bitmap, return false to indicate that
11548 * we do not use the hardware.
11549 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11550 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
11551 struct vmcs12 *vmcs12)
11552 {
11553 int msr;
11554 struct page *page;
11555 unsigned long *msr_bitmap_l1;
11556 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
11557 /*
11558 * pred_cmd & spec_ctrl are trying to verify two things:
11559 *
11560 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
11561 * ensures that we do not accidentally generate an L02 MSR bitmap
11562 * from the L12 MSR bitmap that is too permissive.
11563 * 2. That L1 or L2s have actually used the MSR. This avoids
11564 * unnecessarily merging of the bitmap if the MSR is unused. This
11565 * works properly because we only update the L01 MSR bitmap lazily.
11566 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
11567 * updated to reflect this when L1 (or its L2s) actually write to
11568 * the MSR.
11569 */
11570 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
11571 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
11572
11573 /* Nothing to do if the MSR bitmap is not in use. */
11574 if (!cpu_has_vmx_msr_bitmap() ||
11575 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
11576 return false;
11577
11578 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
11579 !pred_cmd && !spec_ctrl)
11580 return false;
11581
11582 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
11583 if (is_error_page(page))
11584 return false;
11585
11586 msr_bitmap_l1 = (unsigned long *)kmap(page);
11587 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
11588 /*
11589 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
11590 * just lets the processor take the value from the virtual-APIC page;
11591 * take those 256 bits directly from the L1 bitmap.
11592 */
11593 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
11594 unsigned word = msr / BITS_PER_LONG;
11595 msr_bitmap_l0[word] = msr_bitmap_l1[word];
11596 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
11597 }
11598 } else {
11599 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
11600 unsigned word = msr / BITS_PER_LONG;
11601 msr_bitmap_l0[word] = ~0;
11602 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
11603 }
11604 }
11605
11606 nested_vmx_disable_intercept_for_msr(
11607 msr_bitmap_l1, msr_bitmap_l0,
11608 X2APIC_MSR(APIC_TASKPRI),
11609 MSR_TYPE_W);
11610
11611 if (nested_cpu_has_vid(vmcs12)) {
11612 nested_vmx_disable_intercept_for_msr(
11613 msr_bitmap_l1, msr_bitmap_l0,
11614 X2APIC_MSR(APIC_EOI),
11615 MSR_TYPE_W);
11616 nested_vmx_disable_intercept_for_msr(
11617 msr_bitmap_l1, msr_bitmap_l0,
11618 X2APIC_MSR(APIC_SELF_IPI),
11619 MSR_TYPE_W);
11620 }
11621
11622 if (spec_ctrl)
11623 nested_vmx_disable_intercept_for_msr(
11624 msr_bitmap_l1, msr_bitmap_l0,
11625 MSR_IA32_SPEC_CTRL,
11626 MSR_TYPE_R | MSR_TYPE_W);
11627
11628 if (pred_cmd)
11629 nested_vmx_disable_intercept_for_msr(
11630 msr_bitmap_l1, msr_bitmap_l0,
11631 MSR_IA32_PRED_CMD,
11632 MSR_TYPE_W);
11633
11634 kunmap(page);
11635 kvm_release_page_clean(page);
11636
11637 return true;
11638 }
11639
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11640 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
11641 struct vmcs12 *vmcs12)
11642 {
11643 struct vmcs12 *shadow;
11644 struct page *page;
11645
11646 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
11647 vmcs12->vmcs_link_pointer == -1ull)
11648 return;
11649
11650 shadow = get_shadow_vmcs12(vcpu);
11651 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
11652
11653 memcpy(shadow, kmap(page), VMCS12_SIZE);
11654
11655 kunmap(page);
11656 kvm_release_page_clean(page);
11657 }
11658
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11659 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
11660 struct vmcs12 *vmcs12)
11661 {
11662 struct vcpu_vmx *vmx = to_vmx(vcpu);
11663
11664 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
11665 vmcs12->vmcs_link_pointer == -1ull)
11666 return;
11667
11668 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
11669 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
11670 }
11671
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11672 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
11673 struct vmcs12 *vmcs12)
11674 {
11675 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
11676 !page_address_valid(vcpu, vmcs12->apic_access_addr))
11677 return -EINVAL;
11678 else
11679 return 0;
11680 }
11681
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11682 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
11683 struct vmcs12 *vmcs12)
11684 {
11685 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
11686 !nested_cpu_has_apic_reg_virt(vmcs12) &&
11687 !nested_cpu_has_vid(vmcs12) &&
11688 !nested_cpu_has_posted_intr(vmcs12))
11689 return 0;
11690
11691 /*
11692 * If virtualize x2apic mode is enabled,
11693 * virtualize apic access must be disabled.
11694 */
11695 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
11696 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
11697 return -EINVAL;
11698
11699 /*
11700 * If virtual interrupt delivery is enabled,
11701 * we must exit on external interrupts.
11702 */
11703 if (nested_cpu_has_vid(vmcs12) &&
11704 !nested_exit_on_intr(vcpu))
11705 return -EINVAL;
11706
11707 /*
11708 * bits 15:8 should be zero in posted_intr_nv,
11709 * the descriptor address has been already checked
11710 * in nested_get_vmcs12_pages.
11711 *
11712 * bits 5:0 of posted_intr_desc_addr should be zero.
11713 */
11714 if (nested_cpu_has_posted_intr(vmcs12) &&
11715 (!nested_cpu_has_vid(vmcs12) ||
11716 !nested_exit_intr_ack_set(vcpu) ||
11717 (vmcs12->posted_intr_nv & 0xff00) ||
11718 (vmcs12->posted_intr_desc_addr & 0x3f) ||
11719 (!page_address_valid(vcpu, vmcs12->posted_intr_desc_addr))))
11720 return -EINVAL;
11721
11722 /* tpr shadow is needed by all apicv features. */
11723 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
11724 return -EINVAL;
11725
11726 return 0;
11727 }
11728
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)11729 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
11730 unsigned long count_field,
11731 unsigned long addr_field)
11732 {
11733 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11734 int maxphyaddr;
11735 u64 count, addr;
11736
11737 if (vmcs12_read_any(vmcs12, count_field, &count) ||
11738 vmcs12_read_any(vmcs12, addr_field, &addr)) {
11739 WARN_ON(1);
11740 return -EINVAL;
11741 }
11742 if (count == 0)
11743 return 0;
11744 maxphyaddr = cpuid_maxphyaddr(vcpu);
11745 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
11746 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
11747 pr_debug_ratelimited(
11748 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
11749 addr_field, maxphyaddr, count, addr);
11750 return -EINVAL;
11751 }
11752 return 0;
11753 }
11754
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11755 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
11756 struct vmcs12 *vmcs12)
11757 {
11758 if (vmcs12->vm_exit_msr_load_count == 0 &&
11759 vmcs12->vm_exit_msr_store_count == 0 &&
11760 vmcs12->vm_entry_msr_load_count == 0)
11761 return 0; /* Fast path */
11762 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
11763 VM_EXIT_MSR_LOAD_ADDR) ||
11764 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
11765 VM_EXIT_MSR_STORE_ADDR) ||
11766 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
11767 VM_ENTRY_MSR_LOAD_ADDR))
11768 return -EINVAL;
11769 return 0;
11770 }
11771
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11772 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
11773 struct vmcs12 *vmcs12)
11774 {
11775 u64 address = vmcs12->pml_address;
11776 int maxphyaddr = cpuid_maxphyaddr(vcpu);
11777
11778 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
11779 if (!nested_cpu_has_ept(vmcs12) ||
11780 !IS_ALIGNED(address, 4096) ||
11781 address >> maxphyaddr)
11782 return -EINVAL;
11783 }
11784
11785 return 0;
11786 }
11787
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11788 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
11789 struct vmcs12 *vmcs12)
11790 {
11791 if (!nested_cpu_has_shadow_vmcs(vmcs12))
11792 return 0;
11793
11794 if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
11795 !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
11796 return -EINVAL;
11797
11798 return 0;
11799 }
11800
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)11801 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
11802 struct vmx_msr_entry *e)
11803 {
11804 /* x2APIC MSR accesses are not allowed */
11805 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
11806 return -EINVAL;
11807 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
11808 e->index == MSR_IA32_UCODE_REV)
11809 return -EINVAL;
11810 if (e->reserved != 0)
11811 return -EINVAL;
11812 return 0;
11813 }
11814
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)11815 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
11816 struct vmx_msr_entry *e)
11817 {
11818 if (e->index == MSR_FS_BASE ||
11819 e->index == MSR_GS_BASE ||
11820 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
11821 nested_vmx_msr_check_common(vcpu, e))
11822 return -EINVAL;
11823 return 0;
11824 }
11825
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)11826 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
11827 struct vmx_msr_entry *e)
11828 {
11829 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
11830 nested_vmx_msr_check_common(vcpu, e))
11831 return -EINVAL;
11832 return 0;
11833 }
11834
11835 /*
11836 * Load guest's/host's msr at nested entry/exit.
11837 * return 0 for success, entry index for failure.
11838 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)11839 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
11840 {
11841 u32 i;
11842 struct vmx_msr_entry e;
11843 struct msr_data msr;
11844
11845 msr.host_initiated = false;
11846 for (i = 0; i < count; i++) {
11847 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
11848 &e, sizeof(e))) {
11849 pr_debug_ratelimited(
11850 "%s cannot read MSR entry (%u, 0x%08llx)\n",
11851 __func__, i, gpa + i * sizeof(e));
11852 goto fail;
11853 }
11854 if (nested_vmx_load_msr_check(vcpu, &e)) {
11855 pr_debug_ratelimited(
11856 "%s check failed (%u, 0x%x, 0x%x)\n",
11857 __func__, i, e.index, e.reserved);
11858 goto fail;
11859 }
11860 msr.index = e.index;
11861 msr.data = e.value;
11862 if (kvm_set_msr(vcpu, &msr)) {
11863 pr_debug_ratelimited(
11864 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11865 __func__, i, e.index, e.value);
11866 goto fail;
11867 }
11868 }
11869 return 0;
11870 fail:
11871 return i + 1;
11872 }
11873
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)11874 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
11875 {
11876 u32 i;
11877 struct vmx_msr_entry e;
11878
11879 for (i = 0; i < count; i++) {
11880 struct msr_data msr_info;
11881 if (kvm_vcpu_read_guest(vcpu,
11882 gpa + i * sizeof(e),
11883 &e, 2 * sizeof(u32))) {
11884 pr_debug_ratelimited(
11885 "%s cannot read MSR entry (%u, 0x%08llx)\n",
11886 __func__, i, gpa + i * sizeof(e));
11887 return -EINVAL;
11888 }
11889 if (nested_vmx_store_msr_check(vcpu, &e)) {
11890 pr_debug_ratelimited(
11891 "%s check failed (%u, 0x%x, 0x%x)\n",
11892 __func__, i, e.index, e.reserved);
11893 return -EINVAL;
11894 }
11895 msr_info.host_initiated = false;
11896 msr_info.index = e.index;
11897 if (kvm_get_msr(vcpu, &msr_info)) {
11898 pr_debug_ratelimited(
11899 "%s cannot read MSR (%u, 0x%x)\n",
11900 __func__, i, e.index);
11901 return -EINVAL;
11902 }
11903 if (kvm_vcpu_write_guest(vcpu,
11904 gpa + i * sizeof(e) +
11905 offsetof(struct vmx_msr_entry, value),
11906 &msr_info.data, sizeof(msr_info.data))) {
11907 pr_debug_ratelimited(
11908 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11909 __func__, i, e.index, msr_info.data);
11910 return -EINVAL;
11911 }
11912 }
11913 return 0;
11914 }
11915
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)11916 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
11917 {
11918 unsigned long invalid_mask;
11919
11920 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
11921 return (val & invalid_mask) == 0;
11922 }
11923
11924 /*
11925 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
11926 * emulating VM entry into a guest with EPT enabled.
11927 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
11928 * is assigned to entry_failure_code on failure.
11929 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,u32 * entry_failure_code)11930 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
11931 u32 *entry_failure_code)
11932 {
11933 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
11934 if (!nested_cr3_valid(vcpu, cr3)) {
11935 *entry_failure_code = ENTRY_FAIL_DEFAULT;
11936 return 1;
11937 }
11938
11939 /*
11940 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
11941 * must not be dereferenced.
11942 */
11943 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
11944 !nested_ept) {
11945 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
11946 *entry_failure_code = ENTRY_FAIL_PDPTE;
11947 return 1;
11948 }
11949 }
11950 }
11951
11952 if (!nested_ept)
11953 kvm_mmu_new_cr3(vcpu, cr3, false);
11954
11955 vcpu->arch.cr3 = cr3;
11956 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
11957
11958 kvm_init_mmu(vcpu, false);
11959
11960 return 0;
11961 }
11962
prepare_vmcs02_full(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11963 static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11964 {
11965 struct vcpu_vmx *vmx = to_vmx(vcpu);
11966
11967 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
11968 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
11969 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
11970 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
11971 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
11972 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
11973 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
11974 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
11975 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
11976 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
11977 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
11978 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
11979 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
11980 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
11981 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
11982 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
11983 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
11984 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
11985 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
11986 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
11987 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
11988 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
11989 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
11990 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
11991 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
11992 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
11993 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
11994 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
11995 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
11996 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
11997 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
11998
11999 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
12000 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
12001 vmcs12->guest_pending_dbg_exceptions);
12002 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
12003 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
12004
12005 if (nested_cpu_has_xsaves(vmcs12))
12006 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
12007 vmcs_write64(VMCS_LINK_POINTER, -1ull);
12008
12009 if (cpu_has_vmx_posted_intr())
12010 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
12011
12012 /*
12013 * Whether page-faults are trapped is determined by a combination of
12014 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
12015 * If enable_ept, L0 doesn't care about page faults and we should
12016 * set all of these to L1's desires. However, if !enable_ept, L0 does
12017 * care about (at least some) page faults, and because it is not easy
12018 * (if at all possible?) to merge L0 and L1's desires, we simply ask
12019 * to exit on each and every L2 page fault. This is done by setting
12020 * MASK=MATCH=0 and (see below) EB.PF=1.
12021 * Note that below we don't need special code to set EB.PF beyond the
12022 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
12023 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
12024 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
12025 */
12026 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
12027 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
12028 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
12029 enable_ept ? vmcs12->page_fault_error_code_match : 0);
12030
12031 /* All VMFUNCs are currently emulated through L0 vmexits. */
12032 if (cpu_has_vmx_vmfunc())
12033 vmcs_write64(VM_FUNCTION_CONTROL, 0);
12034
12035 if (cpu_has_vmx_apicv()) {
12036 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
12037 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
12038 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
12039 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
12040 }
12041
12042 /*
12043 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
12044 * Some constant fields are set here by vmx_set_constant_host_state().
12045 * Other fields are different per CPU, and will be set later when
12046 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
12047 * is called.
12048 */
12049 vmx_set_constant_host_state(vmx);
12050
12051 /*
12052 * Set the MSR load/store lists to match L0's settings.
12053 */
12054 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
12055 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
12056 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
12057 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
12058 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
12059
12060 set_cr4_guest_host_mask(vmx);
12061
12062 if (kvm_mpx_supported()) {
12063 if (vmx->nested.nested_run_pending &&
12064 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
12065 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
12066 else
12067 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
12068 }
12069
12070 if (enable_vpid) {
12071 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
12072 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
12073 else
12074 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
12075 }
12076
12077 /*
12078 * L1 may access the L2's PDPTR, so save them to construct vmcs12
12079 */
12080 if (enable_ept) {
12081 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
12082 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
12083 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
12084 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
12085 }
12086
12087 if (cpu_has_vmx_msr_bitmap())
12088 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
12089 }
12090
12091 /*
12092 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
12093 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
12094 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
12095 * guest in a way that will both be appropriate to L1's requests, and our
12096 * needs. In addition to modifying the active vmcs (which is vmcs02), this
12097 * function also has additional necessary side-effects, like setting various
12098 * vcpu->arch fields.
12099 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
12100 * is assigned to entry_failure_code on failure.
12101 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * entry_failure_code)12102 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
12103 u32 *entry_failure_code)
12104 {
12105 struct vcpu_vmx *vmx = to_vmx(vcpu);
12106 u32 exec_control, vmcs12_exec_ctrl;
12107
12108 if (vmx->nested.dirty_vmcs12) {
12109 prepare_vmcs02_full(vcpu, vmcs12);
12110 vmx->nested.dirty_vmcs12 = false;
12111 }
12112
12113 /*
12114 * First, the fields that are shadowed. This must be kept in sync
12115 * with vmx_shadow_fields.h.
12116 */
12117
12118 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
12119 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
12120 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
12121 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
12122 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
12123
12124 if (vmx->nested.nested_run_pending &&
12125 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
12126 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
12127 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
12128 } else {
12129 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
12130 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
12131 }
12132 if (vmx->nested.nested_run_pending) {
12133 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
12134 vmcs12->vm_entry_intr_info_field);
12135 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
12136 vmcs12->vm_entry_exception_error_code);
12137 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
12138 vmcs12->vm_entry_instruction_len);
12139 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
12140 vmcs12->guest_interruptibility_info);
12141 vmx->loaded_vmcs->nmi_known_unmasked =
12142 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
12143 } else {
12144 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
12145 }
12146 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
12147
12148 exec_control = vmcs12->pin_based_vm_exec_control;
12149
12150 /* Preemption timer setting is computed directly in vmx_vcpu_run. */
12151 exec_control |= vmcs_config.pin_based_exec_ctrl;
12152 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
12153 vmx->loaded_vmcs->hv_timer_armed = false;
12154
12155 /* Posted interrupts setting is only taken from vmcs12. */
12156 if (nested_cpu_has_posted_intr(vmcs12)) {
12157 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
12158 vmx->nested.pi_pending = false;
12159 } else {
12160 exec_control &= ~PIN_BASED_POSTED_INTR;
12161 }
12162
12163 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
12164
12165 vmx->nested.preemption_timer_expired = false;
12166 if (nested_cpu_has_preemption_timer(vmcs12))
12167 vmx_start_preemption_timer(vcpu);
12168
12169 if (cpu_has_secondary_exec_ctrls()) {
12170 exec_control = vmx->secondary_exec_control;
12171
12172 /* Take the following fields only from vmcs12 */
12173 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
12174 SECONDARY_EXEC_ENABLE_INVPCID |
12175 SECONDARY_EXEC_RDTSCP |
12176 SECONDARY_EXEC_XSAVES |
12177 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
12178 SECONDARY_EXEC_APIC_REGISTER_VIRT |
12179 SECONDARY_EXEC_ENABLE_VMFUNC);
12180 if (nested_cpu_has(vmcs12,
12181 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
12182 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
12183 ~SECONDARY_EXEC_ENABLE_PML;
12184 exec_control |= vmcs12_exec_ctrl;
12185 }
12186
12187 /* VMCS shadowing for L2 is emulated for now */
12188 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
12189
12190 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
12191 vmcs_write16(GUEST_INTR_STATUS,
12192 vmcs12->guest_intr_status);
12193
12194 /*
12195 * Write an illegal value to APIC_ACCESS_ADDR. Later,
12196 * nested_get_vmcs12_pages will either fix it up or
12197 * remove the VM execution control.
12198 */
12199 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
12200 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
12201
12202 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
12203 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
12204
12205 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
12206 }
12207
12208 /*
12209 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
12210 * entry, but only if the current (host) sp changed from the value
12211 * we wrote last (vmx->host_rsp). This cache is no longer relevant
12212 * if we switch vmcs, and rather than hold a separate cache per vmcs,
12213 * here we just force the write to happen on entry.
12214 */
12215 vmx->host_rsp = 0;
12216
12217 exec_control = vmx_exec_control(vmx); /* L0's desires */
12218 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
12219 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
12220 exec_control &= ~CPU_BASED_TPR_SHADOW;
12221 exec_control |= vmcs12->cpu_based_vm_exec_control;
12222
12223 /*
12224 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
12225 * nested_get_vmcs12_pages can't fix it up, the illegal value
12226 * will result in a VM entry failure.
12227 */
12228 if (exec_control & CPU_BASED_TPR_SHADOW) {
12229 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
12230 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
12231 } else {
12232 #ifdef CONFIG_X86_64
12233 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
12234 CPU_BASED_CR8_STORE_EXITING;
12235 #endif
12236 }
12237
12238 /*
12239 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
12240 * for I/O port accesses.
12241 */
12242 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
12243 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
12244
12245 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
12246
12247 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
12248 * bitwise-or of what L1 wants to trap for L2, and what we want to
12249 * trap. Note that CR0.TS also needs updating - we do this later.
12250 */
12251 update_exception_bitmap(vcpu);
12252 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
12253 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
12254
12255 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
12256 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
12257 * bits are further modified by vmx_set_efer() below.
12258 */
12259 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
12260
12261 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
12262 * emulated by vmx_set_efer(), below.
12263 */
12264 vm_entry_controls_init(vmx,
12265 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
12266 ~VM_ENTRY_IA32E_MODE) |
12267 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
12268
12269 if (vmx->nested.nested_run_pending &&
12270 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
12271 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
12272 vcpu->arch.pat = vmcs12->guest_ia32_pat;
12273 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
12274 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
12275 }
12276
12277 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
12278
12279 if (kvm_has_tsc_control)
12280 decache_tsc_multiplier(vmx);
12281
12282 if (enable_vpid) {
12283 /*
12284 * There is no direct mapping between vpid02 and vpid12, the
12285 * vpid02 is per-vCPU for L0 and reused while the value of
12286 * vpid12 is changed w/ one invvpid during nested vmentry.
12287 * The vpid12 is allocated by L1 for L2, so it will not
12288 * influence global bitmap(for vpid01 and vpid02 allocation)
12289 * even if spawn a lot of nested vCPUs.
12290 */
12291 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
12292 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
12293 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
12294 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
12295 }
12296 } else {
12297 vmx_flush_tlb(vcpu, true);
12298 }
12299 }
12300
12301 if (enable_pml) {
12302 /*
12303 * Conceptually we want to copy the PML address and index from
12304 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
12305 * since we always flush the log on each vmexit, this happens
12306 * to be equivalent to simply resetting the fields in vmcs02.
12307 */
12308 ASSERT(vmx->pml_pg);
12309 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
12310 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
12311 }
12312
12313 if (nested_cpu_has_ept(vmcs12)) {
12314 if (nested_ept_init_mmu_context(vcpu)) {
12315 *entry_failure_code = ENTRY_FAIL_DEFAULT;
12316 return 1;
12317 }
12318 } else if (nested_cpu_has2(vmcs12,
12319 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
12320 vmx_flush_tlb(vcpu, true);
12321 }
12322
12323 /*
12324 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
12325 * bits which we consider mandatory enabled.
12326 * The CR0_READ_SHADOW is what L2 should have expected to read given
12327 * the specifications by L1; It's not enough to take
12328 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
12329 * have more bits than L1 expected.
12330 */
12331 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
12332 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
12333
12334 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
12335 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
12336
12337 if (vmx->nested.nested_run_pending &&
12338 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
12339 vcpu->arch.efer = vmcs12->guest_ia32_efer;
12340 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
12341 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
12342 else
12343 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
12344 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
12345 vmx_set_efer(vcpu, vcpu->arch.efer);
12346
12347 /*
12348 * Guest state is invalid and unrestricted guest is disabled,
12349 * which means L1 attempted VMEntry to L2 with invalid state.
12350 * Fail the VMEntry.
12351 */
12352 if (vmx->emulation_required) {
12353 *entry_failure_code = ENTRY_FAIL_DEFAULT;
12354 return 1;
12355 }
12356
12357 /* Shadow page tables on either EPT or shadow page tables. */
12358 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
12359 entry_failure_code))
12360 return 1;
12361
12362 if (!enable_ept)
12363 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
12364
12365 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
12366 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
12367 return 0;
12368 }
12369
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)12370 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
12371 {
12372 if (!nested_cpu_has_nmi_exiting(vmcs12) &&
12373 nested_cpu_has_virtual_nmis(vmcs12))
12374 return -EINVAL;
12375
12376 if (!nested_cpu_has_virtual_nmis(vmcs12) &&
12377 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
12378 return -EINVAL;
12379
12380 return 0;
12381 }
12382
check_vmentry_prereqs(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12383 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12384 {
12385 struct vcpu_vmx *vmx = to_vmx(vcpu);
12386
12387 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
12388 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
12389 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12390
12391 if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
12392 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12393
12394 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
12395 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12396
12397 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
12398 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12399
12400 if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
12401 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12402
12403 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
12404 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12405
12406 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
12407 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12408
12409 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
12410 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12411
12412 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
12413 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12414
12415 if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
12416 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12417
12418 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
12419 vmx->nested.msrs.procbased_ctls_low,
12420 vmx->nested.msrs.procbased_ctls_high) ||
12421 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
12422 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
12423 vmx->nested.msrs.secondary_ctls_low,
12424 vmx->nested.msrs.secondary_ctls_high)) ||
12425 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
12426 vmx->nested.msrs.pinbased_ctls_low,
12427 vmx->nested.msrs.pinbased_ctls_high) ||
12428 !vmx_control_verify(vmcs12->vm_exit_controls,
12429 vmx->nested.msrs.exit_ctls_low,
12430 vmx->nested.msrs.exit_ctls_high) ||
12431 !vmx_control_verify(vmcs12->vm_entry_controls,
12432 vmx->nested.msrs.entry_ctls_low,
12433 vmx->nested.msrs.entry_ctls_high))
12434 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12435
12436 if (nested_vmx_check_nmi_controls(vmcs12))
12437 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12438
12439 if (nested_cpu_has_vmfunc(vmcs12)) {
12440 if (vmcs12->vm_function_control &
12441 ~vmx->nested.msrs.vmfunc_controls)
12442 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12443
12444 if (nested_cpu_has_eptp_switching(vmcs12)) {
12445 if (!nested_cpu_has_ept(vmcs12) ||
12446 !page_address_valid(vcpu, vmcs12->eptp_list_address))
12447 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12448 }
12449 }
12450
12451 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
12452 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12453
12454 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
12455 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
12456 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
12457 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
12458
12459 /*
12460 * From the Intel SDM, volume 3:
12461 * Fields relevant to VM-entry event injection must be set properly.
12462 * These fields are the VM-entry interruption-information field, the
12463 * VM-entry exception error code, and the VM-entry instruction length.
12464 */
12465 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
12466 u32 intr_info = vmcs12->vm_entry_intr_info_field;
12467 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
12468 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
12469 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
12470 bool should_have_error_code;
12471 bool urg = nested_cpu_has2(vmcs12,
12472 SECONDARY_EXEC_UNRESTRICTED_GUEST);
12473 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
12474
12475 /* VM-entry interruption-info field: interruption type */
12476 if (intr_type == INTR_TYPE_RESERVED ||
12477 (intr_type == INTR_TYPE_OTHER_EVENT &&
12478 !nested_cpu_supports_monitor_trap_flag(vcpu)))
12479 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12480
12481 /* VM-entry interruption-info field: vector */
12482 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
12483 (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
12484 (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
12485 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12486
12487 /* VM-entry interruption-info field: deliver error code */
12488 should_have_error_code =
12489 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
12490 x86_exception_has_error_code(vector);
12491 if (has_error_code != should_have_error_code)
12492 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12493
12494 /* VM-entry exception error code */
12495 if (has_error_code &&
12496 vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
12497 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12498
12499 /* VM-entry interruption-info field: reserved bits */
12500 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
12501 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12502
12503 /* VM-entry instruction length */
12504 switch (intr_type) {
12505 case INTR_TYPE_SOFT_EXCEPTION:
12506 case INTR_TYPE_SOFT_INTR:
12507 case INTR_TYPE_PRIV_SW_EXCEPTION:
12508 if ((vmcs12->vm_entry_instruction_len > 15) ||
12509 (vmcs12->vm_entry_instruction_len == 0 &&
12510 !nested_cpu_has_zero_length_injection(vcpu)))
12511 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12512 }
12513 }
12514
12515 return 0;
12516 }
12517
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12518 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
12519 struct vmcs12 *vmcs12)
12520 {
12521 int r;
12522 struct page *page;
12523 struct vmcs12 *shadow;
12524
12525 if (vmcs12->vmcs_link_pointer == -1ull)
12526 return 0;
12527
12528 if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
12529 return -EINVAL;
12530
12531 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
12532 if (is_error_page(page))
12533 return -EINVAL;
12534
12535 r = 0;
12536 shadow = kmap(page);
12537 if (shadow->hdr.revision_id != VMCS12_REVISION ||
12538 shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
12539 r = -EINVAL;
12540 kunmap(page);
12541 kvm_release_page_clean(page);
12542 return r;
12543 }
12544
check_vmentry_postreqs(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * exit_qual)12545 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
12546 u32 *exit_qual)
12547 {
12548 bool ia32e;
12549
12550 *exit_qual = ENTRY_FAIL_DEFAULT;
12551
12552 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
12553 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
12554 return 1;
12555
12556 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
12557 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
12558 return 1;
12559 }
12560
12561 /*
12562 * If the load IA32_EFER VM-entry control is 1, the following checks
12563 * are performed on the field for the IA32_EFER MSR:
12564 * - Bits reserved in the IA32_EFER MSR must be 0.
12565 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
12566 * the IA-32e mode guest VM-exit control. It must also be identical
12567 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
12568 * CR0.PG) is 1.
12569 */
12570 if (to_vmx(vcpu)->nested.nested_run_pending &&
12571 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
12572 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
12573 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
12574 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
12575 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
12576 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
12577 return 1;
12578 }
12579
12580 /*
12581 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
12582 * IA32_EFER MSR must be 0 in the field for that register. In addition,
12583 * the values of the LMA and LME bits in the field must each be that of
12584 * the host address-space size VM-exit control.
12585 */
12586 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
12587 ia32e = (vmcs12->vm_exit_controls &
12588 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
12589 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
12590 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
12591 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
12592 return 1;
12593 }
12594
12595 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
12596 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
12597 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
12598 return 1;
12599
12600 return 0;
12601 }
12602
12603 /*
12604 * If exit_qual is NULL, this is being called from state restore (either RSM
12605 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
12606 */
enter_vmx_non_root_mode(struct kvm_vcpu * vcpu,u32 * exit_qual)12607 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
12608 {
12609 struct vcpu_vmx *vmx = to_vmx(vcpu);
12610 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12611 bool from_vmentry = !!exit_qual;
12612 u32 dummy_exit_qual;
12613 bool evaluate_pending_interrupts;
12614 int r = 0;
12615
12616 evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
12617 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
12618 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
12619 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
12620
12621 enter_guest_mode(vcpu);
12622
12623 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
12624 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
12625 if (kvm_mpx_supported() &&
12626 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
12627 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
12628
12629 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
12630 vmx_segment_cache_clear(vmx);
12631
12632 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12633 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
12634
12635 r = EXIT_REASON_INVALID_STATE;
12636 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual))
12637 goto fail;
12638
12639 if (from_vmentry) {
12640 nested_get_vmcs12_pages(vcpu);
12641
12642 r = EXIT_REASON_MSR_LOAD_FAIL;
12643 *exit_qual = nested_vmx_load_msr(vcpu,
12644 vmcs12->vm_entry_msr_load_addr,
12645 vmcs12->vm_entry_msr_load_count);
12646 if (*exit_qual)
12647 goto fail;
12648 } else {
12649 /*
12650 * The MMU is not initialized to point at the right entities yet and
12651 * "get pages" would need to read data from the guest (i.e. we will
12652 * need to perform gpa to hpa translation). Request a call
12653 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
12654 * have already been set at vmentry time and should not be reset.
12655 */
12656 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
12657 }
12658
12659 /*
12660 * If L1 had a pending IRQ/NMI until it executed
12661 * VMLAUNCH/VMRESUME which wasn't delivered because it was
12662 * disallowed (e.g. interrupts disabled), L0 needs to
12663 * evaluate if this pending event should cause an exit from L2
12664 * to L1 or delivered directly to L2 (e.g. In case L1 don't
12665 * intercept EXTERNAL_INTERRUPT).
12666 *
12667 * Usually this would be handled by the processor noticing an
12668 * IRQ/NMI window request, or checking RVI during evaluation of
12669 * pending virtual interrupts. However, this setting was done
12670 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
12671 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
12672 */
12673 if (unlikely(evaluate_pending_interrupts))
12674 kvm_make_request(KVM_REQ_EVENT, vcpu);
12675
12676 /*
12677 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
12678 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
12679 * returned as far as L1 is concerned. It will only return (and set
12680 * the success flag) when L2 exits (see nested_vmx_vmexit()).
12681 */
12682 return 0;
12683
12684 fail:
12685 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12686 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
12687 leave_guest_mode(vcpu);
12688 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
12689 return r;
12690 }
12691
12692 /*
12693 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
12694 * for running an L2 nested guest.
12695 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)12696 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
12697 {
12698 struct vmcs12 *vmcs12;
12699 struct vcpu_vmx *vmx = to_vmx(vcpu);
12700 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
12701 u32 exit_qual;
12702 int ret;
12703
12704 if (!nested_vmx_check_permission(vcpu))
12705 return 1;
12706
12707 if (!nested_vmx_check_vmcs12(vcpu))
12708 goto out;
12709
12710 vmcs12 = get_vmcs12(vcpu);
12711
12712 /*
12713 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
12714 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
12715 * rather than RFLAGS.ZF, and no error number is stored to the
12716 * VM-instruction error field.
12717 */
12718 if (vmcs12->hdr.shadow_vmcs) {
12719 nested_vmx_failInvalid(vcpu);
12720 goto out;
12721 }
12722
12723 if (enable_shadow_vmcs)
12724 copy_shadow_to_vmcs12(vmx);
12725
12726 /*
12727 * The nested entry process starts with enforcing various prerequisites
12728 * on vmcs12 as required by the Intel SDM, and act appropriately when
12729 * they fail: As the SDM explains, some conditions should cause the
12730 * instruction to fail, while others will cause the instruction to seem
12731 * to succeed, but return an EXIT_REASON_INVALID_STATE.
12732 * To speed up the normal (success) code path, we should avoid checking
12733 * for misconfigurations which will anyway be caught by the processor
12734 * when using the merged vmcs02.
12735 */
12736 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
12737 nested_vmx_failValid(vcpu,
12738 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
12739 goto out;
12740 }
12741
12742 if (vmcs12->launch_state == launch) {
12743 nested_vmx_failValid(vcpu,
12744 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
12745 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
12746 goto out;
12747 }
12748
12749 ret = check_vmentry_prereqs(vcpu, vmcs12);
12750 if (ret) {
12751 nested_vmx_failValid(vcpu, ret);
12752 goto out;
12753 }
12754
12755 /*
12756 * After this point, the trap flag no longer triggers a singlestep trap
12757 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
12758 * This is not 100% correct; for performance reasons, we delegate most
12759 * of the checks on host state to the processor. If those fail,
12760 * the singlestep trap is missed.
12761 */
12762 skip_emulated_instruction(vcpu);
12763
12764 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
12765 if (ret) {
12766 nested_vmx_entry_failure(vcpu, vmcs12,
12767 EXIT_REASON_INVALID_STATE, exit_qual);
12768 return 1;
12769 }
12770
12771 /*
12772 * We're finally done with prerequisite checking, and can start with
12773 * the nested entry.
12774 */
12775
12776 vmx->nested.nested_run_pending = 1;
12777 ret = enter_vmx_non_root_mode(vcpu, &exit_qual);
12778 if (ret) {
12779 nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual);
12780 vmx->nested.nested_run_pending = 0;
12781 return 1;
12782 }
12783
12784 /* Hide L1D cache contents from the nested guest. */
12785 vmx->vcpu.arch.l1tf_flush_l1d = true;
12786
12787 /*
12788 * Must happen outside of enter_vmx_non_root_mode() as it will
12789 * also be used as part of restoring nVMX state for
12790 * snapshot restore (migration).
12791 *
12792 * In this flow, it is assumed that vmcs12 cache was
12793 * trasferred as part of captured nVMX state and should
12794 * therefore not be read from guest memory (which may not
12795 * exist on destination host yet).
12796 */
12797 nested_cache_shadow_vmcs12(vcpu, vmcs12);
12798
12799 /*
12800 * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
12801 * by event injection, halt vcpu.
12802 */
12803 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
12804 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) {
12805 vmx->nested.nested_run_pending = 0;
12806 return kvm_vcpu_halt(vcpu);
12807 }
12808 return 1;
12809
12810 out:
12811 return kvm_skip_emulated_instruction(vcpu);
12812 }
12813
12814 /*
12815 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
12816 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
12817 * This function returns the new value we should put in vmcs12.guest_cr0.
12818 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
12819 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
12820 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
12821 * didn't trap the bit, because if L1 did, so would L0).
12822 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
12823 * been modified by L2, and L1 knows it. So just leave the old value of
12824 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
12825 * isn't relevant, because if L0 traps this bit it can set it to anything.
12826 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
12827 * changed these bits, and therefore they need to be updated, but L0
12828 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
12829 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
12830 */
12831 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12832 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12833 {
12834 return
12835 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
12836 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
12837 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
12838 vcpu->arch.cr0_guest_owned_bits));
12839 }
12840
12841 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12842 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12843 {
12844 return
12845 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
12846 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
12847 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
12848 vcpu->arch.cr4_guest_owned_bits));
12849 }
12850
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12851 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
12852 struct vmcs12 *vmcs12)
12853 {
12854 u32 idt_vectoring;
12855 unsigned int nr;
12856
12857 if (vcpu->arch.exception.injected) {
12858 nr = vcpu->arch.exception.nr;
12859 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
12860
12861 if (kvm_exception_is_soft(nr)) {
12862 vmcs12->vm_exit_instruction_len =
12863 vcpu->arch.event_exit_inst_len;
12864 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
12865 } else
12866 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
12867
12868 if (vcpu->arch.exception.has_error_code) {
12869 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
12870 vmcs12->idt_vectoring_error_code =
12871 vcpu->arch.exception.error_code;
12872 }
12873
12874 vmcs12->idt_vectoring_info_field = idt_vectoring;
12875 } else if (vcpu->arch.nmi_injected) {
12876 vmcs12->idt_vectoring_info_field =
12877 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
12878 } else if (vcpu->arch.interrupt.injected) {
12879 nr = vcpu->arch.interrupt.nr;
12880 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
12881
12882 if (vcpu->arch.interrupt.soft) {
12883 idt_vectoring |= INTR_TYPE_SOFT_INTR;
12884 vmcs12->vm_entry_instruction_len =
12885 vcpu->arch.event_exit_inst_len;
12886 } else
12887 idt_vectoring |= INTR_TYPE_EXT_INTR;
12888
12889 vmcs12->idt_vectoring_info_field = idt_vectoring;
12890 }
12891 }
12892
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)12893 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
12894 {
12895 struct vcpu_vmx *vmx = to_vmx(vcpu);
12896 unsigned long exit_qual;
12897 bool block_nested_events =
12898 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
12899
12900 if (vcpu->arch.exception.pending &&
12901 nested_vmx_check_exception(vcpu, &exit_qual)) {
12902 if (block_nested_events)
12903 return -EBUSY;
12904 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
12905 return 0;
12906 }
12907
12908 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
12909 vmx->nested.preemption_timer_expired) {
12910 if (block_nested_events)
12911 return -EBUSY;
12912 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
12913 return 0;
12914 }
12915
12916 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
12917 if (block_nested_events)
12918 return -EBUSY;
12919 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
12920 NMI_VECTOR | INTR_TYPE_NMI_INTR |
12921 INTR_INFO_VALID_MASK, 0);
12922 /*
12923 * The NMI-triggered VM exit counts as injection:
12924 * clear this one and block further NMIs.
12925 */
12926 vcpu->arch.nmi_pending = 0;
12927 vmx_set_nmi_mask(vcpu, true);
12928 return 0;
12929 }
12930
12931 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
12932 nested_exit_on_intr(vcpu)) {
12933 if (block_nested_events)
12934 return -EBUSY;
12935 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
12936 return 0;
12937 }
12938
12939 vmx_complete_nested_posted_interrupt(vcpu);
12940 return 0;
12941 }
12942
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)12943 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
12944 {
12945 to_vmx(vcpu)->req_immediate_exit = true;
12946 }
12947
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)12948 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
12949 {
12950 ktime_t remaining =
12951 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
12952 u64 value;
12953
12954 if (ktime_to_ns(remaining) <= 0)
12955 return 0;
12956
12957 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
12958 do_div(value, 1000000);
12959 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
12960 }
12961
12962 /*
12963 * Update the guest state fields of vmcs12 to reflect changes that
12964 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
12965 * VM-entry controls is also updated, since this is really a guest
12966 * state bit.)
12967 */
sync_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12968 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12969 {
12970 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
12971 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
12972
12973 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
12974 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
12975 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
12976
12977 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
12978 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
12979 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
12980 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
12981 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
12982 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
12983 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
12984 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
12985 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
12986 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
12987 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
12988 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
12989 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
12990 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
12991 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
12992 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
12993 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
12994 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
12995 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
12996 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
12997 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
12998 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
12999 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
13000 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
13001 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
13002 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
13003 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
13004 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
13005 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
13006 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
13007 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
13008 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
13009 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
13010 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
13011 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
13012 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
13013
13014 vmcs12->guest_interruptibility_info =
13015 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
13016 vmcs12->guest_pending_dbg_exceptions =
13017 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
13018 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
13019 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
13020 else
13021 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
13022
13023 if (nested_cpu_has_preemption_timer(vmcs12)) {
13024 if (vmcs12->vm_exit_controls &
13025 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
13026 vmcs12->vmx_preemption_timer_value =
13027 vmx_get_preemption_timer_value(vcpu);
13028 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
13029 }
13030
13031 /*
13032 * In some cases (usually, nested EPT), L2 is allowed to change its
13033 * own CR3 without exiting. If it has changed it, we must keep it.
13034 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
13035 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
13036 *
13037 * Additionally, restore L2's PDPTR to vmcs12.
13038 */
13039 if (enable_ept) {
13040 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
13041 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
13042 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
13043 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
13044 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
13045 }
13046
13047 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
13048
13049 if (nested_cpu_has_vid(vmcs12))
13050 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
13051
13052 vmcs12->vm_entry_controls =
13053 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
13054 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
13055
13056 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
13057 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
13058 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
13059 }
13060
13061 /* TODO: These cannot have changed unless we have MSR bitmaps and
13062 * the relevant bit asks not to trap the change */
13063 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
13064 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
13065 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
13066 vmcs12->guest_ia32_efer = vcpu->arch.efer;
13067 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
13068 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
13069 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
13070 if (kvm_mpx_supported())
13071 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
13072 }
13073
13074 /*
13075 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
13076 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
13077 * and this function updates it to reflect the changes to the guest state while
13078 * L2 was running (and perhaps made some exits which were handled directly by L0
13079 * without going back to L1), and to reflect the exit reason.
13080 * Note that we do not have to copy here all VMCS fields, just those that
13081 * could have changed by the L2 guest or the exit - i.e., the guest-state and
13082 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
13083 * which already writes to vmcs12 directly.
13084 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)13085 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
13086 u32 exit_reason, u32 exit_intr_info,
13087 unsigned long exit_qualification)
13088 {
13089 /* update guest state fields: */
13090 sync_vmcs12(vcpu, vmcs12);
13091
13092 /* update exit information fields: */
13093
13094 vmcs12->vm_exit_reason = exit_reason;
13095 vmcs12->exit_qualification = exit_qualification;
13096 vmcs12->vm_exit_intr_info = exit_intr_info;
13097
13098 vmcs12->idt_vectoring_info_field = 0;
13099 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
13100 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
13101
13102 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
13103 vmcs12->launch_state = 1;
13104
13105 /* vm_entry_intr_info_field is cleared on exit. Emulate this
13106 * instead of reading the real value. */
13107 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
13108
13109 /*
13110 * Transfer the event that L0 or L1 may wanted to inject into
13111 * L2 to IDT_VECTORING_INFO_FIELD.
13112 */
13113 vmcs12_save_pending_event(vcpu, vmcs12);
13114 }
13115
13116 /*
13117 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
13118 * preserved above and would only end up incorrectly in L1.
13119 */
13120 vcpu->arch.nmi_injected = false;
13121 kvm_clear_exception_queue(vcpu);
13122 kvm_clear_interrupt_queue(vcpu);
13123 }
13124
load_vmcs12_mmu_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)13125 static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
13126 struct vmcs12 *vmcs12)
13127 {
13128 u32 entry_failure_code;
13129
13130 nested_ept_uninit_mmu_context(vcpu);
13131
13132 /*
13133 * Only PDPTE load can fail as the value of cr3 was checked on entry and
13134 * couldn't have changed.
13135 */
13136 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
13137 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
13138
13139 if (!enable_ept)
13140 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
13141 }
13142
13143 /*
13144 * A part of what we need to when the nested L2 guest exits and we want to
13145 * run its L1 parent, is to reset L1's guest state to the host state specified
13146 * in vmcs12.
13147 * This function is to be called not only on normal nested exit, but also on
13148 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
13149 * Failures During or After Loading Guest State").
13150 * This function should be called when the active VMCS is L1's (vmcs01).
13151 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)13152 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
13153 struct vmcs12 *vmcs12)
13154 {
13155 struct kvm_segment seg;
13156
13157 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
13158 vcpu->arch.efer = vmcs12->host_ia32_efer;
13159 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
13160 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
13161 else
13162 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
13163 vmx_set_efer(vcpu, vcpu->arch.efer);
13164
13165 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
13166 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
13167 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
13168 /*
13169 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
13170 * actually changed, because vmx_set_cr0 refers to efer set above.
13171 *
13172 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
13173 * (KVM doesn't change it);
13174 */
13175 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
13176 vmx_set_cr0(vcpu, vmcs12->host_cr0);
13177
13178 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
13179 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
13180 vmx_set_cr4(vcpu, vmcs12->host_cr4);
13181
13182 load_vmcs12_mmu_host_state(vcpu, vmcs12);
13183
13184 /*
13185 * If vmcs01 don't use VPID, CPU flushes TLB on every
13186 * VMEntry/VMExit. Thus, no need to flush TLB.
13187 *
13188 * If vmcs12 uses VPID, TLB entries populated by L2 are
13189 * tagged with vmx->nested.vpid02 while L1 entries are tagged
13190 * with vmx->vpid. Thus, no need to flush TLB.
13191 *
13192 * Therefore, flush TLB only in case vmcs01 uses VPID and
13193 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
13194 * are both tagged with vmx->vpid.
13195 */
13196 if (enable_vpid &&
13197 !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
13198 vmx_flush_tlb(vcpu, true);
13199 }
13200
13201 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
13202 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
13203 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
13204 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
13205 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
13206 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
13207 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
13208
13209 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
13210 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
13211 vmcs_write64(GUEST_BNDCFGS, 0);
13212
13213 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
13214 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
13215 vcpu->arch.pat = vmcs12->host_ia32_pat;
13216 }
13217 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
13218 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
13219 vmcs12->host_ia32_perf_global_ctrl);
13220
13221 /* Set L1 segment info according to Intel SDM
13222 27.5.2 Loading Host Segment and Descriptor-Table Registers */
13223 seg = (struct kvm_segment) {
13224 .base = 0,
13225 .limit = 0xFFFFFFFF,
13226 .selector = vmcs12->host_cs_selector,
13227 .type = 11,
13228 .present = 1,
13229 .s = 1,
13230 .g = 1
13231 };
13232 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
13233 seg.l = 1;
13234 else
13235 seg.db = 1;
13236 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
13237 seg = (struct kvm_segment) {
13238 .base = 0,
13239 .limit = 0xFFFFFFFF,
13240 .type = 3,
13241 .present = 1,
13242 .s = 1,
13243 .db = 1,
13244 .g = 1
13245 };
13246 seg.selector = vmcs12->host_ds_selector;
13247 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
13248 seg.selector = vmcs12->host_es_selector;
13249 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
13250 seg.selector = vmcs12->host_ss_selector;
13251 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
13252 seg.selector = vmcs12->host_fs_selector;
13253 seg.base = vmcs12->host_fs_base;
13254 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
13255 seg.selector = vmcs12->host_gs_selector;
13256 seg.base = vmcs12->host_gs_base;
13257 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
13258 seg = (struct kvm_segment) {
13259 .base = vmcs12->host_tr_base,
13260 .limit = 0x67,
13261 .selector = vmcs12->host_tr_selector,
13262 .type = 11,
13263 .present = 1
13264 };
13265 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
13266
13267 kvm_set_dr(vcpu, 7, 0x400);
13268 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
13269
13270 if (cpu_has_vmx_msr_bitmap())
13271 vmx_update_msr_bitmap(vcpu);
13272
13273 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
13274 vmcs12->vm_exit_msr_load_count))
13275 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
13276 }
13277
13278 /*
13279 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
13280 * and modify vmcs12 to make it see what it would expect to see there if
13281 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
13282 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)13283 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
13284 u32 exit_intr_info,
13285 unsigned long exit_qualification)
13286 {
13287 struct vcpu_vmx *vmx = to_vmx(vcpu);
13288 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
13289
13290 /* trying to cancel vmlaunch/vmresume is a bug */
13291 WARN_ON_ONCE(vmx->nested.nested_run_pending);
13292
13293 /*
13294 * The only expected VM-instruction error is "VM entry with
13295 * invalid control field(s)." Anything else indicates a
13296 * problem with L0.
13297 */
13298 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
13299 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
13300
13301 leave_guest_mode(vcpu);
13302
13303 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
13304 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
13305
13306 if (likely(!vmx->fail)) {
13307 if (exit_reason == -1)
13308 sync_vmcs12(vcpu, vmcs12);
13309 else
13310 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
13311 exit_qualification);
13312
13313 /*
13314 * Must happen outside of sync_vmcs12() as it will
13315 * also be used to capture vmcs12 cache as part of
13316 * capturing nVMX state for snapshot (migration).
13317 *
13318 * Otherwise, this flush will dirty guest memory at a
13319 * point it is already assumed by user-space to be
13320 * immutable.
13321 */
13322 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
13323
13324 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
13325 vmcs12->vm_exit_msr_store_count))
13326 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
13327 }
13328
13329 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
13330 vm_entry_controls_reset_shadow(vmx);
13331 vm_exit_controls_reset_shadow(vmx);
13332 vmx_segment_cache_clear(vmx);
13333
13334 /* Update any VMCS fields that might have changed while L2 ran */
13335 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
13336 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
13337 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
13338
13339 if (kvm_has_tsc_control)
13340 decache_tsc_multiplier(vmx);
13341
13342 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
13343 vmx->nested.change_vmcs01_virtual_apic_mode = false;
13344 vmx_set_virtual_apic_mode(vcpu);
13345 } else if (!nested_cpu_has_ept(vmcs12) &&
13346 nested_cpu_has2(vmcs12,
13347 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
13348 vmx_flush_tlb(vcpu, true);
13349 }
13350
13351 /* This is needed for same reason as it was needed in prepare_vmcs02 */
13352 vmx->host_rsp = 0;
13353
13354 /* Unpin physical memory we referred to in vmcs02 */
13355 if (vmx->nested.apic_access_page) {
13356 kvm_release_page_dirty(vmx->nested.apic_access_page);
13357 vmx->nested.apic_access_page = NULL;
13358 }
13359 if (vmx->nested.virtual_apic_page) {
13360 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
13361 vmx->nested.virtual_apic_page = NULL;
13362 }
13363 if (vmx->nested.pi_desc_page) {
13364 kunmap(vmx->nested.pi_desc_page);
13365 kvm_release_page_dirty(vmx->nested.pi_desc_page);
13366 vmx->nested.pi_desc_page = NULL;
13367 vmx->nested.pi_desc = NULL;
13368 }
13369
13370 /*
13371 * We are now running in L2, mmu_notifier will force to reload the
13372 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
13373 */
13374 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
13375
13376 if (enable_shadow_vmcs && exit_reason != -1)
13377 vmx->nested.sync_shadow_vmcs = true;
13378
13379 /* in case we halted in L2 */
13380 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13381
13382 if (likely(!vmx->fail)) {
13383 /*
13384 * TODO: SDM says that with acknowledge interrupt on
13385 * exit, bit 31 of the VM-exit interrupt information
13386 * (valid interrupt) is always set to 1 on
13387 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
13388 * need kvm_cpu_has_interrupt(). See the commit
13389 * message for details.
13390 */
13391 if (nested_exit_intr_ack_set(vcpu) &&
13392 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
13393 kvm_cpu_has_interrupt(vcpu)) {
13394 int irq = kvm_cpu_get_interrupt(vcpu);
13395 WARN_ON(irq < 0);
13396 vmcs12->vm_exit_intr_info = irq |
13397 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
13398 }
13399
13400 if (exit_reason != -1)
13401 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
13402 vmcs12->exit_qualification,
13403 vmcs12->idt_vectoring_info_field,
13404 vmcs12->vm_exit_intr_info,
13405 vmcs12->vm_exit_intr_error_code,
13406 KVM_ISA_VMX);
13407
13408 load_vmcs12_host_state(vcpu, vmcs12);
13409
13410 return;
13411 }
13412
13413 /*
13414 * After an early L2 VM-entry failure, we're now back
13415 * in L1 which thinks it just finished a VMLAUNCH or
13416 * VMRESUME instruction, so we need to set the failure
13417 * flag and the VM-instruction error field of the VMCS
13418 * accordingly.
13419 */
13420 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
13421
13422 load_vmcs12_mmu_host_state(vcpu, vmcs12);
13423
13424 /*
13425 * The emulated instruction was already skipped in
13426 * nested_vmx_run, but the updated RIP was never
13427 * written back to the vmcs01.
13428 */
13429 skip_emulated_instruction(vcpu);
13430 vmx->fail = 0;
13431 }
13432
13433 /*
13434 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
13435 */
vmx_leave_nested(struct kvm_vcpu * vcpu)13436 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
13437 {
13438 if (is_guest_mode(vcpu)) {
13439 to_vmx(vcpu)->nested.nested_run_pending = 0;
13440 nested_vmx_vmexit(vcpu, -1, 0, 0);
13441 }
13442 free_nested(to_vmx(vcpu));
13443 }
13444
13445 /*
13446 * L1's failure to enter L2 is a subset of a normal exit, as explained in
13447 * 23.7 "VM-entry failures during or after loading guest state" (this also
13448 * lists the acceptable exit-reason and exit-qualification parameters).
13449 * It should only be called before L2 actually succeeded to run, and when
13450 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
13451 */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)13452 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
13453 struct vmcs12 *vmcs12,
13454 u32 reason, unsigned long qualification)
13455 {
13456 load_vmcs12_host_state(vcpu, vmcs12);
13457 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
13458 vmcs12->exit_qualification = qualification;
13459 nested_vmx_succeed(vcpu);
13460 if (enable_shadow_vmcs)
13461 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
13462 }
13463
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)13464 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
13465 struct x86_instruction_info *info,
13466 enum x86_intercept_stage stage)
13467 {
13468 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
13469 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
13470
13471 /*
13472 * RDPID causes #UD if disabled through secondary execution controls.
13473 * Because it is marked as EmulateOnUD, we need to intercept it here.
13474 */
13475 if (info->intercept == x86_intercept_rdtscp &&
13476 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
13477 ctxt->exception.vector = UD_VECTOR;
13478 ctxt->exception.error_code_valid = false;
13479 return X86EMUL_PROPAGATE_FAULT;
13480 }
13481
13482 /* TODO: check more intercepts... */
13483 return X86EMUL_CONTINUE;
13484 }
13485
13486 #ifdef CONFIG_X86_64
13487 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)13488 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
13489 u64 divisor, u64 *result)
13490 {
13491 u64 low = a << shift, high = a >> (64 - shift);
13492
13493 /* To avoid the overflow on divq */
13494 if (high >= divisor)
13495 return 1;
13496
13497 /* Low hold the result, high hold rem which is discarded */
13498 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
13499 "rm" (divisor), "0" (low), "1" (high));
13500 *result = low;
13501
13502 return 0;
13503 }
13504
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc)13505 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
13506 {
13507 struct vcpu_vmx *vmx;
13508 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
13509
13510 if (kvm_mwait_in_guest(vcpu->kvm))
13511 return -EOPNOTSUPP;
13512
13513 vmx = to_vmx(vcpu);
13514 tscl = rdtsc();
13515 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
13516 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
13517 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
13518
13519 if (delta_tsc > lapic_timer_advance_cycles)
13520 delta_tsc -= lapic_timer_advance_cycles;
13521 else
13522 delta_tsc = 0;
13523
13524 /* Convert to host delta tsc if tsc scaling is enabled */
13525 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
13526 u64_shl_div_u64(delta_tsc,
13527 kvm_tsc_scaling_ratio_frac_bits,
13528 vcpu->arch.tsc_scaling_ratio,
13529 &delta_tsc))
13530 return -ERANGE;
13531
13532 /*
13533 * If the delta tsc can't fit in the 32 bit after the multi shift,
13534 * we can't use the preemption timer.
13535 * It's possible that it fits on later vmentries, but checking
13536 * on every vmentry is costly so we just use an hrtimer.
13537 */
13538 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
13539 return -ERANGE;
13540
13541 vmx->hv_deadline_tsc = tscl + delta_tsc;
13542 return delta_tsc == 0;
13543 }
13544
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)13545 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
13546 {
13547 to_vmx(vcpu)->hv_deadline_tsc = -1;
13548 }
13549 #endif
13550
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)13551 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
13552 {
13553 if (!kvm_pause_in_guest(vcpu->kvm))
13554 shrink_ple_window(vcpu);
13555 }
13556
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)13557 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
13558 struct kvm_memory_slot *slot)
13559 {
13560 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
13561 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
13562 }
13563
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)13564 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
13565 struct kvm_memory_slot *slot)
13566 {
13567 kvm_mmu_slot_set_dirty(kvm, slot);
13568 }
13569
vmx_flush_log_dirty(struct kvm * kvm)13570 static void vmx_flush_log_dirty(struct kvm *kvm)
13571 {
13572 kvm_flush_pml_buffers(kvm);
13573 }
13574
vmx_write_pml_buffer(struct kvm_vcpu * vcpu)13575 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
13576 {
13577 struct vmcs12 *vmcs12;
13578 struct vcpu_vmx *vmx = to_vmx(vcpu);
13579 gpa_t gpa;
13580 struct page *page = NULL;
13581 u64 *pml_address;
13582
13583 if (is_guest_mode(vcpu)) {
13584 WARN_ON_ONCE(vmx->nested.pml_full);
13585
13586 /*
13587 * Check if PML is enabled for the nested guest.
13588 * Whether eptp bit 6 is set is already checked
13589 * as part of A/D emulation.
13590 */
13591 vmcs12 = get_vmcs12(vcpu);
13592 if (!nested_cpu_has_pml(vmcs12))
13593 return 0;
13594
13595 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
13596 vmx->nested.pml_full = true;
13597 return 1;
13598 }
13599
13600 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
13601
13602 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
13603 if (is_error_page(page))
13604 return 0;
13605
13606 pml_address = kmap(page);
13607 pml_address[vmcs12->guest_pml_index--] = gpa;
13608 kunmap(page);
13609 kvm_release_page_clean(page);
13610 }
13611
13612 return 0;
13613 }
13614
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)13615 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
13616 struct kvm_memory_slot *memslot,
13617 gfn_t offset, unsigned long mask)
13618 {
13619 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
13620 }
13621
__pi_post_block(struct kvm_vcpu * vcpu)13622 static void __pi_post_block(struct kvm_vcpu *vcpu)
13623 {
13624 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
13625 struct pi_desc old, new;
13626 unsigned int dest;
13627
13628 do {
13629 old.control = new.control = pi_desc->control;
13630 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
13631 "Wakeup handler not enabled while the VCPU is blocked\n");
13632
13633 dest = cpu_physical_id(vcpu->cpu);
13634
13635 if (x2apic_enabled())
13636 new.ndst = dest;
13637 else
13638 new.ndst = (dest << 8) & 0xFF00;
13639
13640 /* set 'NV' to 'notification vector' */
13641 new.nv = POSTED_INTR_VECTOR;
13642 } while (cmpxchg64(&pi_desc->control, old.control,
13643 new.control) != old.control);
13644
13645 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
13646 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13647 list_del(&vcpu->blocked_vcpu_list);
13648 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13649 vcpu->pre_pcpu = -1;
13650 }
13651 }
13652
13653 /*
13654 * This routine does the following things for vCPU which is going
13655 * to be blocked if VT-d PI is enabled.
13656 * - Store the vCPU to the wakeup list, so when interrupts happen
13657 * we can find the right vCPU to wake up.
13658 * - Change the Posted-interrupt descriptor as below:
13659 * 'NDST' <-- vcpu->pre_pcpu
13660 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
13661 * - If 'ON' is set during this process, which means at least one
13662 * interrupt is posted for this vCPU, we cannot block it, in
13663 * this case, return 1, otherwise, return 0.
13664 *
13665 */
pi_pre_block(struct kvm_vcpu * vcpu)13666 static int pi_pre_block(struct kvm_vcpu *vcpu)
13667 {
13668 unsigned int dest;
13669 struct pi_desc old, new;
13670 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
13671
13672 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
13673 !irq_remapping_cap(IRQ_POSTING_CAP) ||
13674 !kvm_vcpu_apicv_active(vcpu))
13675 return 0;
13676
13677 WARN_ON(irqs_disabled());
13678 local_irq_disable();
13679 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
13680 vcpu->pre_pcpu = vcpu->cpu;
13681 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13682 list_add_tail(&vcpu->blocked_vcpu_list,
13683 &per_cpu(blocked_vcpu_on_cpu,
13684 vcpu->pre_pcpu));
13685 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13686 }
13687
13688 do {
13689 old.control = new.control = pi_desc->control;
13690
13691 WARN((pi_desc->sn == 1),
13692 "Warning: SN field of posted-interrupts "
13693 "is set before blocking\n");
13694
13695 /*
13696 * Since vCPU can be preempted during this process,
13697 * vcpu->cpu could be different with pre_pcpu, we
13698 * need to set pre_pcpu as the destination of wakeup
13699 * notification event, then we can find the right vCPU
13700 * to wakeup in wakeup handler if interrupts happen
13701 * when the vCPU is in blocked state.
13702 */
13703 dest = cpu_physical_id(vcpu->pre_pcpu);
13704
13705 if (x2apic_enabled())
13706 new.ndst = dest;
13707 else
13708 new.ndst = (dest << 8) & 0xFF00;
13709
13710 /* set 'NV' to 'wakeup vector' */
13711 new.nv = POSTED_INTR_WAKEUP_VECTOR;
13712 } while (cmpxchg64(&pi_desc->control, old.control,
13713 new.control) != old.control);
13714
13715 /* We should not block the vCPU if an interrupt is posted for it. */
13716 if (pi_test_on(pi_desc) == 1)
13717 __pi_post_block(vcpu);
13718
13719 local_irq_enable();
13720 return (vcpu->pre_pcpu == -1);
13721 }
13722
vmx_pre_block(struct kvm_vcpu * vcpu)13723 static int vmx_pre_block(struct kvm_vcpu *vcpu)
13724 {
13725 if (pi_pre_block(vcpu))
13726 return 1;
13727
13728 if (kvm_lapic_hv_timer_in_use(vcpu))
13729 kvm_lapic_switch_to_sw_timer(vcpu);
13730
13731 return 0;
13732 }
13733
pi_post_block(struct kvm_vcpu * vcpu)13734 static void pi_post_block(struct kvm_vcpu *vcpu)
13735 {
13736 if (vcpu->pre_pcpu == -1)
13737 return;
13738
13739 WARN_ON(irqs_disabled());
13740 local_irq_disable();
13741 __pi_post_block(vcpu);
13742 local_irq_enable();
13743 }
13744
vmx_post_block(struct kvm_vcpu * vcpu)13745 static void vmx_post_block(struct kvm_vcpu *vcpu)
13746 {
13747 if (kvm_x86_ops->set_hv_timer)
13748 kvm_lapic_switch_to_hv_timer(vcpu);
13749
13750 pi_post_block(vcpu);
13751 }
13752
13753 /*
13754 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
13755 *
13756 * @kvm: kvm
13757 * @host_irq: host irq of the interrupt
13758 * @guest_irq: gsi of the interrupt
13759 * @set: set or unset PI
13760 * returns 0 on success, < 0 on failure
13761 */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13762 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
13763 uint32_t guest_irq, bool set)
13764 {
13765 struct kvm_kernel_irq_routing_entry *e;
13766 struct kvm_irq_routing_table *irq_rt;
13767 struct kvm_lapic_irq irq;
13768 struct kvm_vcpu *vcpu;
13769 struct vcpu_data vcpu_info;
13770 int idx, ret = 0;
13771
13772 if (!kvm_arch_has_assigned_device(kvm) ||
13773 !irq_remapping_cap(IRQ_POSTING_CAP) ||
13774 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
13775 return 0;
13776
13777 idx = srcu_read_lock(&kvm->irq_srcu);
13778 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
13779 if (guest_irq >= irq_rt->nr_rt_entries ||
13780 hlist_empty(&irq_rt->map[guest_irq])) {
13781 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
13782 guest_irq, irq_rt->nr_rt_entries);
13783 goto out;
13784 }
13785
13786 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
13787 if (e->type != KVM_IRQ_ROUTING_MSI)
13788 continue;
13789 /*
13790 * VT-d PI cannot support posting multicast/broadcast
13791 * interrupts to a vCPU, we still use interrupt remapping
13792 * for these kind of interrupts.
13793 *
13794 * For lowest-priority interrupts, we only support
13795 * those with single CPU as the destination, e.g. user
13796 * configures the interrupts via /proc/irq or uses
13797 * irqbalance to make the interrupts single-CPU.
13798 *
13799 * We will support full lowest-priority interrupt later.
13800 */
13801
13802 kvm_set_msi_irq(kvm, e, &irq);
13803 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
13804 /*
13805 * Make sure the IRTE is in remapped mode if
13806 * we don't handle it in posted mode.
13807 */
13808 ret = irq_set_vcpu_affinity(host_irq, NULL);
13809 if (ret < 0) {
13810 printk(KERN_INFO
13811 "failed to back to remapped mode, irq: %u\n",
13812 host_irq);
13813 goto out;
13814 }
13815
13816 continue;
13817 }
13818
13819 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
13820 vcpu_info.vector = irq.vector;
13821
13822 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
13823 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
13824
13825 if (set)
13826 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
13827 else
13828 ret = irq_set_vcpu_affinity(host_irq, NULL);
13829
13830 if (ret < 0) {
13831 printk(KERN_INFO "%s: failed to update PI IRTE\n",
13832 __func__);
13833 goto out;
13834 }
13835 }
13836
13837 ret = 0;
13838 out:
13839 srcu_read_unlock(&kvm->irq_srcu, idx);
13840 return ret;
13841 }
13842
vmx_setup_mce(struct kvm_vcpu * vcpu)13843 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
13844 {
13845 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
13846 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
13847 FEATURE_CONTROL_LMCE;
13848 else
13849 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
13850 ~FEATURE_CONTROL_LMCE;
13851 }
13852
vmx_smi_allowed(struct kvm_vcpu * vcpu)13853 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
13854 {
13855 /* we need a nested vmexit to enter SMM, postpone if run is pending */
13856 if (to_vmx(vcpu)->nested.nested_run_pending)
13857 return 0;
13858 return 1;
13859 }
13860
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)13861 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
13862 {
13863 struct vcpu_vmx *vmx = to_vmx(vcpu);
13864
13865 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
13866 if (vmx->nested.smm.guest_mode)
13867 nested_vmx_vmexit(vcpu, -1, 0, 0);
13868
13869 vmx->nested.smm.vmxon = vmx->nested.vmxon;
13870 vmx->nested.vmxon = false;
13871 vmx_clear_hlt(vcpu);
13872 return 0;
13873 }
13874
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,u64 smbase)13875 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
13876 {
13877 struct vcpu_vmx *vmx = to_vmx(vcpu);
13878 int ret;
13879
13880 if (vmx->nested.smm.vmxon) {
13881 vmx->nested.vmxon = true;
13882 vmx->nested.smm.vmxon = false;
13883 }
13884
13885 if (vmx->nested.smm.guest_mode) {
13886 vcpu->arch.hflags &= ~HF_SMM_MASK;
13887 ret = enter_vmx_non_root_mode(vcpu, NULL);
13888 vcpu->arch.hflags |= HF_SMM_MASK;
13889 if (ret)
13890 return ret;
13891
13892 vmx->nested.smm.guest_mode = false;
13893 }
13894 return 0;
13895 }
13896
enable_smi_window(struct kvm_vcpu * vcpu)13897 static int enable_smi_window(struct kvm_vcpu *vcpu)
13898 {
13899 return 0;
13900 }
13901
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)13902 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
13903 struct kvm_nested_state __user *user_kvm_nested_state,
13904 u32 user_data_size)
13905 {
13906 struct vcpu_vmx *vmx;
13907 struct vmcs12 *vmcs12;
13908 struct kvm_nested_state kvm_state = {
13909 .flags = 0,
13910 .format = 0,
13911 .size = sizeof(kvm_state),
13912 .vmx.vmxon_pa = -1ull,
13913 .vmx.vmcs_pa = -1ull,
13914 };
13915
13916 if (!vcpu)
13917 return kvm_state.size + 2 * VMCS12_SIZE;
13918
13919 vmx = to_vmx(vcpu);
13920 vmcs12 = get_vmcs12(vcpu);
13921 if (nested_vmx_allowed(vcpu) &&
13922 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
13923 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
13924 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
13925
13926 if (vmx->nested.current_vmptr != -1ull) {
13927 kvm_state.size += VMCS12_SIZE;
13928
13929 if (is_guest_mode(vcpu) &&
13930 nested_cpu_has_shadow_vmcs(vmcs12) &&
13931 vmcs12->vmcs_link_pointer != -1ull)
13932 kvm_state.size += VMCS12_SIZE;
13933 }
13934
13935 if (vmx->nested.smm.vmxon)
13936 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
13937
13938 if (vmx->nested.smm.guest_mode)
13939 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
13940
13941 if (is_guest_mode(vcpu)) {
13942 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
13943
13944 if (vmx->nested.nested_run_pending)
13945 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
13946 }
13947 }
13948
13949 if (user_data_size < kvm_state.size)
13950 goto out;
13951
13952 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
13953 return -EFAULT;
13954
13955 if (vmx->nested.current_vmptr == -1ull)
13956 goto out;
13957
13958 /*
13959 * When running L2, the authoritative vmcs12 state is in the
13960 * vmcs02. When running L1, the authoritative vmcs12 state is
13961 * in the shadow vmcs linked to vmcs01, unless
13962 * sync_shadow_vmcs is set, in which case, the authoritative
13963 * vmcs12 state is in the vmcs12 already.
13964 */
13965 if (is_guest_mode(vcpu))
13966 sync_vmcs12(vcpu, vmcs12);
13967 else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs)
13968 copy_shadow_to_vmcs12(vmx);
13969
13970 if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
13971 return -EFAULT;
13972
13973 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
13974 vmcs12->vmcs_link_pointer != -1ull) {
13975 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
13976 get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
13977 return -EFAULT;
13978 }
13979
13980 out:
13981 return kvm_state.size;
13982 }
13983
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)13984 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
13985 struct kvm_nested_state __user *user_kvm_nested_state,
13986 struct kvm_nested_state *kvm_state)
13987 {
13988 struct vcpu_vmx *vmx = to_vmx(vcpu);
13989 struct vmcs12 *vmcs12;
13990 u32 exit_qual;
13991 int ret;
13992
13993 if (kvm_state->format != 0)
13994 return -EINVAL;
13995
13996 if (!nested_vmx_allowed(vcpu))
13997 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
13998
13999 if (kvm_state->vmx.vmxon_pa == -1ull) {
14000 if (kvm_state->vmx.smm.flags)
14001 return -EINVAL;
14002
14003 if (kvm_state->vmx.vmcs_pa != -1ull)
14004 return -EINVAL;
14005
14006 vmx_leave_nested(vcpu);
14007 return 0;
14008 }
14009
14010 if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
14011 return -EINVAL;
14012
14013 if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
14014 return -EINVAL;
14015
14016 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
14017 !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
14018 return -EINVAL;
14019
14020 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
14021 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
14022 return -EINVAL;
14023
14024 if (kvm_state->vmx.smm.flags &
14025 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
14026 return -EINVAL;
14027
14028 /*
14029 * SMM temporarily disables VMX, so we cannot be in guest mode,
14030 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
14031 * must be zero.
14032 */
14033 if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
14034 return -EINVAL;
14035
14036 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
14037 !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
14038 return -EINVAL;
14039
14040 vmx_leave_nested(vcpu);
14041 if (kvm_state->vmx.vmxon_pa == -1ull)
14042 return 0;
14043
14044 vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
14045 ret = enter_vmx_operation(vcpu);
14046 if (ret)
14047 return ret;
14048
14049 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
14050
14051 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
14052 vmx->nested.smm.vmxon = true;
14053 vmx->nested.vmxon = false;
14054
14055 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
14056 vmx->nested.smm.guest_mode = true;
14057 }
14058
14059 vmcs12 = get_vmcs12(vcpu);
14060 if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
14061 return -EFAULT;
14062
14063 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
14064 return -EINVAL;
14065
14066 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
14067 return 0;
14068
14069 vmx->nested.nested_run_pending =
14070 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
14071
14072 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
14073 vmcs12->vmcs_link_pointer != -1ull) {
14074 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
14075 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
14076 return -EINVAL;
14077
14078 if (copy_from_user(shadow_vmcs12,
14079 user_kvm_nested_state->data + VMCS12_SIZE,
14080 sizeof(*vmcs12)))
14081 return -EFAULT;
14082
14083 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
14084 !shadow_vmcs12->hdr.shadow_vmcs)
14085 return -EINVAL;
14086 }
14087
14088 if (check_vmentry_prereqs(vcpu, vmcs12) ||
14089 check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
14090 return -EINVAL;
14091
14092 vmx->nested.dirty_vmcs12 = true;
14093 ret = enter_vmx_non_root_mode(vcpu, NULL);
14094 if (ret)
14095 return -EINVAL;
14096
14097 return 0;
14098 }
14099
14100 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
14101 .cpu_has_kvm_support = cpu_has_kvm_support,
14102 .disabled_by_bios = vmx_disabled_by_bios,
14103 .hardware_setup = hardware_setup,
14104 .hardware_unsetup = hardware_unsetup,
14105 .check_processor_compatibility = vmx_check_processor_compat,
14106 .hardware_enable = hardware_enable,
14107 .hardware_disable = hardware_disable,
14108 .cpu_has_accelerated_tpr = report_flexpriority,
14109 .has_emulated_msr = vmx_has_emulated_msr,
14110
14111 .vm_init = vmx_vm_init,
14112 .vm_alloc = vmx_vm_alloc,
14113 .vm_free = vmx_vm_free,
14114
14115 .vcpu_create = vmx_create_vcpu,
14116 .vcpu_free = vmx_free_vcpu,
14117 .vcpu_reset = vmx_vcpu_reset,
14118
14119 .prepare_guest_switch = vmx_prepare_switch_to_guest,
14120 .vcpu_load = vmx_vcpu_load,
14121 .vcpu_put = vmx_vcpu_put,
14122
14123 .update_bp_intercept = update_exception_bitmap,
14124 .get_msr_feature = vmx_get_msr_feature,
14125 .get_msr = vmx_get_msr,
14126 .set_msr = vmx_set_msr,
14127 .get_segment_base = vmx_get_segment_base,
14128 .get_segment = vmx_get_segment,
14129 .set_segment = vmx_set_segment,
14130 .get_cpl = vmx_get_cpl,
14131 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
14132 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
14133 .decache_cr3 = vmx_decache_cr3,
14134 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
14135 .set_cr0 = vmx_set_cr0,
14136 .set_cr3 = vmx_set_cr3,
14137 .set_cr4 = vmx_set_cr4,
14138 .set_efer = vmx_set_efer,
14139 .get_idt = vmx_get_idt,
14140 .set_idt = vmx_set_idt,
14141 .get_gdt = vmx_get_gdt,
14142 .set_gdt = vmx_set_gdt,
14143 .get_dr6 = vmx_get_dr6,
14144 .set_dr6 = vmx_set_dr6,
14145 .set_dr7 = vmx_set_dr7,
14146 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
14147 .cache_reg = vmx_cache_reg,
14148 .get_rflags = vmx_get_rflags,
14149 .set_rflags = vmx_set_rflags,
14150
14151 .tlb_flush = vmx_flush_tlb,
14152 .tlb_flush_gva = vmx_flush_tlb_gva,
14153
14154 .run = vmx_vcpu_run,
14155 .handle_exit = vmx_handle_exit,
14156 .skip_emulated_instruction = skip_emulated_instruction,
14157 .set_interrupt_shadow = vmx_set_interrupt_shadow,
14158 .get_interrupt_shadow = vmx_get_interrupt_shadow,
14159 .patch_hypercall = vmx_patch_hypercall,
14160 .set_irq = vmx_inject_irq,
14161 .set_nmi = vmx_inject_nmi,
14162 .queue_exception = vmx_queue_exception,
14163 .cancel_injection = vmx_cancel_injection,
14164 .interrupt_allowed = vmx_interrupt_allowed,
14165 .nmi_allowed = vmx_nmi_allowed,
14166 .get_nmi_mask = vmx_get_nmi_mask,
14167 .set_nmi_mask = vmx_set_nmi_mask,
14168 .enable_nmi_window = enable_nmi_window,
14169 .enable_irq_window = enable_irq_window,
14170 .update_cr8_intercept = update_cr8_intercept,
14171 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
14172 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
14173 .get_enable_apicv = vmx_get_enable_apicv,
14174 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
14175 .load_eoi_exitmap = vmx_load_eoi_exitmap,
14176 .apicv_post_state_restore = vmx_apicv_post_state_restore,
14177 .hwapic_irr_update = vmx_hwapic_irr_update,
14178 .hwapic_isr_update = vmx_hwapic_isr_update,
14179 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
14180 .sync_pir_to_irr = vmx_sync_pir_to_irr,
14181 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
14182
14183 .set_tss_addr = vmx_set_tss_addr,
14184 .set_identity_map_addr = vmx_set_identity_map_addr,
14185 .get_tdp_level = get_ept_level,
14186 .get_mt_mask = vmx_get_mt_mask,
14187
14188 .get_exit_info = vmx_get_exit_info,
14189
14190 .get_lpage_level = vmx_get_lpage_level,
14191
14192 .cpuid_update = vmx_cpuid_update,
14193
14194 .rdtscp_supported = vmx_rdtscp_supported,
14195 .invpcid_supported = vmx_invpcid_supported,
14196
14197 .set_supported_cpuid = vmx_set_supported_cpuid,
14198
14199 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
14200
14201 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
14202 .write_tsc_offset = vmx_write_tsc_offset,
14203
14204 .set_tdp_cr3 = vmx_set_cr3,
14205
14206 .check_intercept = vmx_check_intercept,
14207 .handle_external_intr = vmx_handle_external_intr,
14208 .mpx_supported = vmx_mpx_supported,
14209 .xsaves_supported = vmx_xsaves_supported,
14210 .umip_emulated = vmx_umip_emulated,
14211
14212 .check_nested_events = vmx_check_nested_events,
14213 .request_immediate_exit = vmx_request_immediate_exit,
14214
14215 .sched_in = vmx_sched_in,
14216
14217 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
14218 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
14219 .flush_log_dirty = vmx_flush_log_dirty,
14220 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
14221 .write_log_dirty = vmx_write_pml_buffer,
14222
14223 .pre_block = vmx_pre_block,
14224 .post_block = vmx_post_block,
14225
14226 .pmu_ops = &intel_pmu_ops,
14227
14228 .update_pi_irte = vmx_update_pi_irte,
14229
14230 #ifdef CONFIG_X86_64
14231 .set_hv_timer = vmx_set_hv_timer,
14232 .cancel_hv_timer = vmx_cancel_hv_timer,
14233 #endif
14234
14235 .setup_mce = vmx_setup_mce,
14236
14237 .get_nested_state = vmx_get_nested_state,
14238 .set_nested_state = vmx_set_nested_state,
14239 .get_vmcs12_pages = nested_get_vmcs12_pages,
14240
14241 .smi_allowed = vmx_smi_allowed,
14242 .pre_enter_smm = vmx_pre_enter_smm,
14243 .pre_leave_smm = vmx_pre_leave_smm,
14244 .enable_smi_window = enable_smi_window,
14245 };
14246
vmx_cleanup_l1d_flush(void)14247 static void vmx_cleanup_l1d_flush(void)
14248 {
14249 if (vmx_l1d_flush_pages) {
14250 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
14251 vmx_l1d_flush_pages = NULL;
14252 }
14253 /* Restore state so sysfs ignores VMX */
14254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
14255 }
14256
vmx_exit(void)14257 static void vmx_exit(void)
14258 {
14259 #ifdef CONFIG_KEXEC_CORE
14260 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
14261 synchronize_rcu();
14262 #endif
14263
14264 kvm_exit();
14265
14266 #if IS_ENABLED(CONFIG_HYPERV)
14267 if (static_branch_unlikely(&enable_evmcs)) {
14268 int cpu;
14269 struct hv_vp_assist_page *vp_ap;
14270 /*
14271 * Reset everything to support using non-enlightened VMCS
14272 * access later (e.g. when we reload the module with
14273 * enlightened_vmcs=0)
14274 */
14275 for_each_online_cpu(cpu) {
14276 vp_ap = hv_get_vp_assist_page(cpu);
14277
14278 if (!vp_ap)
14279 continue;
14280
14281 vp_ap->current_nested_vmcs = 0;
14282 vp_ap->enlighten_vmentry = 0;
14283 }
14284
14285 static_branch_disable(&enable_evmcs);
14286 }
14287 #endif
14288 vmx_cleanup_l1d_flush();
14289 }
14290 module_exit(vmx_exit);
14291
vmx_init(void)14292 static int __init vmx_init(void)
14293 {
14294 int r;
14295
14296 #if IS_ENABLED(CONFIG_HYPERV)
14297 /*
14298 * Enlightened VMCS usage should be recommended and the host needs
14299 * to support eVMCS v1 or above. We can also disable eVMCS support
14300 * with module parameter.
14301 */
14302 if (enlightened_vmcs &&
14303 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
14304 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
14305 KVM_EVMCS_VERSION) {
14306 int cpu;
14307
14308 /* Check that we have assist pages on all online CPUs */
14309 for_each_online_cpu(cpu) {
14310 if (!hv_get_vp_assist_page(cpu)) {
14311 enlightened_vmcs = false;
14312 break;
14313 }
14314 }
14315
14316 if (enlightened_vmcs) {
14317 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
14318 static_branch_enable(&enable_evmcs);
14319 }
14320 } else {
14321 enlightened_vmcs = false;
14322 }
14323 #endif
14324
14325 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
14326 __alignof__(struct vcpu_vmx), THIS_MODULE);
14327 if (r)
14328 return r;
14329
14330 /*
14331 * Must be called after kvm_init() so enable_ept is properly set
14332 * up. Hand the parameter mitigation value in which was stored in
14333 * the pre module init parser. If no parameter was given, it will
14334 * contain 'auto' which will be turned into the default 'cond'
14335 * mitigation mode.
14336 */
14337 if (boot_cpu_has(X86_BUG_L1TF)) {
14338 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
14339 if (r) {
14340 vmx_exit();
14341 return r;
14342 }
14343 }
14344
14345 #ifdef CONFIG_KEXEC_CORE
14346 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
14347 crash_vmclear_local_loaded_vmcss);
14348 #endif
14349 vmx_check_vmcs12_offsets();
14350
14351 return 0;
14352 }
14353 module_init(vmx_init);
14354