1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #define pr_fmt(fmt) "SVM: " fmt
19 
20 #include <linux/kvm_host.h>
21 
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53 
54 #include <asm/virtext.h>
55 #include "trace.h"
56 
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61 
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 	X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 	{}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67 
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70 
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73 
74 #define SVM_FEATURE_NPT            (1 <<  0)
75 #define SVM_FEATURE_LBRV           (1 <<  1)
76 #define SVM_FEATURE_SVML           (1 <<  2)
77 #define SVM_FEATURE_NRIP           (1 <<  3)
78 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
79 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
80 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
81 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
82 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
83 
84 #define SVM_AVIC_DOORBELL	0xc001011b
85 
86 #define NESTED_EXIT_HOST	0	/* Exit handled on host level */
87 #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
88 #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
89 
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91 
92 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
93 #define TSC_RATIO_MIN		0x0000000000000001ULL
94 #define TSC_RATIO_MAX		0x000000ffffffffffULL
95 
96 #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
97 
98 /*
99  * 0xff is broadcast, so the max index allowed for physical APIC ID
100  * table is 0xfe.  APIC IDs above 0xff are reserved.
101  */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT	255
103 
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
107 
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS		8
110 #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
111 
112 #define AVIC_VM_ID_BITS			24
113 #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
115 
116 #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 						(y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
120 
121 static bool erratum_383_found __read_mostly;
122 
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 	MSR_FS_BASE,
127 #endif
128 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 	MSR_TSC_AUX,
130 };
131 
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133 
134 struct kvm_sev_info {
135 	bool active;		/* SEV enabled guest */
136 	unsigned int asid;	/* ASID used for this guest */
137 	unsigned int handle;	/* SEV firmware handle */
138 	int fd;			/* SEV device fd */
139 	unsigned long pages_locked; /* Number of pages locked */
140 	struct list_head regions_list;  /* List of registered regions */
141 };
142 
143 struct kvm_svm {
144 	struct kvm kvm;
145 
146 	/* Struct members for AVIC */
147 	u32 avic_vm_id;
148 	u32 ldr_mode;
149 	struct page *avic_logical_id_table_page;
150 	struct page *avic_physical_id_table_page;
151 	struct hlist_node hnode;
152 
153 	struct kvm_sev_info sev_info;
154 };
155 
156 struct kvm_vcpu;
157 
158 struct nested_state {
159 	struct vmcb *hsave;
160 	u64 hsave_msr;
161 	u64 vm_cr_msr;
162 	u64 vmcb;
163 
164 	/* These are the merged vectors */
165 	u32 *msrpm;
166 
167 	/* gpa pointers to the real vectors */
168 	u64 vmcb_msrpm;
169 	u64 vmcb_iopm;
170 
171 	/* A VMEXIT is required but not yet emulated */
172 	bool exit_required;
173 
174 	/* cache for intercepts of the guest */
175 	u32 intercept_cr;
176 	u32 intercept_dr;
177 	u32 intercept_exceptions;
178 	u64 intercept;
179 
180 	/* Nested Paging related state */
181 	u64 nested_cr3;
182 };
183 
184 #define MSRPM_OFFSETS	16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186 
187 /*
188  * Set osvw_len to higher value when updated Revision Guides
189  * are published and we know what the new status bits are
190  */
191 static uint64_t osvw_len = 4, osvw_status;
192 
193 struct vcpu_svm {
194 	struct kvm_vcpu vcpu;
195 	struct vmcb *vmcb;
196 	unsigned long vmcb_pa;
197 	struct svm_cpu_data *svm_data;
198 	uint64_t asid_generation;
199 	uint64_t sysenter_esp;
200 	uint64_t sysenter_eip;
201 	uint64_t tsc_aux;
202 
203 	u64 msr_decfg;
204 
205 	u64 next_rip;
206 
207 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 	struct {
209 		u16 fs;
210 		u16 gs;
211 		u16 ldt;
212 		u64 gs_base;
213 	} host;
214 
215 	u64 spec_ctrl;
216 	/*
217 	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 	 * translated into the appropriate L2_CFG bits on the host to
219 	 * perform speculative control.
220 	 */
221 	u64 virt_spec_ctrl;
222 
223 	u32 *msrpm;
224 
225 	ulong nmi_iret_rip;
226 
227 	struct nested_state nested;
228 
229 	bool nmi_singlestep;
230 	u64 nmi_singlestep_guest_rflags;
231 
232 	unsigned int3_injected;
233 	unsigned long int3_rip;
234 
235 	/* cached guest cpuid flags for faster access */
236 	bool nrips_enabled	: 1;
237 
238 	u32 ldr_reg;
239 	struct page *avic_backing_page;
240 	u64 *avic_physical_id_cache;
241 	bool avic_is_running;
242 
243 	/*
244 	 * Per-vcpu list of struct amd_svm_iommu_ir:
245 	 * This is used mainly to store interrupt remapping information used
246 	 * when update the vcpu affinity. This avoids the need to scan for
247 	 * IRTE and try to match ga_tag in the IOMMU driver.
248 	 */
249 	struct list_head ir_list;
250 	spinlock_t ir_list_lock;
251 
252 	/* which host CPU was used for running this vcpu */
253 	unsigned int last_cpu;
254 };
255 
256 /*
257  * This is a wrapper of struct amd_iommu_ir_data.
258  */
259 struct amd_svm_iommu_ir {
260 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
261 	void *data;		/* Storing pointer to struct amd_ir_data */
262 };
263 
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
266 
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
271 
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT	0x0100000000ULL
274 
275 #define MSR_INVALID			0xffffffffU
276 
277 static const struct svm_direct_access_msrs {
278 	u32 index;   /* Index of the MSR */
279 	bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 	{ .index = MSR_STAR,				.always = true  },
282 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
283 #ifdef CONFIG_X86_64
284 	{ .index = MSR_GS_BASE,				.always = true  },
285 	{ .index = MSR_FS_BASE,				.always = true  },
286 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
287 	{ .index = MSR_LSTAR,				.always = true  },
288 	{ .index = MSR_CSTAR,				.always = true  },
289 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
290 #endif
291 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
292 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
293 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
294 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
295 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
296 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
297 	{ .index = MSR_INVALID,				.always = false },
298 };
299 
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306 
307 /*
308  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309  * pause_filter_count: On processors that support Pause filtering(indicated
310  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311  *	count value. On VMRUN this value is loaded into an internal counter.
312  *	Each time a pause instruction is executed, this counter is decremented
313  *	until it reaches zero at which time a #VMEXIT is generated if pause
314  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
315  *	Intercept Filtering for more details.
316  *	This also indicate if ple logic enabled.
317  *
318  * pause_filter_thresh: In addition, some processor families support advanced
319  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320  *	the amount of time a guest is allowed to execute in a pause loop.
321  *	In this mode, a 16-bit pause filter threshold field is added in the
322  *	VMCB. The threshold value is a cycle count that is used to reset the
323  *	pause counter. As with simple pause filtering, VMRUN loads the pause
324  *	count value from VMCB into an internal counter. Then, on each pause
325  *	instruction the hardware checks the elapsed number of cycles since
326  *	the most recent pause instruction against the pause filter threshold.
327  *	If the elapsed cycle count is greater than the pause filter threshold,
328  *	then the internal pause count is reloaded from the VMCB and execution
329  *	continues. If the elapsed cycle count is less than the pause filter
330  *	threshold, then the internal pause count is decremented. If the count
331  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332  *	triggered. If advanced pause filtering is supported and pause filter
333  *	threshold field is set to zero, the filter will operate in the simpler,
334  *	count only mode.
335  */
336 
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339 
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342 
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346 
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350 
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354 
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358 
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362 
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368 
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372 
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376 
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380 
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382 
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386 
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 				      bool has_error_code, u32 error_code);
392 
393 enum {
394 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 			    pause filter count */
396 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
397 	VMCB_ASID,	 /* ASID */
398 	VMCB_INTR,	 /* int_ctl, int_vector */
399 	VMCB_NPT,        /* npt_en, nCR3, gPAT */
400 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
401 	VMCB_DR,         /* DR6, DR7 */
402 	VMCB_DT,         /* GDT, IDT */
403 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
404 	VMCB_CR2,        /* CR2 only */
405 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 			  * AVIC PHYSICAL_TABLE pointer,
408 			  * AVIC LOGICAL_TABLE pointer
409 			  */
410 	VMCB_DIRTY_MAX,
411 };
412 
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
415 
416 #define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
417 
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422 
423 struct enc_region {
424 	struct list_head list;
425 	unsigned long npages;
426 	struct page **pages;
427 	unsigned long uaddr;
428 	unsigned long size;
429 };
430 
431 
to_kvm_svm(struct kvm * kvm)432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434 	return container_of(kvm, struct kvm_svm, kvm);
435 }
436 
svm_sev_enabled(void)437 static inline bool svm_sev_enabled(void)
438 {
439 	return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440 }
441 
sev_guest(struct kvm * kvm)442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 #ifdef CONFIG_KVM_AMD_SEV
445 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446 
447 	return sev->active;
448 #else
449 	return false;
450 #endif
451 }
452 
sev_get_asid(struct kvm * kvm)453 static inline int sev_get_asid(struct kvm *kvm)
454 {
455 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456 
457 	return sev->asid;
458 }
459 
mark_all_dirty(struct vmcb * vmcb)460 static inline void mark_all_dirty(struct vmcb *vmcb)
461 {
462 	vmcb->control.clean = 0;
463 }
464 
mark_all_clean(struct vmcb * vmcb)465 static inline void mark_all_clean(struct vmcb *vmcb)
466 {
467 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468 			       & ~VMCB_ALWAYS_DIRTY_MASK;
469 }
470 
mark_dirty(struct vmcb * vmcb,int bit)471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
472 {
473 	vmcb->control.clean &= ~(1 << bit);
474 }
475 
to_svm(struct kvm_vcpu * vcpu)476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477 {
478 	return container_of(vcpu, struct vcpu_svm, vcpu);
479 }
480 
avic_update_vapic_bar(struct vcpu_svm * svm,u64 data)481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482 {
483 	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484 	mark_dirty(svm->vmcb, VMCB_AVIC);
485 }
486 
avic_vcpu_is_running(struct kvm_vcpu * vcpu)487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488 {
489 	struct vcpu_svm *svm = to_svm(vcpu);
490 	u64 *entry = svm->avic_physical_id_cache;
491 
492 	if (!entry)
493 		return false;
494 
495 	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496 }
497 
recalc_intercepts(struct vcpu_svm * svm)498 static void recalc_intercepts(struct vcpu_svm *svm)
499 {
500 	struct vmcb_control_area *c, *h;
501 	struct nested_state *g;
502 
503 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504 
505 	if (!is_guest_mode(&svm->vcpu))
506 		return;
507 
508 	c = &svm->vmcb->control;
509 	h = &svm->nested.hsave->control;
510 	g = &svm->nested;
511 
512 	c->intercept_cr = h->intercept_cr | g->intercept_cr;
513 	c->intercept_dr = h->intercept_dr | g->intercept_dr;
514 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515 	c->intercept = h->intercept | g->intercept;
516 }
517 
get_host_vmcb(struct vcpu_svm * svm)518 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
519 {
520 	if (is_guest_mode(&svm->vcpu))
521 		return svm->nested.hsave;
522 	else
523 		return svm->vmcb;
524 }
525 
set_cr_intercept(struct vcpu_svm * svm,int bit)526 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
527 {
528 	struct vmcb *vmcb = get_host_vmcb(svm);
529 
530 	vmcb->control.intercept_cr |= (1U << bit);
531 
532 	recalc_intercepts(svm);
533 }
534 
clr_cr_intercept(struct vcpu_svm * svm,int bit)535 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
536 {
537 	struct vmcb *vmcb = get_host_vmcb(svm);
538 
539 	vmcb->control.intercept_cr &= ~(1U << bit);
540 
541 	recalc_intercepts(svm);
542 }
543 
is_cr_intercept(struct vcpu_svm * svm,int bit)544 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
545 {
546 	struct vmcb *vmcb = get_host_vmcb(svm);
547 
548 	return vmcb->control.intercept_cr & (1U << bit);
549 }
550 
set_dr_intercepts(struct vcpu_svm * svm)551 static inline void set_dr_intercepts(struct vcpu_svm *svm)
552 {
553 	struct vmcb *vmcb = get_host_vmcb(svm);
554 
555 	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556 		| (1 << INTERCEPT_DR1_READ)
557 		| (1 << INTERCEPT_DR2_READ)
558 		| (1 << INTERCEPT_DR3_READ)
559 		| (1 << INTERCEPT_DR4_READ)
560 		| (1 << INTERCEPT_DR5_READ)
561 		| (1 << INTERCEPT_DR6_READ)
562 		| (1 << INTERCEPT_DR7_READ)
563 		| (1 << INTERCEPT_DR0_WRITE)
564 		| (1 << INTERCEPT_DR1_WRITE)
565 		| (1 << INTERCEPT_DR2_WRITE)
566 		| (1 << INTERCEPT_DR3_WRITE)
567 		| (1 << INTERCEPT_DR4_WRITE)
568 		| (1 << INTERCEPT_DR5_WRITE)
569 		| (1 << INTERCEPT_DR6_WRITE)
570 		| (1 << INTERCEPT_DR7_WRITE);
571 
572 	recalc_intercepts(svm);
573 }
574 
clr_dr_intercepts(struct vcpu_svm * svm)575 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
576 {
577 	struct vmcb *vmcb = get_host_vmcb(svm);
578 
579 	vmcb->control.intercept_dr = 0;
580 
581 	recalc_intercepts(svm);
582 }
583 
set_exception_intercept(struct vcpu_svm * svm,int bit)584 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
585 {
586 	struct vmcb *vmcb = get_host_vmcb(svm);
587 
588 	vmcb->control.intercept_exceptions |= (1U << bit);
589 
590 	recalc_intercepts(svm);
591 }
592 
clr_exception_intercept(struct vcpu_svm * svm,int bit)593 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
594 {
595 	struct vmcb *vmcb = get_host_vmcb(svm);
596 
597 	vmcb->control.intercept_exceptions &= ~(1U << bit);
598 
599 	recalc_intercepts(svm);
600 }
601 
set_intercept(struct vcpu_svm * svm,int bit)602 static inline void set_intercept(struct vcpu_svm *svm, int bit)
603 {
604 	struct vmcb *vmcb = get_host_vmcb(svm);
605 
606 	vmcb->control.intercept |= (1ULL << bit);
607 
608 	recalc_intercepts(svm);
609 }
610 
clr_intercept(struct vcpu_svm * svm,int bit)611 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
612 {
613 	struct vmcb *vmcb = get_host_vmcb(svm);
614 
615 	vmcb->control.intercept &= ~(1ULL << bit);
616 
617 	recalc_intercepts(svm);
618 }
619 
vgif_enabled(struct vcpu_svm * svm)620 static inline bool vgif_enabled(struct vcpu_svm *svm)
621 {
622 	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
623 }
624 
enable_gif(struct vcpu_svm * svm)625 static inline void enable_gif(struct vcpu_svm *svm)
626 {
627 	if (vgif_enabled(svm))
628 		svm->vmcb->control.int_ctl |= V_GIF_MASK;
629 	else
630 		svm->vcpu.arch.hflags |= HF_GIF_MASK;
631 }
632 
disable_gif(struct vcpu_svm * svm)633 static inline void disable_gif(struct vcpu_svm *svm)
634 {
635 	if (vgif_enabled(svm))
636 		svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
637 	else
638 		svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
639 }
640 
gif_set(struct vcpu_svm * svm)641 static inline bool gif_set(struct vcpu_svm *svm)
642 {
643 	if (vgif_enabled(svm))
644 		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
645 	else
646 		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
647 }
648 
649 static unsigned long iopm_base;
650 
651 struct kvm_ldttss_desc {
652 	u16 limit0;
653 	u16 base0;
654 	unsigned base1:8, type:5, dpl:2, p:1;
655 	unsigned limit1:4, zero0:3, g:1, base2:8;
656 	u32 base3;
657 	u32 zero1;
658 } __attribute__((packed));
659 
660 struct svm_cpu_data {
661 	int cpu;
662 
663 	u64 asid_generation;
664 	u32 max_asid;
665 	u32 next_asid;
666 	u32 min_asid;
667 	struct kvm_ldttss_desc *tss_desc;
668 
669 	struct page *save_area;
670 	struct vmcb *current_vmcb;
671 
672 	/* index = sev_asid, value = vmcb pointer */
673 	struct vmcb **sev_vmcbs;
674 };
675 
676 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
677 
678 struct svm_init_data {
679 	int cpu;
680 	int r;
681 };
682 
683 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
684 
685 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686 #define MSRS_RANGE_SIZE 2048
687 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
688 
svm_msrpm_offset(u32 msr)689 static u32 svm_msrpm_offset(u32 msr)
690 {
691 	u32 offset;
692 	int i;
693 
694 	for (i = 0; i < NUM_MSR_MAPS; i++) {
695 		if (msr < msrpm_ranges[i] ||
696 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697 			continue;
698 
699 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
701 
702 		/* Now we have the u8 offset - but need the u32 offset */
703 		return offset / 4;
704 	}
705 
706 	/* MSR not in any range */
707 	return MSR_INVALID;
708 }
709 
710 #define MAX_INST_SIZE 15
711 
clgi(void)712 static inline void clgi(void)
713 {
714 	asm volatile (__ex(SVM_CLGI));
715 }
716 
stgi(void)717 static inline void stgi(void)
718 {
719 	asm volatile (__ex(SVM_STGI));
720 }
721 
invlpga(unsigned long addr,u32 asid)722 static inline void invlpga(unsigned long addr, u32 asid)
723 {
724 	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
725 }
726 
get_npt_level(struct kvm_vcpu * vcpu)727 static int get_npt_level(struct kvm_vcpu *vcpu)
728 {
729 #ifdef CONFIG_X86_64
730 	return PT64_ROOT_4LEVEL;
731 #else
732 	return PT32E_ROOT_LEVEL;
733 #endif
734 }
735 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)736 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
737 {
738 	vcpu->arch.efer = efer;
739 	if (!npt_enabled && !(efer & EFER_LMA))
740 		efer &= ~EFER_LME;
741 
742 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
744 }
745 
is_external_interrupt(u32 info)746 static int is_external_interrupt(u32 info)
747 {
748 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
750 }
751 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)752 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
753 {
754 	struct vcpu_svm *svm = to_svm(vcpu);
755 	u32 ret = 0;
756 
757 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
759 	return ret;
760 }
761 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)762 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
763 {
764 	struct vcpu_svm *svm = to_svm(vcpu);
765 
766 	if (mask == 0)
767 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
768 	else
769 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
770 
771 }
772 
skip_emulated_instruction(struct kvm_vcpu * vcpu)773 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
774 {
775 	struct vcpu_svm *svm = to_svm(vcpu);
776 
777 	if (svm->vmcb->control.next_rip != 0) {
778 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779 		svm->next_rip = svm->vmcb->control.next_rip;
780 	}
781 
782 	if (!svm->next_rip) {
783 		if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
784 				EMULATE_DONE)
785 			printk(KERN_DEBUG "%s: NOP\n", __func__);
786 		return;
787 	}
788 	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
789 		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
790 		       __func__, kvm_rip_read(vcpu), svm->next_rip);
791 
792 	kvm_rip_write(vcpu, svm->next_rip);
793 	svm_set_interrupt_shadow(vcpu, 0);
794 }
795 
svm_queue_exception(struct kvm_vcpu * vcpu)796 static void svm_queue_exception(struct kvm_vcpu *vcpu)
797 {
798 	struct vcpu_svm *svm = to_svm(vcpu);
799 	unsigned nr = vcpu->arch.exception.nr;
800 	bool has_error_code = vcpu->arch.exception.has_error_code;
801 	bool reinject = vcpu->arch.exception.injected;
802 	u32 error_code = vcpu->arch.exception.error_code;
803 
804 	/*
805 	 * If we are within a nested VM we'd better #VMEXIT and let the guest
806 	 * handle the exception
807 	 */
808 	if (!reinject &&
809 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
810 		return;
811 
812 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
813 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
814 
815 		/*
816 		 * For guest debugging where we have to reinject #BP if some
817 		 * INT3 is guest-owned:
818 		 * Emulate nRIP by moving RIP forward. Will fail if injection
819 		 * raises a fault that is not intercepted. Still better than
820 		 * failing in all cases.
821 		 */
822 		skip_emulated_instruction(&svm->vcpu);
823 		rip = kvm_rip_read(&svm->vcpu);
824 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
825 		svm->int3_injected = rip - old_rip;
826 	}
827 
828 	svm->vmcb->control.event_inj = nr
829 		| SVM_EVTINJ_VALID
830 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
831 		| SVM_EVTINJ_TYPE_EXEPT;
832 	svm->vmcb->control.event_inj_err = error_code;
833 }
834 
svm_init_erratum_383(void)835 static void svm_init_erratum_383(void)
836 {
837 	u32 low, high;
838 	int err;
839 	u64 val;
840 
841 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
842 		return;
843 
844 	/* Use _safe variants to not break nested virtualization */
845 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
846 	if (err)
847 		return;
848 
849 	val |= (1ULL << 47);
850 
851 	low  = lower_32_bits(val);
852 	high = upper_32_bits(val);
853 
854 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
855 
856 	erratum_383_found = true;
857 }
858 
svm_init_osvw(struct kvm_vcpu * vcpu)859 static void svm_init_osvw(struct kvm_vcpu *vcpu)
860 {
861 	/*
862 	 * Guests should see errata 400 and 415 as fixed (assuming that
863 	 * HLT and IO instructions are intercepted).
864 	 */
865 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
866 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
867 
868 	/*
869 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
870 	 * all osvw.status bits inside that length, including bit 0 (which is
871 	 * reserved for erratum 298), are valid. However, if host processor's
872 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
873 	 * be conservative here and therefore we tell the guest that erratum 298
874 	 * is present (because we really don't know).
875 	 */
876 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
877 		vcpu->arch.osvw.status |= 1;
878 }
879 
has_svm(void)880 static int has_svm(void)
881 {
882 	const char *msg;
883 
884 	if (!cpu_has_svm(&msg)) {
885 		printk(KERN_INFO "has_svm: %s\n", msg);
886 		return 0;
887 	}
888 
889 	return 1;
890 }
891 
svm_hardware_disable(void)892 static void svm_hardware_disable(void)
893 {
894 	/* Make sure we clean up behind us */
895 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
896 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
897 
898 	cpu_svm_disable();
899 
900 	amd_pmu_disable_virt();
901 }
902 
svm_hardware_enable(void)903 static int svm_hardware_enable(void)
904 {
905 
906 	struct svm_cpu_data *sd;
907 	uint64_t efer;
908 	struct desc_struct *gdt;
909 	int me = raw_smp_processor_id();
910 
911 	rdmsrl(MSR_EFER, efer);
912 	if (efer & EFER_SVME)
913 		return -EBUSY;
914 
915 	if (!has_svm()) {
916 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
917 		return -EINVAL;
918 	}
919 	sd = per_cpu(svm_data, me);
920 	if (!sd) {
921 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
922 		return -EINVAL;
923 	}
924 
925 	sd->asid_generation = 1;
926 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
927 	sd->next_asid = sd->max_asid + 1;
928 	sd->min_asid = max_sev_asid + 1;
929 
930 	gdt = get_current_gdt_rw();
931 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
932 
933 	wrmsrl(MSR_EFER, efer | EFER_SVME);
934 
935 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
936 
937 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
938 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
939 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
940 	}
941 
942 
943 	/*
944 	 * Get OSVW bits.
945 	 *
946 	 * Note that it is possible to have a system with mixed processor
947 	 * revisions and therefore different OSVW bits. If bits are not the same
948 	 * on different processors then choose the worst case (i.e. if erratum
949 	 * is present on one processor and not on another then assume that the
950 	 * erratum is present everywhere).
951 	 */
952 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
953 		uint64_t len, status = 0;
954 		int err;
955 
956 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
957 		if (!err)
958 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
959 						      &err);
960 
961 		if (err)
962 			osvw_status = osvw_len = 0;
963 		else {
964 			if (len < osvw_len)
965 				osvw_len = len;
966 			osvw_status |= status;
967 			osvw_status &= (1ULL << osvw_len) - 1;
968 		}
969 	} else
970 		osvw_status = osvw_len = 0;
971 
972 	svm_init_erratum_383();
973 
974 	amd_pmu_enable_virt();
975 
976 	return 0;
977 }
978 
svm_cpu_uninit(int cpu)979 static void svm_cpu_uninit(int cpu)
980 {
981 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
982 
983 	if (!sd)
984 		return;
985 
986 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
987 	kfree(sd->sev_vmcbs);
988 	__free_page(sd->save_area);
989 	kfree(sd);
990 }
991 
svm_cpu_init(int cpu)992 static int svm_cpu_init(int cpu)
993 {
994 	struct svm_cpu_data *sd;
995 	int r;
996 
997 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
998 	if (!sd)
999 		return -ENOMEM;
1000 	sd->cpu = cpu;
1001 	r = -ENOMEM;
1002 	sd->save_area = alloc_page(GFP_KERNEL);
1003 	if (!sd->save_area)
1004 		goto err_1;
1005 
1006 	if (svm_sev_enabled()) {
1007 		r = -ENOMEM;
1008 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1009 					      sizeof(void *),
1010 					      GFP_KERNEL);
1011 		if (!sd->sev_vmcbs)
1012 			goto err_1;
1013 	}
1014 
1015 	per_cpu(svm_data, cpu) = sd;
1016 
1017 	return 0;
1018 
1019 err_1:
1020 	kfree(sd);
1021 	return r;
1022 
1023 }
1024 
valid_msr_intercept(u32 index)1025 static bool valid_msr_intercept(u32 index)
1026 {
1027 	int i;
1028 
1029 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1030 		if (direct_access_msrs[i].index == index)
1031 			return true;
1032 
1033 	return false;
1034 }
1035 
msr_write_intercepted(struct kvm_vcpu * vcpu,unsigned msr)1036 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1037 {
1038 	u8 bit_write;
1039 	unsigned long tmp;
1040 	u32 offset;
1041 	u32 *msrpm;
1042 
1043 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1044 				      to_svm(vcpu)->msrpm;
1045 
1046 	offset    = svm_msrpm_offset(msr);
1047 	bit_write = 2 * (msr & 0x0f) + 1;
1048 	tmp       = msrpm[offset];
1049 
1050 	BUG_ON(offset == MSR_INVALID);
1051 
1052 	return !!test_bit(bit_write,  &tmp);
1053 }
1054 
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)1055 static void set_msr_interception(u32 *msrpm, unsigned msr,
1056 				 int read, int write)
1057 {
1058 	u8 bit_read, bit_write;
1059 	unsigned long tmp;
1060 	u32 offset;
1061 
1062 	/*
1063 	 * If this warning triggers extend the direct_access_msrs list at the
1064 	 * beginning of the file
1065 	 */
1066 	WARN_ON(!valid_msr_intercept(msr));
1067 
1068 	offset    = svm_msrpm_offset(msr);
1069 	bit_read  = 2 * (msr & 0x0f);
1070 	bit_write = 2 * (msr & 0x0f) + 1;
1071 	tmp       = msrpm[offset];
1072 
1073 	BUG_ON(offset == MSR_INVALID);
1074 
1075 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1076 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1077 
1078 	msrpm[offset] = tmp;
1079 }
1080 
svm_vcpu_init_msrpm(u32 * msrpm)1081 static void svm_vcpu_init_msrpm(u32 *msrpm)
1082 {
1083 	int i;
1084 
1085 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1086 
1087 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1088 		if (!direct_access_msrs[i].always)
1089 			continue;
1090 
1091 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1092 	}
1093 }
1094 
add_msr_offset(u32 offset)1095 static void add_msr_offset(u32 offset)
1096 {
1097 	int i;
1098 
1099 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
1100 
1101 		/* Offset already in list? */
1102 		if (msrpm_offsets[i] == offset)
1103 			return;
1104 
1105 		/* Slot used by another offset? */
1106 		if (msrpm_offsets[i] != MSR_INVALID)
1107 			continue;
1108 
1109 		/* Add offset to list */
1110 		msrpm_offsets[i] = offset;
1111 
1112 		return;
1113 	}
1114 
1115 	/*
1116 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1117 	 * increase MSRPM_OFFSETS in this case.
1118 	 */
1119 	BUG();
1120 }
1121 
init_msrpm_offsets(void)1122 static void init_msrpm_offsets(void)
1123 {
1124 	int i;
1125 
1126 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1127 
1128 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1129 		u32 offset;
1130 
1131 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
1132 		BUG_ON(offset == MSR_INVALID);
1133 
1134 		add_msr_offset(offset);
1135 	}
1136 }
1137 
svm_enable_lbrv(struct vcpu_svm * svm)1138 static void svm_enable_lbrv(struct vcpu_svm *svm)
1139 {
1140 	u32 *msrpm = svm->msrpm;
1141 
1142 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1143 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1144 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1145 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1146 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1147 }
1148 
svm_disable_lbrv(struct vcpu_svm * svm)1149 static void svm_disable_lbrv(struct vcpu_svm *svm)
1150 {
1151 	u32 *msrpm = svm->msrpm;
1152 
1153 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1154 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1155 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1156 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1157 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1158 }
1159 
disable_nmi_singlestep(struct vcpu_svm * svm)1160 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1161 {
1162 	svm->nmi_singlestep = false;
1163 
1164 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1165 		/* Clear our flags if they were not set by the guest */
1166 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1167 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1168 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1169 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1170 	}
1171 }
1172 
1173 /* Note:
1174  * This hash table is used to map VM_ID to a struct kvm_svm,
1175  * when handling AMD IOMMU GALOG notification to schedule in
1176  * a particular vCPU.
1177  */
1178 #define SVM_VM_DATA_HASH_BITS	8
1179 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1180 static u32 next_vm_id = 0;
1181 static bool next_vm_id_wrapped = 0;
1182 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1183 
1184 /* Note:
1185  * This function is called from IOMMU driver to notify
1186  * SVM to schedule in a particular vCPU of a particular VM.
1187  */
avic_ga_log_notifier(u32 ga_tag)1188 static int avic_ga_log_notifier(u32 ga_tag)
1189 {
1190 	unsigned long flags;
1191 	struct kvm_svm *kvm_svm;
1192 	struct kvm_vcpu *vcpu = NULL;
1193 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1194 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1195 
1196 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1197 
1198 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1199 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1200 		if (kvm_svm->avic_vm_id != vm_id)
1201 			continue;
1202 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1203 		break;
1204 	}
1205 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1206 
1207 	/* Note:
1208 	 * At this point, the IOMMU should have already set the pending
1209 	 * bit in the vAPIC backing page. So, we just need to schedule
1210 	 * in the vcpu.
1211 	 */
1212 	if (vcpu)
1213 		kvm_vcpu_wake_up(vcpu);
1214 
1215 	return 0;
1216 }
1217 
sev_hardware_setup(void)1218 static __init int sev_hardware_setup(void)
1219 {
1220 	struct sev_user_data_status *status;
1221 	int rc;
1222 
1223 	/* Maximum number of encrypted guests supported simultaneously */
1224 	max_sev_asid = cpuid_ecx(0x8000001F);
1225 
1226 	if (!max_sev_asid)
1227 		return 1;
1228 
1229 	/* Minimum ASID value that should be used for SEV guest */
1230 	min_sev_asid = cpuid_edx(0x8000001F);
1231 
1232 	/* Initialize SEV ASID bitmap */
1233 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1234 	if (!sev_asid_bitmap)
1235 		return 1;
1236 
1237 	status = kmalloc(sizeof(*status), GFP_KERNEL);
1238 	if (!status)
1239 		return 1;
1240 
1241 	/*
1242 	 * Check SEV platform status.
1243 	 *
1244 	 * PLATFORM_STATUS can be called in any state, if we failed to query
1245 	 * the PLATFORM status then either PSP firmware does not support SEV
1246 	 * feature or SEV firmware is dead.
1247 	 */
1248 	rc = sev_platform_status(status, NULL);
1249 	if (rc)
1250 		goto err;
1251 
1252 	pr_info("SEV supported\n");
1253 
1254 err:
1255 	kfree(status);
1256 	return rc;
1257 }
1258 
grow_ple_window(struct kvm_vcpu * vcpu)1259 static void grow_ple_window(struct kvm_vcpu *vcpu)
1260 {
1261 	struct vcpu_svm *svm = to_svm(vcpu);
1262 	struct vmcb_control_area *control = &svm->vmcb->control;
1263 	int old = control->pause_filter_count;
1264 
1265 	control->pause_filter_count = __grow_ple_window(old,
1266 							pause_filter_count,
1267 							pause_filter_count_grow,
1268 							pause_filter_count_max);
1269 
1270 	if (control->pause_filter_count != old)
1271 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1272 
1273 	trace_kvm_ple_window_grow(vcpu->vcpu_id,
1274 				  control->pause_filter_count, old);
1275 }
1276 
shrink_ple_window(struct kvm_vcpu * vcpu)1277 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1278 {
1279 	struct vcpu_svm *svm = to_svm(vcpu);
1280 	struct vmcb_control_area *control = &svm->vmcb->control;
1281 	int old = control->pause_filter_count;
1282 
1283 	control->pause_filter_count =
1284 				__shrink_ple_window(old,
1285 						    pause_filter_count,
1286 						    pause_filter_count_shrink,
1287 						    pause_filter_count);
1288 	if (control->pause_filter_count != old)
1289 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1290 
1291 	trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1292 				    control->pause_filter_count, old);
1293 }
1294 
svm_hardware_setup(void)1295 static __init int svm_hardware_setup(void)
1296 {
1297 	int cpu;
1298 	struct page *iopm_pages;
1299 	void *iopm_va;
1300 	int r;
1301 
1302 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1303 
1304 	if (!iopm_pages)
1305 		return -ENOMEM;
1306 
1307 	iopm_va = page_address(iopm_pages);
1308 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1309 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1310 
1311 	init_msrpm_offsets();
1312 
1313 	if (boot_cpu_has(X86_FEATURE_NX))
1314 		kvm_enable_efer_bits(EFER_NX);
1315 
1316 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1317 		kvm_enable_efer_bits(EFER_FFXSR);
1318 
1319 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1320 		kvm_has_tsc_control = true;
1321 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1322 		kvm_tsc_scaling_ratio_frac_bits = 32;
1323 	}
1324 
1325 	/* Check for pause filtering support */
1326 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1327 		pause_filter_count = 0;
1328 		pause_filter_thresh = 0;
1329 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1330 		pause_filter_thresh = 0;
1331 	}
1332 
1333 	if (nested) {
1334 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1335 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1336 	}
1337 
1338 	if (sev) {
1339 		if (boot_cpu_has(X86_FEATURE_SEV) &&
1340 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1341 			r = sev_hardware_setup();
1342 			if (r)
1343 				sev = false;
1344 		} else {
1345 			sev = false;
1346 		}
1347 	}
1348 
1349 	for_each_possible_cpu(cpu) {
1350 		r = svm_cpu_init(cpu);
1351 		if (r)
1352 			goto err;
1353 	}
1354 
1355 	if (!boot_cpu_has(X86_FEATURE_NPT))
1356 		npt_enabled = false;
1357 
1358 	if (npt_enabled && !npt) {
1359 		printk(KERN_INFO "kvm: Nested Paging disabled\n");
1360 		npt_enabled = false;
1361 	}
1362 
1363 	if (npt_enabled) {
1364 		printk(KERN_INFO "kvm: Nested Paging enabled\n");
1365 		kvm_enable_tdp();
1366 	} else
1367 		kvm_disable_tdp();
1368 
1369 	if (avic) {
1370 		if (!npt_enabled ||
1371 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1372 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1373 			avic = false;
1374 		} else {
1375 			pr_info("AVIC enabled\n");
1376 
1377 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1378 		}
1379 	}
1380 
1381 	if (vls) {
1382 		if (!npt_enabled ||
1383 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1384 		    !IS_ENABLED(CONFIG_X86_64)) {
1385 			vls = false;
1386 		} else {
1387 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1388 		}
1389 	}
1390 
1391 	if (vgif) {
1392 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1393 			vgif = false;
1394 		else
1395 			pr_info("Virtual GIF supported\n");
1396 	}
1397 
1398 	return 0;
1399 
1400 err:
1401 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1402 	iopm_base = 0;
1403 	return r;
1404 }
1405 
svm_hardware_unsetup(void)1406 static __exit void svm_hardware_unsetup(void)
1407 {
1408 	int cpu;
1409 
1410 	if (svm_sev_enabled())
1411 		bitmap_free(sev_asid_bitmap);
1412 
1413 	for_each_possible_cpu(cpu)
1414 		svm_cpu_uninit(cpu);
1415 
1416 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1417 	iopm_base = 0;
1418 }
1419 
init_seg(struct vmcb_seg * seg)1420 static void init_seg(struct vmcb_seg *seg)
1421 {
1422 	seg->selector = 0;
1423 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1424 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1425 	seg->limit = 0xffff;
1426 	seg->base = 0;
1427 }
1428 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1429 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1430 {
1431 	seg->selector = 0;
1432 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1433 	seg->limit = 0xffff;
1434 	seg->base = 0;
1435 }
1436 
svm_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1437 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1438 {
1439 	struct vcpu_svm *svm = to_svm(vcpu);
1440 
1441 	if (is_guest_mode(vcpu))
1442 		return svm->nested.hsave->control.tsc_offset;
1443 
1444 	return vcpu->arch.tsc_offset;
1445 }
1446 
svm_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1447 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1448 {
1449 	struct vcpu_svm *svm = to_svm(vcpu);
1450 	u64 g_tsc_offset = 0;
1451 
1452 	if (is_guest_mode(vcpu)) {
1453 		/* Write L1's TSC offset.  */
1454 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1455 			       svm->nested.hsave->control.tsc_offset;
1456 		svm->nested.hsave->control.tsc_offset = offset;
1457 	} else
1458 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1459 					   svm->vmcb->control.tsc_offset,
1460 					   offset);
1461 
1462 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1463 
1464 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1465 }
1466 
avic_init_vmcb(struct vcpu_svm * svm)1467 static void avic_init_vmcb(struct vcpu_svm *svm)
1468 {
1469 	struct vmcb *vmcb = svm->vmcb;
1470 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1471 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1472 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1473 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1474 
1475 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1476 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1477 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1478 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1479 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1480 }
1481 
init_vmcb(struct vcpu_svm * svm)1482 static void init_vmcb(struct vcpu_svm *svm)
1483 {
1484 	struct vmcb_control_area *control = &svm->vmcb->control;
1485 	struct vmcb_save_area *save = &svm->vmcb->save;
1486 
1487 	svm->vcpu.arch.hflags = 0;
1488 
1489 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1490 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1491 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1492 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1493 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1494 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1495 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1496 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1497 
1498 	set_dr_intercepts(svm);
1499 
1500 	set_exception_intercept(svm, PF_VECTOR);
1501 	set_exception_intercept(svm, UD_VECTOR);
1502 	set_exception_intercept(svm, MC_VECTOR);
1503 	set_exception_intercept(svm, AC_VECTOR);
1504 	set_exception_intercept(svm, DB_VECTOR);
1505 	/*
1506 	 * Guest access to VMware backdoor ports could legitimately
1507 	 * trigger #GP because of TSS I/O permission bitmap.
1508 	 * We intercept those #GP and allow access to them anyway
1509 	 * as VMware does.
1510 	 */
1511 	if (enable_vmware_backdoor)
1512 		set_exception_intercept(svm, GP_VECTOR);
1513 
1514 	set_intercept(svm, INTERCEPT_INTR);
1515 	set_intercept(svm, INTERCEPT_NMI);
1516 	set_intercept(svm, INTERCEPT_SMI);
1517 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1518 	set_intercept(svm, INTERCEPT_RDPMC);
1519 	set_intercept(svm, INTERCEPT_CPUID);
1520 	set_intercept(svm, INTERCEPT_INVD);
1521 	set_intercept(svm, INTERCEPT_INVLPG);
1522 	set_intercept(svm, INTERCEPT_INVLPGA);
1523 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1524 	set_intercept(svm, INTERCEPT_MSR_PROT);
1525 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1526 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1527 	set_intercept(svm, INTERCEPT_VMRUN);
1528 	set_intercept(svm, INTERCEPT_VMMCALL);
1529 	set_intercept(svm, INTERCEPT_VMLOAD);
1530 	set_intercept(svm, INTERCEPT_VMSAVE);
1531 	set_intercept(svm, INTERCEPT_STGI);
1532 	set_intercept(svm, INTERCEPT_CLGI);
1533 	set_intercept(svm, INTERCEPT_SKINIT);
1534 	set_intercept(svm, INTERCEPT_WBINVD);
1535 	set_intercept(svm, INTERCEPT_XSETBV);
1536 	set_intercept(svm, INTERCEPT_RSM);
1537 
1538 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1539 		set_intercept(svm, INTERCEPT_MONITOR);
1540 		set_intercept(svm, INTERCEPT_MWAIT);
1541 	}
1542 
1543 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1544 		set_intercept(svm, INTERCEPT_HLT);
1545 
1546 	control->iopm_base_pa = __sme_set(iopm_base);
1547 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1548 	control->int_ctl = V_INTR_MASKING_MASK;
1549 
1550 	init_seg(&save->es);
1551 	init_seg(&save->ss);
1552 	init_seg(&save->ds);
1553 	init_seg(&save->fs);
1554 	init_seg(&save->gs);
1555 
1556 	save->cs.selector = 0xf000;
1557 	save->cs.base = 0xffff0000;
1558 	/* Executable/Readable Code Segment */
1559 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1560 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1561 	save->cs.limit = 0xffff;
1562 
1563 	save->gdtr.limit = 0xffff;
1564 	save->idtr.limit = 0xffff;
1565 
1566 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1567 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1568 
1569 	svm_set_efer(&svm->vcpu, 0);
1570 	save->dr6 = 0xffff0ff0;
1571 	kvm_set_rflags(&svm->vcpu, 2);
1572 	save->rip = 0x0000fff0;
1573 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1574 
1575 	/*
1576 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1577 	 * It also updates the guest-visible cr0 value.
1578 	 */
1579 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1580 	kvm_mmu_reset_context(&svm->vcpu);
1581 
1582 	save->cr4 = X86_CR4_PAE;
1583 	/* rdx = ?? */
1584 
1585 	if (npt_enabled) {
1586 		/* Setup VMCB for Nested Paging */
1587 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1588 		clr_intercept(svm, INTERCEPT_INVLPG);
1589 		clr_exception_intercept(svm, PF_VECTOR);
1590 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1591 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1592 		save->g_pat = svm->vcpu.arch.pat;
1593 		save->cr3 = 0;
1594 		save->cr4 = 0;
1595 	}
1596 	svm->asid_generation = 0;
1597 
1598 	svm->nested.vmcb = 0;
1599 	svm->vcpu.arch.hflags = 0;
1600 
1601 	if (pause_filter_count) {
1602 		control->pause_filter_count = pause_filter_count;
1603 		if (pause_filter_thresh)
1604 			control->pause_filter_thresh = pause_filter_thresh;
1605 		set_intercept(svm, INTERCEPT_PAUSE);
1606 	} else {
1607 		clr_intercept(svm, INTERCEPT_PAUSE);
1608 	}
1609 
1610 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1611 		avic_init_vmcb(svm);
1612 
1613 	/*
1614 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1615 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1616 	 */
1617 	if (vls) {
1618 		clr_intercept(svm, INTERCEPT_VMLOAD);
1619 		clr_intercept(svm, INTERCEPT_VMSAVE);
1620 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1621 	}
1622 
1623 	if (vgif) {
1624 		clr_intercept(svm, INTERCEPT_STGI);
1625 		clr_intercept(svm, INTERCEPT_CLGI);
1626 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1627 	}
1628 
1629 	if (sev_guest(svm->vcpu.kvm)) {
1630 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1631 		clr_exception_intercept(svm, UD_VECTOR);
1632 	}
1633 
1634 	mark_all_dirty(svm->vmcb);
1635 
1636 	enable_gif(svm);
1637 
1638 }
1639 
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)1640 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1641 				       unsigned int index)
1642 {
1643 	u64 *avic_physical_id_table;
1644 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1645 
1646 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1647 		return NULL;
1648 
1649 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1650 
1651 	return &avic_physical_id_table[index];
1652 }
1653 
1654 /**
1655  * Note:
1656  * AVIC hardware walks the nested page table to check permissions,
1657  * but does not use the SPA address specified in the leaf page
1658  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1659  * field of the VMCB. Therefore, we set up the
1660  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1661  */
avic_init_access_page(struct kvm_vcpu * vcpu)1662 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1663 {
1664 	struct kvm *kvm = vcpu->kvm;
1665 	int ret;
1666 
1667 	if (kvm->arch.apic_access_page_done)
1668 		return 0;
1669 
1670 	ret = x86_set_memory_region(kvm,
1671 				    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1672 				    APIC_DEFAULT_PHYS_BASE,
1673 				    PAGE_SIZE);
1674 	if (ret)
1675 		return ret;
1676 
1677 	kvm->arch.apic_access_page_done = true;
1678 	return 0;
1679 }
1680 
avic_init_backing_page(struct kvm_vcpu * vcpu)1681 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1682 {
1683 	int ret;
1684 	u64 *entry, new_entry;
1685 	int id = vcpu->vcpu_id;
1686 	struct vcpu_svm *svm = to_svm(vcpu);
1687 
1688 	ret = avic_init_access_page(vcpu);
1689 	if (ret)
1690 		return ret;
1691 
1692 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1693 		return -EINVAL;
1694 
1695 	if (!svm->vcpu.arch.apic->regs)
1696 		return -EINVAL;
1697 
1698 	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1699 
1700 	/* Setting AVIC backing page address in the phy APIC ID table */
1701 	entry = avic_get_physical_id_entry(vcpu, id);
1702 	if (!entry)
1703 		return -EINVAL;
1704 
1705 	new_entry = READ_ONCE(*entry);
1706 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1707 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1708 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1709 	WRITE_ONCE(*entry, new_entry);
1710 
1711 	svm->avic_physical_id_cache = entry;
1712 
1713 	return 0;
1714 }
1715 
__sev_asid_free(int asid)1716 static void __sev_asid_free(int asid)
1717 {
1718 	struct svm_cpu_data *sd;
1719 	int cpu, pos;
1720 
1721 	pos = asid - 1;
1722 	clear_bit(pos, sev_asid_bitmap);
1723 
1724 	for_each_possible_cpu(cpu) {
1725 		sd = per_cpu(svm_data, cpu);
1726 		sd->sev_vmcbs[pos] = NULL;
1727 	}
1728 }
1729 
sev_asid_free(struct kvm * kvm)1730 static void sev_asid_free(struct kvm *kvm)
1731 {
1732 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1733 
1734 	__sev_asid_free(sev->asid);
1735 }
1736 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)1737 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1738 {
1739 	struct sev_data_decommission *decommission;
1740 	struct sev_data_deactivate *data;
1741 
1742 	if (!handle)
1743 		return;
1744 
1745 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1746 	if (!data)
1747 		return;
1748 
1749 	/* deactivate handle */
1750 	data->handle = handle;
1751 	sev_guest_deactivate(data, NULL);
1752 
1753 	wbinvd_on_all_cpus();
1754 	sev_guest_df_flush(NULL);
1755 	kfree(data);
1756 
1757 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1758 	if (!decommission)
1759 		return;
1760 
1761 	/* decommission handle */
1762 	decommission->handle = handle;
1763 	sev_guest_decommission(decommission, NULL);
1764 
1765 	kfree(decommission);
1766 }
1767 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)1768 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1769 				    unsigned long ulen, unsigned long *n,
1770 				    int write)
1771 {
1772 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1773 	unsigned long npages, npinned, size;
1774 	unsigned long locked, lock_limit;
1775 	struct page **pages;
1776 	unsigned long first, last;
1777 
1778 	if (ulen == 0 || uaddr + ulen < uaddr)
1779 		return NULL;
1780 
1781 	/* Calculate number of pages. */
1782 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1783 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1784 	npages = (last - first + 1);
1785 
1786 	locked = sev->pages_locked + npages;
1787 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1788 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1789 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1790 		return NULL;
1791 	}
1792 
1793 	/* Avoid using vmalloc for smaller buffers. */
1794 	size = npages * sizeof(struct page *);
1795 	if (size > PAGE_SIZE)
1796 		pages = vmalloc(size);
1797 	else
1798 		pages = kmalloc(size, GFP_KERNEL);
1799 
1800 	if (!pages)
1801 		return NULL;
1802 
1803 	/* Pin the user virtual address. */
1804 	npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1805 	if (npinned != npages) {
1806 		pr_err("SEV: Failure locking %lu pages.\n", npages);
1807 		goto err;
1808 	}
1809 
1810 	*n = npages;
1811 	sev->pages_locked = locked;
1812 
1813 	return pages;
1814 
1815 err:
1816 	if (npinned > 0)
1817 		release_pages(pages, npinned);
1818 
1819 	kvfree(pages);
1820 	return NULL;
1821 }
1822 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)1823 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1824 			     unsigned long npages)
1825 {
1826 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1827 
1828 	release_pages(pages, npages);
1829 	kvfree(pages);
1830 	sev->pages_locked -= npages;
1831 }
1832 
sev_clflush_pages(struct page * pages[],unsigned long npages)1833 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1834 {
1835 	uint8_t *page_virtual;
1836 	unsigned long i;
1837 
1838 	if (npages == 0 || pages == NULL)
1839 		return;
1840 
1841 	for (i = 0; i < npages; i++) {
1842 		page_virtual = kmap_atomic(pages[i]);
1843 		clflush_cache_range(page_virtual, PAGE_SIZE);
1844 		kunmap_atomic(page_virtual);
1845 	}
1846 }
1847 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1848 static void __unregister_enc_region_locked(struct kvm *kvm,
1849 					   struct enc_region *region)
1850 {
1851 	/*
1852 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1853 	 * or vice versa for this memory range. Lets make sure caches are
1854 	 * flushed to ensure that guest data gets written into memory with
1855 	 * correct C-bit.
1856 	 */
1857 	sev_clflush_pages(region->pages, region->npages);
1858 
1859 	sev_unpin_memory(kvm, region->pages, region->npages);
1860 	list_del(&region->list);
1861 	kfree(region);
1862 }
1863 
svm_vm_alloc(void)1864 static struct kvm *svm_vm_alloc(void)
1865 {
1866 	struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1867 	return &kvm_svm->kvm;
1868 }
1869 
svm_vm_free(struct kvm * kvm)1870 static void svm_vm_free(struct kvm *kvm)
1871 {
1872 	vfree(to_kvm_svm(kvm));
1873 }
1874 
sev_vm_destroy(struct kvm * kvm)1875 static void sev_vm_destroy(struct kvm *kvm)
1876 {
1877 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1878 	struct list_head *head = &sev->regions_list;
1879 	struct list_head *pos, *q;
1880 
1881 	if (!sev_guest(kvm))
1882 		return;
1883 
1884 	mutex_lock(&kvm->lock);
1885 
1886 	/*
1887 	 * if userspace was terminated before unregistering the memory regions
1888 	 * then lets unpin all the registered memory.
1889 	 */
1890 	if (!list_empty(head)) {
1891 		list_for_each_safe(pos, q, head) {
1892 			__unregister_enc_region_locked(kvm,
1893 				list_entry(pos, struct enc_region, list));
1894 		}
1895 	}
1896 
1897 	mutex_unlock(&kvm->lock);
1898 
1899 	sev_unbind_asid(kvm, sev->handle);
1900 	sev_asid_free(kvm);
1901 }
1902 
avic_vm_destroy(struct kvm * kvm)1903 static void avic_vm_destroy(struct kvm *kvm)
1904 {
1905 	unsigned long flags;
1906 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1907 
1908 	if (!avic)
1909 		return;
1910 
1911 	if (kvm_svm->avic_logical_id_table_page)
1912 		__free_page(kvm_svm->avic_logical_id_table_page);
1913 	if (kvm_svm->avic_physical_id_table_page)
1914 		__free_page(kvm_svm->avic_physical_id_table_page);
1915 
1916 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1917 	hash_del(&kvm_svm->hnode);
1918 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1919 }
1920 
svm_vm_destroy(struct kvm * kvm)1921 static void svm_vm_destroy(struct kvm *kvm)
1922 {
1923 	avic_vm_destroy(kvm);
1924 	sev_vm_destroy(kvm);
1925 }
1926 
avic_vm_init(struct kvm * kvm)1927 static int avic_vm_init(struct kvm *kvm)
1928 {
1929 	unsigned long flags;
1930 	int err = -ENOMEM;
1931 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1932 	struct kvm_svm *k2;
1933 	struct page *p_page;
1934 	struct page *l_page;
1935 	u32 vm_id;
1936 
1937 	if (!avic)
1938 		return 0;
1939 
1940 	/* Allocating physical APIC ID table (4KB) */
1941 	p_page = alloc_page(GFP_KERNEL);
1942 	if (!p_page)
1943 		goto free_avic;
1944 
1945 	kvm_svm->avic_physical_id_table_page = p_page;
1946 	clear_page(page_address(p_page));
1947 
1948 	/* Allocating logical APIC ID table (4KB) */
1949 	l_page = alloc_page(GFP_KERNEL);
1950 	if (!l_page)
1951 		goto free_avic;
1952 
1953 	kvm_svm->avic_logical_id_table_page = l_page;
1954 	clear_page(page_address(l_page));
1955 
1956 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1957  again:
1958 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1959 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
1960 		next_vm_id_wrapped = 1;
1961 		goto again;
1962 	}
1963 	/* Is it still in use? Only possible if wrapped at least once */
1964 	if (next_vm_id_wrapped) {
1965 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1966 			if (k2->avic_vm_id == vm_id)
1967 				goto again;
1968 		}
1969 	}
1970 	kvm_svm->avic_vm_id = vm_id;
1971 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1972 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1973 
1974 	return 0;
1975 
1976 free_avic:
1977 	avic_vm_destroy(kvm);
1978 	return err;
1979 }
1980 
1981 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)1982 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1983 {
1984 	int ret = 0;
1985 	unsigned long flags;
1986 	struct amd_svm_iommu_ir *ir;
1987 	struct vcpu_svm *svm = to_svm(vcpu);
1988 
1989 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1990 		return 0;
1991 
1992 	/*
1993 	 * Here, we go through the per-vcpu ir_list to update all existing
1994 	 * interrupt remapping table entry targeting this vcpu.
1995 	 */
1996 	spin_lock_irqsave(&svm->ir_list_lock, flags);
1997 
1998 	if (list_empty(&svm->ir_list))
1999 		goto out;
2000 
2001 	list_for_each_entry(ir, &svm->ir_list, node) {
2002 		ret = amd_iommu_update_ga(cpu, r, ir->data);
2003 		if (ret)
2004 			break;
2005 	}
2006 out:
2007 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2008 	return ret;
2009 }
2010 
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2011 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2012 {
2013 	u64 entry;
2014 	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
2015 	int h_physical_id = kvm_cpu_get_apicid(cpu);
2016 	struct vcpu_svm *svm = to_svm(vcpu);
2017 
2018 	if (!kvm_vcpu_apicv_active(vcpu))
2019 		return;
2020 
2021 	if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2022 		return;
2023 
2024 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2025 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2026 
2027 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2028 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2029 
2030 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2031 	if (svm->avic_is_running)
2032 		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033 
2034 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2035 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2036 					svm->avic_is_running);
2037 }
2038 
avic_vcpu_put(struct kvm_vcpu * vcpu)2039 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2040 {
2041 	u64 entry;
2042 	struct vcpu_svm *svm = to_svm(vcpu);
2043 
2044 	if (!kvm_vcpu_apicv_active(vcpu))
2045 		return;
2046 
2047 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2048 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2049 		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2050 
2051 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2052 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2053 }
2054 
2055 /**
2056  * This function is called during VCPU halt/unhalt.
2057  */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)2058 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2059 {
2060 	struct vcpu_svm *svm = to_svm(vcpu);
2061 
2062 	svm->avic_is_running = is_run;
2063 	if (is_run)
2064 		avic_vcpu_load(vcpu, vcpu->cpu);
2065 	else
2066 		avic_vcpu_put(vcpu);
2067 }
2068 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)2069 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2070 {
2071 	struct vcpu_svm *svm = to_svm(vcpu);
2072 	u32 dummy;
2073 	u32 eax = 1;
2074 
2075 	vcpu->arch.microcode_version = 0x01000065;
2076 	svm->spec_ctrl = 0;
2077 	svm->virt_spec_ctrl = 0;
2078 
2079 	if (!init_event) {
2080 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2081 					   MSR_IA32_APICBASE_ENABLE;
2082 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2083 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2084 	}
2085 	init_vmcb(svm);
2086 
2087 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2088 	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2089 
2090 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2091 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2092 }
2093 
avic_init_vcpu(struct vcpu_svm * svm)2094 static int avic_init_vcpu(struct vcpu_svm *svm)
2095 {
2096 	int ret;
2097 
2098 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
2099 		return 0;
2100 
2101 	ret = avic_init_backing_page(&svm->vcpu);
2102 	if (ret)
2103 		return ret;
2104 
2105 	INIT_LIST_HEAD(&svm->ir_list);
2106 	spin_lock_init(&svm->ir_list_lock);
2107 
2108 	return ret;
2109 }
2110 
svm_create_vcpu(struct kvm * kvm,unsigned int id)2111 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2112 {
2113 	struct vcpu_svm *svm;
2114 	struct page *page;
2115 	struct page *msrpm_pages;
2116 	struct page *hsave_page;
2117 	struct page *nested_msrpm_pages;
2118 	int err;
2119 
2120 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2121 	if (!svm) {
2122 		err = -ENOMEM;
2123 		goto out;
2124 	}
2125 
2126 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2127 	if (err)
2128 		goto free_svm;
2129 
2130 	err = -ENOMEM;
2131 	page = alloc_page(GFP_KERNEL);
2132 	if (!page)
2133 		goto uninit;
2134 
2135 	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2136 	if (!msrpm_pages)
2137 		goto free_page1;
2138 
2139 	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2140 	if (!nested_msrpm_pages)
2141 		goto free_page2;
2142 
2143 	hsave_page = alloc_page(GFP_KERNEL);
2144 	if (!hsave_page)
2145 		goto free_page3;
2146 
2147 	err = avic_init_vcpu(svm);
2148 	if (err)
2149 		goto free_page4;
2150 
2151 	/* We initialize this flag to true to make sure that the is_running
2152 	 * bit would be set the first time the vcpu is loaded.
2153 	 */
2154 	svm->avic_is_running = true;
2155 
2156 	svm->nested.hsave = page_address(hsave_page);
2157 
2158 	svm->msrpm = page_address(msrpm_pages);
2159 	svm_vcpu_init_msrpm(svm->msrpm);
2160 
2161 	svm->nested.msrpm = page_address(nested_msrpm_pages);
2162 	svm_vcpu_init_msrpm(svm->nested.msrpm);
2163 
2164 	svm->vmcb = page_address(page);
2165 	clear_page(svm->vmcb);
2166 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2167 	svm->asid_generation = 0;
2168 	init_vmcb(svm);
2169 
2170 	svm_init_osvw(&svm->vcpu);
2171 
2172 	return &svm->vcpu;
2173 
2174 free_page4:
2175 	__free_page(hsave_page);
2176 free_page3:
2177 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2178 free_page2:
2179 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2180 free_page1:
2181 	__free_page(page);
2182 uninit:
2183 	kvm_vcpu_uninit(&svm->vcpu);
2184 free_svm:
2185 	kmem_cache_free(kvm_vcpu_cache, svm);
2186 out:
2187 	return ERR_PTR(err);
2188 }
2189 
svm_free_vcpu(struct kvm_vcpu * vcpu)2190 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2191 {
2192 	struct vcpu_svm *svm = to_svm(vcpu);
2193 
2194 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2195 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2196 	__free_page(virt_to_page(svm->nested.hsave));
2197 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2198 	kvm_vcpu_uninit(vcpu);
2199 	kmem_cache_free(kvm_vcpu_cache, svm);
2200 	/*
2201 	 * The vmcb page can be recycled, causing a false negative in
2202 	 * svm_vcpu_load(). So do a full IBPB now.
2203 	 */
2204 	indirect_branch_prediction_barrier();
2205 }
2206 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2207 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2208 {
2209 	struct vcpu_svm *svm = to_svm(vcpu);
2210 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2211 	int i;
2212 
2213 	if (unlikely(cpu != vcpu->cpu)) {
2214 		svm->asid_generation = 0;
2215 		mark_all_dirty(svm->vmcb);
2216 	}
2217 
2218 #ifdef CONFIG_X86_64
2219 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2220 #endif
2221 	savesegment(fs, svm->host.fs);
2222 	savesegment(gs, svm->host.gs);
2223 	svm->host.ldt = kvm_read_ldt();
2224 
2225 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2226 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2227 
2228 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2229 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2230 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2231 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
2232 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2233 		}
2234 	}
2235 	/* This assumes that the kernel never uses MSR_TSC_AUX */
2236 	if (static_cpu_has(X86_FEATURE_RDTSCP))
2237 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2238 
2239 	if (sd->current_vmcb != svm->vmcb) {
2240 		sd->current_vmcb = svm->vmcb;
2241 		indirect_branch_prediction_barrier();
2242 	}
2243 	avic_vcpu_load(vcpu, cpu);
2244 }
2245 
svm_vcpu_put(struct kvm_vcpu * vcpu)2246 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2247 {
2248 	struct vcpu_svm *svm = to_svm(vcpu);
2249 	int i;
2250 
2251 	avic_vcpu_put(vcpu);
2252 
2253 	++vcpu->stat.host_state_reload;
2254 	kvm_load_ldt(svm->host.ldt);
2255 #ifdef CONFIG_X86_64
2256 	loadsegment(fs, svm->host.fs);
2257 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2258 	load_gs_index(svm->host.gs);
2259 #else
2260 #ifdef CONFIG_X86_32_LAZY_GS
2261 	loadsegment(gs, svm->host.gs);
2262 #endif
2263 #endif
2264 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2265 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2266 }
2267 
svm_vcpu_blocking(struct kvm_vcpu * vcpu)2268 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2269 {
2270 	avic_set_running(vcpu, false);
2271 }
2272 
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)2273 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2274 {
2275 	avic_set_running(vcpu, true);
2276 }
2277 
svm_get_rflags(struct kvm_vcpu * vcpu)2278 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2279 {
2280 	struct vcpu_svm *svm = to_svm(vcpu);
2281 	unsigned long rflags = svm->vmcb->save.rflags;
2282 
2283 	if (svm->nmi_singlestep) {
2284 		/* Hide our flags if they were not set by the guest */
2285 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2286 			rflags &= ~X86_EFLAGS_TF;
2287 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2288 			rflags &= ~X86_EFLAGS_RF;
2289 	}
2290 	return rflags;
2291 }
2292 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2293 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2294 {
2295 	if (to_svm(vcpu)->nmi_singlestep)
2296 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2297 
2298        /*
2299         * Any change of EFLAGS.VM is accompanied by a reload of SS
2300         * (caused by either a task switch or an inter-privilege IRET),
2301         * so we do not need to update the CPL here.
2302         */
2303 	to_svm(vcpu)->vmcb->save.rflags = rflags;
2304 }
2305 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2306 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2307 {
2308 	switch (reg) {
2309 	case VCPU_EXREG_PDPTR:
2310 		BUG_ON(!npt_enabled);
2311 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2312 		break;
2313 	default:
2314 		BUG();
2315 	}
2316 }
2317 
svm_set_vintr(struct vcpu_svm * svm)2318 static void svm_set_vintr(struct vcpu_svm *svm)
2319 {
2320 	set_intercept(svm, INTERCEPT_VINTR);
2321 }
2322 
svm_clear_vintr(struct vcpu_svm * svm)2323 static void svm_clear_vintr(struct vcpu_svm *svm)
2324 {
2325 	clr_intercept(svm, INTERCEPT_VINTR);
2326 }
2327 
svm_seg(struct kvm_vcpu * vcpu,int seg)2328 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2329 {
2330 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2331 
2332 	switch (seg) {
2333 	case VCPU_SREG_CS: return &save->cs;
2334 	case VCPU_SREG_DS: return &save->ds;
2335 	case VCPU_SREG_ES: return &save->es;
2336 	case VCPU_SREG_FS: return &save->fs;
2337 	case VCPU_SREG_GS: return &save->gs;
2338 	case VCPU_SREG_SS: return &save->ss;
2339 	case VCPU_SREG_TR: return &save->tr;
2340 	case VCPU_SREG_LDTR: return &save->ldtr;
2341 	}
2342 	BUG();
2343 	return NULL;
2344 }
2345 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)2346 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2347 {
2348 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2349 
2350 	return s->base;
2351 }
2352 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2353 static void svm_get_segment(struct kvm_vcpu *vcpu,
2354 			    struct kvm_segment *var, int seg)
2355 {
2356 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2357 
2358 	var->base = s->base;
2359 	var->limit = s->limit;
2360 	var->selector = s->selector;
2361 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2362 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2363 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2364 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2365 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2366 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2367 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2368 
2369 	/*
2370 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2371 	 * However, the SVM spec states that the G bit is not observed by the
2372 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2373 	 * So let's synthesize a legal G bit for all segments, this helps
2374 	 * running KVM nested. It also helps cross-vendor migration, because
2375 	 * Intel's vmentry has a check on the 'G' bit.
2376 	 */
2377 	var->g = s->limit > 0xfffff;
2378 
2379 	/*
2380 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
2381 	 * for cross vendor migration purposes by "not present"
2382 	 */
2383 	var->unusable = !var->present;
2384 
2385 	switch (seg) {
2386 	case VCPU_SREG_TR:
2387 		/*
2388 		 * Work around a bug where the busy flag in the tr selector
2389 		 * isn't exposed
2390 		 */
2391 		var->type |= 0x2;
2392 		break;
2393 	case VCPU_SREG_DS:
2394 	case VCPU_SREG_ES:
2395 	case VCPU_SREG_FS:
2396 	case VCPU_SREG_GS:
2397 		/*
2398 		 * The accessed bit must always be set in the segment
2399 		 * descriptor cache, although it can be cleared in the
2400 		 * descriptor, the cached bit always remains at 1. Since
2401 		 * Intel has a check on this, set it here to support
2402 		 * cross-vendor migration.
2403 		 */
2404 		if (!var->unusable)
2405 			var->type |= 0x1;
2406 		break;
2407 	case VCPU_SREG_SS:
2408 		/*
2409 		 * On AMD CPUs sometimes the DB bit in the segment
2410 		 * descriptor is left as 1, although the whole segment has
2411 		 * been made unusable. Clear it here to pass an Intel VMX
2412 		 * entry check when cross vendor migrating.
2413 		 */
2414 		if (var->unusable)
2415 			var->db = 0;
2416 		/* This is symmetric with svm_set_segment() */
2417 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2418 		break;
2419 	}
2420 }
2421 
svm_get_cpl(struct kvm_vcpu * vcpu)2422 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2423 {
2424 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2425 
2426 	return save->cpl;
2427 }
2428 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2429 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2430 {
2431 	struct vcpu_svm *svm = to_svm(vcpu);
2432 
2433 	dt->size = svm->vmcb->save.idtr.limit;
2434 	dt->address = svm->vmcb->save.idtr.base;
2435 }
2436 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2437 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2438 {
2439 	struct vcpu_svm *svm = to_svm(vcpu);
2440 
2441 	svm->vmcb->save.idtr.limit = dt->size;
2442 	svm->vmcb->save.idtr.base = dt->address ;
2443 	mark_dirty(svm->vmcb, VMCB_DT);
2444 }
2445 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2446 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2447 {
2448 	struct vcpu_svm *svm = to_svm(vcpu);
2449 
2450 	dt->size = svm->vmcb->save.gdtr.limit;
2451 	dt->address = svm->vmcb->save.gdtr.base;
2452 }
2453 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2454 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2455 {
2456 	struct vcpu_svm *svm = to_svm(vcpu);
2457 
2458 	svm->vmcb->save.gdtr.limit = dt->size;
2459 	svm->vmcb->save.gdtr.base = dt->address ;
2460 	mark_dirty(svm->vmcb, VMCB_DT);
2461 }
2462 
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2463 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2464 {
2465 }
2466 
svm_decache_cr3(struct kvm_vcpu * vcpu)2467 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2468 {
2469 }
2470 
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2471 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2472 {
2473 }
2474 
update_cr0_intercept(struct vcpu_svm * svm)2475 static void update_cr0_intercept(struct vcpu_svm *svm)
2476 {
2477 	ulong gcr0 = svm->vcpu.arch.cr0;
2478 	u64 *hcr0 = &svm->vmcb->save.cr0;
2479 
2480 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2481 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
2482 
2483 	mark_dirty(svm->vmcb, VMCB_CR);
2484 
2485 	if (gcr0 == *hcr0) {
2486 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2487 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2488 	} else {
2489 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
2490 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2491 	}
2492 }
2493 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2494 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2495 {
2496 	struct vcpu_svm *svm = to_svm(vcpu);
2497 
2498 #ifdef CONFIG_X86_64
2499 	if (vcpu->arch.efer & EFER_LME) {
2500 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2501 			vcpu->arch.efer |= EFER_LMA;
2502 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2503 		}
2504 
2505 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2506 			vcpu->arch.efer &= ~EFER_LMA;
2507 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2508 		}
2509 	}
2510 #endif
2511 	vcpu->arch.cr0 = cr0;
2512 
2513 	if (!npt_enabled)
2514 		cr0 |= X86_CR0_PG | X86_CR0_WP;
2515 
2516 	/*
2517 	 * re-enable caching here because the QEMU bios
2518 	 * does not do it - this results in some delay at
2519 	 * reboot
2520 	 */
2521 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2522 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2523 	svm->vmcb->save.cr0 = cr0;
2524 	mark_dirty(svm->vmcb, VMCB_CR);
2525 	update_cr0_intercept(svm);
2526 }
2527 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)2528 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2529 {
2530 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2531 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2532 
2533 	if (cr4 & X86_CR4_VMXE)
2534 		return 1;
2535 
2536 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2537 		svm_flush_tlb(vcpu, true);
2538 
2539 	vcpu->arch.cr4 = cr4;
2540 	if (!npt_enabled)
2541 		cr4 |= X86_CR4_PAE;
2542 	cr4 |= host_cr4_mce;
2543 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
2544 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2545 	return 0;
2546 }
2547 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2548 static void svm_set_segment(struct kvm_vcpu *vcpu,
2549 			    struct kvm_segment *var, int seg)
2550 {
2551 	struct vcpu_svm *svm = to_svm(vcpu);
2552 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2553 
2554 	s->base = var->base;
2555 	s->limit = var->limit;
2556 	s->selector = var->selector;
2557 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2558 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2559 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2560 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2561 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2562 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2563 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2564 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2565 
2566 	/*
2567 	 * This is always accurate, except if SYSRET returned to a segment
2568 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
2569 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2570 	 * would entail passing the CPL to userspace and back.
2571 	 */
2572 	if (seg == VCPU_SREG_SS)
2573 		/* This is symmetric with svm_get_segment() */
2574 		svm->vmcb->save.cpl = (var->dpl & 3);
2575 
2576 	mark_dirty(svm->vmcb, VMCB_SEG);
2577 }
2578 
update_bp_intercept(struct kvm_vcpu * vcpu)2579 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2580 {
2581 	struct vcpu_svm *svm = to_svm(vcpu);
2582 
2583 	clr_exception_intercept(svm, BP_VECTOR);
2584 
2585 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2586 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2587 			set_exception_intercept(svm, BP_VECTOR);
2588 	} else
2589 		vcpu->guest_debug = 0;
2590 }
2591 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2592 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2593 {
2594 	if (sd->next_asid > sd->max_asid) {
2595 		++sd->asid_generation;
2596 		sd->next_asid = sd->min_asid;
2597 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2598 	}
2599 
2600 	svm->asid_generation = sd->asid_generation;
2601 	svm->vmcb->control.asid = sd->next_asid++;
2602 
2603 	mark_dirty(svm->vmcb, VMCB_ASID);
2604 }
2605 
svm_get_dr6(struct kvm_vcpu * vcpu)2606 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2607 {
2608 	return to_svm(vcpu)->vmcb->save.dr6;
2609 }
2610 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2611 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2612 {
2613 	struct vcpu_svm *svm = to_svm(vcpu);
2614 
2615 	svm->vmcb->save.dr6 = value;
2616 	mark_dirty(svm->vmcb, VMCB_DR);
2617 }
2618 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2619 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2620 {
2621 	struct vcpu_svm *svm = to_svm(vcpu);
2622 
2623 	get_debugreg(vcpu->arch.db[0], 0);
2624 	get_debugreg(vcpu->arch.db[1], 1);
2625 	get_debugreg(vcpu->arch.db[2], 2);
2626 	get_debugreg(vcpu->arch.db[3], 3);
2627 	vcpu->arch.dr6 = svm_get_dr6(vcpu);
2628 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2629 
2630 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2631 	set_dr_intercepts(svm);
2632 }
2633 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2634 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2635 {
2636 	struct vcpu_svm *svm = to_svm(vcpu);
2637 
2638 	svm->vmcb->save.dr7 = value;
2639 	mark_dirty(svm->vmcb, VMCB_DR);
2640 }
2641 
pf_interception(struct vcpu_svm * svm)2642 static int pf_interception(struct vcpu_svm *svm)
2643 {
2644 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2645 	u64 error_code = svm->vmcb->control.exit_info_1;
2646 
2647 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2648 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2649 			svm->vmcb->control.insn_bytes : NULL,
2650 			svm->vmcb->control.insn_len);
2651 }
2652 
npf_interception(struct vcpu_svm * svm)2653 static int npf_interception(struct vcpu_svm *svm)
2654 {
2655 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2656 	u64 error_code = svm->vmcb->control.exit_info_1;
2657 
2658 	trace_kvm_page_fault(fault_address, error_code);
2659 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2660 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2661 			svm->vmcb->control.insn_bytes : NULL,
2662 			svm->vmcb->control.insn_len);
2663 }
2664 
db_interception(struct vcpu_svm * svm)2665 static int db_interception(struct vcpu_svm *svm)
2666 {
2667 	struct kvm_run *kvm_run = svm->vcpu.run;
2668 
2669 	if (!(svm->vcpu.guest_debug &
2670 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2671 		!svm->nmi_singlestep) {
2672 		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2673 		return 1;
2674 	}
2675 
2676 	if (svm->nmi_singlestep) {
2677 		disable_nmi_singlestep(svm);
2678 	}
2679 
2680 	if (svm->vcpu.guest_debug &
2681 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2682 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2683 		kvm_run->debug.arch.pc =
2684 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2685 		kvm_run->debug.arch.exception = DB_VECTOR;
2686 		return 0;
2687 	}
2688 
2689 	return 1;
2690 }
2691 
bp_interception(struct vcpu_svm * svm)2692 static int bp_interception(struct vcpu_svm *svm)
2693 {
2694 	struct kvm_run *kvm_run = svm->vcpu.run;
2695 
2696 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2697 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2698 	kvm_run->debug.arch.exception = BP_VECTOR;
2699 	return 0;
2700 }
2701 
ud_interception(struct vcpu_svm * svm)2702 static int ud_interception(struct vcpu_svm *svm)
2703 {
2704 	return handle_ud(&svm->vcpu);
2705 }
2706 
ac_interception(struct vcpu_svm * svm)2707 static int ac_interception(struct vcpu_svm *svm)
2708 {
2709 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2710 	return 1;
2711 }
2712 
gp_interception(struct vcpu_svm * svm)2713 static int gp_interception(struct vcpu_svm *svm)
2714 {
2715 	struct kvm_vcpu *vcpu = &svm->vcpu;
2716 	u32 error_code = svm->vmcb->control.exit_info_1;
2717 	int er;
2718 
2719 	WARN_ON_ONCE(!enable_vmware_backdoor);
2720 
2721 	er = kvm_emulate_instruction(vcpu,
2722 		EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2723 	if (er == EMULATE_USER_EXIT)
2724 		return 0;
2725 	else if (er != EMULATE_DONE)
2726 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2727 	return 1;
2728 }
2729 
is_erratum_383(void)2730 static bool is_erratum_383(void)
2731 {
2732 	int err, i;
2733 	u64 value;
2734 
2735 	if (!erratum_383_found)
2736 		return false;
2737 
2738 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2739 	if (err)
2740 		return false;
2741 
2742 	/* Bit 62 may or may not be set for this mce */
2743 	value &= ~(1ULL << 62);
2744 
2745 	if (value != 0xb600000000010015ULL)
2746 		return false;
2747 
2748 	/* Clear MCi_STATUS registers */
2749 	for (i = 0; i < 6; ++i)
2750 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2751 
2752 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2753 	if (!err) {
2754 		u32 low, high;
2755 
2756 		value &= ~(1ULL << 2);
2757 		low    = lower_32_bits(value);
2758 		high   = upper_32_bits(value);
2759 
2760 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2761 	}
2762 
2763 	/* Flush tlb to evict multi-match entries */
2764 	__flush_tlb_all();
2765 
2766 	return true;
2767 }
2768 
svm_handle_mce(struct vcpu_svm * svm)2769 static void svm_handle_mce(struct vcpu_svm *svm)
2770 {
2771 	if (is_erratum_383()) {
2772 		/*
2773 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2774 		 * guest.
2775 		 */
2776 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2777 
2778 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2779 
2780 		return;
2781 	}
2782 
2783 	/*
2784 	 * On an #MC intercept the MCE handler is not called automatically in
2785 	 * the host. So do it by hand here.
2786 	 */
2787 	asm volatile (
2788 		"int $0x12\n");
2789 	/* not sure if we ever come back to this point */
2790 
2791 	return;
2792 }
2793 
mc_interception(struct vcpu_svm * svm)2794 static int mc_interception(struct vcpu_svm *svm)
2795 {
2796 	return 1;
2797 }
2798 
shutdown_interception(struct vcpu_svm * svm)2799 static int shutdown_interception(struct vcpu_svm *svm)
2800 {
2801 	struct kvm_run *kvm_run = svm->vcpu.run;
2802 
2803 	/*
2804 	 * VMCB is undefined after a SHUTDOWN intercept
2805 	 * so reinitialize it.
2806 	 */
2807 	clear_page(svm->vmcb);
2808 	init_vmcb(svm);
2809 
2810 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2811 	return 0;
2812 }
2813 
io_interception(struct vcpu_svm * svm)2814 static int io_interception(struct vcpu_svm *svm)
2815 {
2816 	struct kvm_vcpu *vcpu = &svm->vcpu;
2817 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2818 	int size, in, string;
2819 	unsigned port;
2820 
2821 	++svm->vcpu.stat.io_exits;
2822 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2823 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2824 	if (string)
2825 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2826 
2827 	port = io_info >> 16;
2828 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2829 	svm->next_rip = svm->vmcb->control.exit_info_2;
2830 
2831 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2832 }
2833 
nmi_interception(struct vcpu_svm * svm)2834 static int nmi_interception(struct vcpu_svm *svm)
2835 {
2836 	return 1;
2837 }
2838 
intr_interception(struct vcpu_svm * svm)2839 static int intr_interception(struct vcpu_svm *svm)
2840 {
2841 	++svm->vcpu.stat.irq_exits;
2842 	return 1;
2843 }
2844 
nop_on_interception(struct vcpu_svm * svm)2845 static int nop_on_interception(struct vcpu_svm *svm)
2846 {
2847 	return 1;
2848 }
2849 
halt_interception(struct vcpu_svm * svm)2850 static int halt_interception(struct vcpu_svm *svm)
2851 {
2852 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2853 	return kvm_emulate_halt(&svm->vcpu);
2854 }
2855 
vmmcall_interception(struct vcpu_svm * svm)2856 static int vmmcall_interception(struct vcpu_svm *svm)
2857 {
2858 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2859 	return kvm_emulate_hypercall(&svm->vcpu);
2860 }
2861 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)2862 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2863 {
2864 	struct vcpu_svm *svm = to_svm(vcpu);
2865 
2866 	return svm->nested.nested_cr3;
2867 }
2868 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)2869 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2870 {
2871 	struct vcpu_svm *svm = to_svm(vcpu);
2872 	u64 cr3 = svm->nested.nested_cr3;
2873 	u64 pdpte;
2874 	int ret;
2875 
2876 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2877 				       offset_in_page(cr3) + index * 8, 8);
2878 	if (ret)
2879 		return 0;
2880 	return pdpte;
2881 }
2882 
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)2883 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2884 				   unsigned long root)
2885 {
2886 	struct vcpu_svm *svm = to_svm(vcpu);
2887 
2888 	svm->vmcb->control.nested_cr3 = __sme_set(root);
2889 	mark_dirty(svm->vmcb, VMCB_NPT);
2890 }
2891 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)2892 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2893 				       struct x86_exception *fault)
2894 {
2895 	struct vcpu_svm *svm = to_svm(vcpu);
2896 
2897 	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2898 		/*
2899 		 * TODO: track the cause of the nested page fault, and
2900 		 * correctly fill in the high bits of exit_info_1.
2901 		 */
2902 		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2903 		svm->vmcb->control.exit_code_hi = 0;
2904 		svm->vmcb->control.exit_info_1 = (1ULL << 32);
2905 		svm->vmcb->control.exit_info_2 = fault->address;
2906 	}
2907 
2908 	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2909 	svm->vmcb->control.exit_info_1 |= fault->error_code;
2910 
2911 	/*
2912 	 * The present bit is always zero for page structure faults on real
2913 	 * hardware.
2914 	 */
2915 	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2916 		svm->vmcb->control.exit_info_1 &= ~1;
2917 
2918 	nested_svm_vmexit(svm);
2919 }
2920 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)2921 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2922 {
2923 	WARN_ON(mmu_is_nested(vcpu));
2924 	kvm_init_shadow_mmu(vcpu);
2925 	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2926 	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2927 	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2928 	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2929 	vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2930 	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2931 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2932 }
2933 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)2934 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2935 {
2936 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2937 }
2938 
nested_svm_check_permissions(struct vcpu_svm * svm)2939 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2940 {
2941 	if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2942 	    !is_paging(&svm->vcpu)) {
2943 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2944 		return 1;
2945 	}
2946 
2947 	if (svm->vmcb->save.cpl) {
2948 		kvm_inject_gp(&svm->vcpu, 0);
2949 		return 1;
2950 	}
2951 
2952 	return 0;
2953 }
2954 
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)2955 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2956 				      bool has_error_code, u32 error_code)
2957 {
2958 	int vmexit;
2959 
2960 	if (!is_guest_mode(&svm->vcpu))
2961 		return 0;
2962 
2963 	vmexit = nested_svm_intercept(svm);
2964 	if (vmexit != NESTED_EXIT_DONE)
2965 		return 0;
2966 
2967 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2968 	svm->vmcb->control.exit_code_hi = 0;
2969 	svm->vmcb->control.exit_info_1 = error_code;
2970 
2971 	/*
2972 	 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2973 	 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2974 	 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2975 	 * written only when inject_pending_event runs (DR6 would written here
2976 	 * too).  This should be conditional on a new capability---if the
2977 	 * capability is disabled, kvm_multiple_exception would write the
2978 	 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2979 	 */
2980 	if (svm->vcpu.arch.exception.nested_apf)
2981 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2982 	else
2983 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2984 
2985 	svm->nested.exit_required = true;
2986 	return vmexit;
2987 }
2988 
2989 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)2990 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2991 {
2992 	if (!is_guest_mode(&svm->vcpu))
2993 		return true;
2994 
2995 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2996 		return true;
2997 
2998 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2999 		return false;
3000 
3001 	/*
3002 	 * if vmexit was already requested (by intercepted exception
3003 	 * for instance) do not overwrite it with "external interrupt"
3004 	 * vmexit.
3005 	 */
3006 	if (svm->nested.exit_required)
3007 		return false;
3008 
3009 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3010 	svm->vmcb->control.exit_info_1 = 0;
3011 	svm->vmcb->control.exit_info_2 = 0;
3012 
3013 	if (svm->nested.intercept & 1ULL) {
3014 		/*
3015 		 * The #vmexit can't be emulated here directly because this
3016 		 * code path runs with irqs and preemption disabled. A
3017 		 * #vmexit emulation might sleep. Only signal request for
3018 		 * the #vmexit here.
3019 		 */
3020 		svm->nested.exit_required = true;
3021 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3022 		return false;
3023 	}
3024 
3025 	return true;
3026 }
3027 
3028 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)3029 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3030 {
3031 	if (!is_guest_mode(&svm->vcpu))
3032 		return true;
3033 
3034 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3035 		return true;
3036 
3037 	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3038 	svm->nested.exit_required = true;
3039 
3040 	return false;
3041 }
3042 
nested_svm_map(struct vcpu_svm * svm,u64 gpa,struct page ** _page)3043 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3044 {
3045 	struct page *page;
3046 
3047 	might_sleep();
3048 
3049 	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3050 	if (is_error_page(page))
3051 		goto error;
3052 
3053 	*_page = page;
3054 
3055 	return kmap(page);
3056 
3057 error:
3058 	kvm_inject_gp(&svm->vcpu, 0);
3059 
3060 	return NULL;
3061 }
3062 
nested_svm_unmap(struct page * page)3063 static void nested_svm_unmap(struct page *page)
3064 {
3065 	kunmap(page);
3066 	kvm_release_page_dirty(page);
3067 }
3068 
nested_svm_intercept_ioio(struct vcpu_svm * svm)3069 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3070 {
3071 	unsigned port, size, iopm_len;
3072 	u16 val, mask;
3073 	u8 start_bit;
3074 	u64 gpa;
3075 
3076 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3077 		return NESTED_EXIT_HOST;
3078 
3079 	port = svm->vmcb->control.exit_info_1 >> 16;
3080 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3081 		SVM_IOIO_SIZE_SHIFT;
3082 	gpa  = svm->nested.vmcb_iopm + (port / 8);
3083 	start_bit = port % 8;
3084 	iopm_len = (start_bit + size > 8) ? 2 : 1;
3085 	mask = (0xf >> (4 - size)) << start_bit;
3086 	val = 0;
3087 
3088 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3089 		return NESTED_EXIT_DONE;
3090 
3091 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3092 }
3093 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)3094 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3095 {
3096 	u32 offset, msr, value;
3097 	int write, mask;
3098 
3099 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3100 		return NESTED_EXIT_HOST;
3101 
3102 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3103 	offset = svm_msrpm_offset(msr);
3104 	write  = svm->vmcb->control.exit_info_1 & 1;
3105 	mask   = 1 << ((2 * (msr & 0xf)) + write);
3106 
3107 	if (offset == MSR_INVALID)
3108 		return NESTED_EXIT_DONE;
3109 
3110 	/* Offset is in 32 bit units but need in 8 bit units */
3111 	offset *= 4;
3112 
3113 	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3114 		return NESTED_EXIT_DONE;
3115 
3116 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3117 }
3118 
3119 /* DB exceptions for our internal use must not cause vmexit */
nested_svm_intercept_db(struct vcpu_svm * svm)3120 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3121 {
3122 	unsigned long dr6;
3123 
3124 	/* if we're not singlestepping, it's not ours */
3125 	if (!svm->nmi_singlestep)
3126 		return NESTED_EXIT_DONE;
3127 
3128 	/* if it's not a singlestep exception, it's not ours */
3129 	if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3130 		return NESTED_EXIT_DONE;
3131 	if (!(dr6 & DR6_BS))
3132 		return NESTED_EXIT_DONE;
3133 
3134 	/* if the guest is singlestepping, it should get the vmexit */
3135 	if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3136 		disable_nmi_singlestep(svm);
3137 		return NESTED_EXIT_DONE;
3138 	}
3139 
3140 	/* it's ours, the nested hypervisor must not see this one */
3141 	return NESTED_EXIT_HOST;
3142 }
3143 
nested_svm_exit_special(struct vcpu_svm * svm)3144 static int nested_svm_exit_special(struct vcpu_svm *svm)
3145 {
3146 	u32 exit_code = svm->vmcb->control.exit_code;
3147 
3148 	switch (exit_code) {
3149 	case SVM_EXIT_INTR:
3150 	case SVM_EXIT_NMI:
3151 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3152 		return NESTED_EXIT_HOST;
3153 	case SVM_EXIT_NPF:
3154 		/* For now we are always handling NPFs when using them */
3155 		if (npt_enabled)
3156 			return NESTED_EXIT_HOST;
3157 		break;
3158 	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3159 		/* When we're shadowing, trap PFs, but not async PF */
3160 		if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3161 			return NESTED_EXIT_HOST;
3162 		break;
3163 	default:
3164 		break;
3165 	}
3166 
3167 	return NESTED_EXIT_CONTINUE;
3168 }
3169 
3170 /*
3171  * If this function returns true, this #vmexit was already handled
3172  */
nested_svm_intercept(struct vcpu_svm * svm)3173 static int nested_svm_intercept(struct vcpu_svm *svm)
3174 {
3175 	u32 exit_code = svm->vmcb->control.exit_code;
3176 	int vmexit = NESTED_EXIT_HOST;
3177 
3178 	switch (exit_code) {
3179 	case SVM_EXIT_MSR:
3180 		vmexit = nested_svm_exit_handled_msr(svm);
3181 		break;
3182 	case SVM_EXIT_IOIO:
3183 		vmexit = nested_svm_intercept_ioio(svm);
3184 		break;
3185 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3186 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3187 		if (svm->nested.intercept_cr & bit)
3188 			vmexit = NESTED_EXIT_DONE;
3189 		break;
3190 	}
3191 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3192 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3193 		if (svm->nested.intercept_dr & bit)
3194 			vmexit = NESTED_EXIT_DONE;
3195 		break;
3196 	}
3197 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3198 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3199 		if (svm->nested.intercept_exceptions & excp_bits) {
3200 			if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3201 				vmexit = nested_svm_intercept_db(svm);
3202 			else
3203 				vmexit = NESTED_EXIT_DONE;
3204 		}
3205 		/* async page fault always cause vmexit */
3206 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3207 			 svm->vcpu.arch.exception.nested_apf != 0)
3208 			vmexit = NESTED_EXIT_DONE;
3209 		break;
3210 	}
3211 	case SVM_EXIT_ERR: {
3212 		vmexit = NESTED_EXIT_DONE;
3213 		break;
3214 	}
3215 	default: {
3216 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3217 		if (svm->nested.intercept & exit_bits)
3218 			vmexit = NESTED_EXIT_DONE;
3219 	}
3220 	}
3221 
3222 	return vmexit;
3223 }
3224 
nested_svm_exit_handled(struct vcpu_svm * svm)3225 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3226 {
3227 	int vmexit;
3228 
3229 	vmexit = nested_svm_intercept(svm);
3230 
3231 	if (vmexit == NESTED_EXIT_DONE)
3232 		nested_svm_vmexit(svm);
3233 
3234 	return vmexit;
3235 }
3236 
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)3237 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3238 {
3239 	struct vmcb_control_area *dst  = &dst_vmcb->control;
3240 	struct vmcb_control_area *from = &from_vmcb->control;
3241 
3242 	dst->intercept_cr         = from->intercept_cr;
3243 	dst->intercept_dr         = from->intercept_dr;
3244 	dst->intercept_exceptions = from->intercept_exceptions;
3245 	dst->intercept            = from->intercept;
3246 	dst->iopm_base_pa         = from->iopm_base_pa;
3247 	dst->msrpm_base_pa        = from->msrpm_base_pa;
3248 	dst->tsc_offset           = from->tsc_offset;
3249 	dst->asid                 = from->asid;
3250 	dst->tlb_ctl              = from->tlb_ctl;
3251 	dst->int_ctl              = from->int_ctl;
3252 	dst->int_vector           = from->int_vector;
3253 	dst->int_state            = from->int_state;
3254 	dst->exit_code            = from->exit_code;
3255 	dst->exit_code_hi         = from->exit_code_hi;
3256 	dst->exit_info_1          = from->exit_info_1;
3257 	dst->exit_info_2          = from->exit_info_2;
3258 	dst->exit_int_info        = from->exit_int_info;
3259 	dst->exit_int_info_err    = from->exit_int_info_err;
3260 	dst->nested_ctl           = from->nested_ctl;
3261 	dst->event_inj            = from->event_inj;
3262 	dst->event_inj_err        = from->event_inj_err;
3263 	dst->nested_cr3           = from->nested_cr3;
3264 	dst->virt_ext              = from->virt_ext;
3265 }
3266 
nested_svm_vmexit(struct vcpu_svm * svm)3267 static int nested_svm_vmexit(struct vcpu_svm *svm)
3268 {
3269 	struct vmcb *nested_vmcb;
3270 	struct vmcb *hsave = svm->nested.hsave;
3271 	struct vmcb *vmcb = svm->vmcb;
3272 	struct page *page;
3273 
3274 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3275 				       vmcb->control.exit_info_1,
3276 				       vmcb->control.exit_info_2,
3277 				       vmcb->control.exit_int_info,
3278 				       vmcb->control.exit_int_info_err,
3279 				       KVM_ISA_SVM);
3280 
3281 	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3282 	if (!nested_vmcb)
3283 		return 1;
3284 
3285 	/* Exit Guest-Mode */
3286 	leave_guest_mode(&svm->vcpu);
3287 	svm->nested.vmcb = 0;
3288 
3289 	/* Give the current vmcb to the guest */
3290 	disable_gif(svm);
3291 
3292 	nested_vmcb->save.es     = vmcb->save.es;
3293 	nested_vmcb->save.cs     = vmcb->save.cs;
3294 	nested_vmcb->save.ss     = vmcb->save.ss;
3295 	nested_vmcb->save.ds     = vmcb->save.ds;
3296 	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3297 	nested_vmcb->save.idtr   = vmcb->save.idtr;
3298 	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3299 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3300 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3301 	nested_vmcb->save.cr2    = vmcb->save.cr2;
3302 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3303 	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3304 	nested_vmcb->save.rip    = vmcb->save.rip;
3305 	nested_vmcb->save.rsp    = vmcb->save.rsp;
3306 	nested_vmcb->save.rax    = vmcb->save.rax;
3307 	nested_vmcb->save.dr7    = vmcb->save.dr7;
3308 	nested_vmcb->save.dr6    = vmcb->save.dr6;
3309 	nested_vmcb->save.cpl    = vmcb->save.cpl;
3310 
3311 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3312 	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3313 	nested_vmcb->control.int_state         = vmcb->control.int_state;
3314 	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3315 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3316 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3317 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3318 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3319 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3320 
3321 	if (svm->nrips_enabled)
3322 		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3323 
3324 	/*
3325 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3326 	 * to make sure that we do not lose injected events. So check event_inj
3327 	 * here and copy it to exit_int_info if it is valid.
3328 	 * Exit_int_info and event_inj can't be both valid because the case
3329 	 * below only happens on a VMRUN instruction intercept which has
3330 	 * no valid exit_int_info set.
3331 	 */
3332 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3333 		struct vmcb_control_area *nc = &nested_vmcb->control;
3334 
3335 		nc->exit_int_info     = vmcb->control.event_inj;
3336 		nc->exit_int_info_err = vmcb->control.event_inj_err;
3337 	}
3338 
3339 	nested_vmcb->control.tlb_ctl           = 0;
3340 	nested_vmcb->control.event_inj         = 0;
3341 	nested_vmcb->control.event_inj_err     = 0;
3342 
3343 	/* We always set V_INTR_MASKING and remember the old value in hflags */
3344 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3345 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3346 
3347 	/* Restore the original control entries */
3348 	copy_vmcb_control_area(vmcb, hsave);
3349 
3350 	svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3351 	kvm_clear_exception_queue(&svm->vcpu);
3352 	kvm_clear_interrupt_queue(&svm->vcpu);
3353 
3354 	svm->nested.nested_cr3 = 0;
3355 
3356 	/* Restore selected save entries */
3357 	svm->vmcb->save.es = hsave->save.es;
3358 	svm->vmcb->save.cs = hsave->save.cs;
3359 	svm->vmcb->save.ss = hsave->save.ss;
3360 	svm->vmcb->save.ds = hsave->save.ds;
3361 	svm->vmcb->save.gdtr = hsave->save.gdtr;
3362 	svm->vmcb->save.idtr = hsave->save.idtr;
3363 	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3364 	svm_set_efer(&svm->vcpu, hsave->save.efer);
3365 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3366 	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3367 	if (npt_enabled) {
3368 		svm->vmcb->save.cr3 = hsave->save.cr3;
3369 		svm->vcpu.arch.cr3 = hsave->save.cr3;
3370 	} else {
3371 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3372 	}
3373 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3374 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3375 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3376 	svm->vmcb->save.dr7 = 0;
3377 	svm->vmcb->save.cpl = 0;
3378 	svm->vmcb->control.exit_int_info = 0;
3379 
3380 	mark_all_dirty(svm->vmcb);
3381 
3382 	nested_svm_unmap(page);
3383 
3384 	nested_svm_uninit_mmu_context(&svm->vcpu);
3385 	kvm_mmu_reset_context(&svm->vcpu);
3386 	kvm_mmu_load(&svm->vcpu);
3387 
3388 	return 0;
3389 }
3390 
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)3391 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3392 {
3393 	/*
3394 	 * This function merges the msr permission bitmaps of kvm and the
3395 	 * nested vmcb. It is optimized in that it only merges the parts where
3396 	 * the kvm msr permission bitmap may contain zero bits
3397 	 */
3398 	int i;
3399 
3400 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3401 		return true;
3402 
3403 	for (i = 0; i < MSRPM_OFFSETS; i++) {
3404 		u32 value, p;
3405 		u64 offset;
3406 
3407 		if (msrpm_offsets[i] == 0xffffffff)
3408 			break;
3409 
3410 		p      = msrpm_offsets[i];
3411 		offset = svm->nested.vmcb_msrpm + (p * 4);
3412 
3413 		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3414 			return false;
3415 
3416 		svm->nested.msrpm[p] = svm->msrpm[p] | value;
3417 	}
3418 
3419 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3420 
3421 	return true;
3422 }
3423 
nested_vmcb_checks(struct vmcb * vmcb)3424 static bool nested_vmcb_checks(struct vmcb *vmcb)
3425 {
3426 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3427 		return false;
3428 
3429 	if (vmcb->control.asid == 0)
3430 		return false;
3431 
3432 	if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3433 	    !npt_enabled)
3434 		return false;
3435 
3436 	return true;
3437 }
3438 
enter_svm_guest_mode(struct vcpu_svm * svm,u64 vmcb_gpa,struct vmcb * nested_vmcb,struct page * page)3439 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3440 				 struct vmcb *nested_vmcb, struct page *page)
3441 {
3442 	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3443 		svm->vcpu.arch.hflags |= HF_HIF_MASK;
3444 	else
3445 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3446 
3447 	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3448 		kvm_mmu_unload(&svm->vcpu);
3449 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3450 		nested_svm_init_mmu_context(&svm->vcpu);
3451 	}
3452 
3453 	/* Load the nested guest state */
3454 	svm->vmcb->save.es = nested_vmcb->save.es;
3455 	svm->vmcb->save.cs = nested_vmcb->save.cs;
3456 	svm->vmcb->save.ss = nested_vmcb->save.ss;
3457 	svm->vmcb->save.ds = nested_vmcb->save.ds;
3458 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3459 	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3460 	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3461 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3462 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3463 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3464 	if (npt_enabled) {
3465 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3466 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3467 	} else
3468 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3469 
3470 	/* Guest paging mode is active - reset mmu */
3471 	kvm_mmu_reset_context(&svm->vcpu);
3472 
3473 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3474 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3475 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3476 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3477 
3478 	/* In case we don't even reach vcpu_run, the fields are not updated */
3479 	svm->vmcb->save.rax = nested_vmcb->save.rax;
3480 	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3481 	svm->vmcb->save.rip = nested_vmcb->save.rip;
3482 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3483 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3484 	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3485 
3486 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3487 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3488 
3489 	/* cache intercepts */
3490 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3491 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3492 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3493 	svm->nested.intercept            = nested_vmcb->control.intercept;
3494 
3495 	svm_flush_tlb(&svm->vcpu, true);
3496 	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3497 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3498 		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3499 	else
3500 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3501 
3502 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3503 		/* We only want the cr8 intercept bits of the guest */
3504 		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3505 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3506 	}
3507 
3508 	/* We don't want to see VMMCALLs from a nested guest */
3509 	clr_intercept(svm, INTERCEPT_VMMCALL);
3510 
3511 	svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3512 	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3513 
3514 	svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3515 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3516 	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3517 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3518 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3519 
3520 	nested_svm_unmap(page);
3521 
3522 	/* Enter Guest-Mode */
3523 	enter_guest_mode(&svm->vcpu);
3524 
3525 	/*
3526 	 * Merge guest and host intercepts - must be called  with vcpu in
3527 	 * guest-mode to take affect here
3528 	 */
3529 	recalc_intercepts(svm);
3530 
3531 	svm->nested.vmcb = vmcb_gpa;
3532 
3533 	enable_gif(svm);
3534 
3535 	mark_all_dirty(svm->vmcb);
3536 }
3537 
nested_svm_vmrun(struct vcpu_svm * svm)3538 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3539 {
3540 	struct vmcb *nested_vmcb;
3541 	struct vmcb *hsave = svm->nested.hsave;
3542 	struct vmcb *vmcb = svm->vmcb;
3543 	struct page *page;
3544 	u64 vmcb_gpa;
3545 
3546 	vmcb_gpa = svm->vmcb->save.rax;
3547 
3548 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3549 	if (!nested_vmcb)
3550 		return false;
3551 
3552 	if (!nested_vmcb_checks(nested_vmcb)) {
3553 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3554 		nested_vmcb->control.exit_code_hi = 0;
3555 		nested_vmcb->control.exit_info_1  = 0;
3556 		nested_vmcb->control.exit_info_2  = 0;
3557 
3558 		nested_svm_unmap(page);
3559 
3560 		return false;
3561 	}
3562 
3563 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3564 			       nested_vmcb->save.rip,
3565 			       nested_vmcb->control.int_ctl,
3566 			       nested_vmcb->control.event_inj,
3567 			       nested_vmcb->control.nested_ctl);
3568 
3569 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3570 				    nested_vmcb->control.intercept_cr >> 16,
3571 				    nested_vmcb->control.intercept_exceptions,
3572 				    nested_vmcb->control.intercept);
3573 
3574 	/* Clear internal status */
3575 	kvm_clear_exception_queue(&svm->vcpu);
3576 	kvm_clear_interrupt_queue(&svm->vcpu);
3577 
3578 	/*
3579 	 * Save the old vmcb, so we don't need to pick what we save, but can
3580 	 * restore everything when a VMEXIT occurs
3581 	 */
3582 	hsave->save.es     = vmcb->save.es;
3583 	hsave->save.cs     = vmcb->save.cs;
3584 	hsave->save.ss     = vmcb->save.ss;
3585 	hsave->save.ds     = vmcb->save.ds;
3586 	hsave->save.gdtr   = vmcb->save.gdtr;
3587 	hsave->save.idtr   = vmcb->save.idtr;
3588 	hsave->save.efer   = svm->vcpu.arch.efer;
3589 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3590 	hsave->save.cr4    = svm->vcpu.arch.cr4;
3591 	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3592 	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3593 	hsave->save.rsp    = vmcb->save.rsp;
3594 	hsave->save.rax    = vmcb->save.rax;
3595 	if (npt_enabled)
3596 		hsave->save.cr3    = vmcb->save.cr3;
3597 	else
3598 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3599 
3600 	copy_vmcb_control_area(hsave, vmcb);
3601 
3602 	enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3603 
3604 	return true;
3605 }
3606 
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)3607 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3608 {
3609 	to_vmcb->save.fs = from_vmcb->save.fs;
3610 	to_vmcb->save.gs = from_vmcb->save.gs;
3611 	to_vmcb->save.tr = from_vmcb->save.tr;
3612 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3613 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3614 	to_vmcb->save.star = from_vmcb->save.star;
3615 	to_vmcb->save.lstar = from_vmcb->save.lstar;
3616 	to_vmcb->save.cstar = from_vmcb->save.cstar;
3617 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3618 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3619 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3620 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3621 }
3622 
vmload_interception(struct vcpu_svm * svm)3623 static int vmload_interception(struct vcpu_svm *svm)
3624 {
3625 	struct vmcb *nested_vmcb;
3626 	struct page *page;
3627 	int ret;
3628 
3629 	if (nested_svm_check_permissions(svm))
3630 		return 1;
3631 
3632 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3633 	if (!nested_vmcb)
3634 		return 1;
3635 
3636 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3637 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3638 
3639 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3640 	nested_svm_unmap(page);
3641 
3642 	return ret;
3643 }
3644 
vmsave_interception(struct vcpu_svm * svm)3645 static int vmsave_interception(struct vcpu_svm *svm)
3646 {
3647 	struct vmcb *nested_vmcb;
3648 	struct page *page;
3649 	int ret;
3650 
3651 	if (nested_svm_check_permissions(svm))
3652 		return 1;
3653 
3654 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3655 	if (!nested_vmcb)
3656 		return 1;
3657 
3658 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3659 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3660 
3661 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3662 	nested_svm_unmap(page);
3663 
3664 	return ret;
3665 }
3666 
vmrun_interception(struct vcpu_svm * svm)3667 static int vmrun_interception(struct vcpu_svm *svm)
3668 {
3669 	if (nested_svm_check_permissions(svm))
3670 		return 1;
3671 
3672 	/* Save rip after vmrun instruction */
3673 	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3674 
3675 	if (!nested_svm_vmrun(svm))
3676 		return 1;
3677 
3678 	if (!nested_svm_vmrun_msrpm(svm))
3679 		goto failed;
3680 
3681 	return 1;
3682 
3683 failed:
3684 
3685 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3686 	svm->vmcb->control.exit_code_hi = 0;
3687 	svm->vmcb->control.exit_info_1  = 0;
3688 	svm->vmcb->control.exit_info_2  = 0;
3689 
3690 	nested_svm_vmexit(svm);
3691 
3692 	return 1;
3693 }
3694 
stgi_interception(struct vcpu_svm * svm)3695 static int stgi_interception(struct vcpu_svm *svm)
3696 {
3697 	int ret;
3698 
3699 	if (nested_svm_check_permissions(svm))
3700 		return 1;
3701 
3702 	/*
3703 	 * If VGIF is enabled, the STGI intercept is only added to
3704 	 * detect the opening of the SMI/NMI window; remove it now.
3705 	 */
3706 	if (vgif_enabled(svm))
3707 		clr_intercept(svm, INTERCEPT_STGI);
3708 
3709 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3710 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3711 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3712 
3713 	enable_gif(svm);
3714 
3715 	return ret;
3716 }
3717 
clgi_interception(struct vcpu_svm * svm)3718 static int clgi_interception(struct vcpu_svm *svm)
3719 {
3720 	int ret;
3721 
3722 	if (nested_svm_check_permissions(svm))
3723 		return 1;
3724 
3725 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3726 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3727 
3728 	disable_gif(svm);
3729 
3730 	/* After a CLGI no interrupts should come */
3731 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3732 		svm_clear_vintr(svm);
3733 		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3734 		mark_dirty(svm->vmcb, VMCB_INTR);
3735 	}
3736 
3737 	return ret;
3738 }
3739 
invlpga_interception(struct vcpu_svm * svm)3740 static int invlpga_interception(struct vcpu_svm *svm)
3741 {
3742 	struct kvm_vcpu *vcpu = &svm->vcpu;
3743 
3744 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3745 			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3746 
3747 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3748 	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3749 
3750 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3751 	return kvm_skip_emulated_instruction(&svm->vcpu);
3752 }
3753 
skinit_interception(struct vcpu_svm * svm)3754 static int skinit_interception(struct vcpu_svm *svm)
3755 {
3756 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3757 
3758 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3759 	return 1;
3760 }
3761 
wbinvd_interception(struct vcpu_svm * svm)3762 static int wbinvd_interception(struct vcpu_svm *svm)
3763 {
3764 	return kvm_emulate_wbinvd(&svm->vcpu);
3765 }
3766 
xsetbv_interception(struct vcpu_svm * svm)3767 static int xsetbv_interception(struct vcpu_svm *svm)
3768 {
3769 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3770 	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3771 
3772 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3773 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3774 		return kvm_skip_emulated_instruction(&svm->vcpu);
3775 	}
3776 
3777 	return 1;
3778 }
3779 
task_switch_interception(struct vcpu_svm * svm)3780 static int task_switch_interception(struct vcpu_svm *svm)
3781 {
3782 	u16 tss_selector;
3783 	int reason;
3784 	int int_type = svm->vmcb->control.exit_int_info &
3785 		SVM_EXITINTINFO_TYPE_MASK;
3786 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3787 	uint32_t type =
3788 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3789 	uint32_t idt_v =
3790 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3791 	bool has_error_code = false;
3792 	u32 error_code = 0;
3793 
3794 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3795 
3796 	if (svm->vmcb->control.exit_info_2 &
3797 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3798 		reason = TASK_SWITCH_IRET;
3799 	else if (svm->vmcb->control.exit_info_2 &
3800 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3801 		reason = TASK_SWITCH_JMP;
3802 	else if (idt_v)
3803 		reason = TASK_SWITCH_GATE;
3804 	else
3805 		reason = TASK_SWITCH_CALL;
3806 
3807 	if (reason == TASK_SWITCH_GATE) {
3808 		switch (type) {
3809 		case SVM_EXITINTINFO_TYPE_NMI:
3810 			svm->vcpu.arch.nmi_injected = false;
3811 			break;
3812 		case SVM_EXITINTINFO_TYPE_EXEPT:
3813 			if (svm->vmcb->control.exit_info_2 &
3814 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3815 				has_error_code = true;
3816 				error_code =
3817 					(u32)svm->vmcb->control.exit_info_2;
3818 			}
3819 			kvm_clear_exception_queue(&svm->vcpu);
3820 			break;
3821 		case SVM_EXITINTINFO_TYPE_INTR:
3822 			kvm_clear_interrupt_queue(&svm->vcpu);
3823 			break;
3824 		default:
3825 			break;
3826 		}
3827 	}
3828 
3829 	if (reason != TASK_SWITCH_GATE ||
3830 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3831 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3832 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3833 		skip_emulated_instruction(&svm->vcpu);
3834 
3835 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3836 		int_vec = -1;
3837 
3838 	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3839 				has_error_code, error_code) == EMULATE_FAIL) {
3840 		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3841 		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3842 		svm->vcpu.run->internal.ndata = 0;
3843 		return 0;
3844 	}
3845 	return 1;
3846 }
3847 
cpuid_interception(struct vcpu_svm * svm)3848 static int cpuid_interception(struct vcpu_svm *svm)
3849 {
3850 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3851 	return kvm_emulate_cpuid(&svm->vcpu);
3852 }
3853 
iret_interception(struct vcpu_svm * svm)3854 static int iret_interception(struct vcpu_svm *svm)
3855 {
3856 	++svm->vcpu.stat.nmi_window_exits;
3857 	clr_intercept(svm, INTERCEPT_IRET);
3858 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3859 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3860 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3861 	return 1;
3862 }
3863 
invlpg_interception(struct vcpu_svm * svm)3864 static int invlpg_interception(struct vcpu_svm *svm)
3865 {
3866 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3867 		return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3868 
3869 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3870 	return kvm_skip_emulated_instruction(&svm->vcpu);
3871 }
3872 
emulate_on_interception(struct vcpu_svm * svm)3873 static int emulate_on_interception(struct vcpu_svm *svm)
3874 {
3875 	return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3876 }
3877 
rsm_interception(struct vcpu_svm * svm)3878 static int rsm_interception(struct vcpu_svm *svm)
3879 {
3880 	return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3881 					rsm_ins_bytes, 2) == EMULATE_DONE;
3882 }
3883 
rdpmc_interception(struct vcpu_svm * svm)3884 static int rdpmc_interception(struct vcpu_svm *svm)
3885 {
3886 	int err;
3887 
3888 	if (!static_cpu_has(X86_FEATURE_NRIPS))
3889 		return emulate_on_interception(svm);
3890 
3891 	err = kvm_rdpmc(&svm->vcpu);
3892 	return kvm_complete_insn_gp(&svm->vcpu, err);
3893 }
3894 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)3895 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3896 					    unsigned long val)
3897 {
3898 	unsigned long cr0 = svm->vcpu.arch.cr0;
3899 	bool ret = false;
3900 	u64 intercept;
3901 
3902 	intercept = svm->nested.intercept;
3903 
3904 	if (!is_guest_mode(&svm->vcpu) ||
3905 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3906 		return false;
3907 
3908 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3909 	val &= ~SVM_CR0_SELECTIVE_MASK;
3910 
3911 	if (cr0 ^ val) {
3912 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3913 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3914 	}
3915 
3916 	return ret;
3917 }
3918 
3919 #define CR_VALID (1ULL << 63)
3920 
cr_interception(struct vcpu_svm * svm)3921 static int cr_interception(struct vcpu_svm *svm)
3922 {
3923 	int reg, cr;
3924 	unsigned long val;
3925 	int err;
3926 
3927 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3928 		return emulate_on_interception(svm);
3929 
3930 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3931 		return emulate_on_interception(svm);
3932 
3933 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3934 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3935 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3936 	else
3937 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3938 
3939 	err = 0;
3940 	if (cr >= 16) { /* mov to cr */
3941 		cr -= 16;
3942 		val = kvm_register_read(&svm->vcpu, reg);
3943 		switch (cr) {
3944 		case 0:
3945 			if (!check_selective_cr0_intercepted(svm, val))
3946 				err = kvm_set_cr0(&svm->vcpu, val);
3947 			else
3948 				return 1;
3949 
3950 			break;
3951 		case 3:
3952 			err = kvm_set_cr3(&svm->vcpu, val);
3953 			break;
3954 		case 4:
3955 			err = kvm_set_cr4(&svm->vcpu, val);
3956 			break;
3957 		case 8:
3958 			err = kvm_set_cr8(&svm->vcpu, val);
3959 			break;
3960 		default:
3961 			WARN(1, "unhandled write to CR%d", cr);
3962 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3963 			return 1;
3964 		}
3965 	} else { /* mov from cr */
3966 		switch (cr) {
3967 		case 0:
3968 			val = kvm_read_cr0(&svm->vcpu);
3969 			break;
3970 		case 2:
3971 			val = svm->vcpu.arch.cr2;
3972 			break;
3973 		case 3:
3974 			val = kvm_read_cr3(&svm->vcpu);
3975 			break;
3976 		case 4:
3977 			val = kvm_read_cr4(&svm->vcpu);
3978 			break;
3979 		case 8:
3980 			val = kvm_get_cr8(&svm->vcpu);
3981 			break;
3982 		default:
3983 			WARN(1, "unhandled read from CR%d", cr);
3984 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3985 			return 1;
3986 		}
3987 		kvm_register_write(&svm->vcpu, reg, val);
3988 	}
3989 	return kvm_complete_insn_gp(&svm->vcpu, err);
3990 }
3991 
dr_interception(struct vcpu_svm * svm)3992 static int dr_interception(struct vcpu_svm *svm)
3993 {
3994 	int reg, dr;
3995 	unsigned long val;
3996 
3997 	if (svm->vcpu.guest_debug == 0) {
3998 		/*
3999 		 * No more DR vmexits; force a reload of the debug registers
4000 		 * and reenter on this instruction.  The next vmexit will
4001 		 * retrieve the full state of the debug registers.
4002 		 */
4003 		clr_dr_intercepts(svm);
4004 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4005 		return 1;
4006 	}
4007 
4008 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4009 		return emulate_on_interception(svm);
4010 
4011 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4012 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4013 
4014 	if (dr >= 16) { /* mov to DRn */
4015 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
4016 			return 1;
4017 		val = kvm_register_read(&svm->vcpu, reg);
4018 		kvm_set_dr(&svm->vcpu, dr - 16, val);
4019 	} else {
4020 		if (!kvm_require_dr(&svm->vcpu, dr))
4021 			return 1;
4022 		kvm_get_dr(&svm->vcpu, dr, &val);
4023 		kvm_register_write(&svm->vcpu, reg, val);
4024 	}
4025 
4026 	return kvm_skip_emulated_instruction(&svm->vcpu);
4027 }
4028 
cr8_write_interception(struct vcpu_svm * svm)4029 static int cr8_write_interception(struct vcpu_svm *svm)
4030 {
4031 	struct kvm_run *kvm_run = svm->vcpu.run;
4032 	int r;
4033 
4034 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4035 	/* instruction emulation calls kvm_set_cr8() */
4036 	r = cr_interception(svm);
4037 	if (lapic_in_kernel(&svm->vcpu))
4038 		return r;
4039 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4040 		return r;
4041 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4042 	return 0;
4043 }
4044 
svm_get_msr_feature(struct kvm_msr_entry * msr)4045 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4046 {
4047 	msr->data = 0;
4048 
4049 	switch (msr->index) {
4050 	case MSR_F10H_DECFG:
4051 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4052 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4053 		break;
4054 	default:
4055 		return 1;
4056 	}
4057 
4058 	return 0;
4059 }
4060 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4061 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4062 {
4063 	struct vcpu_svm *svm = to_svm(vcpu);
4064 
4065 	switch (msr_info->index) {
4066 	case MSR_STAR:
4067 		msr_info->data = svm->vmcb->save.star;
4068 		break;
4069 #ifdef CONFIG_X86_64
4070 	case MSR_LSTAR:
4071 		msr_info->data = svm->vmcb->save.lstar;
4072 		break;
4073 	case MSR_CSTAR:
4074 		msr_info->data = svm->vmcb->save.cstar;
4075 		break;
4076 	case MSR_KERNEL_GS_BASE:
4077 		msr_info->data = svm->vmcb->save.kernel_gs_base;
4078 		break;
4079 	case MSR_SYSCALL_MASK:
4080 		msr_info->data = svm->vmcb->save.sfmask;
4081 		break;
4082 #endif
4083 	case MSR_IA32_SYSENTER_CS:
4084 		msr_info->data = svm->vmcb->save.sysenter_cs;
4085 		break;
4086 	case MSR_IA32_SYSENTER_EIP:
4087 		msr_info->data = svm->sysenter_eip;
4088 		break;
4089 	case MSR_IA32_SYSENTER_ESP:
4090 		msr_info->data = svm->sysenter_esp;
4091 		break;
4092 	case MSR_TSC_AUX:
4093 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4094 			return 1;
4095 		msr_info->data = svm->tsc_aux;
4096 		break;
4097 	/*
4098 	 * Nobody will change the following 5 values in the VMCB so we can
4099 	 * safely return them on rdmsr. They will always be 0 until LBRV is
4100 	 * implemented.
4101 	 */
4102 	case MSR_IA32_DEBUGCTLMSR:
4103 		msr_info->data = svm->vmcb->save.dbgctl;
4104 		break;
4105 	case MSR_IA32_LASTBRANCHFROMIP:
4106 		msr_info->data = svm->vmcb->save.br_from;
4107 		break;
4108 	case MSR_IA32_LASTBRANCHTOIP:
4109 		msr_info->data = svm->vmcb->save.br_to;
4110 		break;
4111 	case MSR_IA32_LASTINTFROMIP:
4112 		msr_info->data = svm->vmcb->save.last_excp_from;
4113 		break;
4114 	case MSR_IA32_LASTINTTOIP:
4115 		msr_info->data = svm->vmcb->save.last_excp_to;
4116 		break;
4117 	case MSR_VM_HSAVE_PA:
4118 		msr_info->data = svm->nested.hsave_msr;
4119 		break;
4120 	case MSR_VM_CR:
4121 		msr_info->data = svm->nested.vm_cr_msr;
4122 		break;
4123 	case MSR_IA32_SPEC_CTRL:
4124 		if (!msr_info->host_initiated &&
4125 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4126 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4127 			return 1;
4128 
4129 		msr_info->data = svm->spec_ctrl;
4130 		break;
4131 	case MSR_AMD64_VIRT_SPEC_CTRL:
4132 		if (!msr_info->host_initiated &&
4133 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4134 			return 1;
4135 
4136 		msr_info->data = svm->virt_spec_ctrl;
4137 		break;
4138 	case MSR_F15H_IC_CFG: {
4139 
4140 		int family, model;
4141 
4142 		family = guest_cpuid_family(vcpu);
4143 		model  = guest_cpuid_model(vcpu);
4144 
4145 		if (family < 0 || model < 0)
4146 			return kvm_get_msr_common(vcpu, msr_info);
4147 
4148 		msr_info->data = 0;
4149 
4150 		if (family == 0x15 &&
4151 		    (model >= 0x2 && model < 0x20))
4152 			msr_info->data = 0x1E;
4153 		}
4154 		break;
4155 	case MSR_F10H_DECFG:
4156 		msr_info->data = svm->msr_decfg;
4157 		break;
4158 	default:
4159 		return kvm_get_msr_common(vcpu, msr_info);
4160 	}
4161 	return 0;
4162 }
4163 
rdmsr_interception(struct vcpu_svm * svm)4164 static int rdmsr_interception(struct vcpu_svm *svm)
4165 {
4166 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4167 	struct msr_data msr_info;
4168 
4169 	msr_info.index = ecx;
4170 	msr_info.host_initiated = false;
4171 	if (svm_get_msr(&svm->vcpu, &msr_info)) {
4172 		trace_kvm_msr_read_ex(ecx);
4173 		kvm_inject_gp(&svm->vcpu, 0);
4174 		return 1;
4175 	} else {
4176 		trace_kvm_msr_read(ecx, msr_info.data);
4177 
4178 		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4179 				   msr_info.data & 0xffffffff);
4180 		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4181 				   msr_info.data >> 32);
4182 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4183 		return kvm_skip_emulated_instruction(&svm->vcpu);
4184 	}
4185 }
4186 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)4187 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4188 {
4189 	struct vcpu_svm *svm = to_svm(vcpu);
4190 	int svm_dis, chg_mask;
4191 
4192 	if (data & ~SVM_VM_CR_VALID_MASK)
4193 		return 1;
4194 
4195 	chg_mask = SVM_VM_CR_VALID_MASK;
4196 
4197 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4198 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4199 
4200 	svm->nested.vm_cr_msr &= ~chg_mask;
4201 	svm->nested.vm_cr_msr |= (data & chg_mask);
4202 
4203 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4204 
4205 	/* check for svm_disable while efer.svme is set */
4206 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4207 		return 1;
4208 
4209 	return 0;
4210 }
4211 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)4212 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4213 {
4214 	struct vcpu_svm *svm = to_svm(vcpu);
4215 
4216 	u32 ecx = msr->index;
4217 	u64 data = msr->data;
4218 	switch (ecx) {
4219 	case MSR_IA32_CR_PAT:
4220 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4221 			return 1;
4222 		vcpu->arch.pat = data;
4223 		svm->vmcb->save.g_pat = data;
4224 		mark_dirty(svm->vmcb, VMCB_NPT);
4225 		break;
4226 	case MSR_IA32_SPEC_CTRL:
4227 		if (!msr->host_initiated &&
4228 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4229 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4230 			return 1;
4231 
4232 		/* The STIBP bit doesn't fault even if it's not advertised */
4233 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4234 			return 1;
4235 
4236 		svm->spec_ctrl = data;
4237 
4238 		if (!data)
4239 			break;
4240 
4241 		/*
4242 		 * For non-nested:
4243 		 * When it's written (to non-zero) for the first time, pass
4244 		 * it through.
4245 		 *
4246 		 * For nested:
4247 		 * The handling of the MSR bitmap for L2 guests is done in
4248 		 * nested_svm_vmrun_msrpm.
4249 		 * We update the L1 MSR bit as well since it will end up
4250 		 * touching the MSR anyway now.
4251 		 */
4252 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4253 		break;
4254 	case MSR_IA32_PRED_CMD:
4255 		if (!msr->host_initiated &&
4256 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4257 			return 1;
4258 
4259 		if (data & ~PRED_CMD_IBPB)
4260 			return 1;
4261 
4262 		if (!data)
4263 			break;
4264 
4265 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4266 		if (is_guest_mode(vcpu))
4267 			break;
4268 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4269 		break;
4270 	case MSR_AMD64_VIRT_SPEC_CTRL:
4271 		if (!msr->host_initiated &&
4272 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4273 			return 1;
4274 
4275 		if (data & ~SPEC_CTRL_SSBD)
4276 			return 1;
4277 
4278 		svm->virt_spec_ctrl = data;
4279 		break;
4280 	case MSR_STAR:
4281 		svm->vmcb->save.star = data;
4282 		break;
4283 #ifdef CONFIG_X86_64
4284 	case MSR_LSTAR:
4285 		svm->vmcb->save.lstar = data;
4286 		break;
4287 	case MSR_CSTAR:
4288 		svm->vmcb->save.cstar = data;
4289 		break;
4290 	case MSR_KERNEL_GS_BASE:
4291 		svm->vmcb->save.kernel_gs_base = data;
4292 		break;
4293 	case MSR_SYSCALL_MASK:
4294 		svm->vmcb->save.sfmask = data;
4295 		break;
4296 #endif
4297 	case MSR_IA32_SYSENTER_CS:
4298 		svm->vmcb->save.sysenter_cs = data;
4299 		break;
4300 	case MSR_IA32_SYSENTER_EIP:
4301 		svm->sysenter_eip = data;
4302 		svm->vmcb->save.sysenter_eip = data;
4303 		break;
4304 	case MSR_IA32_SYSENTER_ESP:
4305 		svm->sysenter_esp = data;
4306 		svm->vmcb->save.sysenter_esp = data;
4307 		break;
4308 	case MSR_TSC_AUX:
4309 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4310 			return 1;
4311 
4312 		/*
4313 		 * This is rare, so we update the MSR here instead of using
4314 		 * direct_access_msrs.  Doing that would require a rdmsr in
4315 		 * svm_vcpu_put.
4316 		 */
4317 		svm->tsc_aux = data;
4318 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4319 		break;
4320 	case MSR_IA32_DEBUGCTLMSR:
4321 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4322 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4323 				    __func__, data);
4324 			break;
4325 		}
4326 		if (data & DEBUGCTL_RESERVED_BITS)
4327 			return 1;
4328 
4329 		svm->vmcb->save.dbgctl = data;
4330 		mark_dirty(svm->vmcb, VMCB_LBR);
4331 		if (data & (1ULL<<0))
4332 			svm_enable_lbrv(svm);
4333 		else
4334 			svm_disable_lbrv(svm);
4335 		break;
4336 	case MSR_VM_HSAVE_PA:
4337 		svm->nested.hsave_msr = data;
4338 		break;
4339 	case MSR_VM_CR:
4340 		return svm_set_vm_cr(vcpu, data);
4341 	case MSR_VM_IGNNE:
4342 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4343 		break;
4344 	case MSR_F10H_DECFG: {
4345 		struct kvm_msr_entry msr_entry;
4346 
4347 		msr_entry.index = msr->index;
4348 		if (svm_get_msr_feature(&msr_entry))
4349 			return 1;
4350 
4351 		/* Check the supported bits */
4352 		if (data & ~msr_entry.data)
4353 			return 1;
4354 
4355 		/* Don't allow the guest to change a bit, #GP */
4356 		if (!msr->host_initiated && (data ^ msr_entry.data))
4357 			return 1;
4358 
4359 		svm->msr_decfg = data;
4360 		break;
4361 	}
4362 	case MSR_IA32_APICBASE:
4363 		if (kvm_vcpu_apicv_active(vcpu))
4364 			avic_update_vapic_bar(to_svm(vcpu), data);
4365 		/* Follow through */
4366 	default:
4367 		return kvm_set_msr_common(vcpu, msr);
4368 	}
4369 	return 0;
4370 }
4371 
wrmsr_interception(struct vcpu_svm * svm)4372 static int wrmsr_interception(struct vcpu_svm *svm)
4373 {
4374 	struct msr_data msr;
4375 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4376 	u64 data = kvm_read_edx_eax(&svm->vcpu);
4377 
4378 	msr.data = data;
4379 	msr.index = ecx;
4380 	msr.host_initiated = false;
4381 
4382 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4383 	if (kvm_set_msr(&svm->vcpu, &msr)) {
4384 		trace_kvm_msr_write_ex(ecx, data);
4385 		kvm_inject_gp(&svm->vcpu, 0);
4386 		return 1;
4387 	} else {
4388 		trace_kvm_msr_write(ecx, data);
4389 		return kvm_skip_emulated_instruction(&svm->vcpu);
4390 	}
4391 }
4392 
msr_interception(struct vcpu_svm * svm)4393 static int msr_interception(struct vcpu_svm *svm)
4394 {
4395 	if (svm->vmcb->control.exit_info_1)
4396 		return wrmsr_interception(svm);
4397 	else
4398 		return rdmsr_interception(svm);
4399 }
4400 
interrupt_window_interception(struct vcpu_svm * svm)4401 static int interrupt_window_interception(struct vcpu_svm *svm)
4402 {
4403 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4404 	svm_clear_vintr(svm);
4405 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4406 	mark_dirty(svm->vmcb, VMCB_INTR);
4407 	++svm->vcpu.stat.irq_window_exits;
4408 	return 1;
4409 }
4410 
pause_interception(struct vcpu_svm * svm)4411 static int pause_interception(struct vcpu_svm *svm)
4412 {
4413 	struct kvm_vcpu *vcpu = &svm->vcpu;
4414 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
4415 
4416 	if (pause_filter_thresh)
4417 		grow_ple_window(vcpu);
4418 
4419 	kvm_vcpu_on_spin(vcpu, in_kernel);
4420 	return 1;
4421 }
4422 
nop_interception(struct vcpu_svm * svm)4423 static int nop_interception(struct vcpu_svm *svm)
4424 {
4425 	return kvm_skip_emulated_instruction(&(svm->vcpu));
4426 }
4427 
monitor_interception(struct vcpu_svm * svm)4428 static int monitor_interception(struct vcpu_svm *svm)
4429 {
4430 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4431 	return nop_interception(svm);
4432 }
4433 
mwait_interception(struct vcpu_svm * svm)4434 static int mwait_interception(struct vcpu_svm *svm)
4435 {
4436 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4437 	return nop_interception(svm);
4438 }
4439 
4440 enum avic_ipi_failure_cause {
4441 	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4442 	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4443 	AVIC_IPI_FAILURE_INVALID_TARGET,
4444 	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4445 };
4446 
avic_incomplete_ipi_interception(struct vcpu_svm * svm)4447 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4448 {
4449 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4450 	u32 icrl = svm->vmcb->control.exit_info_1;
4451 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
4452 	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4453 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4454 
4455 	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4456 
4457 	switch (id) {
4458 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4459 		/*
4460 		 * AVIC hardware handles the generation of
4461 		 * IPIs when the specified Message Type is Fixed
4462 		 * (also known as fixed delivery mode) and
4463 		 * the Trigger Mode is edge-triggered. The hardware
4464 		 * also supports self and broadcast delivery modes
4465 		 * specified via the Destination Shorthand(DSH)
4466 		 * field of the ICRL. Logical and physical APIC ID
4467 		 * formats are supported. All other IPI types cause
4468 		 * a #VMEXIT, which needs to emulated.
4469 		 */
4470 		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4471 		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4472 		break;
4473 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4474 		int i;
4475 		struct kvm_vcpu *vcpu;
4476 		struct kvm *kvm = svm->vcpu.kvm;
4477 		struct kvm_lapic *apic = svm->vcpu.arch.apic;
4478 
4479 		/*
4480 		 * At this point, we expect that the AVIC HW has already
4481 		 * set the appropriate IRR bits on the valid target
4482 		 * vcpus. So, we just need to kick the appropriate vcpu.
4483 		 */
4484 		kvm_for_each_vcpu(i, vcpu, kvm) {
4485 			bool m = kvm_apic_match_dest(vcpu, apic,
4486 						     icrl & KVM_APIC_SHORT_MASK,
4487 						     GET_APIC_DEST_FIELD(icrh),
4488 						     icrl & KVM_APIC_DEST_MASK);
4489 
4490 			if (m && !avic_vcpu_is_running(vcpu))
4491 				kvm_vcpu_wake_up(vcpu);
4492 		}
4493 		break;
4494 	}
4495 	case AVIC_IPI_FAILURE_INVALID_TARGET:
4496 		break;
4497 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4498 		WARN_ONCE(1, "Invalid backing page\n");
4499 		break;
4500 	default:
4501 		pr_err("Unknown IPI interception\n");
4502 	}
4503 
4504 	return 1;
4505 }
4506 
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)4507 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4508 {
4509 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4510 	int index;
4511 	u32 *logical_apic_id_table;
4512 	int dlid = GET_APIC_LOGICAL_ID(ldr);
4513 
4514 	if (!dlid)
4515 		return NULL;
4516 
4517 	if (flat) { /* flat */
4518 		index = ffs(dlid) - 1;
4519 		if (index > 7)
4520 			return NULL;
4521 	} else { /* cluster */
4522 		int cluster = (dlid & 0xf0) >> 4;
4523 		int apic = ffs(dlid & 0x0f) - 1;
4524 
4525 		if ((apic < 0) || (apic > 7) ||
4526 		    (cluster >= 0xf))
4527 			return NULL;
4528 		index = (cluster << 2) + apic;
4529 	}
4530 
4531 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4532 
4533 	return &logical_apic_id_table[index];
4534 }
4535 
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr,bool valid)4536 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4537 			  bool valid)
4538 {
4539 	bool flat;
4540 	u32 *entry, new_entry;
4541 
4542 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4543 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4544 	if (!entry)
4545 		return -EINVAL;
4546 
4547 	new_entry = READ_ONCE(*entry);
4548 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4549 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4550 	if (valid)
4551 		new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4552 	else
4553 		new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4554 	WRITE_ONCE(*entry, new_entry);
4555 
4556 	return 0;
4557 }
4558 
avic_handle_ldr_update(struct kvm_vcpu * vcpu)4559 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4560 {
4561 	int ret;
4562 	struct vcpu_svm *svm = to_svm(vcpu);
4563 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4564 
4565 	if (!ldr)
4566 		return 1;
4567 
4568 	ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4569 	if (ret && svm->ldr_reg) {
4570 		avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4571 		svm->ldr_reg = 0;
4572 	} else {
4573 		svm->ldr_reg = ldr;
4574 	}
4575 	return ret;
4576 }
4577 
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)4578 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4579 {
4580 	u64 *old, *new;
4581 	struct vcpu_svm *svm = to_svm(vcpu);
4582 	u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4583 	u32 id = (apic_id_reg >> 24) & 0xff;
4584 
4585 	if (vcpu->vcpu_id == id)
4586 		return 0;
4587 
4588 	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4589 	new = avic_get_physical_id_entry(vcpu, id);
4590 	if (!new || !old)
4591 		return 1;
4592 
4593 	/* We need to move physical_id_entry to new offset */
4594 	*new = *old;
4595 	*old = 0ULL;
4596 	to_svm(vcpu)->avic_physical_id_cache = new;
4597 
4598 	/*
4599 	 * Also update the guest physical APIC ID in the logical
4600 	 * APIC ID table entry if already setup the LDR.
4601 	 */
4602 	if (svm->ldr_reg)
4603 		avic_handle_ldr_update(vcpu);
4604 
4605 	return 0;
4606 }
4607 
avic_handle_dfr_update(struct kvm_vcpu * vcpu)4608 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4609 {
4610 	struct vcpu_svm *svm = to_svm(vcpu);
4611 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4612 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4613 	u32 mod = (dfr >> 28) & 0xf;
4614 
4615 	/*
4616 	 * We assume that all local APICs are using the same type.
4617 	 * If this changes, we need to flush the AVIC logical
4618 	 * APID id table.
4619 	 */
4620 	if (kvm_svm->ldr_mode == mod)
4621 		return 0;
4622 
4623 	clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4624 	kvm_svm->ldr_mode = mod;
4625 
4626 	if (svm->ldr_reg)
4627 		avic_handle_ldr_update(vcpu);
4628 	return 0;
4629 }
4630 
avic_unaccel_trap_write(struct vcpu_svm * svm)4631 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4632 {
4633 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4634 	u32 offset = svm->vmcb->control.exit_info_1 &
4635 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4636 
4637 	switch (offset) {
4638 	case APIC_ID:
4639 		if (avic_handle_apic_id_update(&svm->vcpu))
4640 			return 0;
4641 		break;
4642 	case APIC_LDR:
4643 		if (avic_handle_ldr_update(&svm->vcpu))
4644 			return 0;
4645 		break;
4646 	case APIC_DFR:
4647 		avic_handle_dfr_update(&svm->vcpu);
4648 		break;
4649 	default:
4650 		break;
4651 	}
4652 
4653 	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4654 
4655 	return 1;
4656 }
4657 
is_avic_unaccelerated_access_trap(u32 offset)4658 static bool is_avic_unaccelerated_access_trap(u32 offset)
4659 {
4660 	bool ret = false;
4661 
4662 	switch (offset) {
4663 	case APIC_ID:
4664 	case APIC_EOI:
4665 	case APIC_RRR:
4666 	case APIC_LDR:
4667 	case APIC_DFR:
4668 	case APIC_SPIV:
4669 	case APIC_ESR:
4670 	case APIC_ICR:
4671 	case APIC_LVTT:
4672 	case APIC_LVTTHMR:
4673 	case APIC_LVTPC:
4674 	case APIC_LVT0:
4675 	case APIC_LVT1:
4676 	case APIC_LVTERR:
4677 	case APIC_TMICT:
4678 	case APIC_TDCR:
4679 		ret = true;
4680 		break;
4681 	default:
4682 		break;
4683 	}
4684 	return ret;
4685 }
4686 
avic_unaccelerated_access_interception(struct vcpu_svm * svm)4687 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4688 {
4689 	int ret = 0;
4690 	u32 offset = svm->vmcb->control.exit_info_1 &
4691 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4692 	u32 vector = svm->vmcb->control.exit_info_2 &
4693 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4694 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4695 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4696 	bool trap = is_avic_unaccelerated_access_trap(offset);
4697 
4698 	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4699 					    trap, write, vector);
4700 	if (trap) {
4701 		/* Handling Trap */
4702 		WARN_ONCE(!write, "svm: Handling trap read.\n");
4703 		ret = avic_unaccel_trap_write(svm);
4704 	} else {
4705 		/* Handling Fault */
4706 		ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4707 	}
4708 
4709 	return ret;
4710 }
4711 
4712 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4713 	[SVM_EXIT_READ_CR0]			= cr_interception,
4714 	[SVM_EXIT_READ_CR3]			= cr_interception,
4715 	[SVM_EXIT_READ_CR4]			= cr_interception,
4716 	[SVM_EXIT_READ_CR8]			= cr_interception,
4717 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
4718 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
4719 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
4720 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
4721 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
4722 	[SVM_EXIT_READ_DR0]			= dr_interception,
4723 	[SVM_EXIT_READ_DR1]			= dr_interception,
4724 	[SVM_EXIT_READ_DR2]			= dr_interception,
4725 	[SVM_EXIT_READ_DR3]			= dr_interception,
4726 	[SVM_EXIT_READ_DR4]			= dr_interception,
4727 	[SVM_EXIT_READ_DR5]			= dr_interception,
4728 	[SVM_EXIT_READ_DR6]			= dr_interception,
4729 	[SVM_EXIT_READ_DR7]			= dr_interception,
4730 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
4731 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
4732 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
4733 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
4734 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
4735 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
4736 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
4737 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
4738 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
4739 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
4740 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
4741 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
4742 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
4743 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
4744 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
4745 	[SVM_EXIT_INTR]				= intr_interception,
4746 	[SVM_EXIT_NMI]				= nmi_interception,
4747 	[SVM_EXIT_SMI]				= nop_on_interception,
4748 	[SVM_EXIT_INIT]				= nop_on_interception,
4749 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
4750 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
4751 	[SVM_EXIT_CPUID]			= cpuid_interception,
4752 	[SVM_EXIT_IRET]                         = iret_interception,
4753 	[SVM_EXIT_INVD]                         = emulate_on_interception,
4754 	[SVM_EXIT_PAUSE]			= pause_interception,
4755 	[SVM_EXIT_HLT]				= halt_interception,
4756 	[SVM_EXIT_INVLPG]			= invlpg_interception,
4757 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
4758 	[SVM_EXIT_IOIO]				= io_interception,
4759 	[SVM_EXIT_MSR]				= msr_interception,
4760 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
4761 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
4762 	[SVM_EXIT_VMRUN]			= vmrun_interception,
4763 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
4764 	[SVM_EXIT_VMLOAD]			= vmload_interception,
4765 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
4766 	[SVM_EXIT_STGI]				= stgi_interception,
4767 	[SVM_EXIT_CLGI]				= clgi_interception,
4768 	[SVM_EXIT_SKINIT]			= skinit_interception,
4769 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
4770 	[SVM_EXIT_MONITOR]			= monitor_interception,
4771 	[SVM_EXIT_MWAIT]			= mwait_interception,
4772 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
4773 	[SVM_EXIT_NPF]				= npf_interception,
4774 	[SVM_EXIT_RSM]                          = rsm_interception,
4775 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
4776 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
4777 };
4778 
dump_vmcb(struct kvm_vcpu * vcpu)4779 static void dump_vmcb(struct kvm_vcpu *vcpu)
4780 {
4781 	struct vcpu_svm *svm = to_svm(vcpu);
4782 	struct vmcb_control_area *control = &svm->vmcb->control;
4783 	struct vmcb_save_area *save = &svm->vmcb->save;
4784 
4785 	pr_err("VMCB Control Area:\n");
4786 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4787 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4788 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4789 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4790 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4791 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4792 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4793 	pr_err("%-20s%d\n", "pause filter threshold:",
4794 	       control->pause_filter_thresh);
4795 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4796 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4797 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4798 	pr_err("%-20s%d\n", "asid:", control->asid);
4799 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4800 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4801 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4802 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
4803 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4804 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4805 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4806 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4807 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4808 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4809 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4810 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4811 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4812 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4813 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4814 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4815 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4816 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4817 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4818 	pr_err("VMCB State Save Area:\n");
4819 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4820 	       "es:",
4821 	       save->es.selector, save->es.attrib,
4822 	       save->es.limit, save->es.base);
4823 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4824 	       "cs:",
4825 	       save->cs.selector, save->cs.attrib,
4826 	       save->cs.limit, save->cs.base);
4827 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4828 	       "ss:",
4829 	       save->ss.selector, save->ss.attrib,
4830 	       save->ss.limit, save->ss.base);
4831 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4832 	       "ds:",
4833 	       save->ds.selector, save->ds.attrib,
4834 	       save->ds.limit, save->ds.base);
4835 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4836 	       "fs:",
4837 	       save->fs.selector, save->fs.attrib,
4838 	       save->fs.limit, save->fs.base);
4839 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4840 	       "gs:",
4841 	       save->gs.selector, save->gs.attrib,
4842 	       save->gs.limit, save->gs.base);
4843 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4844 	       "gdtr:",
4845 	       save->gdtr.selector, save->gdtr.attrib,
4846 	       save->gdtr.limit, save->gdtr.base);
4847 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4848 	       "ldtr:",
4849 	       save->ldtr.selector, save->ldtr.attrib,
4850 	       save->ldtr.limit, save->ldtr.base);
4851 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 	       "idtr:",
4853 	       save->idtr.selector, save->idtr.attrib,
4854 	       save->idtr.limit, save->idtr.base);
4855 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856 	       "tr:",
4857 	       save->tr.selector, save->tr.attrib,
4858 	       save->tr.limit, save->tr.base);
4859 	pr_err("cpl:            %d                efer:         %016llx\n",
4860 		save->cpl, save->efer);
4861 	pr_err("%-15s %016llx %-13s %016llx\n",
4862 	       "cr0:", save->cr0, "cr2:", save->cr2);
4863 	pr_err("%-15s %016llx %-13s %016llx\n",
4864 	       "cr3:", save->cr3, "cr4:", save->cr4);
4865 	pr_err("%-15s %016llx %-13s %016llx\n",
4866 	       "dr6:", save->dr6, "dr7:", save->dr7);
4867 	pr_err("%-15s %016llx %-13s %016llx\n",
4868 	       "rip:", save->rip, "rflags:", save->rflags);
4869 	pr_err("%-15s %016llx %-13s %016llx\n",
4870 	       "rsp:", save->rsp, "rax:", save->rax);
4871 	pr_err("%-15s %016llx %-13s %016llx\n",
4872 	       "star:", save->star, "lstar:", save->lstar);
4873 	pr_err("%-15s %016llx %-13s %016llx\n",
4874 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
4875 	pr_err("%-15s %016llx %-13s %016llx\n",
4876 	       "kernel_gs_base:", save->kernel_gs_base,
4877 	       "sysenter_cs:", save->sysenter_cs);
4878 	pr_err("%-15s %016llx %-13s %016llx\n",
4879 	       "sysenter_esp:", save->sysenter_esp,
4880 	       "sysenter_eip:", save->sysenter_eip);
4881 	pr_err("%-15s %016llx %-13s %016llx\n",
4882 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4883 	pr_err("%-15s %016llx %-13s %016llx\n",
4884 	       "br_from:", save->br_from, "br_to:", save->br_to);
4885 	pr_err("%-15s %016llx %-13s %016llx\n",
4886 	       "excp_from:", save->last_excp_from,
4887 	       "excp_to:", save->last_excp_to);
4888 }
4889 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)4890 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4891 {
4892 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4893 
4894 	*info1 = control->exit_info_1;
4895 	*info2 = control->exit_info_2;
4896 }
4897 
handle_exit(struct kvm_vcpu * vcpu)4898 static int handle_exit(struct kvm_vcpu *vcpu)
4899 {
4900 	struct vcpu_svm *svm = to_svm(vcpu);
4901 	struct kvm_run *kvm_run = vcpu->run;
4902 	u32 exit_code = svm->vmcb->control.exit_code;
4903 
4904 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4905 
4906 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4907 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
4908 	if (npt_enabled)
4909 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
4910 
4911 	if (unlikely(svm->nested.exit_required)) {
4912 		nested_svm_vmexit(svm);
4913 		svm->nested.exit_required = false;
4914 
4915 		return 1;
4916 	}
4917 
4918 	if (is_guest_mode(vcpu)) {
4919 		int vmexit;
4920 
4921 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4922 					svm->vmcb->control.exit_info_1,
4923 					svm->vmcb->control.exit_info_2,
4924 					svm->vmcb->control.exit_int_info,
4925 					svm->vmcb->control.exit_int_info_err,
4926 					KVM_ISA_SVM);
4927 
4928 		vmexit = nested_svm_exit_special(svm);
4929 
4930 		if (vmexit == NESTED_EXIT_CONTINUE)
4931 			vmexit = nested_svm_exit_handled(svm);
4932 
4933 		if (vmexit == NESTED_EXIT_DONE)
4934 			return 1;
4935 	}
4936 
4937 	svm_complete_interrupts(svm);
4938 
4939 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4940 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4941 		kvm_run->fail_entry.hardware_entry_failure_reason
4942 			= svm->vmcb->control.exit_code;
4943 		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4944 		dump_vmcb(vcpu);
4945 		return 0;
4946 	}
4947 
4948 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4949 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4950 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4951 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4952 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4953 		       "exit_code 0x%x\n",
4954 		       __func__, svm->vmcb->control.exit_int_info,
4955 		       exit_code);
4956 
4957 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4958 	    || !svm_exit_handlers[exit_code]) {
4959 		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4960 		kvm_queue_exception(vcpu, UD_VECTOR);
4961 		return 1;
4962 	}
4963 
4964 	return svm_exit_handlers[exit_code](svm);
4965 }
4966 
reload_tss(struct kvm_vcpu * vcpu)4967 static void reload_tss(struct kvm_vcpu *vcpu)
4968 {
4969 	int cpu = raw_smp_processor_id();
4970 
4971 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4972 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4973 	load_TR_desc();
4974 }
4975 
pre_sev_run(struct vcpu_svm * svm,int cpu)4976 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4977 {
4978 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4979 	int asid = sev_get_asid(svm->vcpu.kvm);
4980 
4981 	/* Assign the asid allocated with this SEV guest */
4982 	svm->vmcb->control.asid = asid;
4983 
4984 	/*
4985 	 * Flush guest TLB:
4986 	 *
4987 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4988 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4989 	 */
4990 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
4991 	    svm->last_cpu == cpu)
4992 		return;
4993 
4994 	svm->last_cpu = cpu;
4995 	sd->sev_vmcbs[asid] = svm->vmcb;
4996 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4997 	mark_dirty(svm->vmcb, VMCB_ASID);
4998 }
4999 
pre_svm_run(struct vcpu_svm * svm)5000 static void pre_svm_run(struct vcpu_svm *svm)
5001 {
5002 	int cpu = raw_smp_processor_id();
5003 
5004 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5005 
5006 	if (sev_guest(svm->vcpu.kvm))
5007 		return pre_sev_run(svm, cpu);
5008 
5009 	/* FIXME: handle wraparound of asid_generation */
5010 	if (svm->asid_generation != sd->asid_generation)
5011 		new_asid(svm, sd);
5012 }
5013 
svm_inject_nmi(struct kvm_vcpu * vcpu)5014 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5015 {
5016 	struct vcpu_svm *svm = to_svm(vcpu);
5017 
5018 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5019 	vcpu->arch.hflags |= HF_NMI_MASK;
5020 	set_intercept(svm, INTERCEPT_IRET);
5021 	++vcpu->stat.nmi_injections;
5022 }
5023 
svm_inject_irq(struct vcpu_svm * svm,int irq)5024 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5025 {
5026 	struct vmcb_control_area *control;
5027 
5028 	/* The following fields are ignored when AVIC is enabled */
5029 	control = &svm->vmcb->control;
5030 	control->int_vector = irq;
5031 	control->int_ctl &= ~V_INTR_PRIO_MASK;
5032 	control->int_ctl |= V_IRQ_MASK |
5033 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5034 	mark_dirty(svm->vmcb, VMCB_INTR);
5035 }
5036 
svm_set_irq(struct kvm_vcpu * vcpu)5037 static void svm_set_irq(struct kvm_vcpu *vcpu)
5038 {
5039 	struct vcpu_svm *svm = to_svm(vcpu);
5040 
5041 	BUG_ON(!(gif_set(svm)));
5042 
5043 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5044 	++vcpu->stat.irq_injections;
5045 
5046 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5047 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5048 }
5049 
svm_nested_virtualize_tpr(struct kvm_vcpu * vcpu)5050 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5051 {
5052 	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5053 }
5054 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5055 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5056 {
5057 	struct vcpu_svm *svm = to_svm(vcpu);
5058 
5059 	if (svm_nested_virtualize_tpr(vcpu) ||
5060 	    kvm_vcpu_apicv_active(vcpu))
5061 		return;
5062 
5063 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5064 
5065 	if (irr == -1)
5066 		return;
5067 
5068 	if (tpr >= irr)
5069 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5070 }
5071 
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)5072 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5073 {
5074 	return;
5075 }
5076 
svm_get_enable_apicv(struct kvm_vcpu * vcpu)5077 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5078 {
5079 	return avic && irqchip_split(vcpu->kvm);
5080 }
5081 
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)5082 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5083 {
5084 }
5085 
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)5086 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5087 {
5088 }
5089 
5090 /* Note: Currently only used by Hyper-V. */
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5091 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5092 {
5093 	struct vcpu_svm *svm = to_svm(vcpu);
5094 	struct vmcb *vmcb = svm->vmcb;
5095 
5096 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
5097 		return;
5098 
5099 	vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5100 	mark_dirty(vmcb, VMCB_INTR);
5101 }
5102 
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)5103 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5104 {
5105 	return;
5106 }
5107 
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)5108 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5109 {
5110 	kvm_lapic_set_irr(vec, vcpu->arch.apic);
5111 	smp_mb__after_atomic();
5112 
5113 	if (avic_vcpu_is_running(vcpu))
5114 		wrmsrl(SVM_AVIC_DOORBELL,
5115 		       kvm_cpu_get_apicid(vcpu->cpu));
5116 	else
5117 		kvm_vcpu_wake_up(vcpu);
5118 }
5119 
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5120 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5121 {
5122 	unsigned long flags;
5123 	struct amd_svm_iommu_ir *cur;
5124 
5125 	spin_lock_irqsave(&svm->ir_list_lock, flags);
5126 	list_for_each_entry(cur, &svm->ir_list, node) {
5127 		if (cur->data != pi->ir_data)
5128 			continue;
5129 		list_del(&cur->node);
5130 		kfree(cur);
5131 		break;
5132 	}
5133 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5134 }
5135 
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5136 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5137 {
5138 	int ret = 0;
5139 	unsigned long flags;
5140 	struct amd_svm_iommu_ir *ir;
5141 
5142 	/**
5143 	 * In some cases, the existing irte is updaed and re-set,
5144 	 * so we need to check here if it's already been * added
5145 	 * to the ir_list.
5146 	 */
5147 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5148 		struct kvm *kvm = svm->vcpu.kvm;
5149 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5150 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5151 		struct vcpu_svm *prev_svm;
5152 
5153 		if (!prev_vcpu) {
5154 			ret = -EINVAL;
5155 			goto out;
5156 		}
5157 
5158 		prev_svm = to_svm(prev_vcpu);
5159 		svm_ir_list_del(prev_svm, pi);
5160 	}
5161 
5162 	/**
5163 	 * Allocating new amd_iommu_pi_data, which will get
5164 	 * add to the per-vcpu ir_list.
5165 	 */
5166 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5167 	if (!ir) {
5168 		ret = -ENOMEM;
5169 		goto out;
5170 	}
5171 	ir->data = pi->ir_data;
5172 
5173 	spin_lock_irqsave(&svm->ir_list_lock, flags);
5174 	list_add(&ir->node, &svm->ir_list);
5175 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5176 out:
5177 	return ret;
5178 }
5179 
5180 /**
5181  * Note:
5182  * The HW cannot support posting multicast/broadcast
5183  * interrupts to a vCPU. So, we still use legacy interrupt
5184  * remapping for these kind of interrupts.
5185  *
5186  * For lowest-priority interrupts, we only support
5187  * those with single CPU as the destination, e.g. user
5188  * configures the interrupts via /proc/irq or uses
5189  * irqbalance to make the interrupts single-CPU.
5190  */
5191 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)5192 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5193 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5194 {
5195 	struct kvm_lapic_irq irq;
5196 	struct kvm_vcpu *vcpu = NULL;
5197 
5198 	kvm_set_msi_irq(kvm, e, &irq);
5199 
5200 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5201 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5202 			 __func__, irq.vector);
5203 		return -1;
5204 	}
5205 
5206 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5207 		 irq.vector);
5208 	*svm = to_svm(vcpu);
5209 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5210 	vcpu_info->vector = irq.vector;
5211 
5212 	return 0;
5213 }
5214 
5215 /*
5216  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5217  *
5218  * @kvm: kvm
5219  * @host_irq: host irq of the interrupt
5220  * @guest_irq: gsi of the interrupt
5221  * @set: set or unset PI
5222  * returns 0 on success, < 0 on failure
5223  */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)5224 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5225 			      uint32_t guest_irq, bool set)
5226 {
5227 	struct kvm_kernel_irq_routing_entry *e;
5228 	struct kvm_irq_routing_table *irq_rt;
5229 	int idx, ret = -EINVAL;
5230 
5231 	if (!kvm_arch_has_assigned_device(kvm) ||
5232 	    !irq_remapping_cap(IRQ_POSTING_CAP))
5233 		return 0;
5234 
5235 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5236 		 __func__, host_irq, guest_irq, set);
5237 
5238 	idx = srcu_read_lock(&kvm->irq_srcu);
5239 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5240 	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5241 
5242 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5243 		struct vcpu_data vcpu_info;
5244 		struct vcpu_svm *svm = NULL;
5245 
5246 		if (e->type != KVM_IRQ_ROUTING_MSI)
5247 			continue;
5248 
5249 		/**
5250 		 * Here, we setup with legacy mode in the following cases:
5251 		 * 1. When cannot target interrupt to a specific vcpu.
5252 		 * 2. Unsetting posted interrupt.
5253 		 * 3. APIC virtialization is disabled for the vcpu.
5254 		 */
5255 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5256 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
5257 			struct amd_iommu_pi_data pi;
5258 
5259 			/* Try to enable guest_mode in IRTE */
5260 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5261 					    AVIC_HPA_MASK);
5262 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5263 						     svm->vcpu.vcpu_id);
5264 			pi.is_guest_mode = true;
5265 			pi.vcpu_data = &vcpu_info;
5266 			ret = irq_set_vcpu_affinity(host_irq, &pi);
5267 
5268 			/**
5269 			 * Here, we successfully setting up vcpu affinity in
5270 			 * IOMMU guest mode. Now, we need to store the posted
5271 			 * interrupt information in a per-vcpu ir_list so that
5272 			 * we can reference to them directly when we update vcpu
5273 			 * scheduling information in IOMMU irte.
5274 			 */
5275 			if (!ret && pi.is_guest_mode)
5276 				svm_ir_list_add(svm, &pi);
5277 		} else {
5278 			/* Use legacy mode in IRTE */
5279 			struct amd_iommu_pi_data pi;
5280 
5281 			/**
5282 			 * Here, pi is used to:
5283 			 * - Tell IOMMU to use legacy mode for this interrupt.
5284 			 * - Retrieve ga_tag of prior interrupt remapping data.
5285 			 */
5286 			pi.is_guest_mode = false;
5287 			ret = irq_set_vcpu_affinity(host_irq, &pi);
5288 
5289 			/**
5290 			 * Check if the posted interrupt was previously
5291 			 * setup with the guest_mode by checking if the ga_tag
5292 			 * was cached. If so, we need to clean up the per-vcpu
5293 			 * ir_list.
5294 			 */
5295 			if (!ret && pi.prev_ga_tag) {
5296 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5297 				struct kvm_vcpu *vcpu;
5298 
5299 				vcpu = kvm_get_vcpu_by_id(kvm, id);
5300 				if (vcpu)
5301 					svm_ir_list_del(to_svm(vcpu), &pi);
5302 			}
5303 		}
5304 
5305 		if (!ret && svm) {
5306 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5307 						 e->gsi, vcpu_info.vector,
5308 						 vcpu_info.pi_desc_addr, set);
5309 		}
5310 
5311 		if (ret < 0) {
5312 			pr_err("%s: failed to update PI IRTE\n", __func__);
5313 			goto out;
5314 		}
5315 	}
5316 
5317 	ret = 0;
5318 out:
5319 	srcu_read_unlock(&kvm->irq_srcu, idx);
5320 	return ret;
5321 }
5322 
svm_nmi_allowed(struct kvm_vcpu * vcpu)5323 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5324 {
5325 	struct vcpu_svm *svm = to_svm(vcpu);
5326 	struct vmcb *vmcb = svm->vmcb;
5327 	int ret;
5328 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5329 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5330 	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5331 
5332 	return ret;
5333 }
5334 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)5335 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5336 {
5337 	struct vcpu_svm *svm = to_svm(vcpu);
5338 
5339 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5340 }
5341 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5342 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5343 {
5344 	struct vcpu_svm *svm = to_svm(vcpu);
5345 
5346 	if (masked) {
5347 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
5348 		set_intercept(svm, INTERCEPT_IRET);
5349 	} else {
5350 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5351 		clr_intercept(svm, INTERCEPT_IRET);
5352 	}
5353 }
5354 
svm_interrupt_allowed(struct kvm_vcpu * vcpu)5355 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5356 {
5357 	struct vcpu_svm *svm = to_svm(vcpu);
5358 	struct vmcb *vmcb = svm->vmcb;
5359 	int ret;
5360 
5361 	if (!gif_set(svm) ||
5362 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5363 		return 0;
5364 
5365 	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5366 
5367 	if (is_guest_mode(vcpu))
5368 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5369 
5370 	return ret;
5371 }
5372 
enable_irq_window(struct kvm_vcpu * vcpu)5373 static void enable_irq_window(struct kvm_vcpu *vcpu)
5374 {
5375 	struct vcpu_svm *svm = to_svm(vcpu);
5376 
5377 	if (kvm_vcpu_apicv_active(vcpu))
5378 		return;
5379 
5380 	/*
5381 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5382 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5383 	 * get that intercept, this function will be called again though and
5384 	 * we'll get the vintr intercept. However, if the vGIF feature is
5385 	 * enabled, the STGI interception will not occur. Enable the irq
5386 	 * window under the assumption that the hardware will set the GIF.
5387 	 */
5388 	if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5389 		svm_set_vintr(svm);
5390 		svm_inject_irq(svm, 0x0);
5391 	}
5392 }
5393 
enable_nmi_window(struct kvm_vcpu * vcpu)5394 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5395 {
5396 	struct vcpu_svm *svm = to_svm(vcpu);
5397 
5398 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5399 	    == HF_NMI_MASK)
5400 		return; /* IRET will cause a vm exit */
5401 
5402 	if (!gif_set(svm)) {
5403 		if (vgif_enabled(svm))
5404 			set_intercept(svm, INTERCEPT_STGI);
5405 		return; /* STGI will cause a vm exit */
5406 	}
5407 
5408 	if (svm->nested.exit_required)
5409 		return; /* we're not going to run the guest yet */
5410 
5411 	/*
5412 	 * Something prevents NMI from been injected. Single step over possible
5413 	 * problem (IRET or exception injection or interrupt shadow)
5414 	 */
5415 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5416 	svm->nmi_singlestep = true;
5417 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5418 }
5419 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)5420 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5421 {
5422 	return 0;
5423 }
5424 
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5425 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5426 {
5427 	return 0;
5428 }
5429 
svm_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5430 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5431 {
5432 	struct vcpu_svm *svm = to_svm(vcpu);
5433 
5434 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5435 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5436 	else
5437 		svm->asid_generation--;
5438 }
5439 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)5440 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5441 {
5442 	struct vcpu_svm *svm = to_svm(vcpu);
5443 
5444 	invlpga(gva, svm->vmcb->control.asid);
5445 }
5446 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)5447 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5448 {
5449 }
5450 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)5451 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5452 {
5453 	struct vcpu_svm *svm = to_svm(vcpu);
5454 
5455 	if (svm_nested_virtualize_tpr(vcpu))
5456 		return;
5457 
5458 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5459 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5460 		kvm_set_cr8(vcpu, cr8);
5461 	}
5462 }
5463 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)5464 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5465 {
5466 	struct vcpu_svm *svm = to_svm(vcpu);
5467 	u64 cr8;
5468 
5469 	if (svm_nested_virtualize_tpr(vcpu) ||
5470 	    kvm_vcpu_apicv_active(vcpu))
5471 		return;
5472 
5473 	cr8 = kvm_get_cr8(vcpu);
5474 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5475 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5476 }
5477 
svm_complete_interrupts(struct vcpu_svm * svm)5478 static void svm_complete_interrupts(struct vcpu_svm *svm)
5479 {
5480 	u8 vector;
5481 	int type;
5482 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
5483 	unsigned int3_injected = svm->int3_injected;
5484 
5485 	svm->int3_injected = 0;
5486 
5487 	/*
5488 	 * If we've made progress since setting HF_IRET_MASK, we've
5489 	 * executed an IRET and can allow NMI injection.
5490 	 */
5491 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5492 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5493 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5494 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5495 	}
5496 
5497 	svm->vcpu.arch.nmi_injected = false;
5498 	kvm_clear_exception_queue(&svm->vcpu);
5499 	kvm_clear_interrupt_queue(&svm->vcpu);
5500 
5501 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5502 		return;
5503 
5504 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5505 
5506 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5507 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5508 
5509 	switch (type) {
5510 	case SVM_EXITINTINFO_TYPE_NMI:
5511 		svm->vcpu.arch.nmi_injected = true;
5512 		break;
5513 	case SVM_EXITINTINFO_TYPE_EXEPT:
5514 		/*
5515 		 * In case of software exceptions, do not reinject the vector,
5516 		 * but re-execute the instruction instead. Rewind RIP first
5517 		 * if we emulated INT3 before.
5518 		 */
5519 		if (kvm_exception_is_soft(vector)) {
5520 			if (vector == BP_VECTOR && int3_injected &&
5521 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5522 				kvm_rip_write(&svm->vcpu,
5523 					      kvm_rip_read(&svm->vcpu) -
5524 					      int3_injected);
5525 			break;
5526 		}
5527 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5528 			u32 err = svm->vmcb->control.exit_int_info_err;
5529 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
5530 
5531 		} else
5532 			kvm_requeue_exception(&svm->vcpu, vector);
5533 		break;
5534 	case SVM_EXITINTINFO_TYPE_INTR:
5535 		kvm_queue_interrupt(&svm->vcpu, vector, false);
5536 		break;
5537 	default:
5538 		break;
5539 	}
5540 }
5541 
svm_cancel_injection(struct kvm_vcpu * vcpu)5542 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5543 {
5544 	struct vcpu_svm *svm = to_svm(vcpu);
5545 	struct vmcb_control_area *control = &svm->vmcb->control;
5546 
5547 	control->exit_int_info = control->event_inj;
5548 	control->exit_int_info_err = control->event_inj_err;
5549 	control->event_inj = 0;
5550 	svm_complete_interrupts(svm);
5551 }
5552 
svm_vcpu_run(struct kvm_vcpu * vcpu)5553 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5554 {
5555 	struct vcpu_svm *svm = to_svm(vcpu);
5556 
5557 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5558 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5559 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5560 
5561 	/*
5562 	 * A vmexit emulation is required before the vcpu can be executed
5563 	 * again.
5564 	 */
5565 	if (unlikely(svm->nested.exit_required))
5566 		return;
5567 
5568 	/*
5569 	 * Disable singlestep if we're injecting an interrupt/exception.
5570 	 * We don't want our modified rflags to be pushed on the stack where
5571 	 * we might not be able to easily reset them if we disabled NMI
5572 	 * singlestep later.
5573 	 */
5574 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5575 		/*
5576 		 * Event injection happens before external interrupts cause a
5577 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
5578 		 * is enough to force an immediate vmexit.
5579 		 */
5580 		disable_nmi_singlestep(svm);
5581 		smp_send_reschedule(vcpu->cpu);
5582 	}
5583 
5584 	pre_svm_run(svm);
5585 
5586 	sync_lapic_to_cr8(vcpu);
5587 
5588 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
5589 
5590 	clgi();
5591 
5592 	/*
5593 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5594 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5595 	 * is no need to worry about the conditional branch over the wrmsr
5596 	 * being speculatively taken.
5597 	 */
5598 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5599 
5600 	local_irq_enable();
5601 
5602 	asm volatile (
5603 		"push %%" _ASM_BP "; \n\t"
5604 		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5605 		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5606 		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5607 		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5608 		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5609 		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5610 #ifdef CONFIG_X86_64
5611 		"mov %c[r8](%[svm]),  %%r8  \n\t"
5612 		"mov %c[r9](%[svm]),  %%r9  \n\t"
5613 		"mov %c[r10](%[svm]), %%r10 \n\t"
5614 		"mov %c[r11](%[svm]), %%r11 \n\t"
5615 		"mov %c[r12](%[svm]), %%r12 \n\t"
5616 		"mov %c[r13](%[svm]), %%r13 \n\t"
5617 		"mov %c[r14](%[svm]), %%r14 \n\t"
5618 		"mov %c[r15](%[svm]), %%r15 \n\t"
5619 #endif
5620 
5621 		/* Enter guest mode */
5622 		"push %%" _ASM_AX " \n\t"
5623 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5624 		__ex(SVM_VMLOAD) "\n\t"
5625 		__ex(SVM_VMRUN) "\n\t"
5626 		__ex(SVM_VMSAVE) "\n\t"
5627 		"pop %%" _ASM_AX " \n\t"
5628 
5629 		/* Save guest registers, load host registers */
5630 		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5631 		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5632 		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5633 		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5634 		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5635 		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5636 #ifdef CONFIG_X86_64
5637 		"mov %%r8,  %c[r8](%[svm]) \n\t"
5638 		"mov %%r9,  %c[r9](%[svm]) \n\t"
5639 		"mov %%r10, %c[r10](%[svm]) \n\t"
5640 		"mov %%r11, %c[r11](%[svm]) \n\t"
5641 		"mov %%r12, %c[r12](%[svm]) \n\t"
5642 		"mov %%r13, %c[r13](%[svm]) \n\t"
5643 		"mov %%r14, %c[r14](%[svm]) \n\t"
5644 		"mov %%r15, %c[r15](%[svm]) \n\t"
5645 #endif
5646 		/*
5647 		* Clear host registers marked as clobbered to prevent
5648 		* speculative use.
5649 		*/
5650 		"xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5651 		"xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5652 		"xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5653 		"xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5654 		"xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5655 #ifdef CONFIG_X86_64
5656 		"xor %%r8, %%r8 \n\t"
5657 		"xor %%r9, %%r9 \n\t"
5658 		"xor %%r10, %%r10 \n\t"
5659 		"xor %%r11, %%r11 \n\t"
5660 		"xor %%r12, %%r12 \n\t"
5661 		"xor %%r13, %%r13 \n\t"
5662 		"xor %%r14, %%r14 \n\t"
5663 		"xor %%r15, %%r15 \n\t"
5664 #endif
5665 		"pop %%" _ASM_BP
5666 		:
5667 		: [svm]"a"(svm),
5668 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5669 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5670 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5671 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5672 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5673 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5674 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5675 #ifdef CONFIG_X86_64
5676 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5677 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5678 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5679 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5680 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5681 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5682 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5683 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5684 #endif
5685 		: "cc", "memory"
5686 #ifdef CONFIG_X86_64
5687 		, "rbx", "rcx", "rdx", "rsi", "rdi"
5688 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5689 #else
5690 		, "ebx", "ecx", "edx", "esi", "edi"
5691 #endif
5692 		);
5693 
5694 	/* Eliminate branch target predictions from guest mode */
5695 	vmexit_fill_RSB();
5696 
5697 #ifdef CONFIG_X86_64
5698 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5699 #else
5700 	loadsegment(fs, svm->host.fs);
5701 #ifndef CONFIG_X86_32_LAZY_GS
5702 	loadsegment(gs, svm->host.gs);
5703 #endif
5704 #endif
5705 
5706 	/*
5707 	 * We do not use IBRS in the kernel. If this vCPU has used the
5708 	 * SPEC_CTRL MSR it may have left it on; save the value and
5709 	 * turn it off. This is much more efficient than blindly adding
5710 	 * it to the atomic save/restore list. Especially as the former
5711 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5712 	 *
5713 	 * For non-nested case:
5714 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5715 	 * save it.
5716 	 *
5717 	 * For nested case:
5718 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5719 	 * save it.
5720 	 */
5721 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5722 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5723 
5724 	reload_tss(vcpu);
5725 
5726 	local_irq_disable();
5727 
5728 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5729 
5730 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
5731 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5732 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5733 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5734 
5735 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5736 		kvm_before_interrupt(&svm->vcpu);
5737 
5738 	stgi();
5739 
5740 	/* Any pending NMI will happen here */
5741 
5742 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5743 		kvm_after_interrupt(&svm->vcpu);
5744 
5745 	sync_cr8_to_lapic(vcpu);
5746 
5747 	svm->next_rip = 0;
5748 
5749 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5750 
5751 	/* if exit due to PF check for async PF */
5752 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5753 		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5754 
5755 	if (npt_enabled) {
5756 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5757 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5758 	}
5759 
5760 	/*
5761 	 * We need to handle MC intercepts here before the vcpu has a chance to
5762 	 * change the physical cpu
5763 	 */
5764 	if (unlikely(svm->vmcb->control.exit_code ==
5765 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5766 		svm_handle_mce(svm);
5767 
5768 	mark_all_clean(svm->vmcb);
5769 }
5770 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5771 
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)5772 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5773 {
5774 	struct vcpu_svm *svm = to_svm(vcpu);
5775 
5776 	svm->vmcb->save.cr3 = __sme_set(root);
5777 	mark_dirty(svm->vmcb, VMCB_CR);
5778 }
5779 
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)5780 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5781 {
5782 	struct vcpu_svm *svm = to_svm(vcpu);
5783 
5784 	svm->vmcb->control.nested_cr3 = __sme_set(root);
5785 	mark_dirty(svm->vmcb, VMCB_NPT);
5786 
5787 	/* Also sync guest cr3 here in case we live migrate */
5788 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5789 	mark_dirty(svm->vmcb, VMCB_CR);
5790 }
5791 
is_disabled(void)5792 static int is_disabled(void)
5793 {
5794 	u64 vm_cr;
5795 
5796 	rdmsrl(MSR_VM_CR, vm_cr);
5797 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5798 		return 1;
5799 
5800 	return 0;
5801 }
5802 
5803 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5804 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5805 {
5806 	/*
5807 	 * Patch in the VMMCALL instruction:
5808 	 */
5809 	hypercall[0] = 0x0f;
5810 	hypercall[1] = 0x01;
5811 	hypercall[2] = 0xd9;
5812 }
5813 
svm_check_processor_compat(void * rtn)5814 static void svm_check_processor_compat(void *rtn)
5815 {
5816 	*(int *)rtn = 0;
5817 }
5818 
svm_cpu_has_accelerated_tpr(void)5819 static bool svm_cpu_has_accelerated_tpr(void)
5820 {
5821 	return false;
5822 }
5823 
svm_has_emulated_msr(int index)5824 static bool svm_has_emulated_msr(int index)
5825 {
5826 	return true;
5827 }
5828 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)5829 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5830 {
5831 	return 0;
5832 }
5833 
svm_cpuid_update(struct kvm_vcpu * vcpu)5834 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5835 {
5836 	struct vcpu_svm *svm = to_svm(vcpu);
5837 
5838 	/* Update nrips enabled cache */
5839 	svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5840 
5841 	if (!kvm_vcpu_apicv_active(vcpu))
5842 		return;
5843 
5844 	guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5845 }
5846 
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)5847 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5848 {
5849 	switch (func) {
5850 	case 0x1:
5851 		if (avic)
5852 			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5853 		break;
5854 	case 0x80000001:
5855 		if (nested)
5856 			entry->ecx |= (1 << 2); /* Set SVM bit */
5857 		break;
5858 	case 0x8000000A:
5859 		entry->eax = 1; /* SVM revision 1 */
5860 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5861 				   ASID emulation to nested SVM */
5862 		entry->ecx = 0; /* Reserved */
5863 		entry->edx = 0; /* Per default do not support any
5864 				   additional features */
5865 
5866 		/* Support next_rip if host supports it */
5867 		if (boot_cpu_has(X86_FEATURE_NRIPS))
5868 			entry->edx |= SVM_FEATURE_NRIP;
5869 
5870 		/* Support NPT for the guest if enabled */
5871 		if (npt_enabled)
5872 			entry->edx |= SVM_FEATURE_NPT;
5873 
5874 		break;
5875 	case 0x8000001F:
5876 		/* Support memory encryption cpuid if host supports it */
5877 		if (boot_cpu_has(X86_FEATURE_SEV))
5878 			cpuid(0x8000001f, &entry->eax, &entry->ebx,
5879 				&entry->ecx, &entry->edx);
5880 
5881 	}
5882 }
5883 
svm_get_lpage_level(void)5884 static int svm_get_lpage_level(void)
5885 {
5886 	return PT_PDPE_LEVEL;
5887 }
5888 
svm_rdtscp_supported(void)5889 static bool svm_rdtscp_supported(void)
5890 {
5891 	return boot_cpu_has(X86_FEATURE_RDTSCP);
5892 }
5893 
svm_invpcid_supported(void)5894 static bool svm_invpcid_supported(void)
5895 {
5896 	return false;
5897 }
5898 
svm_mpx_supported(void)5899 static bool svm_mpx_supported(void)
5900 {
5901 	return false;
5902 }
5903 
svm_xsaves_supported(void)5904 static bool svm_xsaves_supported(void)
5905 {
5906 	return false;
5907 }
5908 
svm_umip_emulated(void)5909 static bool svm_umip_emulated(void)
5910 {
5911 	return false;
5912 }
5913 
svm_has_wbinvd_exit(void)5914 static bool svm_has_wbinvd_exit(void)
5915 {
5916 	return true;
5917 }
5918 
5919 #define PRE_EX(exit)  { .exit_code = (exit), \
5920 			.stage = X86_ICPT_PRE_EXCEPT, }
5921 #define POST_EX(exit) { .exit_code = (exit), \
5922 			.stage = X86_ICPT_POST_EXCEPT, }
5923 #define POST_MEM(exit) { .exit_code = (exit), \
5924 			.stage = X86_ICPT_POST_MEMACCESS, }
5925 
5926 static const struct __x86_intercept {
5927 	u32 exit_code;
5928 	enum x86_intercept_stage stage;
5929 } x86_intercept_map[] = {
5930 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
5931 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
5932 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
5933 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
5934 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
5935 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
5936 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
5937 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
5938 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
5939 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
5940 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
5941 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
5942 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
5943 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
5944 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
5945 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
5946 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
5947 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
5948 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
5949 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
5950 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
5951 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
5952 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
5953 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
5954 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
5955 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
5956 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
5957 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
5958 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
5959 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
5960 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
5961 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
5962 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
5963 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
5964 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
5965 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
5966 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
5967 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
5968 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
5969 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
5970 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
5971 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
5972 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
5973 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
5974 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
5975 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
5976 };
5977 
5978 #undef PRE_EX
5979 #undef POST_EX
5980 #undef POST_MEM
5981 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)5982 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5983 			       struct x86_instruction_info *info,
5984 			       enum x86_intercept_stage stage)
5985 {
5986 	struct vcpu_svm *svm = to_svm(vcpu);
5987 	int vmexit, ret = X86EMUL_CONTINUE;
5988 	struct __x86_intercept icpt_info;
5989 	struct vmcb *vmcb = svm->vmcb;
5990 
5991 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5992 		goto out;
5993 
5994 	icpt_info = x86_intercept_map[info->intercept];
5995 
5996 	if (stage != icpt_info.stage)
5997 		goto out;
5998 
5999 	switch (icpt_info.exit_code) {
6000 	case SVM_EXIT_READ_CR0:
6001 		if (info->intercept == x86_intercept_cr_read)
6002 			icpt_info.exit_code += info->modrm_reg;
6003 		break;
6004 	case SVM_EXIT_WRITE_CR0: {
6005 		unsigned long cr0, val;
6006 		u64 intercept;
6007 
6008 		if (info->intercept == x86_intercept_cr_write)
6009 			icpt_info.exit_code += info->modrm_reg;
6010 
6011 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6012 		    info->intercept == x86_intercept_clts)
6013 			break;
6014 
6015 		intercept = svm->nested.intercept;
6016 
6017 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6018 			break;
6019 
6020 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6021 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6022 
6023 		if (info->intercept == x86_intercept_lmsw) {
6024 			cr0 &= 0xfUL;
6025 			val &= 0xfUL;
6026 			/* lmsw can't clear PE - catch this here */
6027 			if (cr0 & X86_CR0_PE)
6028 				val |= X86_CR0_PE;
6029 		}
6030 
6031 		if (cr0 ^ val)
6032 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6033 
6034 		break;
6035 	}
6036 	case SVM_EXIT_READ_DR0:
6037 	case SVM_EXIT_WRITE_DR0:
6038 		icpt_info.exit_code += info->modrm_reg;
6039 		break;
6040 	case SVM_EXIT_MSR:
6041 		if (info->intercept == x86_intercept_wrmsr)
6042 			vmcb->control.exit_info_1 = 1;
6043 		else
6044 			vmcb->control.exit_info_1 = 0;
6045 		break;
6046 	case SVM_EXIT_PAUSE:
6047 		/*
6048 		 * We get this for NOP only, but pause
6049 		 * is rep not, check this here
6050 		 */
6051 		if (info->rep_prefix != REPE_PREFIX)
6052 			goto out;
6053 		break;
6054 	case SVM_EXIT_IOIO: {
6055 		u64 exit_info;
6056 		u32 bytes;
6057 
6058 		if (info->intercept == x86_intercept_in ||
6059 		    info->intercept == x86_intercept_ins) {
6060 			exit_info = ((info->src_val & 0xffff) << 16) |
6061 				SVM_IOIO_TYPE_MASK;
6062 			bytes = info->dst_bytes;
6063 		} else {
6064 			exit_info = (info->dst_val & 0xffff) << 16;
6065 			bytes = info->src_bytes;
6066 		}
6067 
6068 		if (info->intercept == x86_intercept_outs ||
6069 		    info->intercept == x86_intercept_ins)
6070 			exit_info |= SVM_IOIO_STR_MASK;
6071 
6072 		if (info->rep_prefix)
6073 			exit_info |= SVM_IOIO_REP_MASK;
6074 
6075 		bytes = min(bytes, 4u);
6076 
6077 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6078 
6079 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6080 
6081 		vmcb->control.exit_info_1 = exit_info;
6082 		vmcb->control.exit_info_2 = info->next_rip;
6083 
6084 		break;
6085 	}
6086 	default:
6087 		break;
6088 	}
6089 
6090 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6091 	if (static_cpu_has(X86_FEATURE_NRIPS))
6092 		vmcb->control.next_rip  = info->next_rip;
6093 	vmcb->control.exit_code = icpt_info.exit_code;
6094 	vmexit = nested_svm_exit_handled(svm);
6095 
6096 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6097 					   : X86EMUL_CONTINUE;
6098 
6099 out:
6100 	return ret;
6101 }
6102 
svm_handle_external_intr(struct kvm_vcpu * vcpu)6103 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6104 {
6105 	local_irq_enable();
6106 	/*
6107 	 * We must have an instruction with interrupts enabled, so
6108 	 * the timer interrupt isn't delayed by the interrupt shadow.
6109 	 */
6110 	asm("nop");
6111 	local_irq_disable();
6112 }
6113 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)6114 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6115 {
6116 	if (pause_filter_thresh)
6117 		shrink_ple_window(vcpu);
6118 }
6119 
avic_post_state_restore(struct kvm_vcpu * vcpu)6120 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6121 {
6122 	if (avic_handle_apic_id_update(vcpu) != 0)
6123 		return;
6124 	if (avic_handle_dfr_update(vcpu) != 0)
6125 		return;
6126 	avic_handle_ldr_update(vcpu);
6127 }
6128 
svm_setup_mce(struct kvm_vcpu * vcpu)6129 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6130 {
6131 	/* [63:9] are reserved. */
6132 	vcpu->arch.mcg_cap &= 0x1ff;
6133 }
6134 
svm_smi_allowed(struct kvm_vcpu * vcpu)6135 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6136 {
6137 	struct vcpu_svm *svm = to_svm(vcpu);
6138 
6139 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
6140 	if (!gif_set(svm))
6141 		return 0;
6142 
6143 	if (is_guest_mode(&svm->vcpu) &&
6144 	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6145 		/* TODO: Might need to set exit_info_1 and exit_info_2 here */
6146 		svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6147 		svm->nested.exit_required = true;
6148 		return 0;
6149 	}
6150 
6151 	return 1;
6152 }
6153 
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)6154 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6155 {
6156 	struct vcpu_svm *svm = to_svm(vcpu);
6157 	int ret;
6158 
6159 	if (is_guest_mode(vcpu)) {
6160 		/* FED8h - SVM Guest */
6161 		put_smstate(u64, smstate, 0x7ed8, 1);
6162 		/* FEE0h - SVM Guest VMCB Physical Address */
6163 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6164 
6165 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6166 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6167 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6168 
6169 		ret = nested_svm_vmexit(svm);
6170 		if (ret)
6171 			return ret;
6172 	}
6173 	return 0;
6174 }
6175 
svm_pre_leave_smm(struct kvm_vcpu * vcpu,u64 smbase)6176 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6177 {
6178 	struct vcpu_svm *svm = to_svm(vcpu);
6179 	struct vmcb *nested_vmcb;
6180 	struct page *page;
6181 	struct {
6182 		u64 guest;
6183 		u64 vmcb;
6184 	} svm_state_save;
6185 	int ret;
6186 
6187 	ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6188 				  sizeof(svm_state_save));
6189 	if (ret)
6190 		return ret;
6191 
6192 	if (svm_state_save.guest) {
6193 		vcpu->arch.hflags &= ~HF_SMM_MASK;
6194 		nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6195 		if (nested_vmcb)
6196 			enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6197 		else
6198 			ret = 1;
6199 		vcpu->arch.hflags |= HF_SMM_MASK;
6200 	}
6201 	return ret;
6202 }
6203 
enable_smi_window(struct kvm_vcpu * vcpu)6204 static int enable_smi_window(struct kvm_vcpu *vcpu)
6205 {
6206 	struct vcpu_svm *svm = to_svm(vcpu);
6207 
6208 	if (!gif_set(svm)) {
6209 		if (vgif_enabled(svm))
6210 			set_intercept(svm, INTERCEPT_STGI);
6211 		/* STGI will cause a vm exit */
6212 		return 1;
6213 	}
6214 	return 0;
6215 }
6216 
sev_asid_new(void)6217 static int sev_asid_new(void)
6218 {
6219 	int pos;
6220 
6221 	/*
6222 	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6223 	 */
6224 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6225 	if (pos >= max_sev_asid)
6226 		return -EBUSY;
6227 
6228 	set_bit(pos, sev_asid_bitmap);
6229 	return pos + 1;
6230 }
6231 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)6232 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6233 {
6234 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6235 	int asid, ret;
6236 
6237 	ret = -EBUSY;
6238 	asid = sev_asid_new();
6239 	if (asid < 0)
6240 		return ret;
6241 
6242 	ret = sev_platform_init(&argp->error);
6243 	if (ret)
6244 		goto e_free;
6245 
6246 	sev->active = true;
6247 	sev->asid = asid;
6248 	INIT_LIST_HEAD(&sev->regions_list);
6249 
6250 	return 0;
6251 
6252 e_free:
6253 	__sev_asid_free(asid);
6254 	return ret;
6255 }
6256 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)6257 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6258 {
6259 	struct sev_data_activate *data;
6260 	int asid = sev_get_asid(kvm);
6261 	int ret;
6262 
6263 	wbinvd_on_all_cpus();
6264 
6265 	ret = sev_guest_df_flush(error);
6266 	if (ret)
6267 		return ret;
6268 
6269 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6270 	if (!data)
6271 		return -ENOMEM;
6272 
6273 	/* activate ASID on the given handle */
6274 	data->handle = handle;
6275 	data->asid   = asid;
6276 	ret = sev_guest_activate(data, error);
6277 	kfree(data);
6278 
6279 	return ret;
6280 }
6281 
__sev_issue_cmd(int fd,int id,void * data,int * error)6282 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6283 {
6284 	struct fd f;
6285 	int ret;
6286 
6287 	f = fdget(fd);
6288 	if (!f.file)
6289 		return -EBADF;
6290 
6291 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
6292 
6293 	fdput(f);
6294 	return ret;
6295 }
6296 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)6297 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6298 {
6299 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6300 
6301 	return __sev_issue_cmd(sev->fd, id, data, error);
6302 }
6303 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)6304 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6305 {
6306 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6307 	struct sev_data_launch_start *start;
6308 	struct kvm_sev_launch_start params;
6309 	void *dh_blob, *session_blob;
6310 	int *error = &argp->error;
6311 	int ret;
6312 
6313 	if (!sev_guest(kvm))
6314 		return -ENOTTY;
6315 
6316 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6317 		return -EFAULT;
6318 
6319 	start = kzalloc(sizeof(*start), GFP_KERNEL);
6320 	if (!start)
6321 		return -ENOMEM;
6322 
6323 	dh_blob = NULL;
6324 	if (params.dh_uaddr) {
6325 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6326 		if (IS_ERR(dh_blob)) {
6327 			ret = PTR_ERR(dh_blob);
6328 			goto e_free;
6329 		}
6330 
6331 		start->dh_cert_address = __sme_set(__pa(dh_blob));
6332 		start->dh_cert_len = params.dh_len;
6333 	}
6334 
6335 	session_blob = NULL;
6336 	if (params.session_uaddr) {
6337 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6338 		if (IS_ERR(session_blob)) {
6339 			ret = PTR_ERR(session_blob);
6340 			goto e_free_dh;
6341 		}
6342 
6343 		start->session_address = __sme_set(__pa(session_blob));
6344 		start->session_len = params.session_len;
6345 	}
6346 
6347 	start->handle = params.handle;
6348 	start->policy = params.policy;
6349 
6350 	/* create memory encryption context */
6351 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6352 	if (ret)
6353 		goto e_free_session;
6354 
6355 	/* Bind ASID to this guest */
6356 	ret = sev_bind_asid(kvm, start->handle, error);
6357 	if (ret)
6358 		goto e_free_session;
6359 
6360 	/* return handle to userspace */
6361 	params.handle = start->handle;
6362 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6363 		sev_unbind_asid(kvm, start->handle);
6364 		ret = -EFAULT;
6365 		goto e_free_session;
6366 	}
6367 
6368 	sev->handle = start->handle;
6369 	sev->fd = argp->sev_fd;
6370 
6371 e_free_session:
6372 	kfree(session_blob);
6373 e_free_dh:
6374 	kfree(dh_blob);
6375 e_free:
6376 	kfree(start);
6377 	return ret;
6378 }
6379 
get_num_contig_pages(int idx,struct page ** inpages,unsigned long npages)6380 static int get_num_contig_pages(int idx, struct page **inpages,
6381 				unsigned long npages)
6382 {
6383 	unsigned long paddr, next_paddr;
6384 	int i = idx + 1, pages = 1;
6385 
6386 	/* find the number of contiguous pages starting from idx */
6387 	paddr = __sme_page_pa(inpages[idx]);
6388 	while (i < npages) {
6389 		next_paddr = __sme_page_pa(inpages[i++]);
6390 		if ((paddr + PAGE_SIZE) == next_paddr) {
6391 			pages++;
6392 			paddr = next_paddr;
6393 			continue;
6394 		}
6395 		break;
6396 	}
6397 
6398 	return pages;
6399 }
6400 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)6401 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6402 {
6403 	unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6404 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6405 	struct kvm_sev_launch_update_data params;
6406 	struct sev_data_launch_update_data *data;
6407 	struct page **inpages;
6408 	int i, ret, pages;
6409 
6410 	if (!sev_guest(kvm))
6411 		return -ENOTTY;
6412 
6413 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6414 		return -EFAULT;
6415 
6416 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6417 	if (!data)
6418 		return -ENOMEM;
6419 
6420 	vaddr = params.uaddr;
6421 	size = params.len;
6422 	vaddr_end = vaddr + size;
6423 
6424 	/* Lock the user memory. */
6425 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6426 	if (!inpages) {
6427 		ret = -ENOMEM;
6428 		goto e_free;
6429 	}
6430 
6431 	/*
6432 	 * The LAUNCH_UPDATE command will perform in-place encryption of the
6433 	 * memory content (i.e it will write the same memory region with C=1).
6434 	 * It's possible that the cache may contain the data with C=0, i.e.,
6435 	 * unencrypted so invalidate it first.
6436 	 */
6437 	sev_clflush_pages(inpages, npages);
6438 
6439 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6440 		int offset, len;
6441 
6442 		/*
6443 		 * If the user buffer is not page-aligned, calculate the offset
6444 		 * within the page.
6445 		 */
6446 		offset = vaddr & (PAGE_SIZE - 1);
6447 
6448 		/* Calculate the number of pages that can be encrypted in one go. */
6449 		pages = get_num_contig_pages(i, inpages, npages);
6450 
6451 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6452 
6453 		data->handle = sev->handle;
6454 		data->len = len;
6455 		data->address = __sme_page_pa(inpages[i]) + offset;
6456 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6457 		if (ret)
6458 			goto e_unpin;
6459 
6460 		size -= len;
6461 		next_vaddr = vaddr + len;
6462 	}
6463 
6464 e_unpin:
6465 	/* content of memory is updated, mark pages dirty */
6466 	for (i = 0; i < npages; i++) {
6467 		set_page_dirty_lock(inpages[i]);
6468 		mark_page_accessed(inpages[i]);
6469 	}
6470 	/* unlock the user pages */
6471 	sev_unpin_memory(kvm, inpages, npages);
6472 e_free:
6473 	kfree(data);
6474 	return ret;
6475 }
6476 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)6477 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6478 {
6479 	void __user *measure = (void __user *)(uintptr_t)argp->data;
6480 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6481 	struct sev_data_launch_measure *data;
6482 	struct kvm_sev_launch_measure params;
6483 	void __user *p = NULL;
6484 	void *blob = NULL;
6485 	int ret;
6486 
6487 	if (!sev_guest(kvm))
6488 		return -ENOTTY;
6489 
6490 	if (copy_from_user(&params, measure, sizeof(params)))
6491 		return -EFAULT;
6492 
6493 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6494 	if (!data)
6495 		return -ENOMEM;
6496 
6497 	/* User wants to query the blob length */
6498 	if (!params.len)
6499 		goto cmd;
6500 
6501 	p = (void __user *)(uintptr_t)params.uaddr;
6502 	if (p) {
6503 		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6504 			ret = -EINVAL;
6505 			goto e_free;
6506 		}
6507 
6508 		ret = -ENOMEM;
6509 		blob = kmalloc(params.len, GFP_KERNEL);
6510 		if (!blob)
6511 			goto e_free;
6512 
6513 		data->address = __psp_pa(blob);
6514 		data->len = params.len;
6515 	}
6516 
6517 cmd:
6518 	data->handle = sev->handle;
6519 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6520 
6521 	/*
6522 	 * If we query the session length, FW responded with expected data.
6523 	 */
6524 	if (!params.len)
6525 		goto done;
6526 
6527 	if (ret)
6528 		goto e_free_blob;
6529 
6530 	if (blob) {
6531 		if (copy_to_user(p, blob, params.len))
6532 			ret = -EFAULT;
6533 	}
6534 
6535 done:
6536 	params.len = data->len;
6537 	if (copy_to_user(measure, &params, sizeof(params)))
6538 		ret = -EFAULT;
6539 e_free_blob:
6540 	kfree(blob);
6541 e_free:
6542 	kfree(data);
6543 	return ret;
6544 }
6545 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)6546 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6547 {
6548 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6549 	struct sev_data_launch_finish *data;
6550 	int ret;
6551 
6552 	if (!sev_guest(kvm))
6553 		return -ENOTTY;
6554 
6555 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6556 	if (!data)
6557 		return -ENOMEM;
6558 
6559 	data->handle = sev->handle;
6560 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6561 
6562 	kfree(data);
6563 	return ret;
6564 }
6565 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)6566 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6567 {
6568 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6569 	struct kvm_sev_guest_status params;
6570 	struct sev_data_guest_status *data;
6571 	int ret;
6572 
6573 	if (!sev_guest(kvm))
6574 		return -ENOTTY;
6575 
6576 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6577 	if (!data)
6578 		return -ENOMEM;
6579 
6580 	data->handle = sev->handle;
6581 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6582 	if (ret)
6583 		goto e_free;
6584 
6585 	params.policy = data->policy;
6586 	params.state = data->state;
6587 	params.handle = data->handle;
6588 
6589 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6590 		ret = -EFAULT;
6591 e_free:
6592 	kfree(data);
6593 	return ret;
6594 }
6595 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)6596 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6597 			       unsigned long dst, int size,
6598 			       int *error, bool enc)
6599 {
6600 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6601 	struct sev_data_dbg *data;
6602 	int ret;
6603 
6604 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6605 	if (!data)
6606 		return -ENOMEM;
6607 
6608 	data->handle = sev->handle;
6609 	data->dst_addr = dst;
6610 	data->src_addr = src;
6611 	data->len = size;
6612 
6613 	ret = sev_issue_cmd(kvm,
6614 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6615 			    data, error);
6616 	kfree(data);
6617 	return ret;
6618 }
6619 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)6620 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6621 			     unsigned long dst_paddr, int sz, int *err)
6622 {
6623 	int offset;
6624 
6625 	/*
6626 	 * Its safe to read more than we are asked, caller should ensure that
6627 	 * destination has enough space.
6628 	 */
6629 	src_paddr = round_down(src_paddr, 16);
6630 	offset = src_paddr & 15;
6631 	sz = round_up(sz + offset, 16);
6632 
6633 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6634 }
6635 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user dst_uaddr,unsigned long dst_paddr,int size,int * err)6636 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6637 				  unsigned long __user dst_uaddr,
6638 				  unsigned long dst_paddr,
6639 				  int size, int *err)
6640 {
6641 	struct page *tpage = NULL;
6642 	int ret, offset;
6643 
6644 	/* if inputs are not 16-byte then use intermediate buffer */
6645 	if (!IS_ALIGNED(dst_paddr, 16) ||
6646 	    !IS_ALIGNED(paddr,     16) ||
6647 	    !IS_ALIGNED(size,      16)) {
6648 		tpage = (void *)alloc_page(GFP_KERNEL);
6649 		if (!tpage)
6650 			return -ENOMEM;
6651 
6652 		dst_paddr = __sme_page_pa(tpage);
6653 	}
6654 
6655 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6656 	if (ret)
6657 		goto e_free;
6658 
6659 	if (tpage) {
6660 		offset = paddr & 15;
6661 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6662 				 page_address(tpage) + offset, size))
6663 			ret = -EFAULT;
6664 	}
6665 
6666 e_free:
6667 	if (tpage)
6668 		__free_page(tpage);
6669 
6670 	return ret;
6671 }
6672 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user vaddr,unsigned long dst_paddr,unsigned long __user dst_vaddr,int size,int * error)6673 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6674 				  unsigned long __user vaddr,
6675 				  unsigned long dst_paddr,
6676 				  unsigned long __user dst_vaddr,
6677 				  int size, int *error)
6678 {
6679 	struct page *src_tpage = NULL;
6680 	struct page *dst_tpage = NULL;
6681 	int ret, len = size;
6682 
6683 	/* If source buffer is not aligned then use an intermediate buffer */
6684 	if (!IS_ALIGNED(vaddr, 16)) {
6685 		src_tpage = alloc_page(GFP_KERNEL);
6686 		if (!src_tpage)
6687 			return -ENOMEM;
6688 
6689 		if (copy_from_user(page_address(src_tpage),
6690 				(void __user *)(uintptr_t)vaddr, size)) {
6691 			__free_page(src_tpage);
6692 			return -EFAULT;
6693 		}
6694 
6695 		paddr = __sme_page_pa(src_tpage);
6696 	}
6697 
6698 	/*
6699 	 *  If destination buffer or length is not aligned then do read-modify-write:
6700 	 *   - decrypt destination in an intermediate buffer
6701 	 *   - copy the source buffer in an intermediate buffer
6702 	 *   - use the intermediate buffer as source buffer
6703 	 */
6704 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6705 		int dst_offset;
6706 
6707 		dst_tpage = alloc_page(GFP_KERNEL);
6708 		if (!dst_tpage) {
6709 			ret = -ENOMEM;
6710 			goto e_free;
6711 		}
6712 
6713 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
6714 					__sme_page_pa(dst_tpage), size, error);
6715 		if (ret)
6716 			goto e_free;
6717 
6718 		/*
6719 		 *  If source is kernel buffer then use memcpy() otherwise
6720 		 *  copy_from_user().
6721 		 */
6722 		dst_offset = dst_paddr & 15;
6723 
6724 		if (src_tpage)
6725 			memcpy(page_address(dst_tpage) + dst_offset,
6726 			       page_address(src_tpage), size);
6727 		else {
6728 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
6729 					   (void __user *)(uintptr_t)vaddr, size)) {
6730 				ret = -EFAULT;
6731 				goto e_free;
6732 			}
6733 		}
6734 
6735 		paddr = __sme_page_pa(dst_tpage);
6736 		dst_paddr = round_down(dst_paddr, 16);
6737 		len = round_up(size, 16);
6738 	}
6739 
6740 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6741 
6742 e_free:
6743 	if (src_tpage)
6744 		__free_page(src_tpage);
6745 	if (dst_tpage)
6746 		__free_page(dst_tpage);
6747 	return ret;
6748 }
6749 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)6750 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6751 {
6752 	unsigned long vaddr, vaddr_end, next_vaddr;
6753 	unsigned long dst_vaddr;
6754 	struct page **src_p, **dst_p;
6755 	struct kvm_sev_dbg debug;
6756 	unsigned long n;
6757 	int ret, size;
6758 
6759 	if (!sev_guest(kvm))
6760 		return -ENOTTY;
6761 
6762 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6763 		return -EFAULT;
6764 
6765 	vaddr = debug.src_uaddr;
6766 	size = debug.len;
6767 	vaddr_end = vaddr + size;
6768 	dst_vaddr = debug.dst_uaddr;
6769 
6770 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6771 		int len, s_off, d_off;
6772 
6773 		/* lock userspace source and destination page */
6774 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6775 		if (!src_p)
6776 			return -EFAULT;
6777 
6778 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6779 		if (!dst_p) {
6780 			sev_unpin_memory(kvm, src_p, n);
6781 			return -EFAULT;
6782 		}
6783 
6784 		/*
6785 		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6786 		 * memory content (i.e it will write the same memory region with C=1).
6787 		 * It's possible that the cache may contain the data with C=0, i.e.,
6788 		 * unencrypted so invalidate it first.
6789 		 */
6790 		sev_clflush_pages(src_p, 1);
6791 		sev_clflush_pages(dst_p, 1);
6792 
6793 		/*
6794 		 * Since user buffer may not be page aligned, calculate the
6795 		 * offset within the page.
6796 		 */
6797 		s_off = vaddr & ~PAGE_MASK;
6798 		d_off = dst_vaddr & ~PAGE_MASK;
6799 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
6800 
6801 		if (dec)
6802 			ret = __sev_dbg_decrypt_user(kvm,
6803 						     __sme_page_pa(src_p[0]) + s_off,
6804 						     dst_vaddr,
6805 						     __sme_page_pa(dst_p[0]) + d_off,
6806 						     len, &argp->error);
6807 		else
6808 			ret = __sev_dbg_encrypt_user(kvm,
6809 						     __sme_page_pa(src_p[0]) + s_off,
6810 						     vaddr,
6811 						     __sme_page_pa(dst_p[0]) + d_off,
6812 						     dst_vaddr,
6813 						     len, &argp->error);
6814 
6815 		sev_unpin_memory(kvm, src_p, 1);
6816 		sev_unpin_memory(kvm, dst_p, 1);
6817 
6818 		if (ret)
6819 			goto err;
6820 
6821 		next_vaddr = vaddr + len;
6822 		dst_vaddr = dst_vaddr + len;
6823 		size -= len;
6824 	}
6825 err:
6826 	return ret;
6827 }
6828 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)6829 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6830 {
6831 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6832 	struct sev_data_launch_secret *data;
6833 	struct kvm_sev_launch_secret params;
6834 	struct page **pages;
6835 	void *blob, *hdr;
6836 	unsigned long n;
6837 	int ret, offset;
6838 
6839 	if (!sev_guest(kvm))
6840 		return -ENOTTY;
6841 
6842 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6843 		return -EFAULT;
6844 
6845 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6846 	if (!pages)
6847 		return -ENOMEM;
6848 
6849 	/*
6850 	 * The secret must be copied into contiguous memory region, lets verify
6851 	 * that userspace memory pages are contiguous before we issue command.
6852 	 */
6853 	if (get_num_contig_pages(0, pages, n) != n) {
6854 		ret = -EINVAL;
6855 		goto e_unpin_memory;
6856 	}
6857 
6858 	ret = -ENOMEM;
6859 	data = kzalloc(sizeof(*data), GFP_KERNEL);
6860 	if (!data)
6861 		goto e_unpin_memory;
6862 
6863 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
6864 	data->guest_address = __sme_page_pa(pages[0]) + offset;
6865 	data->guest_len = params.guest_len;
6866 
6867 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6868 	if (IS_ERR(blob)) {
6869 		ret = PTR_ERR(blob);
6870 		goto e_free;
6871 	}
6872 
6873 	data->trans_address = __psp_pa(blob);
6874 	data->trans_len = params.trans_len;
6875 
6876 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6877 	if (IS_ERR(hdr)) {
6878 		ret = PTR_ERR(hdr);
6879 		goto e_free_blob;
6880 	}
6881 	data->hdr_address = __psp_pa(hdr);
6882 	data->hdr_len = params.hdr_len;
6883 
6884 	data->handle = sev->handle;
6885 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6886 
6887 	kfree(hdr);
6888 
6889 e_free_blob:
6890 	kfree(blob);
6891 e_free:
6892 	kfree(data);
6893 e_unpin_memory:
6894 	sev_unpin_memory(kvm, pages, n);
6895 	return ret;
6896 }
6897 
svm_mem_enc_op(struct kvm * kvm,void __user * argp)6898 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6899 {
6900 	struct kvm_sev_cmd sev_cmd;
6901 	int r;
6902 
6903 	if (!svm_sev_enabled())
6904 		return -ENOTTY;
6905 
6906 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6907 		return -EFAULT;
6908 
6909 	mutex_lock(&kvm->lock);
6910 
6911 	switch (sev_cmd.id) {
6912 	case KVM_SEV_INIT:
6913 		r = sev_guest_init(kvm, &sev_cmd);
6914 		break;
6915 	case KVM_SEV_LAUNCH_START:
6916 		r = sev_launch_start(kvm, &sev_cmd);
6917 		break;
6918 	case KVM_SEV_LAUNCH_UPDATE_DATA:
6919 		r = sev_launch_update_data(kvm, &sev_cmd);
6920 		break;
6921 	case KVM_SEV_LAUNCH_MEASURE:
6922 		r = sev_launch_measure(kvm, &sev_cmd);
6923 		break;
6924 	case KVM_SEV_LAUNCH_FINISH:
6925 		r = sev_launch_finish(kvm, &sev_cmd);
6926 		break;
6927 	case KVM_SEV_GUEST_STATUS:
6928 		r = sev_guest_status(kvm, &sev_cmd);
6929 		break;
6930 	case KVM_SEV_DBG_DECRYPT:
6931 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
6932 		break;
6933 	case KVM_SEV_DBG_ENCRYPT:
6934 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
6935 		break;
6936 	case KVM_SEV_LAUNCH_SECRET:
6937 		r = sev_launch_secret(kvm, &sev_cmd);
6938 		break;
6939 	default:
6940 		r = -EINVAL;
6941 		goto out;
6942 	}
6943 
6944 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6945 		r = -EFAULT;
6946 
6947 out:
6948 	mutex_unlock(&kvm->lock);
6949 	return r;
6950 }
6951 
svm_register_enc_region(struct kvm * kvm,struct kvm_enc_region * range)6952 static int svm_register_enc_region(struct kvm *kvm,
6953 				   struct kvm_enc_region *range)
6954 {
6955 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6956 	struct enc_region *region;
6957 	int ret = 0;
6958 
6959 	if (!sev_guest(kvm))
6960 		return -ENOTTY;
6961 
6962 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6963 		return -EINVAL;
6964 
6965 	region = kzalloc(sizeof(*region), GFP_KERNEL);
6966 	if (!region)
6967 		return -ENOMEM;
6968 
6969 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6970 	if (!region->pages) {
6971 		ret = -ENOMEM;
6972 		goto e_free;
6973 	}
6974 
6975 	/*
6976 	 * The guest may change the memory encryption attribute from C=0 -> C=1
6977 	 * or vice versa for this memory range. Lets make sure caches are
6978 	 * flushed to ensure that guest data gets written into memory with
6979 	 * correct C-bit.
6980 	 */
6981 	sev_clflush_pages(region->pages, region->npages);
6982 
6983 	region->uaddr = range->addr;
6984 	region->size = range->size;
6985 
6986 	mutex_lock(&kvm->lock);
6987 	list_add_tail(&region->list, &sev->regions_list);
6988 	mutex_unlock(&kvm->lock);
6989 
6990 	return ret;
6991 
6992 e_free:
6993 	kfree(region);
6994 	return ret;
6995 }
6996 
6997 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)6998 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6999 {
7000 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7001 	struct list_head *head = &sev->regions_list;
7002 	struct enc_region *i;
7003 
7004 	list_for_each_entry(i, head, list) {
7005 		if (i->uaddr == range->addr &&
7006 		    i->size == range->size)
7007 			return i;
7008 	}
7009 
7010 	return NULL;
7011 }
7012 
7013 
svm_unregister_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7014 static int svm_unregister_enc_region(struct kvm *kvm,
7015 				     struct kvm_enc_region *range)
7016 {
7017 	struct enc_region *region;
7018 	int ret;
7019 
7020 	mutex_lock(&kvm->lock);
7021 
7022 	if (!sev_guest(kvm)) {
7023 		ret = -ENOTTY;
7024 		goto failed;
7025 	}
7026 
7027 	region = find_enc_region(kvm, range);
7028 	if (!region) {
7029 		ret = -EINVAL;
7030 		goto failed;
7031 	}
7032 
7033 	__unregister_enc_region_locked(kvm, region);
7034 
7035 	mutex_unlock(&kvm->lock);
7036 	return 0;
7037 
7038 failed:
7039 	mutex_unlock(&kvm->lock);
7040 	return ret;
7041 }
7042 
7043 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7044 	.cpu_has_kvm_support = has_svm,
7045 	.disabled_by_bios = is_disabled,
7046 	.hardware_setup = svm_hardware_setup,
7047 	.hardware_unsetup = svm_hardware_unsetup,
7048 	.check_processor_compatibility = svm_check_processor_compat,
7049 	.hardware_enable = svm_hardware_enable,
7050 	.hardware_disable = svm_hardware_disable,
7051 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7052 	.has_emulated_msr = svm_has_emulated_msr,
7053 
7054 	.vcpu_create = svm_create_vcpu,
7055 	.vcpu_free = svm_free_vcpu,
7056 	.vcpu_reset = svm_vcpu_reset,
7057 
7058 	.vm_alloc = svm_vm_alloc,
7059 	.vm_free = svm_vm_free,
7060 	.vm_init = avic_vm_init,
7061 	.vm_destroy = svm_vm_destroy,
7062 
7063 	.prepare_guest_switch = svm_prepare_guest_switch,
7064 	.vcpu_load = svm_vcpu_load,
7065 	.vcpu_put = svm_vcpu_put,
7066 	.vcpu_blocking = svm_vcpu_blocking,
7067 	.vcpu_unblocking = svm_vcpu_unblocking,
7068 
7069 	.update_bp_intercept = update_bp_intercept,
7070 	.get_msr_feature = svm_get_msr_feature,
7071 	.get_msr = svm_get_msr,
7072 	.set_msr = svm_set_msr,
7073 	.get_segment_base = svm_get_segment_base,
7074 	.get_segment = svm_get_segment,
7075 	.set_segment = svm_set_segment,
7076 	.get_cpl = svm_get_cpl,
7077 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7078 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7079 	.decache_cr3 = svm_decache_cr3,
7080 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7081 	.set_cr0 = svm_set_cr0,
7082 	.set_cr3 = svm_set_cr3,
7083 	.set_cr4 = svm_set_cr4,
7084 	.set_efer = svm_set_efer,
7085 	.get_idt = svm_get_idt,
7086 	.set_idt = svm_set_idt,
7087 	.get_gdt = svm_get_gdt,
7088 	.set_gdt = svm_set_gdt,
7089 	.get_dr6 = svm_get_dr6,
7090 	.set_dr6 = svm_set_dr6,
7091 	.set_dr7 = svm_set_dr7,
7092 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7093 	.cache_reg = svm_cache_reg,
7094 	.get_rflags = svm_get_rflags,
7095 	.set_rflags = svm_set_rflags,
7096 
7097 	.tlb_flush = svm_flush_tlb,
7098 	.tlb_flush_gva = svm_flush_tlb_gva,
7099 
7100 	.run = svm_vcpu_run,
7101 	.handle_exit = handle_exit,
7102 	.skip_emulated_instruction = skip_emulated_instruction,
7103 	.set_interrupt_shadow = svm_set_interrupt_shadow,
7104 	.get_interrupt_shadow = svm_get_interrupt_shadow,
7105 	.patch_hypercall = svm_patch_hypercall,
7106 	.set_irq = svm_set_irq,
7107 	.set_nmi = svm_inject_nmi,
7108 	.queue_exception = svm_queue_exception,
7109 	.cancel_injection = svm_cancel_injection,
7110 	.interrupt_allowed = svm_interrupt_allowed,
7111 	.nmi_allowed = svm_nmi_allowed,
7112 	.get_nmi_mask = svm_get_nmi_mask,
7113 	.set_nmi_mask = svm_set_nmi_mask,
7114 	.enable_nmi_window = enable_nmi_window,
7115 	.enable_irq_window = enable_irq_window,
7116 	.update_cr8_intercept = update_cr8_intercept,
7117 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
7118 	.get_enable_apicv = svm_get_enable_apicv,
7119 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7120 	.load_eoi_exitmap = svm_load_eoi_exitmap,
7121 	.hwapic_irr_update = svm_hwapic_irr_update,
7122 	.hwapic_isr_update = svm_hwapic_isr_update,
7123 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
7124 	.apicv_post_state_restore = avic_post_state_restore,
7125 
7126 	.set_tss_addr = svm_set_tss_addr,
7127 	.set_identity_map_addr = svm_set_identity_map_addr,
7128 	.get_tdp_level = get_npt_level,
7129 	.get_mt_mask = svm_get_mt_mask,
7130 
7131 	.get_exit_info = svm_get_exit_info,
7132 
7133 	.get_lpage_level = svm_get_lpage_level,
7134 
7135 	.cpuid_update = svm_cpuid_update,
7136 
7137 	.rdtscp_supported = svm_rdtscp_supported,
7138 	.invpcid_supported = svm_invpcid_supported,
7139 	.mpx_supported = svm_mpx_supported,
7140 	.xsaves_supported = svm_xsaves_supported,
7141 	.umip_emulated = svm_umip_emulated,
7142 
7143 	.set_supported_cpuid = svm_set_supported_cpuid,
7144 
7145 	.has_wbinvd_exit = svm_has_wbinvd_exit,
7146 
7147 	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
7148 	.write_tsc_offset = svm_write_tsc_offset,
7149 
7150 	.set_tdp_cr3 = set_tdp_cr3,
7151 
7152 	.check_intercept = svm_check_intercept,
7153 	.handle_external_intr = svm_handle_external_intr,
7154 
7155 	.request_immediate_exit = __kvm_request_immediate_exit,
7156 
7157 	.sched_in = svm_sched_in,
7158 
7159 	.pmu_ops = &amd_pmu_ops,
7160 	.deliver_posted_interrupt = svm_deliver_avic_intr,
7161 	.update_pi_irte = svm_update_pi_irte,
7162 	.setup_mce = svm_setup_mce,
7163 
7164 	.smi_allowed = svm_smi_allowed,
7165 	.pre_enter_smm = svm_pre_enter_smm,
7166 	.pre_leave_smm = svm_pre_leave_smm,
7167 	.enable_smi_window = enable_smi_window,
7168 
7169 	.mem_enc_op = svm_mem_enc_op,
7170 	.mem_enc_reg_region = svm_register_enc_region,
7171 	.mem_enc_unreg_region = svm_unregister_enc_region,
7172 };
7173 
svm_init(void)7174 static int __init svm_init(void)
7175 {
7176 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7177 			__alignof__(struct vcpu_svm), THIS_MODULE);
7178 }
7179 
svm_exit(void)7180 static void __exit svm_exit(void)
7181 {
7182 	kvm_exit();
7183 }
7184 
7185 module_init(svm_init)
7186 module_exit(svm_exit)
7187