1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
83
84 #define SVM_AVIC_DOORBELL 0xc001011b
85
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
101 */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
141 };
142
143 struct kvm_svm {
144 struct kvm kvm;
145
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 u32 ldr_mode;
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
152
153 struct kvm_sev_info sev_info;
154 };
155
156 struct kvm_vcpu;
157
158 struct nested_state {
159 struct vmcb *hsave;
160 u64 hsave_msr;
161 u64 vm_cr_msr;
162 u64 vmcb;
163
164 /* These are the merged vectors */
165 u32 *msrpm;
166
167 /* gpa pointers to the real vectors */
168 u64 vmcb_msrpm;
169 u64 vmcb_iopm;
170
171 /* A VMEXIT is required but not yet emulated */
172 bool exit_required;
173
174 /* cache for intercepts of the guest */
175 u32 intercept_cr;
176 u32 intercept_dr;
177 u32 intercept_exceptions;
178 u64 intercept;
179
180 /* Nested Paging related state */
181 u64 nested_cr3;
182 };
183
184 #define MSRPM_OFFSETS 16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187 /*
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
190 */
191 static uint64_t osvw_len = 4, osvw_status;
192
193 struct vcpu_svm {
194 struct kvm_vcpu vcpu;
195 struct vmcb *vmcb;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
201 uint64_t tsc_aux;
202
203 u64 msr_decfg;
204
205 u64 next_rip;
206
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 struct {
209 u16 fs;
210 u16 gs;
211 u16 ldt;
212 u64 gs_base;
213 } host;
214
215 u64 spec_ctrl;
216 /*
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
220 */
221 u64 virt_spec_ctrl;
222
223 u32 *msrpm;
224
225 ulong nmi_iret_rip;
226
227 struct nested_state nested;
228
229 bool nmi_singlestep;
230 u64 nmi_singlestep_guest_rflags;
231
232 unsigned int3_injected;
233 unsigned long int3_rip;
234
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
237
238 u32 ldr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
242
243 /*
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
248 */
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
251
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
254 };
255
256 /*
257 * This is a wrapper of struct amd_iommu_ir_data.
258 */
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
266
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
271
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT 0x0100000000ULL
274
275 #define MSR_INVALID 0xffffffffU
276
277 static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283 #ifdef CONFIG_X86_64
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
290 #endif
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
298 };
299
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306
307 /*
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
317 *
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
334 * count only mode.
335 */
336
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
392
393 enum {
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
409 */
410 VMCB_DIRTY_MAX,
411 };
412
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
417
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423 struct enc_region {
424 struct list_head list;
425 unsigned long npages;
426 struct page **pages;
427 unsigned long uaddr;
428 unsigned long size;
429 };
430
431
to_kvm_svm(struct kvm * kvm)432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434 return container_of(kvm, struct kvm_svm, kvm);
435 }
436
svm_sev_enabled(void)437 static inline bool svm_sev_enabled(void)
438 {
439 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440 }
441
sev_guest(struct kvm * kvm)442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 #ifdef CONFIG_KVM_AMD_SEV
445 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446
447 return sev->active;
448 #else
449 return false;
450 #endif
451 }
452
sev_get_asid(struct kvm * kvm)453 static inline int sev_get_asid(struct kvm *kvm)
454 {
455 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456
457 return sev->asid;
458 }
459
mark_all_dirty(struct vmcb * vmcb)460 static inline void mark_all_dirty(struct vmcb *vmcb)
461 {
462 vmcb->control.clean = 0;
463 }
464
mark_all_clean(struct vmcb * vmcb)465 static inline void mark_all_clean(struct vmcb *vmcb)
466 {
467 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468 & ~VMCB_ALWAYS_DIRTY_MASK;
469 }
470
mark_dirty(struct vmcb * vmcb,int bit)471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
472 {
473 vmcb->control.clean &= ~(1 << bit);
474 }
475
to_svm(struct kvm_vcpu * vcpu)476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477 {
478 return container_of(vcpu, struct vcpu_svm, vcpu);
479 }
480
avic_update_vapic_bar(struct vcpu_svm * svm,u64 data)481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482 {
483 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484 mark_dirty(svm->vmcb, VMCB_AVIC);
485 }
486
avic_vcpu_is_running(struct kvm_vcpu * vcpu)487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488 {
489 struct vcpu_svm *svm = to_svm(vcpu);
490 u64 *entry = svm->avic_physical_id_cache;
491
492 if (!entry)
493 return false;
494
495 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496 }
497
recalc_intercepts(struct vcpu_svm * svm)498 static void recalc_intercepts(struct vcpu_svm *svm)
499 {
500 struct vmcb_control_area *c, *h;
501 struct nested_state *g;
502
503 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504
505 if (!is_guest_mode(&svm->vcpu))
506 return;
507
508 c = &svm->vmcb->control;
509 h = &svm->nested.hsave->control;
510 g = &svm->nested;
511
512 c->intercept_cr = h->intercept_cr | g->intercept_cr;
513 c->intercept_dr = h->intercept_dr | g->intercept_dr;
514 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515 c->intercept = h->intercept | g->intercept;
516 }
517
get_host_vmcb(struct vcpu_svm * svm)518 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
519 {
520 if (is_guest_mode(&svm->vcpu))
521 return svm->nested.hsave;
522 else
523 return svm->vmcb;
524 }
525
set_cr_intercept(struct vcpu_svm * svm,int bit)526 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
527 {
528 struct vmcb *vmcb = get_host_vmcb(svm);
529
530 vmcb->control.intercept_cr |= (1U << bit);
531
532 recalc_intercepts(svm);
533 }
534
clr_cr_intercept(struct vcpu_svm * svm,int bit)535 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
536 {
537 struct vmcb *vmcb = get_host_vmcb(svm);
538
539 vmcb->control.intercept_cr &= ~(1U << bit);
540
541 recalc_intercepts(svm);
542 }
543
is_cr_intercept(struct vcpu_svm * svm,int bit)544 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
545 {
546 struct vmcb *vmcb = get_host_vmcb(svm);
547
548 return vmcb->control.intercept_cr & (1U << bit);
549 }
550
set_dr_intercepts(struct vcpu_svm * svm)551 static inline void set_dr_intercepts(struct vcpu_svm *svm)
552 {
553 struct vmcb *vmcb = get_host_vmcb(svm);
554
555 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556 | (1 << INTERCEPT_DR1_READ)
557 | (1 << INTERCEPT_DR2_READ)
558 | (1 << INTERCEPT_DR3_READ)
559 | (1 << INTERCEPT_DR4_READ)
560 | (1 << INTERCEPT_DR5_READ)
561 | (1 << INTERCEPT_DR6_READ)
562 | (1 << INTERCEPT_DR7_READ)
563 | (1 << INTERCEPT_DR0_WRITE)
564 | (1 << INTERCEPT_DR1_WRITE)
565 | (1 << INTERCEPT_DR2_WRITE)
566 | (1 << INTERCEPT_DR3_WRITE)
567 | (1 << INTERCEPT_DR4_WRITE)
568 | (1 << INTERCEPT_DR5_WRITE)
569 | (1 << INTERCEPT_DR6_WRITE)
570 | (1 << INTERCEPT_DR7_WRITE);
571
572 recalc_intercepts(svm);
573 }
574
clr_dr_intercepts(struct vcpu_svm * svm)575 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
576 {
577 struct vmcb *vmcb = get_host_vmcb(svm);
578
579 vmcb->control.intercept_dr = 0;
580
581 recalc_intercepts(svm);
582 }
583
set_exception_intercept(struct vcpu_svm * svm,int bit)584 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
585 {
586 struct vmcb *vmcb = get_host_vmcb(svm);
587
588 vmcb->control.intercept_exceptions |= (1U << bit);
589
590 recalc_intercepts(svm);
591 }
592
clr_exception_intercept(struct vcpu_svm * svm,int bit)593 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
594 {
595 struct vmcb *vmcb = get_host_vmcb(svm);
596
597 vmcb->control.intercept_exceptions &= ~(1U << bit);
598
599 recalc_intercepts(svm);
600 }
601
set_intercept(struct vcpu_svm * svm,int bit)602 static inline void set_intercept(struct vcpu_svm *svm, int bit)
603 {
604 struct vmcb *vmcb = get_host_vmcb(svm);
605
606 vmcb->control.intercept |= (1ULL << bit);
607
608 recalc_intercepts(svm);
609 }
610
clr_intercept(struct vcpu_svm * svm,int bit)611 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
612 {
613 struct vmcb *vmcb = get_host_vmcb(svm);
614
615 vmcb->control.intercept &= ~(1ULL << bit);
616
617 recalc_intercepts(svm);
618 }
619
vgif_enabled(struct vcpu_svm * svm)620 static inline bool vgif_enabled(struct vcpu_svm *svm)
621 {
622 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
623 }
624
enable_gif(struct vcpu_svm * svm)625 static inline void enable_gif(struct vcpu_svm *svm)
626 {
627 if (vgif_enabled(svm))
628 svm->vmcb->control.int_ctl |= V_GIF_MASK;
629 else
630 svm->vcpu.arch.hflags |= HF_GIF_MASK;
631 }
632
disable_gif(struct vcpu_svm * svm)633 static inline void disable_gif(struct vcpu_svm *svm)
634 {
635 if (vgif_enabled(svm))
636 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
637 else
638 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
639 }
640
gif_set(struct vcpu_svm * svm)641 static inline bool gif_set(struct vcpu_svm *svm)
642 {
643 if (vgif_enabled(svm))
644 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
645 else
646 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
647 }
648
649 static unsigned long iopm_base;
650
651 struct kvm_ldttss_desc {
652 u16 limit0;
653 u16 base0;
654 unsigned base1:8, type:5, dpl:2, p:1;
655 unsigned limit1:4, zero0:3, g:1, base2:8;
656 u32 base3;
657 u32 zero1;
658 } __attribute__((packed));
659
660 struct svm_cpu_data {
661 int cpu;
662
663 u64 asid_generation;
664 u32 max_asid;
665 u32 next_asid;
666 u32 min_asid;
667 struct kvm_ldttss_desc *tss_desc;
668
669 struct page *save_area;
670 struct vmcb *current_vmcb;
671
672 /* index = sev_asid, value = vmcb pointer */
673 struct vmcb **sev_vmcbs;
674 };
675
676 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
677
678 struct svm_init_data {
679 int cpu;
680 int r;
681 };
682
683 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
684
685 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686 #define MSRS_RANGE_SIZE 2048
687 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
688
svm_msrpm_offset(u32 msr)689 static u32 svm_msrpm_offset(u32 msr)
690 {
691 u32 offset;
692 int i;
693
694 for (i = 0; i < NUM_MSR_MAPS; i++) {
695 if (msr < msrpm_ranges[i] ||
696 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697 continue;
698
699 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
701
702 /* Now we have the u8 offset - but need the u32 offset */
703 return offset / 4;
704 }
705
706 /* MSR not in any range */
707 return MSR_INVALID;
708 }
709
710 #define MAX_INST_SIZE 15
711
clgi(void)712 static inline void clgi(void)
713 {
714 asm volatile (__ex(SVM_CLGI));
715 }
716
stgi(void)717 static inline void stgi(void)
718 {
719 asm volatile (__ex(SVM_STGI));
720 }
721
invlpga(unsigned long addr,u32 asid)722 static inline void invlpga(unsigned long addr, u32 asid)
723 {
724 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
725 }
726
get_npt_level(struct kvm_vcpu * vcpu)727 static int get_npt_level(struct kvm_vcpu *vcpu)
728 {
729 #ifdef CONFIG_X86_64
730 return PT64_ROOT_4LEVEL;
731 #else
732 return PT32E_ROOT_LEVEL;
733 #endif
734 }
735
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)736 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
737 {
738 vcpu->arch.efer = efer;
739 if (!npt_enabled && !(efer & EFER_LMA))
740 efer &= ~EFER_LME;
741
742 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
744 }
745
is_external_interrupt(u32 info)746 static int is_external_interrupt(u32 info)
747 {
748 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
750 }
751
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)752 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
753 {
754 struct vcpu_svm *svm = to_svm(vcpu);
755 u32 ret = 0;
756
757 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
759 return ret;
760 }
761
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)762 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
763 {
764 struct vcpu_svm *svm = to_svm(vcpu);
765
766 if (mask == 0)
767 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
768 else
769 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
770
771 }
772
skip_emulated_instruction(struct kvm_vcpu * vcpu)773 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
774 {
775 struct vcpu_svm *svm = to_svm(vcpu);
776
777 if (svm->vmcb->control.next_rip != 0) {
778 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779 svm->next_rip = svm->vmcb->control.next_rip;
780 }
781
782 if (!svm->next_rip) {
783 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
784 EMULATE_DONE)
785 printk(KERN_DEBUG "%s: NOP\n", __func__);
786 return;
787 }
788 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
789 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
790 __func__, kvm_rip_read(vcpu), svm->next_rip);
791
792 kvm_rip_write(vcpu, svm->next_rip);
793 svm_set_interrupt_shadow(vcpu, 0);
794 }
795
svm_queue_exception(struct kvm_vcpu * vcpu)796 static void svm_queue_exception(struct kvm_vcpu *vcpu)
797 {
798 struct vcpu_svm *svm = to_svm(vcpu);
799 unsigned nr = vcpu->arch.exception.nr;
800 bool has_error_code = vcpu->arch.exception.has_error_code;
801 bool reinject = vcpu->arch.exception.injected;
802 u32 error_code = vcpu->arch.exception.error_code;
803
804 /*
805 * If we are within a nested VM we'd better #VMEXIT and let the guest
806 * handle the exception
807 */
808 if (!reinject &&
809 nested_svm_check_exception(svm, nr, has_error_code, error_code))
810 return;
811
812 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
813 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
814
815 /*
816 * For guest debugging where we have to reinject #BP if some
817 * INT3 is guest-owned:
818 * Emulate nRIP by moving RIP forward. Will fail if injection
819 * raises a fault that is not intercepted. Still better than
820 * failing in all cases.
821 */
822 skip_emulated_instruction(&svm->vcpu);
823 rip = kvm_rip_read(&svm->vcpu);
824 svm->int3_rip = rip + svm->vmcb->save.cs.base;
825 svm->int3_injected = rip - old_rip;
826 }
827
828 svm->vmcb->control.event_inj = nr
829 | SVM_EVTINJ_VALID
830 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
831 | SVM_EVTINJ_TYPE_EXEPT;
832 svm->vmcb->control.event_inj_err = error_code;
833 }
834
svm_init_erratum_383(void)835 static void svm_init_erratum_383(void)
836 {
837 u32 low, high;
838 int err;
839 u64 val;
840
841 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
842 return;
843
844 /* Use _safe variants to not break nested virtualization */
845 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
846 if (err)
847 return;
848
849 val |= (1ULL << 47);
850
851 low = lower_32_bits(val);
852 high = upper_32_bits(val);
853
854 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
855
856 erratum_383_found = true;
857 }
858
svm_init_osvw(struct kvm_vcpu * vcpu)859 static void svm_init_osvw(struct kvm_vcpu *vcpu)
860 {
861 /*
862 * Guests should see errata 400 and 415 as fixed (assuming that
863 * HLT and IO instructions are intercepted).
864 */
865 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
866 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
867
868 /*
869 * By increasing VCPU's osvw.length to 3 we are telling the guest that
870 * all osvw.status bits inside that length, including bit 0 (which is
871 * reserved for erratum 298), are valid. However, if host processor's
872 * osvw_len is 0 then osvw_status[0] carries no information. We need to
873 * be conservative here and therefore we tell the guest that erratum 298
874 * is present (because we really don't know).
875 */
876 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
877 vcpu->arch.osvw.status |= 1;
878 }
879
has_svm(void)880 static int has_svm(void)
881 {
882 const char *msg;
883
884 if (!cpu_has_svm(&msg)) {
885 printk(KERN_INFO "has_svm: %s\n", msg);
886 return 0;
887 }
888
889 return 1;
890 }
891
svm_hardware_disable(void)892 static void svm_hardware_disable(void)
893 {
894 /* Make sure we clean up behind us */
895 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
896 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
897
898 cpu_svm_disable();
899
900 amd_pmu_disable_virt();
901 }
902
svm_hardware_enable(void)903 static int svm_hardware_enable(void)
904 {
905
906 struct svm_cpu_data *sd;
907 uint64_t efer;
908 struct desc_struct *gdt;
909 int me = raw_smp_processor_id();
910
911 rdmsrl(MSR_EFER, efer);
912 if (efer & EFER_SVME)
913 return -EBUSY;
914
915 if (!has_svm()) {
916 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
917 return -EINVAL;
918 }
919 sd = per_cpu(svm_data, me);
920 if (!sd) {
921 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
922 return -EINVAL;
923 }
924
925 sd->asid_generation = 1;
926 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
927 sd->next_asid = sd->max_asid + 1;
928 sd->min_asid = max_sev_asid + 1;
929
930 gdt = get_current_gdt_rw();
931 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
932
933 wrmsrl(MSR_EFER, efer | EFER_SVME);
934
935 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
936
937 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
938 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
939 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
940 }
941
942
943 /*
944 * Get OSVW bits.
945 *
946 * Note that it is possible to have a system with mixed processor
947 * revisions and therefore different OSVW bits. If bits are not the same
948 * on different processors then choose the worst case (i.e. if erratum
949 * is present on one processor and not on another then assume that the
950 * erratum is present everywhere).
951 */
952 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
953 uint64_t len, status = 0;
954 int err;
955
956 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
957 if (!err)
958 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
959 &err);
960
961 if (err)
962 osvw_status = osvw_len = 0;
963 else {
964 if (len < osvw_len)
965 osvw_len = len;
966 osvw_status |= status;
967 osvw_status &= (1ULL << osvw_len) - 1;
968 }
969 } else
970 osvw_status = osvw_len = 0;
971
972 svm_init_erratum_383();
973
974 amd_pmu_enable_virt();
975
976 return 0;
977 }
978
svm_cpu_uninit(int cpu)979 static void svm_cpu_uninit(int cpu)
980 {
981 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
982
983 if (!sd)
984 return;
985
986 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
987 kfree(sd->sev_vmcbs);
988 __free_page(sd->save_area);
989 kfree(sd);
990 }
991
svm_cpu_init(int cpu)992 static int svm_cpu_init(int cpu)
993 {
994 struct svm_cpu_data *sd;
995 int r;
996
997 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
998 if (!sd)
999 return -ENOMEM;
1000 sd->cpu = cpu;
1001 r = -ENOMEM;
1002 sd->save_area = alloc_page(GFP_KERNEL);
1003 if (!sd->save_area)
1004 goto err_1;
1005
1006 if (svm_sev_enabled()) {
1007 r = -ENOMEM;
1008 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1009 sizeof(void *),
1010 GFP_KERNEL);
1011 if (!sd->sev_vmcbs)
1012 goto err_1;
1013 }
1014
1015 per_cpu(svm_data, cpu) = sd;
1016
1017 return 0;
1018
1019 err_1:
1020 kfree(sd);
1021 return r;
1022
1023 }
1024
valid_msr_intercept(u32 index)1025 static bool valid_msr_intercept(u32 index)
1026 {
1027 int i;
1028
1029 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1030 if (direct_access_msrs[i].index == index)
1031 return true;
1032
1033 return false;
1034 }
1035
msr_write_intercepted(struct kvm_vcpu * vcpu,unsigned msr)1036 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1037 {
1038 u8 bit_write;
1039 unsigned long tmp;
1040 u32 offset;
1041 u32 *msrpm;
1042
1043 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1044 to_svm(vcpu)->msrpm;
1045
1046 offset = svm_msrpm_offset(msr);
1047 bit_write = 2 * (msr & 0x0f) + 1;
1048 tmp = msrpm[offset];
1049
1050 BUG_ON(offset == MSR_INVALID);
1051
1052 return !!test_bit(bit_write, &tmp);
1053 }
1054
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)1055 static void set_msr_interception(u32 *msrpm, unsigned msr,
1056 int read, int write)
1057 {
1058 u8 bit_read, bit_write;
1059 unsigned long tmp;
1060 u32 offset;
1061
1062 /*
1063 * If this warning triggers extend the direct_access_msrs list at the
1064 * beginning of the file
1065 */
1066 WARN_ON(!valid_msr_intercept(msr));
1067
1068 offset = svm_msrpm_offset(msr);
1069 bit_read = 2 * (msr & 0x0f);
1070 bit_write = 2 * (msr & 0x0f) + 1;
1071 tmp = msrpm[offset];
1072
1073 BUG_ON(offset == MSR_INVALID);
1074
1075 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1076 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1077
1078 msrpm[offset] = tmp;
1079 }
1080
svm_vcpu_init_msrpm(u32 * msrpm)1081 static void svm_vcpu_init_msrpm(u32 *msrpm)
1082 {
1083 int i;
1084
1085 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1086
1087 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1088 if (!direct_access_msrs[i].always)
1089 continue;
1090
1091 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1092 }
1093 }
1094
add_msr_offset(u32 offset)1095 static void add_msr_offset(u32 offset)
1096 {
1097 int i;
1098
1099 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1100
1101 /* Offset already in list? */
1102 if (msrpm_offsets[i] == offset)
1103 return;
1104
1105 /* Slot used by another offset? */
1106 if (msrpm_offsets[i] != MSR_INVALID)
1107 continue;
1108
1109 /* Add offset to list */
1110 msrpm_offsets[i] = offset;
1111
1112 return;
1113 }
1114
1115 /*
1116 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1117 * increase MSRPM_OFFSETS in this case.
1118 */
1119 BUG();
1120 }
1121
init_msrpm_offsets(void)1122 static void init_msrpm_offsets(void)
1123 {
1124 int i;
1125
1126 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1127
1128 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1129 u32 offset;
1130
1131 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1132 BUG_ON(offset == MSR_INVALID);
1133
1134 add_msr_offset(offset);
1135 }
1136 }
1137
svm_enable_lbrv(struct vcpu_svm * svm)1138 static void svm_enable_lbrv(struct vcpu_svm *svm)
1139 {
1140 u32 *msrpm = svm->msrpm;
1141
1142 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1143 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1144 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1145 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1146 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1147 }
1148
svm_disable_lbrv(struct vcpu_svm * svm)1149 static void svm_disable_lbrv(struct vcpu_svm *svm)
1150 {
1151 u32 *msrpm = svm->msrpm;
1152
1153 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1154 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1155 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1156 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1157 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1158 }
1159
disable_nmi_singlestep(struct vcpu_svm * svm)1160 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1161 {
1162 svm->nmi_singlestep = false;
1163
1164 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1165 /* Clear our flags if they were not set by the guest */
1166 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1167 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1168 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1169 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1170 }
1171 }
1172
1173 /* Note:
1174 * This hash table is used to map VM_ID to a struct kvm_svm,
1175 * when handling AMD IOMMU GALOG notification to schedule in
1176 * a particular vCPU.
1177 */
1178 #define SVM_VM_DATA_HASH_BITS 8
1179 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1180 static u32 next_vm_id = 0;
1181 static bool next_vm_id_wrapped = 0;
1182 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1183
1184 /* Note:
1185 * This function is called from IOMMU driver to notify
1186 * SVM to schedule in a particular vCPU of a particular VM.
1187 */
avic_ga_log_notifier(u32 ga_tag)1188 static int avic_ga_log_notifier(u32 ga_tag)
1189 {
1190 unsigned long flags;
1191 struct kvm_svm *kvm_svm;
1192 struct kvm_vcpu *vcpu = NULL;
1193 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1194 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1195
1196 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1197
1198 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1199 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1200 if (kvm_svm->avic_vm_id != vm_id)
1201 continue;
1202 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1203 break;
1204 }
1205 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1206
1207 /* Note:
1208 * At this point, the IOMMU should have already set the pending
1209 * bit in the vAPIC backing page. So, we just need to schedule
1210 * in the vcpu.
1211 */
1212 if (vcpu)
1213 kvm_vcpu_wake_up(vcpu);
1214
1215 return 0;
1216 }
1217
sev_hardware_setup(void)1218 static __init int sev_hardware_setup(void)
1219 {
1220 struct sev_user_data_status *status;
1221 int rc;
1222
1223 /* Maximum number of encrypted guests supported simultaneously */
1224 max_sev_asid = cpuid_ecx(0x8000001F);
1225
1226 if (!max_sev_asid)
1227 return 1;
1228
1229 /* Minimum ASID value that should be used for SEV guest */
1230 min_sev_asid = cpuid_edx(0x8000001F);
1231
1232 /* Initialize SEV ASID bitmap */
1233 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1234 if (!sev_asid_bitmap)
1235 return 1;
1236
1237 status = kmalloc(sizeof(*status), GFP_KERNEL);
1238 if (!status)
1239 return 1;
1240
1241 /*
1242 * Check SEV platform status.
1243 *
1244 * PLATFORM_STATUS can be called in any state, if we failed to query
1245 * the PLATFORM status then either PSP firmware does not support SEV
1246 * feature or SEV firmware is dead.
1247 */
1248 rc = sev_platform_status(status, NULL);
1249 if (rc)
1250 goto err;
1251
1252 pr_info("SEV supported\n");
1253
1254 err:
1255 kfree(status);
1256 return rc;
1257 }
1258
grow_ple_window(struct kvm_vcpu * vcpu)1259 static void grow_ple_window(struct kvm_vcpu *vcpu)
1260 {
1261 struct vcpu_svm *svm = to_svm(vcpu);
1262 struct vmcb_control_area *control = &svm->vmcb->control;
1263 int old = control->pause_filter_count;
1264
1265 control->pause_filter_count = __grow_ple_window(old,
1266 pause_filter_count,
1267 pause_filter_count_grow,
1268 pause_filter_count_max);
1269
1270 if (control->pause_filter_count != old)
1271 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1272
1273 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1274 control->pause_filter_count, old);
1275 }
1276
shrink_ple_window(struct kvm_vcpu * vcpu)1277 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1278 {
1279 struct vcpu_svm *svm = to_svm(vcpu);
1280 struct vmcb_control_area *control = &svm->vmcb->control;
1281 int old = control->pause_filter_count;
1282
1283 control->pause_filter_count =
1284 __shrink_ple_window(old,
1285 pause_filter_count,
1286 pause_filter_count_shrink,
1287 pause_filter_count);
1288 if (control->pause_filter_count != old)
1289 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1290
1291 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1292 control->pause_filter_count, old);
1293 }
1294
svm_hardware_setup(void)1295 static __init int svm_hardware_setup(void)
1296 {
1297 int cpu;
1298 struct page *iopm_pages;
1299 void *iopm_va;
1300 int r;
1301
1302 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1303
1304 if (!iopm_pages)
1305 return -ENOMEM;
1306
1307 iopm_va = page_address(iopm_pages);
1308 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1309 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1310
1311 init_msrpm_offsets();
1312
1313 if (boot_cpu_has(X86_FEATURE_NX))
1314 kvm_enable_efer_bits(EFER_NX);
1315
1316 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1317 kvm_enable_efer_bits(EFER_FFXSR);
1318
1319 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1320 kvm_has_tsc_control = true;
1321 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1322 kvm_tsc_scaling_ratio_frac_bits = 32;
1323 }
1324
1325 /* Check for pause filtering support */
1326 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1327 pause_filter_count = 0;
1328 pause_filter_thresh = 0;
1329 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1330 pause_filter_thresh = 0;
1331 }
1332
1333 if (nested) {
1334 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1335 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1336 }
1337
1338 if (sev) {
1339 if (boot_cpu_has(X86_FEATURE_SEV) &&
1340 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1341 r = sev_hardware_setup();
1342 if (r)
1343 sev = false;
1344 } else {
1345 sev = false;
1346 }
1347 }
1348
1349 for_each_possible_cpu(cpu) {
1350 r = svm_cpu_init(cpu);
1351 if (r)
1352 goto err;
1353 }
1354
1355 if (!boot_cpu_has(X86_FEATURE_NPT))
1356 npt_enabled = false;
1357
1358 if (npt_enabled && !npt) {
1359 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1360 npt_enabled = false;
1361 }
1362
1363 if (npt_enabled) {
1364 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1365 kvm_enable_tdp();
1366 } else
1367 kvm_disable_tdp();
1368
1369 if (avic) {
1370 if (!npt_enabled ||
1371 !boot_cpu_has(X86_FEATURE_AVIC) ||
1372 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1373 avic = false;
1374 } else {
1375 pr_info("AVIC enabled\n");
1376
1377 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1378 }
1379 }
1380
1381 if (vls) {
1382 if (!npt_enabled ||
1383 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1384 !IS_ENABLED(CONFIG_X86_64)) {
1385 vls = false;
1386 } else {
1387 pr_info("Virtual VMLOAD VMSAVE supported\n");
1388 }
1389 }
1390
1391 if (vgif) {
1392 if (!boot_cpu_has(X86_FEATURE_VGIF))
1393 vgif = false;
1394 else
1395 pr_info("Virtual GIF supported\n");
1396 }
1397
1398 return 0;
1399
1400 err:
1401 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1402 iopm_base = 0;
1403 return r;
1404 }
1405
svm_hardware_unsetup(void)1406 static __exit void svm_hardware_unsetup(void)
1407 {
1408 int cpu;
1409
1410 if (svm_sev_enabled())
1411 bitmap_free(sev_asid_bitmap);
1412
1413 for_each_possible_cpu(cpu)
1414 svm_cpu_uninit(cpu);
1415
1416 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1417 iopm_base = 0;
1418 }
1419
init_seg(struct vmcb_seg * seg)1420 static void init_seg(struct vmcb_seg *seg)
1421 {
1422 seg->selector = 0;
1423 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1424 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1425 seg->limit = 0xffff;
1426 seg->base = 0;
1427 }
1428
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1429 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1430 {
1431 seg->selector = 0;
1432 seg->attrib = SVM_SELECTOR_P_MASK | type;
1433 seg->limit = 0xffff;
1434 seg->base = 0;
1435 }
1436
svm_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1437 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1438 {
1439 struct vcpu_svm *svm = to_svm(vcpu);
1440
1441 if (is_guest_mode(vcpu))
1442 return svm->nested.hsave->control.tsc_offset;
1443
1444 return vcpu->arch.tsc_offset;
1445 }
1446
svm_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1447 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1448 {
1449 struct vcpu_svm *svm = to_svm(vcpu);
1450 u64 g_tsc_offset = 0;
1451
1452 if (is_guest_mode(vcpu)) {
1453 /* Write L1's TSC offset. */
1454 g_tsc_offset = svm->vmcb->control.tsc_offset -
1455 svm->nested.hsave->control.tsc_offset;
1456 svm->nested.hsave->control.tsc_offset = offset;
1457 } else
1458 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1459 svm->vmcb->control.tsc_offset,
1460 offset);
1461
1462 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1463
1464 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1465 }
1466
avic_init_vmcb(struct vcpu_svm * svm)1467 static void avic_init_vmcb(struct vcpu_svm *svm)
1468 {
1469 struct vmcb *vmcb = svm->vmcb;
1470 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1471 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1472 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1473 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1474
1475 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1476 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1477 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1478 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1479 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1480 }
1481
init_vmcb(struct vcpu_svm * svm)1482 static void init_vmcb(struct vcpu_svm *svm)
1483 {
1484 struct vmcb_control_area *control = &svm->vmcb->control;
1485 struct vmcb_save_area *save = &svm->vmcb->save;
1486
1487 svm->vcpu.arch.hflags = 0;
1488
1489 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1490 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1491 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1492 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1493 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1494 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1495 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1496 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1497
1498 set_dr_intercepts(svm);
1499
1500 set_exception_intercept(svm, PF_VECTOR);
1501 set_exception_intercept(svm, UD_VECTOR);
1502 set_exception_intercept(svm, MC_VECTOR);
1503 set_exception_intercept(svm, AC_VECTOR);
1504 set_exception_intercept(svm, DB_VECTOR);
1505 /*
1506 * Guest access to VMware backdoor ports could legitimately
1507 * trigger #GP because of TSS I/O permission bitmap.
1508 * We intercept those #GP and allow access to them anyway
1509 * as VMware does.
1510 */
1511 if (enable_vmware_backdoor)
1512 set_exception_intercept(svm, GP_VECTOR);
1513
1514 set_intercept(svm, INTERCEPT_INTR);
1515 set_intercept(svm, INTERCEPT_NMI);
1516 set_intercept(svm, INTERCEPT_SMI);
1517 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1518 set_intercept(svm, INTERCEPT_RDPMC);
1519 set_intercept(svm, INTERCEPT_CPUID);
1520 set_intercept(svm, INTERCEPT_INVD);
1521 set_intercept(svm, INTERCEPT_INVLPG);
1522 set_intercept(svm, INTERCEPT_INVLPGA);
1523 set_intercept(svm, INTERCEPT_IOIO_PROT);
1524 set_intercept(svm, INTERCEPT_MSR_PROT);
1525 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1526 set_intercept(svm, INTERCEPT_SHUTDOWN);
1527 set_intercept(svm, INTERCEPT_VMRUN);
1528 set_intercept(svm, INTERCEPT_VMMCALL);
1529 set_intercept(svm, INTERCEPT_VMLOAD);
1530 set_intercept(svm, INTERCEPT_VMSAVE);
1531 set_intercept(svm, INTERCEPT_STGI);
1532 set_intercept(svm, INTERCEPT_CLGI);
1533 set_intercept(svm, INTERCEPT_SKINIT);
1534 set_intercept(svm, INTERCEPT_WBINVD);
1535 set_intercept(svm, INTERCEPT_XSETBV);
1536 set_intercept(svm, INTERCEPT_RSM);
1537
1538 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1539 set_intercept(svm, INTERCEPT_MONITOR);
1540 set_intercept(svm, INTERCEPT_MWAIT);
1541 }
1542
1543 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1544 set_intercept(svm, INTERCEPT_HLT);
1545
1546 control->iopm_base_pa = __sme_set(iopm_base);
1547 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1548 control->int_ctl = V_INTR_MASKING_MASK;
1549
1550 init_seg(&save->es);
1551 init_seg(&save->ss);
1552 init_seg(&save->ds);
1553 init_seg(&save->fs);
1554 init_seg(&save->gs);
1555
1556 save->cs.selector = 0xf000;
1557 save->cs.base = 0xffff0000;
1558 /* Executable/Readable Code Segment */
1559 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1560 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1561 save->cs.limit = 0xffff;
1562
1563 save->gdtr.limit = 0xffff;
1564 save->idtr.limit = 0xffff;
1565
1566 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1567 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1568
1569 svm_set_efer(&svm->vcpu, 0);
1570 save->dr6 = 0xffff0ff0;
1571 kvm_set_rflags(&svm->vcpu, 2);
1572 save->rip = 0x0000fff0;
1573 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1574
1575 /*
1576 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1577 * It also updates the guest-visible cr0 value.
1578 */
1579 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1580 kvm_mmu_reset_context(&svm->vcpu);
1581
1582 save->cr4 = X86_CR4_PAE;
1583 /* rdx = ?? */
1584
1585 if (npt_enabled) {
1586 /* Setup VMCB for Nested Paging */
1587 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1588 clr_intercept(svm, INTERCEPT_INVLPG);
1589 clr_exception_intercept(svm, PF_VECTOR);
1590 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1591 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1592 save->g_pat = svm->vcpu.arch.pat;
1593 save->cr3 = 0;
1594 save->cr4 = 0;
1595 }
1596 svm->asid_generation = 0;
1597
1598 svm->nested.vmcb = 0;
1599 svm->vcpu.arch.hflags = 0;
1600
1601 if (pause_filter_count) {
1602 control->pause_filter_count = pause_filter_count;
1603 if (pause_filter_thresh)
1604 control->pause_filter_thresh = pause_filter_thresh;
1605 set_intercept(svm, INTERCEPT_PAUSE);
1606 } else {
1607 clr_intercept(svm, INTERCEPT_PAUSE);
1608 }
1609
1610 if (kvm_vcpu_apicv_active(&svm->vcpu))
1611 avic_init_vmcb(svm);
1612
1613 /*
1614 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1615 * in VMCB and clear intercepts to avoid #VMEXIT.
1616 */
1617 if (vls) {
1618 clr_intercept(svm, INTERCEPT_VMLOAD);
1619 clr_intercept(svm, INTERCEPT_VMSAVE);
1620 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1621 }
1622
1623 if (vgif) {
1624 clr_intercept(svm, INTERCEPT_STGI);
1625 clr_intercept(svm, INTERCEPT_CLGI);
1626 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1627 }
1628
1629 if (sev_guest(svm->vcpu.kvm)) {
1630 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1631 clr_exception_intercept(svm, UD_VECTOR);
1632 }
1633
1634 mark_all_dirty(svm->vmcb);
1635
1636 enable_gif(svm);
1637
1638 }
1639
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)1640 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1641 unsigned int index)
1642 {
1643 u64 *avic_physical_id_table;
1644 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1645
1646 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1647 return NULL;
1648
1649 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1650
1651 return &avic_physical_id_table[index];
1652 }
1653
1654 /**
1655 * Note:
1656 * AVIC hardware walks the nested page table to check permissions,
1657 * but does not use the SPA address specified in the leaf page
1658 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1659 * field of the VMCB. Therefore, we set up the
1660 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1661 */
avic_init_access_page(struct kvm_vcpu * vcpu)1662 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1663 {
1664 struct kvm *kvm = vcpu->kvm;
1665 int ret;
1666
1667 if (kvm->arch.apic_access_page_done)
1668 return 0;
1669
1670 ret = x86_set_memory_region(kvm,
1671 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1672 APIC_DEFAULT_PHYS_BASE,
1673 PAGE_SIZE);
1674 if (ret)
1675 return ret;
1676
1677 kvm->arch.apic_access_page_done = true;
1678 return 0;
1679 }
1680
avic_init_backing_page(struct kvm_vcpu * vcpu)1681 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1682 {
1683 int ret;
1684 u64 *entry, new_entry;
1685 int id = vcpu->vcpu_id;
1686 struct vcpu_svm *svm = to_svm(vcpu);
1687
1688 ret = avic_init_access_page(vcpu);
1689 if (ret)
1690 return ret;
1691
1692 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1693 return -EINVAL;
1694
1695 if (!svm->vcpu.arch.apic->regs)
1696 return -EINVAL;
1697
1698 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1699
1700 /* Setting AVIC backing page address in the phy APIC ID table */
1701 entry = avic_get_physical_id_entry(vcpu, id);
1702 if (!entry)
1703 return -EINVAL;
1704
1705 new_entry = READ_ONCE(*entry);
1706 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1707 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1708 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1709 WRITE_ONCE(*entry, new_entry);
1710
1711 svm->avic_physical_id_cache = entry;
1712
1713 return 0;
1714 }
1715
__sev_asid_free(int asid)1716 static void __sev_asid_free(int asid)
1717 {
1718 struct svm_cpu_data *sd;
1719 int cpu, pos;
1720
1721 pos = asid - 1;
1722 clear_bit(pos, sev_asid_bitmap);
1723
1724 for_each_possible_cpu(cpu) {
1725 sd = per_cpu(svm_data, cpu);
1726 sd->sev_vmcbs[pos] = NULL;
1727 }
1728 }
1729
sev_asid_free(struct kvm * kvm)1730 static void sev_asid_free(struct kvm *kvm)
1731 {
1732 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1733
1734 __sev_asid_free(sev->asid);
1735 }
1736
sev_unbind_asid(struct kvm * kvm,unsigned int handle)1737 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1738 {
1739 struct sev_data_decommission *decommission;
1740 struct sev_data_deactivate *data;
1741
1742 if (!handle)
1743 return;
1744
1745 data = kzalloc(sizeof(*data), GFP_KERNEL);
1746 if (!data)
1747 return;
1748
1749 /* deactivate handle */
1750 data->handle = handle;
1751 sev_guest_deactivate(data, NULL);
1752
1753 wbinvd_on_all_cpus();
1754 sev_guest_df_flush(NULL);
1755 kfree(data);
1756
1757 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1758 if (!decommission)
1759 return;
1760
1761 /* decommission handle */
1762 decommission->handle = handle;
1763 sev_guest_decommission(decommission, NULL);
1764
1765 kfree(decommission);
1766 }
1767
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)1768 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1769 unsigned long ulen, unsigned long *n,
1770 int write)
1771 {
1772 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1773 unsigned long npages, npinned, size;
1774 unsigned long locked, lock_limit;
1775 struct page **pages;
1776 unsigned long first, last;
1777
1778 if (ulen == 0 || uaddr + ulen < uaddr)
1779 return NULL;
1780
1781 /* Calculate number of pages. */
1782 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1783 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1784 npages = (last - first + 1);
1785
1786 locked = sev->pages_locked + npages;
1787 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1788 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1789 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1790 return NULL;
1791 }
1792
1793 /* Avoid using vmalloc for smaller buffers. */
1794 size = npages * sizeof(struct page *);
1795 if (size > PAGE_SIZE)
1796 pages = vmalloc(size);
1797 else
1798 pages = kmalloc(size, GFP_KERNEL);
1799
1800 if (!pages)
1801 return NULL;
1802
1803 /* Pin the user virtual address. */
1804 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1805 if (npinned != npages) {
1806 pr_err("SEV: Failure locking %lu pages.\n", npages);
1807 goto err;
1808 }
1809
1810 *n = npages;
1811 sev->pages_locked = locked;
1812
1813 return pages;
1814
1815 err:
1816 if (npinned > 0)
1817 release_pages(pages, npinned);
1818
1819 kvfree(pages);
1820 return NULL;
1821 }
1822
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)1823 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1824 unsigned long npages)
1825 {
1826 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1827
1828 release_pages(pages, npages);
1829 kvfree(pages);
1830 sev->pages_locked -= npages;
1831 }
1832
sev_clflush_pages(struct page * pages[],unsigned long npages)1833 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1834 {
1835 uint8_t *page_virtual;
1836 unsigned long i;
1837
1838 if (npages == 0 || pages == NULL)
1839 return;
1840
1841 for (i = 0; i < npages; i++) {
1842 page_virtual = kmap_atomic(pages[i]);
1843 clflush_cache_range(page_virtual, PAGE_SIZE);
1844 kunmap_atomic(page_virtual);
1845 }
1846 }
1847
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1848 static void __unregister_enc_region_locked(struct kvm *kvm,
1849 struct enc_region *region)
1850 {
1851 /*
1852 * The guest may change the memory encryption attribute from C=0 -> C=1
1853 * or vice versa for this memory range. Lets make sure caches are
1854 * flushed to ensure that guest data gets written into memory with
1855 * correct C-bit.
1856 */
1857 sev_clflush_pages(region->pages, region->npages);
1858
1859 sev_unpin_memory(kvm, region->pages, region->npages);
1860 list_del(®ion->list);
1861 kfree(region);
1862 }
1863
svm_vm_alloc(void)1864 static struct kvm *svm_vm_alloc(void)
1865 {
1866 struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1867 return &kvm_svm->kvm;
1868 }
1869
svm_vm_free(struct kvm * kvm)1870 static void svm_vm_free(struct kvm *kvm)
1871 {
1872 vfree(to_kvm_svm(kvm));
1873 }
1874
sev_vm_destroy(struct kvm * kvm)1875 static void sev_vm_destroy(struct kvm *kvm)
1876 {
1877 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1878 struct list_head *head = &sev->regions_list;
1879 struct list_head *pos, *q;
1880
1881 if (!sev_guest(kvm))
1882 return;
1883
1884 mutex_lock(&kvm->lock);
1885
1886 /*
1887 * if userspace was terminated before unregistering the memory regions
1888 * then lets unpin all the registered memory.
1889 */
1890 if (!list_empty(head)) {
1891 list_for_each_safe(pos, q, head) {
1892 __unregister_enc_region_locked(kvm,
1893 list_entry(pos, struct enc_region, list));
1894 }
1895 }
1896
1897 mutex_unlock(&kvm->lock);
1898
1899 sev_unbind_asid(kvm, sev->handle);
1900 sev_asid_free(kvm);
1901 }
1902
avic_vm_destroy(struct kvm * kvm)1903 static void avic_vm_destroy(struct kvm *kvm)
1904 {
1905 unsigned long flags;
1906 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1907
1908 if (!avic)
1909 return;
1910
1911 if (kvm_svm->avic_logical_id_table_page)
1912 __free_page(kvm_svm->avic_logical_id_table_page);
1913 if (kvm_svm->avic_physical_id_table_page)
1914 __free_page(kvm_svm->avic_physical_id_table_page);
1915
1916 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1917 hash_del(&kvm_svm->hnode);
1918 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1919 }
1920
svm_vm_destroy(struct kvm * kvm)1921 static void svm_vm_destroy(struct kvm *kvm)
1922 {
1923 avic_vm_destroy(kvm);
1924 sev_vm_destroy(kvm);
1925 }
1926
avic_vm_init(struct kvm * kvm)1927 static int avic_vm_init(struct kvm *kvm)
1928 {
1929 unsigned long flags;
1930 int err = -ENOMEM;
1931 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1932 struct kvm_svm *k2;
1933 struct page *p_page;
1934 struct page *l_page;
1935 u32 vm_id;
1936
1937 if (!avic)
1938 return 0;
1939
1940 /* Allocating physical APIC ID table (4KB) */
1941 p_page = alloc_page(GFP_KERNEL);
1942 if (!p_page)
1943 goto free_avic;
1944
1945 kvm_svm->avic_physical_id_table_page = p_page;
1946 clear_page(page_address(p_page));
1947
1948 /* Allocating logical APIC ID table (4KB) */
1949 l_page = alloc_page(GFP_KERNEL);
1950 if (!l_page)
1951 goto free_avic;
1952
1953 kvm_svm->avic_logical_id_table_page = l_page;
1954 clear_page(page_address(l_page));
1955
1956 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1957 again:
1958 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1959 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1960 next_vm_id_wrapped = 1;
1961 goto again;
1962 }
1963 /* Is it still in use? Only possible if wrapped at least once */
1964 if (next_vm_id_wrapped) {
1965 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1966 if (k2->avic_vm_id == vm_id)
1967 goto again;
1968 }
1969 }
1970 kvm_svm->avic_vm_id = vm_id;
1971 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1972 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1973
1974 return 0;
1975
1976 free_avic:
1977 avic_vm_destroy(kvm);
1978 return err;
1979 }
1980
1981 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)1982 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1983 {
1984 int ret = 0;
1985 unsigned long flags;
1986 struct amd_svm_iommu_ir *ir;
1987 struct vcpu_svm *svm = to_svm(vcpu);
1988
1989 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1990 return 0;
1991
1992 /*
1993 * Here, we go through the per-vcpu ir_list to update all existing
1994 * interrupt remapping table entry targeting this vcpu.
1995 */
1996 spin_lock_irqsave(&svm->ir_list_lock, flags);
1997
1998 if (list_empty(&svm->ir_list))
1999 goto out;
2000
2001 list_for_each_entry(ir, &svm->ir_list, node) {
2002 ret = amd_iommu_update_ga(cpu, r, ir->data);
2003 if (ret)
2004 break;
2005 }
2006 out:
2007 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2008 return ret;
2009 }
2010
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2011 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2012 {
2013 u64 entry;
2014 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2015 int h_physical_id = kvm_cpu_get_apicid(cpu);
2016 struct vcpu_svm *svm = to_svm(vcpu);
2017
2018 if (!kvm_vcpu_apicv_active(vcpu))
2019 return;
2020
2021 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2022 return;
2023
2024 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2025 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2026
2027 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2028 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2029
2030 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2031 if (svm->avic_is_running)
2032 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033
2034 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2035 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2036 svm->avic_is_running);
2037 }
2038
avic_vcpu_put(struct kvm_vcpu * vcpu)2039 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2040 {
2041 u64 entry;
2042 struct vcpu_svm *svm = to_svm(vcpu);
2043
2044 if (!kvm_vcpu_apicv_active(vcpu))
2045 return;
2046
2047 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2048 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2049 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2050
2051 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2052 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2053 }
2054
2055 /**
2056 * This function is called during VCPU halt/unhalt.
2057 */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)2058 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2059 {
2060 struct vcpu_svm *svm = to_svm(vcpu);
2061
2062 svm->avic_is_running = is_run;
2063 if (is_run)
2064 avic_vcpu_load(vcpu, vcpu->cpu);
2065 else
2066 avic_vcpu_put(vcpu);
2067 }
2068
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)2069 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2070 {
2071 struct vcpu_svm *svm = to_svm(vcpu);
2072 u32 dummy;
2073 u32 eax = 1;
2074
2075 vcpu->arch.microcode_version = 0x01000065;
2076 svm->spec_ctrl = 0;
2077 svm->virt_spec_ctrl = 0;
2078
2079 if (!init_event) {
2080 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2081 MSR_IA32_APICBASE_ENABLE;
2082 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2083 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2084 }
2085 init_vmcb(svm);
2086
2087 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2088 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2089
2090 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2091 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2092 }
2093
avic_init_vcpu(struct vcpu_svm * svm)2094 static int avic_init_vcpu(struct vcpu_svm *svm)
2095 {
2096 int ret;
2097
2098 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2099 return 0;
2100
2101 ret = avic_init_backing_page(&svm->vcpu);
2102 if (ret)
2103 return ret;
2104
2105 INIT_LIST_HEAD(&svm->ir_list);
2106 spin_lock_init(&svm->ir_list_lock);
2107
2108 return ret;
2109 }
2110
svm_create_vcpu(struct kvm * kvm,unsigned int id)2111 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2112 {
2113 struct vcpu_svm *svm;
2114 struct page *page;
2115 struct page *msrpm_pages;
2116 struct page *hsave_page;
2117 struct page *nested_msrpm_pages;
2118 int err;
2119
2120 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2121 if (!svm) {
2122 err = -ENOMEM;
2123 goto out;
2124 }
2125
2126 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2127 if (err)
2128 goto free_svm;
2129
2130 err = -ENOMEM;
2131 page = alloc_page(GFP_KERNEL);
2132 if (!page)
2133 goto uninit;
2134
2135 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2136 if (!msrpm_pages)
2137 goto free_page1;
2138
2139 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2140 if (!nested_msrpm_pages)
2141 goto free_page2;
2142
2143 hsave_page = alloc_page(GFP_KERNEL);
2144 if (!hsave_page)
2145 goto free_page3;
2146
2147 err = avic_init_vcpu(svm);
2148 if (err)
2149 goto free_page4;
2150
2151 /* We initialize this flag to true to make sure that the is_running
2152 * bit would be set the first time the vcpu is loaded.
2153 */
2154 svm->avic_is_running = true;
2155
2156 svm->nested.hsave = page_address(hsave_page);
2157
2158 svm->msrpm = page_address(msrpm_pages);
2159 svm_vcpu_init_msrpm(svm->msrpm);
2160
2161 svm->nested.msrpm = page_address(nested_msrpm_pages);
2162 svm_vcpu_init_msrpm(svm->nested.msrpm);
2163
2164 svm->vmcb = page_address(page);
2165 clear_page(svm->vmcb);
2166 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2167 svm->asid_generation = 0;
2168 init_vmcb(svm);
2169
2170 svm_init_osvw(&svm->vcpu);
2171
2172 return &svm->vcpu;
2173
2174 free_page4:
2175 __free_page(hsave_page);
2176 free_page3:
2177 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2178 free_page2:
2179 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2180 free_page1:
2181 __free_page(page);
2182 uninit:
2183 kvm_vcpu_uninit(&svm->vcpu);
2184 free_svm:
2185 kmem_cache_free(kvm_vcpu_cache, svm);
2186 out:
2187 return ERR_PTR(err);
2188 }
2189
svm_free_vcpu(struct kvm_vcpu * vcpu)2190 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2191 {
2192 struct vcpu_svm *svm = to_svm(vcpu);
2193
2194 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2195 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2196 __free_page(virt_to_page(svm->nested.hsave));
2197 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2198 kvm_vcpu_uninit(vcpu);
2199 kmem_cache_free(kvm_vcpu_cache, svm);
2200 /*
2201 * The vmcb page can be recycled, causing a false negative in
2202 * svm_vcpu_load(). So do a full IBPB now.
2203 */
2204 indirect_branch_prediction_barrier();
2205 }
2206
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2207 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2208 {
2209 struct vcpu_svm *svm = to_svm(vcpu);
2210 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2211 int i;
2212
2213 if (unlikely(cpu != vcpu->cpu)) {
2214 svm->asid_generation = 0;
2215 mark_all_dirty(svm->vmcb);
2216 }
2217
2218 #ifdef CONFIG_X86_64
2219 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2220 #endif
2221 savesegment(fs, svm->host.fs);
2222 savesegment(gs, svm->host.gs);
2223 svm->host.ldt = kvm_read_ldt();
2224
2225 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2226 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2227
2228 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2229 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2230 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2231 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2232 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2233 }
2234 }
2235 /* This assumes that the kernel never uses MSR_TSC_AUX */
2236 if (static_cpu_has(X86_FEATURE_RDTSCP))
2237 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2238
2239 if (sd->current_vmcb != svm->vmcb) {
2240 sd->current_vmcb = svm->vmcb;
2241 indirect_branch_prediction_barrier();
2242 }
2243 avic_vcpu_load(vcpu, cpu);
2244 }
2245
svm_vcpu_put(struct kvm_vcpu * vcpu)2246 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2247 {
2248 struct vcpu_svm *svm = to_svm(vcpu);
2249 int i;
2250
2251 avic_vcpu_put(vcpu);
2252
2253 ++vcpu->stat.host_state_reload;
2254 kvm_load_ldt(svm->host.ldt);
2255 #ifdef CONFIG_X86_64
2256 loadsegment(fs, svm->host.fs);
2257 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2258 load_gs_index(svm->host.gs);
2259 #else
2260 #ifdef CONFIG_X86_32_LAZY_GS
2261 loadsegment(gs, svm->host.gs);
2262 #endif
2263 #endif
2264 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2265 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2266 }
2267
svm_vcpu_blocking(struct kvm_vcpu * vcpu)2268 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2269 {
2270 avic_set_running(vcpu, false);
2271 }
2272
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)2273 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2274 {
2275 avic_set_running(vcpu, true);
2276 }
2277
svm_get_rflags(struct kvm_vcpu * vcpu)2278 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2279 {
2280 struct vcpu_svm *svm = to_svm(vcpu);
2281 unsigned long rflags = svm->vmcb->save.rflags;
2282
2283 if (svm->nmi_singlestep) {
2284 /* Hide our flags if they were not set by the guest */
2285 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2286 rflags &= ~X86_EFLAGS_TF;
2287 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2288 rflags &= ~X86_EFLAGS_RF;
2289 }
2290 return rflags;
2291 }
2292
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2293 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2294 {
2295 if (to_svm(vcpu)->nmi_singlestep)
2296 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2297
2298 /*
2299 * Any change of EFLAGS.VM is accompanied by a reload of SS
2300 * (caused by either a task switch or an inter-privilege IRET),
2301 * so we do not need to update the CPL here.
2302 */
2303 to_svm(vcpu)->vmcb->save.rflags = rflags;
2304 }
2305
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2306 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2307 {
2308 switch (reg) {
2309 case VCPU_EXREG_PDPTR:
2310 BUG_ON(!npt_enabled);
2311 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2312 break;
2313 default:
2314 BUG();
2315 }
2316 }
2317
svm_set_vintr(struct vcpu_svm * svm)2318 static void svm_set_vintr(struct vcpu_svm *svm)
2319 {
2320 set_intercept(svm, INTERCEPT_VINTR);
2321 }
2322
svm_clear_vintr(struct vcpu_svm * svm)2323 static void svm_clear_vintr(struct vcpu_svm *svm)
2324 {
2325 clr_intercept(svm, INTERCEPT_VINTR);
2326 }
2327
svm_seg(struct kvm_vcpu * vcpu,int seg)2328 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2329 {
2330 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2331
2332 switch (seg) {
2333 case VCPU_SREG_CS: return &save->cs;
2334 case VCPU_SREG_DS: return &save->ds;
2335 case VCPU_SREG_ES: return &save->es;
2336 case VCPU_SREG_FS: return &save->fs;
2337 case VCPU_SREG_GS: return &save->gs;
2338 case VCPU_SREG_SS: return &save->ss;
2339 case VCPU_SREG_TR: return &save->tr;
2340 case VCPU_SREG_LDTR: return &save->ldtr;
2341 }
2342 BUG();
2343 return NULL;
2344 }
2345
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)2346 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2347 {
2348 struct vmcb_seg *s = svm_seg(vcpu, seg);
2349
2350 return s->base;
2351 }
2352
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2353 static void svm_get_segment(struct kvm_vcpu *vcpu,
2354 struct kvm_segment *var, int seg)
2355 {
2356 struct vmcb_seg *s = svm_seg(vcpu, seg);
2357
2358 var->base = s->base;
2359 var->limit = s->limit;
2360 var->selector = s->selector;
2361 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2362 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2363 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2364 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2365 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2366 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2367 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2368
2369 /*
2370 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2371 * However, the SVM spec states that the G bit is not observed by the
2372 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2373 * So let's synthesize a legal G bit for all segments, this helps
2374 * running KVM nested. It also helps cross-vendor migration, because
2375 * Intel's vmentry has a check on the 'G' bit.
2376 */
2377 var->g = s->limit > 0xfffff;
2378
2379 /*
2380 * AMD's VMCB does not have an explicit unusable field, so emulate it
2381 * for cross vendor migration purposes by "not present"
2382 */
2383 var->unusable = !var->present;
2384
2385 switch (seg) {
2386 case VCPU_SREG_TR:
2387 /*
2388 * Work around a bug where the busy flag in the tr selector
2389 * isn't exposed
2390 */
2391 var->type |= 0x2;
2392 break;
2393 case VCPU_SREG_DS:
2394 case VCPU_SREG_ES:
2395 case VCPU_SREG_FS:
2396 case VCPU_SREG_GS:
2397 /*
2398 * The accessed bit must always be set in the segment
2399 * descriptor cache, although it can be cleared in the
2400 * descriptor, the cached bit always remains at 1. Since
2401 * Intel has a check on this, set it here to support
2402 * cross-vendor migration.
2403 */
2404 if (!var->unusable)
2405 var->type |= 0x1;
2406 break;
2407 case VCPU_SREG_SS:
2408 /*
2409 * On AMD CPUs sometimes the DB bit in the segment
2410 * descriptor is left as 1, although the whole segment has
2411 * been made unusable. Clear it here to pass an Intel VMX
2412 * entry check when cross vendor migrating.
2413 */
2414 if (var->unusable)
2415 var->db = 0;
2416 /* This is symmetric with svm_set_segment() */
2417 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2418 break;
2419 }
2420 }
2421
svm_get_cpl(struct kvm_vcpu * vcpu)2422 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2423 {
2424 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2425
2426 return save->cpl;
2427 }
2428
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2429 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2430 {
2431 struct vcpu_svm *svm = to_svm(vcpu);
2432
2433 dt->size = svm->vmcb->save.idtr.limit;
2434 dt->address = svm->vmcb->save.idtr.base;
2435 }
2436
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2437 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2438 {
2439 struct vcpu_svm *svm = to_svm(vcpu);
2440
2441 svm->vmcb->save.idtr.limit = dt->size;
2442 svm->vmcb->save.idtr.base = dt->address ;
2443 mark_dirty(svm->vmcb, VMCB_DT);
2444 }
2445
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2446 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2447 {
2448 struct vcpu_svm *svm = to_svm(vcpu);
2449
2450 dt->size = svm->vmcb->save.gdtr.limit;
2451 dt->address = svm->vmcb->save.gdtr.base;
2452 }
2453
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2454 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2455 {
2456 struct vcpu_svm *svm = to_svm(vcpu);
2457
2458 svm->vmcb->save.gdtr.limit = dt->size;
2459 svm->vmcb->save.gdtr.base = dt->address ;
2460 mark_dirty(svm->vmcb, VMCB_DT);
2461 }
2462
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2463 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2464 {
2465 }
2466
svm_decache_cr3(struct kvm_vcpu * vcpu)2467 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2468 {
2469 }
2470
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2471 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2472 {
2473 }
2474
update_cr0_intercept(struct vcpu_svm * svm)2475 static void update_cr0_intercept(struct vcpu_svm *svm)
2476 {
2477 ulong gcr0 = svm->vcpu.arch.cr0;
2478 u64 *hcr0 = &svm->vmcb->save.cr0;
2479
2480 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2481 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2482
2483 mark_dirty(svm->vmcb, VMCB_CR);
2484
2485 if (gcr0 == *hcr0) {
2486 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2487 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2488 } else {
2489 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2490 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2491 }
2492 }
2493
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2494 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2495 {
2496 struct vcpu_svm *svm = to_svm(vcpu);
2497
2498 #ifdef CONFIG_X86_64
2499 if (vcpu->arch.efer & EFER_LME) {
2500 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2501 vcpu->arch.efer |= EFER_LMA;
2502 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2503 }
2504
2505 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2506 vcpu->arch.efer &= ~EFER_LMA;
2507 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2508 }
2509 }
2510 #endif
2511 vcpu->arch.cr0 = cr0;
2512
2513 if (!npt_enabled)
2514 cr0 |= X86_CR0_PG | X86_CR0_WP;
2515
2516 /*
2517 * re-enable caching here because the QEMU bios
2518 * does not do it - this results in some delay at
2519 * reboot
2520 */
2521 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2522 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2523 svm->vmcb->save.cr0 = cr0;
2524 mark_dirty(svm->vmcb, VMCB_CR);
2525 update_cr0_intercept(svm);
2526 }
2527
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)2528 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2529 {
2530 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2531 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2532
2533 if (cr4 & X86_CR4_VMXE)
2534 return 1;
2535
2536 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2537 svm_flush_tlb(vcpu, true);
2538
2539 vcpu->arch.cr4 = cr4;
2540 if (!npt_enabled)
2541 cr4 |= X86_CR4_PAE;
2542 cr4 |= host_cr4_mce;
2543 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2544 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2545 return 0;
2546 }
2547
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2548 static void svm_set_segment(struct kvm_vcpu *vcpu,
2549 struct kvm_segment *var, int seg)
2550 {
2551 struct vcpu_svm *svm = to_svm(vcpu);
2552 struct vmcb_seg *s = svm_seg(vcpu, seg);
2553
2554 s->base = var->base;
2555 s->limit = var->limit;
2556 s->selector = var->selector;
2557 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2558 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2559 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2560 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2561 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2562 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2563 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2564 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2565
2566 /*
2567 * This is always accurate, except if SYSRET returned to a segment
2568 * with SS.DPL != 3. Intel does not have this quirk, and always
2569 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2570 * would entail passing the CPL to userspace and back.
2571 */
2572 if (seg == VCPU_SREG_SS)
2573 /* This is symmetric with svm_get_segment() */
2574 svm->vmcb->save.cpl = (var->dpl & 3);
2575
2576 mark_dirty(svm->vmcb, VMCB_SEG);
2577 }
2578
update_bp_intercept(struct kvm_vcpu * vcpu)2579 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2580 {
2581 struct vcpu_svm *svm = to_svm(vcpu);
2582
2583 clr_exception_intercept(svm, BP_VECTOR);
2584
2585 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2586 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2587 set_exception_intercept(svm, BP_VECTOR);
2588 } else
2589 vcpu->guest_debug = 0;
2590 }
2591
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2592 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2593 {
2594 if (sd->next_asid > sd->max_asid) {
2595 ++sd->asid_generation;
2596 sd->next_asid = sd->min_asid;
2597 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2598 }
2599
2600 svm->asid_generation = sd->asid_generation;
2601 svm->vmcb->control.asid = sd->next_asid++;
2602
2603 mark_dirty(svm->vmcb, VMCB_ASID);
2604 }
2605
svm_get_dr6(struct kvm_vcpu * vcpu)2606 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2607 {
2608 return to_svm(vcpu)->vmcb->save.dr6;
2609 }
2610
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2611 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2612 {
2613 struct vcpu_svm *svm = to_svm(vcpu);
2614
2615 svm->vmcb->save.dr6 = value;
2616 mark_dirty(svm->vmcb, VMCB_DR);
2617 }
2618
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2619 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2620 {
2621 struct vcpu_svm *svm = to_svm(vcpu);
2622
2623 get_debugreg(vcpu->arch.db[0], 0);
2624 get_debugreg(vcpu->arch.db[1], 1);
2625 get_debugreg(vcpu->arch.db[2], 2);
2626 get_debugreg(vcpu->arch.db[3], 3);
2627 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2628 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2629
2630 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2631 set_dr_intercepts(svm);
2632 }
2633
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2634 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2635 {
2636 struct vcpu_svm *svm = to_svm(vcpu);
2637
2638 svm->vmcb->save.dr7 = value;
2639 mark_dirty(svm->vmcb, VMCB_DR);
2640 }
2641
pf_interception(struct vcpu_svm * svm)2642 static int pf_interception(struct vcpu_svm *svm)
2643 {
2644 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2645 u64 error_code = svm->vmcb->control.exit_info_1;
2646
2647 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2648 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2649 svm->vmcb->control.insn_bytes : NULL,
2650 svm->vmcb->control.insn_len);
2651 }
2652
npf_interception(struct vcpu_svm * svm)2653 static int npf_interception(struct vcpu_svm *svm)
2654 {
2655 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2656 u64 error_code = svm->vmcb->control.exit_info_1;
2657
2658 trace_kvm_page_fault(fault_address, error_code);
2659 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2660 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2661 svm->vmcb->control.insn_bytes : NULL,
2662 svm->vmcb->control.insn_len);
2663 }
2664
db_interception(struct vcpu_svm * svm)2665 static int db_interception(struct vcpu_svm *svm)
2666 {
2667 struct kvm_run *kvm_run = svm->vcpu.run;
2668
2669 if (!(svm->vcpu.guest_debug &
2670 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2671 !svm->nmi_singlestep) {
2672 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2673 return 1;
2674 }
2675
2676 if (svm->nmi_singlestep) {
2677 disable_nmi_singlestep(svm);
2678 }
2679
2680 if (svm->vcpu.guest_debug &
2681 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2682 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2683 kvm_run->debug.arch.pc =
2684 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2685 kvm_run->debug.arch.exception = DB_VECTOR;
2686 return 0;
2687 }
2688
2689 return 1;
2690 }
2691
bp_interception(struct vcpu_svm * svm)2692 static int bp_interception(struct vcpu_svm *svm)
2693 {
2694 struct kvm_run *kvm_run = svm->vcpu.run;
2695
2696 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2697 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2698 kvm_run->debug.arch.exception = BP_VECTOR;
2699 return 0;
2700 }
2701
ud_interception(struct vcpu_svm * svm)2702 static int ud_interception(struct vcpu_svm *svm)
2703 {
2704 return handle_ud(&svm->vcpu);
2705 }
2706
ac_interception(struct vcpu_svm * svm)2707 static int ac_interception(struct vcpu_svm *svm)
2708 {
2709 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2710 return 1;
2711 }
2712
gp_interception(struct vcpu_svm * svm)2713 static int gp_interception(struct vcpu_svm *svm)
2714 {
2715 struct kvm_vcpu *vcpu = &svm->vcpu;
2716 u32 error_code = svm->vmcb->control.exit_info_1;
2717 int er;
2718
2719 WARN_ON_ONCE(!enable_vmware_backdoor);
2720
2721 er = kvm_emulate_instruction(vcpu,
2722 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2723 if (er == EMULATE_USER_EXIT)
2724 return 0;
2725 else if (er != EMULATE_DONE)
2726 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2727 return 1;
2728 }
2729
is_erratum_383(void)2730 static bool is_erratum_383(void)
2731 {
2732 int err, i;
2733 u64 value;
2734
2735 if (!erratum_383_found)
2736 return false;
2737
2738 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2739 if (err)
2740 return false;
2741
2742 /* Bit 62 may or may not be set for this mce */
2743 value &= ~(1ULL << 62);
2744
2745 if (value != 0xb600000000010015ULL)
2746 return false;
2747
2748 /* Clear MCi_STATUS registers */
2749 for (i = 0; i < 6; ++i)
2750 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2751
2752 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2753 if (!err) {
2754 u32 low, high;
2755
2756 value &= ~(1ULL << 2);
2757 low = lower_32_bits(value);
2758 high = upper_32_bits(value);
2759
2760 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2761 }
2762
2763 /* Flush tlb to evict multi-match entries */
2764 __flush_tlb_all();
2765
2766 return true;
2767 }
2768
svm_handle_mce(struct vcpu_svm * svm)2769 static void svm_handle_mce(struct vcpu_svm *svm)
2770 {
2771 if (is_erratum_383()) {
2772 /*
2773 * Erratum 383 triggered. Guest state is corrupt so kill the
2774 * guest.
2775 */
2776 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2777
2778 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2779
2780 return;
2781 }
2782
2783 /*
2784 * On an #MC intercept the MCE handler is not called automatically in
2785 * the host. So do it by hand here.
2786 */
2787 asm volatile (
2788 "int $0x12\n");
2789 /* not sure if we ever come back to this point */
2790
2791 return;
2792 }
2793
mc_interception(struct vcpu_svm * svm)2794 static int mc_interception(struct vcpu_svm *svm)
2795 {
2796 return 1;
2797 }
2798
shutdown_interception(struct vcpu_svm * svm)2799 static int shutdown_interception(struct vcpu_svm *svm)
2800 {
2801 struct kvm_run *kvm_run = svm->vcpu.run;
2802
2803 /*
2804 * VMCB is undefined after a SHUTDOWN intercept
2805 * so reinitialize it.
2806 */
2807 clear_page(svm->vmcb);
2808 init_vmcb(svm);
2809
2810 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2811 return 0;
2812 }
2813
io_interception(struct vcpu_svm * svm)2814 static int io_interception(struct vcpu_svm *svm)
2815 {
2816 struct kvm_vcpu *vcpu = &svm->vcpu;
2817 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2818 int size, in, string;
2819 unsigned port;
2820
2821 ++svm->vcpu.stat.io_exits;
2822 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2823 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2824 if (string)
2825 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2826
2827 port = io_info >> 16;
2828 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2829 svm->next_rip = svm->vmcb->control.exit_info_2;
2830
2831 return kvm_fast_pio(&svm->vcpu, size, port, in);
2832 }
2833
nmi_interception(struct vcpu_svm * svm)2834 static int nmi_interception(struct vcpu_svm *svm)
2835 {
2836 return 1;
2837 }
2838
intr_interception(struct vcpu_svm * svm)2839 static int intr_interception(struct vcpu_svm *svm)
2840 {
2841 ++svm->vcpu.stat.irq_exits;
2842 return 1;
2843 }
2844
nop_on_interception(struct vcpu_svm * svm)2845 static int nop_on_interception(struct vcpu_svm *svm)
2846 {
2847 return 1;
2848 }
2849
halt_interception(struct vcpu_svm * svm)2850 static int halt_interception(struct vcpu_svm *svm)
2851 {
2852 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2853 return kvm_emulate_halt(&svm->vcpu);
2854 }
2855
vmmcall_interception(struct vcpu_svm * svm)2856 static int vmmcall_interception(struct vcpu_svm *svm)
2857 {
2858 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2859 return kvm_emulate_hypercall(&svm->vcpu);
2860 }
2861
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)2862 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2863 {
2864 struct vcpu_svm *svm = to_svm(vcpu);
2865
2866 return svm->nested.nested_cr3;
2867 }
2868
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)2869 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2870 {
2871 struct vcpu_svm *svm = to_svm(vcpu);
2872 u64 cr3 = svm->nested.nested_cr3;
2873 u64 pdpte;
2874 int ret;
2875
2876 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2877 offset_in_page(cr3) + index * 8, 8);
2878 if (ret)
2879 return 0;
2880 return pdpte;
2881 }
2882
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)2883 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2884 unsigned long root)
2885 {
2886 struct vcpu_svm *svm = to_svm(vcpu);
2887
2888 svm->vmcb->control.nested_cr3 = __sme_set(root);
2889 mark_dirty(svm->vmcb, VMCB_NPT);
2890 }
2891
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)2892 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2893 struct x86_exception *fault)
2894 {
2895 struct vcpu_svm *svm = to_svm(vcpu);
2896
2897 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2898 /*
2899 * TODO: track the cause of the nested page fault, and
2900 * correctly fill in the high bits of exit_info_1.
2901 */
2902 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2903 svm->vmcb->control.exit_code_hi = 0;
2904 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2905 svm->vmcb->control.exit_info_2 = fault->address;
2906 }
2907
2908 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2909 svm->vmcb->control.exit_info_1 |= fault->error_code;
2910
2911 /*
2912 * The present bit is always zero for page structure faults on real
2913 * hardware.
2914 */
2915 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2916 svm->vmcb->control.exit_info_1 &= ~1;
2917
2918 nested_svm_vmexit(svm);
2919 }
2920
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)2921 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2922 {
2923 WARN_ON(mmu_is_nested(vcpu));
2924 kvm_init_shadow_mmu(vcpu);
2925 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2926 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2927 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2928 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2929 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2930 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2931 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2932 }
2933
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)2934 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2935 {
2936 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2937 }
2938
nested_svm_check_permissions(struct vcpu_svm * svm)2939 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2940 {
2941 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2942 !is_paging(&svm->vcpu)) {
2943 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2944 return 1;
2945 }
2946
2947 if (svm->vmcb->save.cpl) {
2948 kvm_inject_gp(&svm->vcpu, 0);
2949 return 1;
2950 }
2951
2952 return 0;
2953 }
2954
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)2955 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2956 bool has_error_code, u32 error_code)
2957 {
2958 int vmexit;
2959
2960 if (!is_guest_mode(&svm->vcpu))
2961 return 0;
2962
2963 vmexit = nested_svm_intercept(svm);
2964 if (vmexit != NESTED_EXIT_DONE)
2965 return 0;
2966
2967 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2968 svm->vmcb->control.exit_code_hi = 0;
2969 svm->vmcb->control.exit_info_1 = error_code;
2970
2971 /*
2972 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2973 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2974 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2975 * written only when inject_pending_event runs (DR6 would written here
2976 * too). This should be conditional on a new capability---if the
2977 * capability is disabled, kvm_multiple_exception would write the
2978 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2979 */
2980 if (svm->vcpu.arch.exception.nested_apf)
2981 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2982 else
2983 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2984
2985 svm->nested.exit_required = true;
2986 return vmexit;
2987 }
2988
2989 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)2990 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2991 {
2992 if (!is_guest_mode(&svm->vcpu))
2993 return true;
2994
2995 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2996 return true;
2997
2998 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2999 return false;
3000
3001 /*
3002 * if vmexit was already requested (by intercepted exception
3003 * for instance) do not overwrite it with "external interrupt"
3004 * vmexit.
3005 */
3006 if (svm->nested.exit_required)
3007 return false;
3008
3009 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3010 svm->vmcb->control.exit_info_1 = 0;
3011 svm->vmcb->control.exit_info_2 = 0;
3012
3013 if (svm->nested.intercept & 1ULL) {
3014 /*
3015 * The #vmexit can't be emulated here directly because this
3016 * code path runs with irqs and preemption disabled. A
3017 * #vmexit emulation might sleep. Only signal request for
3018 * the #vmexit here.
3019 */
3020 svm->nested.exit_required = true;
3021 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3022 return false;
3023 }
3024
3025 return true;
3026 }
3027
3028 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)3029 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3030 {
3031 if (!is_guest_mode(&svm->vcpu))
3032 return true;
3033
3034 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3035 return true;
3036
3037 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3038 svm->nested.exit_required = true;
3039
3040 return false;
3041 }
3042
nested_svm_map(struct vcpu_svm * svm,u64 gpa,struct page ** _page)3043 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3044 {
3045 struct page *page;
3046
3047 might_sleep();
3048
3049 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3050 if (is_error_page(page))
3051 goto error;
3052
3053 *_page = page;
3054
3055 return kmap(page);
3056
3057 error:
3058 kvm_inject_gp(&svm->vcpu, 0);
3059
3060 return NULL;
3061 }
3062
nested_svm_unmap(struct page * page)3063 static void nested_svm_unmap(struct page *page)
3064 {
3065 kunmap(page);
3066 kvm_release_page_dirty(page);
3067 }
3068
nested_svm_intercept_ioio(struct vcpu_svm * svm)3069 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3070 {
3071 unsigned port, size, iopm_len;
3072 u16 val, mask;
3073 u8 start_bit;
3074 u64 gpa;
3075
3076 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3077 return NESTED_EXIT_HOST;
3078
3079 port = svm->vmcb->control.exit_info_1 >> 16;
3080 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3081 SVM_IOIO_SIZE_SHIFT;
3082 gpa = svm->nested.vmcb_iopm + (port / 8);
3083 start_bit = port % 8;
3084 iopm_len = (start_bit + size > 8) ? 2 : 1;
3085 mask = (0xf >> (4 - size)) << start_bit;
3086 val = 0;
3087
3088 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3089 return NESTED_EXIT_DONE;
3090
3091 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3092 }
3093
nested_svm_exit_handled_msr(struct vcpu_svm * svm)3094 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3095 {
3096 u32 offset, msr, value;
3097 int write, mask;
3098
3099 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3100 return NESTED_EXIT_HOST;
3101
3102 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3103 offset = svm_msrpm_offset(msr);
3104 write = svm->vmcb->control.exit_info_1 & 1;
3105 mask = 1 << ((2 * (msr & 0xf)) + write);
3106
3107 if (offset == MSR_INVALID)
3108 return NESTED_EXIT_DONE;
3109
3110 /* Offset is in 32 bit units but need in 8 bit units */
3111 offset *= 4;
3112
3113 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3114 return NESTED_EXIT_DONE;
3115
3116 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3117 }
3118
3119 /* DB exceptions for our internal use must not cause vmexit */
nested_svm_intercept_db(struct vcpu_svm * svm)3120 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3121 {
3122 unsigned long dr6;
3123
3124 /* if we're not singlestepping, it's not ours */
3125 if (!svm->nmi_singlestep)
3126 return NESTED_EXIT_DONE;
3127
3128 /* if it's not a singlestep exception, it's not ours */
3129 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3130 return NESTED_EXIT_DONE;
3131 if (!(dr6 & DR6_BS))
3132 return NESTED_EXIT_DONE;
3133
3134 /* if the guest is singlestepping, it should get the vmexit */
3135 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3136 disable_nmi_singlestep(svm);
3137 return NESTED_EXIT_DONE;
3138 }
3139
3140 /* it's ours, the nested hypervisor must not see this one */
3141 return NESTED_EXIT_HOST;
3142 }
3143
nested_svm_exit_special(struct vcpu_svm * svm)3144 static int nested_svm_exit_special(struct vcpu_svm *svm)
3145 {
3146 u32 exit_code = svm->vmcb->control.exit_code;
3147
3148 switch (exit_code) {
3149 case SVM_EXIT_INTR:
3150 case SVM_EXIT_NMI:
3151 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3152 return NESTED_EXIT_HOST;
3153 case SVM_EXIT_NPF:
3154 /* For now we are always handling NPFs when using them */
3155 if (npt_enabled)
3156 return NESTED_EXIT_HOST;
3157 break;
3158 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3159 /* When we're shadowing, trap PFs, but not async PF */
3160 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3161 return NESTED_EXIT_HOST;
3162 break;
3163 default:
3164 break;
3165 }
3166
3167 return NESTED_EXIT_CONTINUE;
3168 }
3169
3170 /*
3171 * If this function returns true, this #vmexit was already handled
3172 */
nested_svm_intercept(struct vcpu_svm * svm)3173 static int nested_svm_intercept(struct vcpu_svm *svm)
3174 {
3175 u32 exit_code = svm->vmcb->control.exit_code;
3176 int vmexit = NESTED_EXIT_HOST;
3177
3178 switch (exit_code) {
3179 case SVM_EXIT_MSR:
3180 vmexit = nested_svm_exit_handled_msr(svm);
3181 break;
3182 case SVM_EXIT_IOIO:
3183 vmexit = nested_svm_intercept_ioio(svm);
3184 break;
3185 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3186 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3187 if (svm->nested.intercept_cr & bit)
3188 vmexit = NESTED_EXIT_DONE;
3189 break;
3190 }
3191 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3192 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3193 if (svm->nested.intercept_dr & bit)
3194 vmexit = NESTED_EXIT_DONE;
3195 break;
3196 }
3197 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3198 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3199 if (svm->nested.intercept_exceptions & excp_bits) {
3200 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3201 vmexit = nested_svm_intercept_db(svm);
3202 else
3203 vmexit = NESTED_EXIT_DONE;
3204 }
3205 /* async page fault always cause vmexit */
3206 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3207 svm->vcpu.arch.exception.nested_apf != 0)
3208 vmexit = NESTED_EXIT_DONE;
3209 break;
3210 }
3211 case SVM_EXIT_ERR: {
3212 vmexit = NESTED_EXIT_DONE;
3213 break;
3214 }
3215 default: {
3216 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3217 if (svm->nested.intercept & exit_bits)
3218 vmexit = NESTED_EXIT_DONE;
3219 }
3220 }
3221
3222 return vmexit;
3223 }
3224
nested_svm_exit_handled(struct vcpu_svm * svm)3225 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3226 {
3227 int vmexit;
3228
3229 vmexit = nested_svm_intercept(svm);
3230
3231 if (vmexit == NESTED_EXIT_DONE)
3232 nested_svm_vmexit(svm);
3233
3234 return vmexit;
3235 }
3236
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)3237 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3238 {
3239 struct vmcb_control_area *dst = &dst_vmcb->control;
3240 struct vmcb_control_area *from = &from_vmcb->control;
3241
3242 dst->intercept_cr = from->intercept_cr;
3243 dst->intercept_dr = from->intercept_dr;
3244 dst->intercept_exceptions = from->intercept_exceptions;
3245 dst->intercept = from->intercept;
3246 dst->iopm_base_pa = from->iopm_base_pa;
3247 dst->msrpm_base_pa = from->msrpm_base_pa;
3248 dst->tsc_offset = from->tsc_offset;
3249 dst->asid = from->asid;
3250 dst->tlb_ctl = from->tlb_ctl;
3251 dst->int_ctl = from->int_ctl;
3252 dst->int_vector = from->int_vector;
3253 dst->int_state = from->int_state;
3254 dst->exit_code = from->exit_code;
3255 dst->exit_code_hi = from->exit_code_hi;
3256 dst->exit_info_1 = from->exit_info_1;
3257 dst->exit_info_2 = from->exit_info_2;
3258 dst->exit_int_info = from->exit_int_info;
3259 dst->exit_int_info_err = from->exit_int_info_err;
3260 dst->nested_ctl = from->nested_ctl;
3261 dst->event_inj = from->event_inj;
3262 dst->event_inj_err = from->event_inj_err;
3263 dst->nested_cr3 = from->nested_cr3;
3264 dst->virt_ext = from->virt_ext;
3265 }
3266
nested_svm_vmexit(struct vcpu_svm * svm)3267 static int nested_svm_vmexit(struct vcpu_svm *svm)
3268 {
3269 struct vmcb *nested_vmcb;
3270 struct vmcb *hsave = svm->nested.hsave;
3271 struct vmcb *vmcb = svm->vmcb;
3272 struct page *page;
3273
3274 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3275 vmcb->control.exit_info_1,
3276 vmcb->control.exit_info_2,
3277 vmcb->control.exit_int_info,
3278 vmcb->control.exit_int_info_err,
3279 KVM_ISA_SVM);
3280
3281 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3282 if (!nested_vmcb)
3283 return 1;
3284
3285 /* Exit Guest-Mode */
3286 leave_guest_mode(&svm->vcpu);
3287 svm->nested.vmcb = 0;
3288
3289 /* Give the current vmcb to the guest */
3290 disable_gif(svm);
3291
3292 nested_vmcb->save.es = vmcb->save.es;
3293 nested_vmcb->save.cs = vmcb->save.cs;
3294 nested_vmcb->save.ss = vmcb->save.ss;
3295 nested_vmcb->save.ds = vmcb->save.ds;
3296 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3297 nested_vmcb->save.idtr = vmcb->save.idtr;
3298 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3299 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3300 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3301 nested_vmcb->save.cr2 = vmcb->save.cr2;
3302 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3303 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3304 nested_vmcb->save.rip = vmcb->save.rip;
3305 nested_vmcb->save.rsp = vmcb->save.rsp;
3306 nested_vmcb->save.rax = vmcb->save.rax;
3307 nested_vmcb->save.dr7 = vmcb->save.dr7;
3308 nested_vmcb->save.dr6 = vmcb->save.dr6;
3309 nested_vmcb->save.cpl = vmcb->save.cpl;
3310
3311 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3312 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3313 nested_vmcb->control.int_state = vmcb->control.int_state;
3314 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3315 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3316 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3317 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3318 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3319 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3320
3321 if (svm->nrips_enabled)
3322 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3323
3324 /*
3325 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3326 * to make sure that we do not lose injected events. So check event_inj
3327 * here and copy it to exit_int_info if it is valid.
3328 * Exit_int_info and event_inj can't be both valid because the case
3329 * below only happens on a VMRUN instruction intercept which has
3330 * no valid exit_int_info set.
3331 */
3332 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3333 struct vmcb_control_area *nc = &nested_vmcb->control;
3334
3335 nc->exit_int_info = vmcb->control.event_inj;
3336 nc->exit_int_info_err = vmcb->control.event_inj_err;
3337 }
3338
3339 nested_vmcb->control.tlb_ctl = 0;
3340 nested_vmcb->control.event_inj = 0;
3341 nested_vmcb->control.event_inj_err = 0;
3342
3343 /* We always set V_INTR_MASKING and remember the old value in hflags */
3344 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3345 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3346
3347 /* Restore the original control entries */
3348 copy_vmcb_control_area(vmcb, hsave);
3349
3350 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3351 kvm_clear_exception_queue(&svm->vcpu);
3352 kvm_clear_interrupt_queue(&svm->vcpu);
3353
3354 svm->nested.nested_cr3 = 0;
3355
3356 /* Restore selected save entries */
3357 svm->vmcb->save.es = hsave->save.es;
3358 svm->vmcb->save.cs = hsave->save.cs;
3359 svm->vmcb->save.ss = hsave->save.ss;
3360 svm->vmcb->save.ds = hsave->save.ds;
3361 svm->vmcb->save.gdtr = hsave->save.gdtr;
3362 svm->vmcb->save.idtr = hsave->save.idtr;
3363 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3364 svm_set_efer(&svm->vcpu, hsave->save.efer);
3365 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3366 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3367 if (npt_enabled) {
3368 svm->vmcb->save.cr3 = hsave->save.cr3;
3369 svm->vcpu.arch.cr3 = hsave->save.cr3;
3370 } else {
3371 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3372 }
3373 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3374 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3375 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3376 svm->vmcb->save.dr7 = 0;
3377 svm->vmcb->save.cpl = 0;
3378 svm->vmcb->control.exit_int_info = 0;
3379
3380 mark_all_dirty(svm->vmcb);
3381
3382 nested_svm_unmap(page);
3383
3384 nested_svm_uninit_mmu_context(&svm->vcpu);
3385 kvm_mmu_reset_context(&svm->vcpu);
3386 kvm_mmu_load(&svm->vcpu);
3387
3388 return 0;
3389 }
3390
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)3391 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3392 {
3393 /*
3394 * This function merges the msr permission bitmaps of kvm and the
3395 * nested vmcb. It is optimized in that it only merges the parts where
3396 * the kvm msr permission bitmap may contain zero bits
3397 */
3398 int i;
3399
3400 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3401 return true;
3402
3403 for (i = 0; i < MSRPM_OFFSETS; i++) {
3404 u32 value, p;
3405 u64 offset;
3406
3407 if (msrpm_offsets[i] == 0xffffffff)
3408 break;
3409
3410 p = msrpm_offsets[i];
3411 offset = svm->nested.vmcb_msrpm + (p * 4);
3412
3413 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3414 return false;
3415
3416 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3417 }
3418
3419 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3420
3421 return true;
3422 }
3423
nested_vmcb_checks(struct vmcb * vmcb)3424 static bool nested_vmcb_checks(struct vmcb *vmcb)
3425 {
3426 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3427 return false;
3428
3429 if (vmcb->control.asid == 0)
3430 return false;
3431
3432 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3433 !npt_enabled)
3434 return false;
3435
3436 return true;
3437 }
3438
enter_svm_guest_mode(struct vcpu_svm * svm,u64 vmcb_gpa,struct vmcb * nested_vmcb,struct page * page)3439 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3440 struct vmcb *nested_vmcb, struct page *page)
3441 {
3442 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3443 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3444 else
3445 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3446
3447 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3448 kvm_mmu_unload(&svm->vcpu);
3449 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3450 nested_svm_init_mmu_context(&svm->vcpu);
3451 }
3452
3453 /* Load the nested guest state */
3454 svm->vmcb->save.es = nested_vmcb->save.es;
3455 svm->vmcb->save.cs = nested_vmcb->save.cs;
3456 svm->vmcb->save.ss = nested_vmcb->save.ss;
3457 svm->vmcb->save.ds = nested_vmcb->save.ds;
3458 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3459 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3460 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3461 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3462 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3463 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3464 if (npt_enabled) {
3465 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3466 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3467 } else
3468 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3469
3470 /* Guest paging mode is active - reset mmu */
3471 kvm_mmu_reset_context(&svm->vcpu);
3472
3473 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3474 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3475 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3476 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3477
3478 /* In case we don't even reach vcpu_run, the fields are not updated */
3479 svm->vmcb->save.rax = nested_vmcb->save.rax;
3480 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3481 svm->vmcb->save.rip = nested_vmcb->save.rip;
3482 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3483 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3484 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3485
3486 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3487 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3488
3489 /* cache intercepts */
3490 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3491 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3492 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3493 svm->nested.intercept = nested_vmcb->control.intercept;
3494
3495 svm_flush_tlb(&svm->vcpu, true);
3496 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3497 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3498 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3499 else
3500 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3501
3502 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3503 /* We only want the cr8 intercept bits of the guest */
3504 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3505 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3506 }
3507
3508 /* We don't want to see VMMCALLs from a nested guest */
3509 clr_intercept(svm, INTERCEPT_VMMCALL);
3510
3511 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3512 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3513
3514 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3515 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3516 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3517 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3518 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3519
3520 nested_svm_unmap(page);
3521
3522 /* Enter Guest-Mode */
3523 enter_guest_mode(&svm->vcpu);
3524
3525 /*
3526 * Merge guest and host intercepts - must be called with vcpu in
3527 * guest-mode to take affect here
3528 */
3529 recalc_intercepts(svm);
3530
3531 svm->nested.vmcb = vmcb_gpa;
3532
3533 enable_gif(svm);
3534
3535 mark_all_dirty(svm->vmcb);
3536 }
3537
nested_svm_vmrun(struct vcpu_svm * svm)3538 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3539 {
3540 struct vmcb *nested_vmcb;
3541 struct vmcb *hsave = svm->nested.hsave;
3542 struct vmcb *vmcb = svm->vmcb;
3543 struct page *page;
3544 u64 vmcb_gpa;
3545
3546 vmcb_gpa = svm->vmcb->save.rax;
3547
3548 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3549 if (!nested_vmcb)
3550 return false;
3551
3552 if (!nested_vmcb_checks(nested_vmcb)) {
3553 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3554 nested_vmcb->control.exit_code_hi = 0;
3555 nested_vmcb->control.exit_info_1 = 0;
3556 nested_vmcb->control.exit_info_2 = 0;
3557
3558 nested_svm_unmap(page);
3559
3560 return false;
3561 }
3562
3563 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3564 nested_vmcb->save.rip,
3565 nested_vmcb->control.int_ctl,
3566 nested_vmcb->control.event_inj,
3567 nested_vmcb->control.nested_ctl);
3568
3569 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3570 nested_vmcb->control.intercept_cr >> 16,
3571 nested_vmcb->control.intercept_exceptions,
3572 nested_vmcb->control.intercept);
3573
3574 /* Clear internal status */
3575 kvm_clear_exception_queue(&svm->vcpu);
3576 kvm_clear_interrupt_queue(&svm->vcpu);
3577
3578 /*
3579 * Save the old vmcb, so we don't need to pick what we save, but can
3580 * restore everything when a VMEXIT occurs
3581 */
3582 hsave->save.es = vmcb->save.es;
3583 hsave->save.cs = vmcb->save.cs;
3584 hsave->save.ss = vmcb->save.ss;
3585 hsave->save.ds = vmcb->save.ds;
3586 hsave->save.gdtr = vmcb->save.gdtr;
3587 hsave->save.idtr = vmcb->save.idtr;
3588 hsave->save.efer = svm->vcpu.arch.efer;
3589 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3590 hsave->save.cr4 = svm->vcpu.arch.cr4;
3591 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3592 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3593 hsave->save.rsp = vmcb->save.rsp;
3594 hsave->save.rax = vmcb->save.rax;
3595 if (npt_enabled)
3596 hsave->save.cr3 = vmcb->save.cr3;
3597 else
3598 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3599
3600 copy_vmcb_control_area(hsave, vmcb);
3601
3602 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3603
3604 return true;
3605 }
3606
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)3607 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3608 {
3609 to_vmcb->save.fs = from_vmcb->save.fs;
3610 to_vmcb->save.gs = from_vmcb->save.gs;
3611 to_vmcb->save.tr = from_vmcb->save.tr;
3612 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3613 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3614 to_vmcb->save.star = from_vmcb->save.star;
3615 to_vmcb->save.lstar = from_vmcb->save.lstar;
3616 to_vmcb->save.cstar = from_vmcb->save.cstar;
3617 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3618 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3619 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3620 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3621 }
3622
vmload_interception(struct vcpu_svm * svm)3623 static int vmload_interception(struct vcpu_svm *svm)
3624 {
3625 struct vmcb *nested_vmcb;
3626 struct page *page;
3627 int ret;
3628
3629 if (nested_svm_check_permissions(svm))
3630 return 1;
3631
3632 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3633 if (!nested_vmcb)
3634 return 1;
3635
3636 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3637 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3638
3639 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3640 nested_svm_unmap(page);
3641
3642 return ret;
3643 }
3644
vmsave_interception(struct vcpu_svm * svm)3645 static int vmsave_interception(struct vcpu_svm *svm)
3646 {
3647 struct vmcb *nested_vmcb;
3648 struct page *page;
3649 int ret;
3650
3651 if (nested_svm_check_permissions(svm))
3652 return 1;
3653
3654 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3655 if (!nested_vmcb)
3656 return 1;
3657
3658 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3659 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3660
3661 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3662 nested_svm_unmap(page);
3663
3664 return ret;
3665 }
3666
vmrun_interception(struct vcpu_svm * svm)3667 static int vmrun_interception(struct vcpu_svm *svm)
3668 {
3669 if (nested_svm_check_permissions(svm))
3670 return 1;
3671
3672 /* Save rip after vmrun instruction */
3673 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3674
3675 if (!nested_svm_vmrun(svm))
3676 return 1;
3677
3678 if (!nested_svm_vmrun_msrpm(svm))
3679 goto failed;
3680
3681 return 1;
3682
3683 failed:
3684
3685 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3686 svm->vmcb->control.exit_code_hi = 0;
3687 svm->vmcb->control.exit_info_1 = 0;
3688 svm->vmcb->control.exit_info_2 = 0;
3689
3690 nested_svm_vmexit(svm);
3691
3692 return 1;
3693 }
3694
stgi_interception(struct vcpu_svm * svm)3695 static int stgi_interception(struct vcpu_svm *svm)
3696 {
3697 int ret;
3698
3699 if (nested_svm_check_permissions(svm))
3700 return 1;
3701
3702 /*
3703 * If VGIF is enabled, the STGI intercept is only added to
3704 * detect the opening of the SMI/NMI window; remove it now.
3705 */
3706 if (vgif_enabled(svm))
3707 clr_intercept(svm, INTERCEPT_STGI);
3708
3709 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3710 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3711 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3712
3713 enable_gif(svm);
3714
3715 return ret;
3716 }
3717
clgi_interception(struct vcpu_svm * svm)3718 static int clgi_interception(struct vcpu_svm *svm)
3719 {
3720 int ret;
3721
3722 if (nested_svm_check_permissions(svm))
3723 return 1;
3724
3725 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3726 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3727
3728 disable_gif(svm);
3729
3730 /* After a CLGI no interrupts should come */
3731 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3732 svm_clear_vintr(svm);
3733 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3734 mark_dirty(svm->vmcb, VMCB_INTR);
3735 }
3736
3737 return ret;
3738 }
3739
invlpga_interception(struct vcpu_svm * svm)3740 static int invlpga_interception(struct vcpu_svm *svm)
3741 {
3742 struct kvm_vcpu *vcpu = &svm->vcpu;
3743
3744 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3745 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3746
3747 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3748 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3749
3750 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3751 return kvm_skip_emulated_instruction(&svm->vcpu);
3752 }
3753
skinit_interception(struct vcpu_svm * svm)3754 static int skinit_interception(struct vcpu_svm *svm)
3755 {
3756 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3757
3758 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3759 return 1;
3760 }
3761
wbinvd_interception(struct vcpu_svm * svm)3762 static int wbinvd_interception(struct vcpu_svm *svm)
3763 {
3764 return kvm_emulate_wbinvd(&svm->vcpu);
3765 }
3766
xsetbv_interception(struct vcpu_svm * svm)3767 static int xsetbv_interception(struct vcpu_svm *svm)
3768 {
3769 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3770 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3771
3772 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3773 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3774 return kvm_skip_emulated_instruction(&svm->vcpu);
3775 }
3776
3777 return 1;
3778 }
3779
task_switch_interception(struct vcpu_svm * svm)3780 static int task_switch_interception(struct vcpu_svm *svm)
3781 {
3782 u16 tss_selector;
3783 int reason;
3784 int int_type = svm->vmcb->control.exit_int_info &
3785 SVM_EXITINTINFO_TYPE_MASK;
3786 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3787 uint32_t type =
3788 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3789 uint32_t idt_v =
3790 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3791 bool has_error_code = false;
3792 u32 error_code = 0;
3793
3794 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3795
3796 if (svm->vmcb->control.exit_info_2 &
3797 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3798 reason = TASK_SWITCH_IRET;
3799 else if (svm->vmcb->control.exit_info_2 &
3800 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3801 reason = TASK_SWITCH_JMP;
3802 else if (idt_v)
3803 reason = TASK_SWITCH_GATE;
3804 else
3805 reason = TASK_SWITCH_CALL;
3806
3807 if (reason == TASK_SWITCH_GATE) {
3808 switch (type) {
3809 case SVM_EXITINTINFO_TYPE_NMI:
3810 svm->vcpu.arch.nmi_injected = false;
3811 break;
3812 case SVM_EXITINTINFO_TYPE_EXEPT:
3813 if (svm->vmcb->control.exit_info_2 &
3814 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3815 has_error_code = true;
3816 error_code =
3817 (u32)svm->vmcb->control.exit_info_2;
3818 }
3819 kvm_clear_exception_queue(&svm->vcpu);
3820 break;
3821 case SVM_EXITINTINFO_TYPE_INTR:
3822 kvm_clear_interrupt_queue(&svm->vcpu);
3823 break;
3824 default:
3825 break;
3826 }
3827 }
3828
3829 if (reason != TASK_SWITCH_GATE ||
3830 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3831 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3832 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3833 skip_emulated_instruction(&svm->vcpu);
3834
3835 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3836 int_vec = -1;
3837
3838 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3839 has_error_code, error_code) == EMULATE_FAIL) {
3840 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3841 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3842 svm->vcpu.run->internal.ndata = 0;
3843 return 0;
3844 }
3845 return 1;
3846 }
3847
cpuid_interception(struct vcpu_svm * svm)3848 static int cpuid_interception(struct vcpu_svm *svm)
3849 {
3850 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3851 return kvm_emulate_cpuid(&svm->vcpu);
3852 }
3853
iret_interception(struct vcpu_svm * svm)3854 static int iret_interception(struct vcpu_svm *svm)
3855 {
3856 ++svm->vcpu.stat.nmi_window_exits;
3857 clr_intercept(svm, INTERCEPT_IRET);
3858 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3859 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3860 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3861 return 1;
3862 }
3863
invlpg_interception(struct vcpu_svm * svm)3864 static int invlpg_interception(struct vcpu_svm *svm)
3865 {
3866 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3867 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3868
3869 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3870 return kvm_skip_emulated_instruction(&svm->vcpu);
3871 }
3872
emulate_on_interception(struct vcpu_svm * svm)3873 static int emulate_on_interception(struct vcpu_svm *svm)
3874 {
3875 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3876 }
3877
rsm_interception(struct vcpu_svm * svm)3878 static int rsm_interception(struct vcpu_svm *svm)
3879 {
3880 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3881 rsm_ins_bytes, 2) == EMULATE_DONE;
3882 }
3883
rdpmc_interception(struct vcpu_svm * svm)3884 static int rdpmc_interception(struct vcpu_svm *svm)
3885 {
3886 int err;
3887
3888 if (!static_cpu_has(X86_FEATURE_NRIPS))
3889 return emulate_on_interception(svm);
3890
3891 err = kvm_rdpmc(&svm->vcpu);
3892 return kvm_complete_insn_gp(&svm->vcpu, err);
3893 }
3894
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)3895 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3896 unsigned long val)
3897 {
3898 unsigned long cr0 = svm->vcpu.arch.cr0;
3899 bool ret = false;
3900 u64 intercept;
3901
3902 intercept = svm->nested.intercept;
3903
3904 if (!is_guest_mode(&svm->vcpu) ||
3905 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3906 return false;
3907
3908 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3909 val &= ~SVM_CR0_SELECTIVE_MASK;
3910
3911 if (cr0 ^ val) {
3912 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3913 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3914 }
3915
3916 return ret;
3917 }
3918
3919 #define CR_VALID (1ULL << 63)
3920
cr_interception(struct vcpu_svm * svm)3921 static int cr_interception(struct vcpu_svm *svm)
3922 {
3923 int reg, cr;
3924 unsigned long val;
3925 int err;
3926
3927 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3928 return emulate_on_interception(svm);
3929
3930 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3931 return emulate_on_interception(svm);
3932
3933 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3934 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3935 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3936 else
3937 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3938
3939 err = 0;
3940 if (cr >= 16) { /* mov to cr */
3941 cr -= 16;
3942 val = kvm_register_read(&svm->vcpu, reg);
3943 switch (cr) {
3944 case 0:
3945 if (!check_selective_cr0_intercepted(svm, val))
3946 err = kvm_set_cr0(&svm->vcpu, val);
3947 else
3948 return 1;
3949
3950 break;
3951 case 3:
3952 err = kvm_set_cr3(&svm->vcpu, val);
3953 break;
3954 case 4:
3955 err = kvm_set_cr4(&svm->vcpu, val);
3956 break;
3957 case 8:
3958 err = kvm_set_cr8(&svm->vcpu, val);
3959 break;
3960 default:
3961 WARN(1, "unhandled write to CR%d", cr);
3962 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3963 return 1;
3964 }
3965 } else { /* mov from cr */
3966 switch (cr) {
3967 case 0:
3968 val = kvm_read_cr0(&svm->vcpu);
3969 break;
3970 case 2:
3971 val = svm->vcpu.arch.cr2;
3972 break;
3973 case 3:
3974 val = kvm_read_cr3(&svm->vcpu);
3975 break;
3976 case 4:
3977 val = kvm_read_cr4(&svm->vcpu);
3978 break;
3979 case 8:
3980 val = kvm_get_cr8(&svm->vcpu);
3981 break;
3982 default:
3983 WARN(1, "unhandled read from CR%d", cr);
3984 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3985 return 1;
3986 }
3987 kvm_register_write(&svm->vcpu, reg, val);
3988 }
3989 return kvm_complete_insn_gp(&svm->vcpu, err);
3990 }
3991
dr_interception(struct vcpu_svm * svm)3992 static int dr_interception(struct vcpu_svm *svm)
3993 {
3994 int reg, dr;
3995 unsigned long val;
3996
3997 if (svm->vcpu.guest_debug == 0) {
3998 /*
3999 * No more DR vmexits; force a reload of the debug registers
4000 * and reenter on this instruction. The next vmexit will
4001 * retrieve the full state of the debug registers.
4002 */
4003 clr_dr_intercepts(svm);
4004 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4005 return 1;
4006 }
4007
4008 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4009 return emulate_on_interception(svm);
4010
4011 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4012 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4013
4014 if (dr >= 16) { /* mov to DRn */
4015 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4016 return 1;
4017 val = kvm_register_read(&svm->vcpu, reg);
4018 kvm_set_dr(&svm->vcpu, dr - 16, val);
4019 } else {
4020 if (!kvm_require_dr(&svm->vcpu, dr))
4021 return 1;
4022 kvm_get_dr(&svm->vcpu, dr, &val);
4023 kvm_register_write(&svm->vcpu, reg, val);
4024 }
4025
4026 return kvm_skip_emulated_instruction(&svm->vcpu);
4027 }
4028
cr8_write_interception(struct vcpu_svm * svm)4029 static int cr8_write_interception(struct vcpu_svm *svm)
4030 {
4031 struct kvm_run *kvm_run = svm->vcpu.run;
4032 int r;
4033
4034 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4035 /* instruction emulation calls kvm_set_cr8() */
4036 r = cr_interception(svm);
4037 if (lapic_in_kernel(&svm->vcpu))
4038 return r;
4039 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4040 return r;
4041 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4042 return 0;
4043 }
4044
svm_get_msr_feature(struct kvm_msr_entry * msr)4045 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4046 {
4047 msr->data = 0;
4048
4049 switch (msr->index) {
4050 case MSR_F10H_DECFG:
4051 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4052 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4053 break;
4054 default:
4055 return 1;
4056 }
4057
4058 return 0;
4059 }
4060
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4061 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4062 {
4063 struct vcpu_svm *svm = to_svm(vcpu);
4064
4065 switch (msr_info->index) {
4066 case MSR_STAR:
4067 msr_info->data = svm->vmcb->save.star;
4068 break;
4069 #ifdef CONFIG_X86_64
4070 case MSR_LSTAR:
4071 msr_info->data = svm->vmcb->save.lstar;
4072 break;
4073 case MSR_CSTAR:
4074 msr_info->data = svm->vmcb->save.cstar;
4075 break;
4076 case MSR_KERNEL_GS_BASE:
4077 msr_info->data = svm->vmcb->save.kernel_gs_base;
4078 break;
4079 case MSR_SYSCALL_MASK:
4080 msr_info->data = svm->vmcb->save.sfmask;
4081 break;
4082 #endif
4083 case MSR_IA32_SYSENTER_CS:
4084 msr_info->data = svm->vmcb->save.sysenter_cs;
4085 break;
4086 case MSR_IA32_SYSENTER_EIP:
4087 msr_info->data = svm->sysenter_eip;
4088 break;
4089 case MSR_IA32_SYSENTER_ESP:
4090 msr_info->data = svm->sysenter_esp;
4091 break;
4092 case MSR_TSC_AUX:
4093 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4094 return 1;
4095 msr_info->data = svm->tsc_aux;
4096 break;
4097 /*
4098 * Nobody will change the following 5 values in the VMCB so we can
4099 * safely return them on rdmsr. They will always be 0 until LBRV is
4100 * implemented.
4101 */
4102 case MSR_IA32_DEBUGCTLMSR:
4103 msr_info->data = svm->vmcb->save.dbgctl;
4104 break;
4105 case MSR_IA32_LASTBRANCHFROMIP:
4106 msr_info->data = svm->vmcb->save.br_from;
4107 break;
4108 case MSR_IA32_LASTBRANCHTOIP:
4109 msr_info->data = svm->vmcb->save.br_to;
4110 break;
4111 case MSR_IA32_LASTINTFROMIP:
4112 msr_info->data = svm->vmcb->save.last_excp_from;
4113 break;
4114 case MSR_IA32_LASTINTTOIP:
4115 msr_info->data = svm->vmcb->save.last_excp_to;
4116 break;
4117 case MSR_VM_HSAVE_PA:
4118 msr_info->data = svm->nested.hsave_msr;
4119 break;
4120 case MSR_VM_CR:
4121 msr_info->data = svm->nested.vm_cr_msr;
4122 break;
4123 case MSR_IA32_SPEC_CTRL:
4124 if (!msr_info->host_initiated &&
4125 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4126 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4127 return 1;
4128
4129 msr_info->data = svm->spec_ctrl;
4130 break;
4131 case MSR_AMD64_VIRT_SPEC_CTRL:
4132 if (!msr_info->host_initiated &&
4133 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4134 return 1;
4135
4136 msr_info->data = svm->virt_spec_ctrl;
4137 break;
4138 case MSR_F15H_IC_CFG: {
4139
4140 int family, model;
4141
4142 family = guest_cpuid_family(vcpu);
4143 model = guest_cpuid_model(vcpu);
4144
4145 if (family < 0 || model < 0)
4146 return kvm_get_msr_common(vcpu, msr_info);
4147
4148 msr_info->data = 0;
4149
4150 if (family == 0x15 &&
4151 (model >= 0x2 && model < 0x20))
4152 msr_info->data = 0x1E;
4153 }
4154 break;
4155 case MSR_F10H_DECFG:
4156 msr_info->data = svm->msr_decfg;
4157 break;
4158 default:
4159 return kvm_get_msr_common(vcpu, msr_info);
4160 }
4161 return 0;
4162 }
4163
rdmsr_interception(struct vcpu_svm * svm)4164 static int rdmsr_interception(struct vcpu_svm *svm)
4165 {
4166 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4167 struct msr_data msr_info;
4168
4169 msr_info.index = ecx;
4170 msr_info.host_initiated = false;
4171 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4172 trace_kvm_msr_read_ex(ecx);
4173 kvm_inject_gp(&svm->vcpu, 0);
4174 return 1;
4175 } else {
4176 trace_kvm_msr_read(ecx, msr_info.data);
4177
4178 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4179 msr_info.data & 0xffffffff);
4180 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4181 msr_info.data >> 32);
4182 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4183 return kvm_skip_emulated_instruction(&svm->vcpu);
4184 }
4185 }
4186
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)4187 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4188 {
4189 struct vcpu_svm *svm = to_svm(vcpu);
4190 int svm_dis, chg_mask;
4191
4192 if (data & ~SVM_VM_CR_VALID_MASK)
4193 return 1;
4194
4195 chg_mask = SVM_VM_CR_VALID_MASK;
4196
4197 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4198 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4199
4200 svm->nested.vm_cr_msr &= ~chg_mask;
4201 svm->nested.vm_cr_msr |= (data & chg_mask);
4202
4203 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4204
4205 /* check for svm_disable while efer.svme is set */
4206 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4207 return 1;
4208
4209 return 0;
4210 }
4211
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)4212 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4213 {
4214 struct vcpu_svm *svm = to_svm(vcpu);
4215
4216 u32 ecx = msr->index;
4217 u64 data = msr->data;
4218 switch (ecx) {
4219 case MSR_IA32_CR_PAT:
4220 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4221 return 1;
4222 vcpu->arch.pat = data;
4223 svm->vmcb->save.g_pat = data;
4224 mark_dirty(svm->vmcb, VMCB_NPT);
4225 break;
4226 case MSR_IA32_SPEC_CTRL:
4227 if (!msr->host_initiated &&
4228 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4229 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4230 return 1;
4231
4232 /* The STIBP bit doesn't fault even if it's not advertised */
4233 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4234 return 1;
4235
4236 svm->spec_ctrl = data;
4237
4238 if (!data)
4239 break;
4240
4241 /*
4242 * For non-nested:
4243 * When it's written (to non-zero) for the first time, pass
4244 * it through.
4245 *
4246 * For nested:
4247 * The handling of the MSR bitmap for L2 guests is done in
4248 * nested_svm_vmrun_msrpm.
4249 * We update the L1 MSR bit as well since it will end up
4250 * touching the MSR anyway now.
4251 */
4252 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4253 break;
4254 case MSR_IA32_PRED_CMD:
4255 if (!msr->host_initiated &&
4256 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4257 return 1;
4258
4259 if (data & ~PRED_CMD_IBPB)
4260 return 1;
4261
4262 if (!data)
4263 break;
4264
4265 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4266 if (is_guest_mode(vcpu))
4267 break;
4268 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4269 break;
4270 case MSR_AMD64_VIRT_SPEC_CTRL:
4271 if (!msr->host_initiated &&
4272 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4273 return 1;
4274
4275 if (data & ~SPEC_CTRL_SSBD)
4276 return 1;
4277
4278 svm->virt_spec_ctrl = data;
4279 break;
4280 case MSR_STAR:
4281 svm->vmcb->save.star = data;
4282 break;
4283 #ifdef CONFIG_X86_64
4284 case MSR_LSTAR:
4285 svm->vmcb->save.lstar = data;
4286 break;
4287 case MSR_CSTAR:
4288 svm->vmcb->save.cstar = data;
4289 break;
4290 case MSR_KERNEL_GS_BASE:
4291 svm->vmcb->save.kernel_gs_base = data;
4292 break;
4293 case MSR_SYSCALL_MASK:
4294 svm->vmcb->save.sfmask = data;
4295 break;
4296 #endif
4297 case MSR_IA32_SYSENTER_CS:
4298 svm->vmcb->save.sysenter_cs = data;
4299 break;
4300 case MSR_IA32_SYSENTER_EIP:
4301 svm->sysenter_eip = data;
4302 svm->vmcb->save.sysenter_eip = data;
4303 break;
4304 case MSR_IA32_SYSENTER_ESP:
4305 svm->sysenter_esp = data;
4306 svm->vmcb->save.sysenter_esp = data;
4307 break;
4308 case MSR_TSC_AUX:
4309 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4310 return 1;
4311
4312 /*
4313 * This is rare, so we update the MSR here instead of using
4314 * direct_access_msrs. Doing that would require a rdmsr in
4315 * svm_vcpu_put.
4316 */
4317 svm->tsc_aux = data;
4318 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4319 break;
4320 case MSR_IA32_DEBUGCTLMSR:
4321 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4322 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4323 __func__, data);
4324 break;
4325 }
4326 if (data & DEBUGCTL_RESERVED_BITS)
4327 return 1;
4328
4329 svm->vmcb->save.dbgctl = data;
4330 mark_dirty(svm->vmcb, VMCB_LBR);
4331 if (data & (1ULL<<0))
4332 svm_enable_lbrv(svm);
4333 else
4334 svm_disable_lbrv(svm);
4335 break;
4336 case MSR_VM_HSAVE_PA:
4337 svm->nested.hsave_msr = data;
4338 break;
4339 case MSR_VM_CR:
4340 return svm_set_vm_cr(vcpu, data);
4341 case MSR_VM_IGNNE:
4342 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4343 break;
4344 case MSR_F10H_DECFG: {
4345 struct kvm_msr_entry msr_entry;
4346
4347 msr_entry.index = msr->index;
4348 if (svm_get_msr_feature(&msr_entry))
4349 return 1;
4350
4351 /* Check the supported bits */
4352 if (data & ~msr_entry.data)
4353 return 1;
4354
4355 /* Don't allow the guest to change a bit, #GP */
4356 if (!msr->host_initiated && (data ^ msr_entry.data))
4357 return 1;
4358
4359 svm->msr_decfg = data;
4360 break;
4361 }
4362 case MSR_IA32_APICBASE:
4363 if (kvm_vcpu_apicv_active(vcpu))
4364 avic_update_vapic_bar(to_svm(vcpu), data);
4365 /* Follow through */
4366 default:
4367 return kvm_set_msr_common(vcpu, msr);
4368 }
4369 return 0;
4370 }
4371
wrmsr_interception(struct vcpu_svm * svm)4372 static int wrmsr_interception(struct vcpu_svm *svm)
4373 {
4374 struct msr_data msr;
4375 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4376 u64 data = kvm_read_edx_eax(&svm->vcpu);
4377
4378 msr.data = data;
4379 msr.index = ecx;
4380 msr.host_initiated = false;
4381
4382 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4383 if (kvm_set_msr(&svm->vcpu, &msr)) {
4384 trace_kvm_msr_write_ex(ecx, data);
4385 kvm_inject_gp(&svm->vcpu, 0);
4386 return 1;
4387 } else {
4388 trace_kvm_msr_write(ecx, data);
4389 return kvm_skip_emulated_instruction(&svm->vcpu);
4390 }
4391 }
4392
msr_interception(struct vcpu_svm * svm)4393 static int msr_interception(struct vcpu_svm *svm)
4394 {
4395 if (svm->vmcb->control.exit_info_1)
4396 return wrmsr_interception(svm);
4397 else
4398 return rdmsr_interception(svm);
4399 }
4400
interrupt_window_interception(struct vcpu_svm * svm)4401 static int interrupt_window_interception(struct vcpu_svm *svm)
4402 {
4403 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4404 svm_clear_vintr(svm);
4405 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4406 mark_dirty(svm->vmcb, VMCB_INTR);
4407 ++svm->vcpu.stat.irq_window_exits;
4408 return 1;
4409 }
4410
pause_interception(struct vcpu_svm * svm)4411 static int pause_interception(struct vcpu_svm *svm)
4412 {
4413 struct kvm_vcpu *vcpu = &svm->vcpu;
4414 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4415
4416 if (pause_filter_thresh)
4417 grow_ple_window(vcpu);
4418
4419 kvm_vcpu_on_spin(vcpu, in_kernel);
4420 return 1;
4421 }
4422
nop_interception(struct vcpu_svm * svm)4423 static int nop_interception(struct vcpu_svm *svm)
4424 {
4425 return kvm_skip_emulated_instruction(&(svm->vcpu));
4426 }
4427
monitor_interception(struct vcpu_svm * svm)4428 static int monitor_interception(struct vcpu_svm *svm)
4429 {
4430 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4431 return nop_interception(svm);
4432 }
4433
mwait_interception(struct vcpu_svm * svm)4434 static int mwait_interception(struct vcpu_svm *svm)
4435 {
4436 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4437 return nop_interception(svm);
4438 }
4439
4440 enum avic_ipi_failure_cause {
4441 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4442 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4443 AVIC_IPI_FAILURE_INVALID_TARGET,
4444 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4445 };
4446
avic_incomplete_ipi_interception(struct vcpu_svm * svm)4447 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4448 {
4449 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4450 u32 icrl = svm->vmcb->control.exit_info_1;
4451 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4452 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4453 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4454
4455 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4456
4457 switch (id) {
4458 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4459 /*
4460 * AVIC hardware handles the generation of
4461 * IPIs when the specified Message Type is Fixed
4462 * (also known as fixed delivery mode) and
4463 * the Trigger Mode is edge-triggered. The hardware
4464 * also supports self and broadcast delivery modes
4465 * specified via the Destination Shorthand(DSH)
4466 * field of the ICRL. Logical and physical APIC ID
4467 * formats are supported. All other IPI types cause
4468 * a #VMEXIT, which needs to emulated.
4469 */
4470 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4471 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4472 break;
4473 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4474 int i;
4475 struct kvm_vcpu *vcpu;
4476 struct kvm *kvm = svm->vcpu.kvm;
4477 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4478
4479 /*
4480 * At this point, we expect that the AVIC HW has already
4481 * set the appropriate IRR bits on the valid target
4482 * vcpus. So, we just need to kick the appropriate vcpu.
4483 */
4484 kvm_for_each_vcpu(i, vcpu, kvm) {
4485 bool m = kvm_apic_match_dest(vcpu, apic,
4486 icrl & KVM_APIC_SHORT_MASK,
4487 GET_APIC_DEST_FIELD(icrh),
4488 icrl & KVM_APIC_DEST_MASK);
4489
4490 if (m && !avic_vcpu_is_running(vcpu))
4491 kvm_vcpu_wake_up(vcpu);
4492 }
4493 break;
4494 }
4495 case AVIC_IPI_FAILURE_INVALID_TARGET:
4496 break;
4497 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4498 WARN_ONCE(1, "Invalid backing page\n");
4499 break;
4500 default:
4501 pr_err("Unknown IPI interception\n");
4502 }
4503
4504 return 1;
4505 }
4506
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)4507 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4508 {
4509 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4510 int index;
4511 u32 *logical_apic_id_table;
4512 int dlid = GET_APIC_LOGICAL_ID(ldr);
4513
4514 if (!dlid)
4515 return NULL;
4516
4517 if (flat) { /* flat */
4518 index = ffs(dlid) - 1;
4519 if (index > 7)
4520 return NULL;
4521 } else { /* cluster */
4522 int cluster = (dlid & 0xf0) >> 4;
4523 int apic = ffs(dlid & 0x0f) - 1;
4524
4525 if ((apic < 0) || (apic > 7) ||
4526 (cluster >= 0xf))
4527 return NULL;
4528 index = (cluster << 2) + apic;
4529 }
4530
4531 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4532
4533 return &logical_apic_id_table[index];
4534 }
4535
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr,bool valid)4536 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4537 bool valid)
4538 {
4539 bool flat;
4540 u32 *entry, new_entry;
4541
4542 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4543 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4544 if (!entry)
4545 return -EINVAL;
4546
4547 new_entry = READ_ONCE(*entry);
4548 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4549 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4550 if (valid)
4551 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4552 else
4553 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4554 WRITE_ONCE(*entry, new_entry);
4555
4556 return 0;
4557 }
4558
avic_handle_ldr_update(struct kvm_vcpu * vcpu)4559 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4560 {
4561 int ret;
4562 struct vcpu_svm *svm = to_svm(vcpu);
4563 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4564
4565 if (!ldr)
4566 return 1;
4567
4568 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4569 if (ret && svm->ldr_reg) {
4570 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4571 svm->ldr_reg = 0;
4572 } else {
4573 svm->ldr_reg = ldr;
4574 }
4575 return ret;
4576 }
4577
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)4578 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4579 {
4580 u64 *old, *new;
4581 struct vcpu_svm *svm = to_svm(vcpu);
4582 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4583 u32 id = (apic_id_reg >> 24) & 0xff;
4584
4585 if (vcpu->vcpu_id == id)
4586 return 0;
4587
4588 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4589 new = avic_get_physical_id_entry(vcpu, id);
4590 if (!new || !old)
4591 return 1;
4592
4593 /* We need to move physical_id_entry to new offset */
4594 *new = *old;
4595 *old = 0ULL;
4596 to_svm(vcpu)->avic_physical_id_cache = new;
4597
4598 /*
4599 * Also update the guest physical APIC ID in the logical
4600 * APIC ID table entry if already setup the LDR.
4601 */
4602 if (svm->ldr_reg)
4603 avic_handle_ldr_update(vcpu);
4604
4605 return 0;
4606 }
4607
avic_handle_dfr_update(struct kvm_vcpu * vcpu)4608 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4609 {
4610 struct vcpu_svm *svm = to_svm(vcpu);
4611 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4612 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4613 u32 mod = (dfr >> 28) & 0xf;
4614
4615 /*
4616 * We assume that all local APICs are using the same type.
4617 * If this changes, we need to flush the AVIC logical
4618 * APID id table.
4619 */
4620 if (kvm_svm->ldr_mode == mod)
4621 return 0;
4622
4623 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4624 kvm_svm->ldr_mode = mod;
4625
4626 if (svm->ldr_reg)
4627 avic_handle_ldr_update(vcpu);
4628 return 0;
4629 }
4630
avic_unaccel_trap_write(struct vcpu_svm * svm)4631 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4632 {
4633 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4634 u32 offset = svm->vmcb->control.exit_info_1 &
4635 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4636
4637 switch (offset) {
4638 case APIC_ID:
4639 if (avic_handle_apic_id_update(&svm->vcpu))
4640 return 0;
4641 break;
4642 case APIC_LDR:
4643 if (avic_handle_ldr_update(&svm->vcpu))
4644 return 0;
4645 break;
4646 case APIC_DFR:
4647 avic_handle_dfr_update(&svm->vcpu);
4648 break;
4649 default:
4650 break;
4651 }
4652
4653 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4654
4655 return 1;
4656 }
4657
is_avic_unaccelerated_access_trap(u32 offset)4658 static bool is_avic_unaccelerated_access_trap(u32 offset)
4659 {
4660 bool ret = false;
4661
4662 switch (offset) {
4663 case APIC_ID:
4664 case APIC_EOI:
4665 case APIC_RRR:
4666 case APIC_LDR:
4667 case APIC_DFR:
4668 case APIC_SPIV:
4669 case APIC_ESR:
4670 case APIC_ICR:
4671 case APIC_LVTT:
4672 case APIC_LVTTHMR:
4673 case APIC_LVTPC:
4674 case APIC_LVT0:
4675 case APIC_LVT1:
4676 case APIC_LVTERR:
4677 case APIC_TMICT:
4678 case APIC_TDCR:
4679 ret = true;
4680 break;
4681 default:
4682 break;
4683 }
4684 return ret;
4685 }
4686
avic_unaccelerated_access_interception(struct vcpu_svm * svm)4687 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4688 {
4689 int ret = 0;
4690 u32 offset = svm->vmcb->control.exit_info_1 &
4691 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4692 u32 vector = svm->vmcb->control.exit_info_2 &
4693 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4694 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4695 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4696 bool trap = is_avic_unaccelerated_access_trap(offset);
4697
4698 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4699 trap, write, vector);
4700 if (trap) {
4701 /* Handling Trap */
4702 WARN_ONCE(!write, "svm: Handling trap read.\n");
4703 ret = avic_unaccel_trap_write(svm);
4704 } else {
4705 /* Handling Fault */
4706 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4707 }
4708
4709 return ret;
4710 }
4711
4712 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4713 [SVM_EXIT_READ_CR0] = cr_interception,
4714 [SVM_EXIT_READ_CR3] = cr_interception,
4715 [SVM_EXIT_READ_CR4] = cr_interception,
4716 [SVM_EXIT_READ_CR8] = cr_interception,
4717 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4718 [SVM_EXIT_WRITE_CR0] = cr_interception,
4719 [SVM_EXIT_WRITE_CR3] = cr_interception,
4720 [SVM_EXIT_WRITE_CR4] = cr_interception,
4721 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4722 [SVM_EXIT_READ_DR0] = dr_interception,
4723 [SVM_EXIT_READ_DR1] = dr_interception,
4724 [SVM_EXIT_READ_DR2] = dr_interception,
4725 [SVM_EXIT_READ_DR3] = dr_interception,
4726 [SVM_EXIT_READ_DR4] = dr_interception,
4727 [SVM_EXIT_READ_DR5] = dr_interception,
4728 [SVM_EXIT_READ_DR6] = dr_interception,
4729 [SVM_EXIT_READ_DR7] = dr_interception,
4730 [SVM_EXIT_WRITE_DR0] = dr_interception,
4731 [SVM_EXIT_WRITE_DR1] = dr_interception,
4732 [SVM_EXIT_WRITE_DR2] = dr_interception,
4733 [SVM_EXIT_WRITE_DR3] = dr_interception,
4734 [SVM_EXIT_WRITE_DR4] = dr_interception,
4735 [SVM_EXIT_WRITE_DR5] = dr_interception,
4736 [SVM_EXIT_WRITE_DR6] = dr_interception,
4737 [SVM_EXIT_WRITE_DR7] = dr_interception,
4738 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4739 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4740 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4741 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4742 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4743 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4744 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4745 [SVM_EXIT_INTR] = intr_interception,
4746 [SVM_EXIT_NMI] = nmi_interception,
4747 [SVM_EXIT_SMI] = nop_on_interception,
4748 [SVM_EXIT_INIT] = nop_on_interception,
4749 [SVM_EXIT_VINTR] = interrupt_window_interception,
4750 [SVM_EXIT_RDPMC] = rdpmc_interception,
4751 [SVM_EXIT_CPUID] = cpuid_interception,
4752 [SVM_EXIT_IRET] = iret_interception,
4753 [SVM_EXIT_INVD] = emulate_on_interception,
4754 [SVM_EXIT_PAUSE] = pause_interception,
4755 [SVM_EXIT_HLT] = halt_interception,
4756 [SVM_EXIT_INVLPG] = invlpg_interception,
4757 [SVM_EXIT_INVLPGA] = invlpga_interception,
4758 [SVM_EXIT_IOIO] = io_interception,
4759 [SVM_EXIT_MSR] = msr_interception,
4760 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4761 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4762 [SVM_EXIT_VMRUN] = vmrun_interception,
4763 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4764 [SVM_EXIT_VMLOAD] = vmload_interception,
4765 [SVM_EXIT_VMSAVE] = vmsave_interception,
4766 [SVM_EXIT_STGI] = stgi_interception,
4767 [SVM_EXIT_CLGI] = clgi_interception,
4768 [SVM_EXIT_SKINIT] = skinit_interception,
4769 [SVM_EXIT_WBINVD] = wbinvd_interception,
4770 [SVM_EXIT_MONITOR] = monitor_interception,
4771 [SVM_EXIT_MWAIT] = mwait_interception,
4772 [SVM_EXIT_XSETBV] = xsetbv_interception,
4773 [SVM_EXIT_NPF] = npf_interception,
4774 [SVM_EXIT_RSM] = rsm_interception,
4775 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4776 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4777 };
4778
dump_vmcb(struct kvm_vcpu * vcpu)4779 static void dump_vmcb(struct kvm_vcpu *vcpu)
4780 {
4781 struct vcpu_svm *svm = to_svm(vcpu);
4782 struct vmcb_control_area *control = &svm->vmcb->control;
4783 struct vmcb_save_area *save = &svm->vmcb->save;
4784
4785 pr_err("VMCB Control Area:\n");
4786 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4787 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4788 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4789 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4790 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4791 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4792 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4793 pr_err("%-20s%d\n", "pause filter threshold:",
4794 control->pause_filter_thresh);
4795 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4796 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4797 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4798 pr_err("%-20s%d\n", "asid:", control->asid);
4799 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4800 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4801 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4802 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4803 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4804 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4805 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4806 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4807 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4808 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4809 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4810 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4811 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4812 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4813 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4814 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4815 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4816 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4817 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4818 pr_err("VMCB State Save Area:\n");
4819 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4820 "es:",
4821 save->es.selector, save->es.attrib,
4822 save->es.limit, save->es.base);
4823 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4824 "cs:",
4825 save->cs.selector, save->cs.attrib,
4826 save->cs.limit, save->cs.base);
4827 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4828 "ss:",
4829 save->ss.selector, save->ss.attrib,
4830 save->ss.limit, save->ss.base);
4831 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4832 "ds:",
4833 save->ds.selector, save->ds.attrib,
4834 save->ds.limit, save->ds.base);
4835 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4836 "fs:",
4837 save->fs.selector, save->fs.attrib,
4838 save->fs.limit, save->fs.base);
4839 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4840 "gs:",
4841 save->gs.selector, save->gs.attrib,
4842 save->gs.limit, save->gs.base);
4843 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4844 "gdtr:",
4845 save->gdtr.selector, save->gdtr.attrib,
4846 save->gdtr.limit, save->gdtr.base);
4847 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4848 "ldtr:",
4849 save->ldtr.selector, save->ldtr.attrib,
4850 save->ldtr.limit, save->ldtr.base);
4851 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 "idtr:",
4853 save->idtr.selector, save->idtr.attrib,
4854 save->idtr.limit, save->idtr.base);
4855 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856 "tr:",
4857 save->tr.selector, save->tr.attrib,
4858 save->tr.limit, save->tr.base);
4859 pr_err("cpl: %d efer: %016llx\n",
4860 save->cpl, save->efer);
4861 pr_err("%-15s %016llx %-13s %016llx\n",
4862 "cr0:", save->cr0, "cr2:", save->cr2);
4863 pr_err("%-15s %016llx %-13s %016llx\n",
4864 "cr3:", save->cr3, "cr4:", save->cr4);
4865 pr_err("%-15s %016llx %-13s %016llx\n",
4866 "dr6:", save->dr6, "dr7:", save->dr7);
4867 pr_err("%-15s %016llx %-13s %016llx\n",
4868 "rip:", save->rip, "rflags:", save->rflags);
4869 pr_err("%-15s %016llx %-13s %016llx\n",
4870 "rsp:", save->rsp, "rax:", save->rax);
4871 pr_err("%-15s %016llx %-13s %016llx\n",
4872 "star:", save->star, "lstar:", save->lstar);
4873 pr_err("%-15s %016llx %-13s %016llx\n",
4874 "cstar:", save->cstar, "sfmask:", save->sfmask);
4875 pr_err("%-15s %016llx %-13s %016llx\n",
4876 "kernel_gs_base:", save->kernel_gs_base,
4877 "sysenter_cs:", save->sysenter_cs);
4878 pr_err("%-15s %016llx %-13s %016llx\n",
4879 "sysenter_esp:", save->sysenter_esp,
4880 "sysenter_eip:", save->sysenter_eip);
4881 pr_err("%-15s %016llx %-13s %016llx\n",
4882 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4883 pr_err("%-15s %016llx %-13s %016llx\n",
4884 "br_from:", save->br_from, "br_to:", save->br_to);
4885 pr_err("%-15s %016llx %-13s %016llx\n",
4886 "excp_from:", save->last_excp_from,
4887 "excp_to:", save->last_excp_to);
4888 }
4889
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)4890 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4891 {
4892 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4893
4894 *info1 = control->exit_info_1;
4895 *info2 = control->exit_info_2;
4896 }
4897
handle_exit(struct kvm_vcpu * vcpu)4898 static int handle_exit(struct kvm_vcpu *vcpu)
4899 {
4900 struct vcpu_svm *svm = to_svm(vcpu);
4901 struct kvm_run *kvm_run = vcpu->run;
4902 u32 exit_code = svm->vmcb->control.exit_code;
4903
4904 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4905
4906 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4907 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4908 if (npt_enabled)
4909 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4910
4911 if (unlikely(svm->nested.exit_required)) {
4912 nested_svm_vmexit(svm);
4913 svm->nested.exit_required = false;
4914
4915 return 1;
4916 }
4917
4918 if (is_guest_mode(vcpu)) {
4919 int vmexit;
4920
4921 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4922 svm->vmcb->control.exit_info_1,
4923 svm->vmcb->control.exit_info_2,
4924 svm->vmcb->control.exit_int_info,
4925 svm->vmcb->control.exit_int_info_err,
4926 KVM_ISA_SVM);
4927
4928 vmexit = nested_svm_exit_special(svm);
4929
4930 if (vmexit == NESTED_EXIT_CONTINUE)
4931 vmexit = nested_svm_exit_handled(svm);
4932
4933 if (vmexit == NESTED_EXIT_DONE)
4934 return 1;
4935 }
4936
4937 svm_complete_interrupts(svm);
4938
4939 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4940 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4941 kvm_run->fail_entry.hardware_entry_failure_reason
4942 = svm->vmcb->control.exit_code;
4943 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4944 dump_vmcb(vcpu);
4945 return 0;
4946 }
4947
4948 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4949 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4950 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4951 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4952 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4953 "exit_code 0x%x\n",
4954 __func__, svm->vmcb->control.exit_int_info,
4955 exit_code);
4956
4957 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4958 || !svm_exit_handlers[exit_code]) {
4959 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4960 kvm_queue_exception(vcpu, UD_VECTOR);
4961 return 1;
4962 }
4963
4964 return svm_exit_handlers[exit_code](svm);
4965 }
4966
reload_tss(struct kvm_vcpu * vcpu)4967 static void reload_tss(struct kvm_vcpu *vcpu)
4968 {
4969 int cpu = raw_smp_processor_id();
4970
4971 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4972 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4973 load_TR_desc();
4974 }
4975
pre_sev_run(struct vcpu_svm * svm,int cpu)4976 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4977 {
4978 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4979 int asid = sev_get_asid(svm->vcpu.kvm);
4980
4981 /* Assign the asid allocated with this SEV guest */
4982 svm->vmcb->control.asid = asid;
4983
4984 /*
4985 * Flush guest TLB:
4986 *
4987 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4988 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4989 */
4990 if (sd->sev_vmcbs[asid] == svm->vmcb &&
4991 svm->last_cpu == cpu)
4992 return;
4993
4994 svm->last_cpu = cpu;
4995 sd->sev_vmcbs[asid] = svm->vmcb;
4996 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4997 mark_dirty(svm->vmcb, VMCB_ASID);
4998 }
4999
pre_svm_run(struct vcpu_svm * svm)5000 static void pre_svm_run(struct vcpu_svm *svm)
5001 {
5002 int cpu = raw_smp_processor_id();
5003
5004 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5005
5006 if (sev_guest(svm->vcpu.kvm))
5007 return pre_sev_run(svm, cpu);
5008
5009 /* FIXME: handle wraparound of asid_generation */
5010 if (svm->asid_generation != sd->asid_generation)
5011 new_asid(svm, sd);
5012 }
5013
svm_inject_nmi(struct kvm_vcpu * vcpu)5014 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5015 {
5016 struct vcpu_svm *svm = to_svm(vcpu);
5017
5018 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5019 vcpu->arch.hflags |= HF_NMI_MASK;
5020 set_intercept(svm, INTERCEPT_IRET);
5021 ++vcpu->stat.nmi_injections;
5022 }
5023
svm_inject_irq(struct vcpu_svm * svm,int irq)5024 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5025 {
5026 struct vmcb_control_area *control;
5027
5028 /* The following fields are ignored when AVIC is enabled */
5029 control = &svm->vmcb->control;
5030 control->int_vector = irq;
5031 control->int_ctl &= ~V_INTR_PRIO_MASK;
5032 control->int_ctl |= V_IRQ_MASK |
5033 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5034 mark_dirty(svm->vmcb, VMCB_INTR);
5035 }
5036
svm_set_irq(struct kvm_vcpu * vcpu)5037 static void svm_set_irq(struct kvm_vcpu *vcpu)
5038 {
5039 struct vcpu_svm *svm = to_svm(vcpu);
5040
5041 BUG_ON(!(gif_set(svm)));
5042
5043 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5044 ++vcpu->stat.irq_injections;
5045
5046 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5047 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5048 }
5049
svm_nested_virtualize_tpr(struct kvm_vcpu * vcpu)5050 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5051 {
5052 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5053 }
5054
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5055 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5056 {
5057 struct vcpu_svm *svm = to_svm(vcpu);
5058
5059 if (svm_nested_virtualize_tpr(vcpu) ||
5060 kvm_vcpu_apicv_active(vcpu))
5061 return;
5062
5063 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5064
5065 if (irr == -1)
5066 return;
5067
5068 if (tpr >= irr)
5069 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5070 }
5071
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)5072 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5073 {
5074 return;
5075 }
5076
svm_get_enable_apicv(struct kvm_vcpu * vcpu)5077 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5078 {
5079 return avic && irqchip_split(vcpu->kvm);
5080 }
5081
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)5082 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5083 {
5084 }
5085
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)5086 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5087 {
5088 }
5089
5090 /* Note: Currently only used by Hyper-V. */
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5091 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5092 {
5093 struct vcpu_svm *svm = to_svm(vcpu);
5094 struct vmcb *vmcb = svm->vmcb;
5095
5096 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5097 return;
5098
5099 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5100 mark_dirty(vmcb, VMCB_INTR);
5101 }
5102
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)5103 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5104 {
5105 return;
5106 }
5107
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)5108 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5109 {
5110 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5111 smp_mb__after_atomic();
5112
5113 if (avic_vcpu_is_running(vcpu))
5114 wrmsrl(SVM_AVIC_DOORBELL,
5115 kvm_cpu_get_apicid(vcpu->cpu));
5116 else
5117 kvm_vcpu_wake_up(vcpu);
5118 }
5119
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5120 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5121 {
5122 unsigned long flags;
5123 struct amd_svm_iommu_ir *cur;
5124
5125 spin_lock_irqsave(&svm->ir_list_lock, flags);
5126 list_for_each_entry(cur, &svm->ir_list, node) {
5127 if (cur->data != pi->ir_data)
5128 continue;
5129 list_del(&cur->node);
5130 kfree(cur);
5131 break;
5132 }
5133 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5134 }
5135
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5136 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5137 {
5138 int ret = 0;
5139 unsigned long flags;
5140 struct amd_svm_iommu_ir *ir;
5141
5142 /**
5143 * In some cases, the existing irte is updaed and re-set,
5144 * so we need to check here if it's already been * added
5145 * to the ir_list.
5146 */
5147 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5148 struct kvm *kvm = svm->vcpu.kvm;
5149 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5150 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5151 struct vcpu_svm *prev_svm;
5152
5153 if (!prev_vcpu) {
5154 ret = -EINVAL;
5155 goto out;
5156 }
5157
5158 prev_svm = to_svm(prev_vcpu);
5159 svm_ir_list_del(prev_svm, pi);
5160 }
5161
5162 /**
5163 * Allocating new amd_iommu_pi_data, which will get
5164 * add to the per-vcpu ir_list.
5165 */
5166 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5167 if (!ir) {
5168 ret = -ENOMEM;
5169 goto out;
5170 }
5171 ir->data = pi->ir_data;
5172
5173 spin_lock_irqsave(&svm->ir_list_lock, flags);
5174 list_add(&ir->node, &svm->ir_list);
5175 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5176 out:
5177 return ret;
5178 }
5179
5180 /**
5181 * Note:
5182 * The HW cannot support posting multicast/broadcast
5183 * interrupts to a vCPU. So, we still use legacy interrupt
5184 * remapping for these kind of interrupts.
5185 *
5186 * For lowest-priority interrupts, we only support
5187 * those with single CPU as the destination, e.g. user
5188 * configures the interrupts via /proc/irq or uses
5189 * irqbalance to make the interrupts single-CPU.
5190 */
5191 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)5192 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5193 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5194 {
5195 struct kvm_lapic_irq irq;
5196 struct kvm_vcpu *vcpu = NULL;
5197
5198 kvm_set_msi_irq(kvm, e, &irq);
5199
5200 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5201 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5202 __func__, irq.vector);
5203 return -1;
5204 }
5205
5206 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5207 irq.vector);
5208 *svm = to_svm(vcpu);
5209 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5210 vcpu_info->vector = irq.vector;
5211
5212 return 0;
5213 }
5214
5215 /*
5216 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5217 *
5218 * @kvm: kvm
5219 * @host_irq: host irq of the interrupt
5220 * @guest_irq: gsi of the interrupt
5221 * @set: set or unset PI
5222 * returns 0 on success, < 0 on failure
5223 */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)5224 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5225 uint32_t guest_irq, bool set)
5226 {
5227 struct kvm_kernel_irq_routing_entry *e;
5228 struct kvm_irq_routing_table *irq_rt;
5229 int idx, ret = -EINVAL;
5230
5231 if (!kvm_arch_has_assigned_device(kvm) ||
5232 !irq_remapping_cap(IRQ_POSTING_CAP))
5233 return 0;
5234
5235 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5236 __func__, host_irq, guest_irq, set);
5237
5238 idx = srcu_read_lock(&kvm->irq_srcu);
5239 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5240 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5241
5242 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5243 struct vcpu_data vcpu_info;
5244 struct vcpu_svm *svm = NULL;
5245
5246 if (e->type != KVM_IRQ_ROUTING_MSI)
5247 continue;
5248
5249 /**
5250 * Here, we setup with legacy mode in the following cases:
5251 * 1. When cannot target interrupt to a specific vcpu.
5252 * 2. Unsetting posted interrupt.
5253 * 3. APIC virtialization is disabled for the vcpu.
5254 */
5255 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5256 kvm_vcpu_apicv_active(&svm->vcpu)) {
5257 struct amd_iommu_pi_data pi;
5258
5259 /* Try to enable guest_mode in IRTE */
5260 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5261 AVIC_HPA_MASK);
5262 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5263 svm->vcpu.vcpu_id);
5264 pi.is_guest_mode = true;
5265 pi.vcpu_data = &vcpu_info;
5266 ret = irq_set_vcpu_affinity(host_irq, &pi);
5267
5268 /**
5269 * Here, we successfully setting up vcpu affinity in
5270 * IOMMU guest mode. Now, we need to store the posted
5271 * interrupt information in a per-vcpu ir_list so that
5272 * we can reference to them directly when we update vcpu
5273 * scheduling information in IOMMU irte.
5274 */
5275 if (!ret && pi.is_guest_mode)
5276 svm_ir_list_add(svm, &pi);
5277 } else {
5278 /* Use legacy mode in IRTE */
5279 struct amd_iommu_pi_data pi;
5280
5281 /**
5282 * Here, pi is used to:
5283 * - Tell IOMMU to use legacy mode for this interrupt.
5284 * - Retrieve ga_tag of prior interrupt remapping data.
5285 */
5286 pi.is_guest_mode = false;
5287 ret = irq_set_vcpu_affinity(host_irq, &pi);
5288
5289 /**
5290 * Check if the posted interrupt was previously
5291 * setup with the guest_mode by checking if the ga_tag
5292 * was cached. If so, we need to clean up the per-vcpu
5293 * ir_list.
5294 */
5295 if (!ret && pi.prev_ga_tag) {
5296 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5297 struct kvm_vcpu *vcpu;
5298
5299 vcpu = kvm_get_vcpu_by_id(kvm, id);
5300 if (vcpu)
5301 svm_ir_list_del(to_svm(vcpu), &pi);
5302 }
5303 }
5304
5305 if (!ret && svm) {
5306 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5307 e->gsi, vcpu_info.vector,
5308 vcpu_info.pi_desc_addr, set);
5309 }
5310
5311 if (ret < 0) {
5312 pr_err("%s: failed to update PI IRTE\n", __func__);
5313 goto out;
5314 }
5315 }
5316
5317 ret = 0;
5318 out:
5319 srcu_read_unlock(&kvm->irq_srcu, idx);
5320 return ret;
5321 }
5322
svm_nmi_allowed(struct kvm_vcpu * vcpu)5323 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5324 {
5325 struct vcpu_svm *svm = to_svm(vcpu);
5326 struct vmcb *vmcb = svm->vmcb;
5327 int ret;
5328 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5329 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5330 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5331
5332 return ret;
5333 }
5334
svm_get_nmi_mask(struct kvm_vcpu * vcpu)5335 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5336 {
5337 struct vcpu_svm *svm = to_svm(vcpu);
5338
5339 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5340 }
5341
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5342 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5343 {
5344 struct vcpu_svm *svm = to_svm(vcpu);
5345
5346 if (masked) {
5347 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5348 set_intercept(svm, INTERCEPT_IRET);
5349 } else {
5350 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5351 clr_intercept(svm, INTERCEPT_IRET);
5352 }
5353 }
5354
svm_interrupt_allowed(struct kvm_vcpu * vcpu)5355 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5356 {
5357 struct vcpu_svm *svm = to_svm(vcpu);
5358 struct vmcb *vmcb = svm->vmcb;
5359 int ret;
5360
5361 if (!gif_set(svm) ||
5362 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5363 return 0;
5364
5365 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5366
5367 if (is_guest_mode(vcpu))
5368 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5369
5370 return ret;
5371 }
5372
enable_irq_window(struct kvm_vcpu * vcpu)5373 static void enable_irq_window(struct kvm_vcpu *vcpu)
5374 {
5375 struct vcpu_svm *svm = to_svm(vcpu);
5376
5377 if (kvm_vcpu_apicv_active(vcpu))
5378 return;
5379
5380 /*
5381 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5382 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5383 * get that intercept, this function will be called again though and
5384 * we'll get the vintr intercept. However, if the vGIF feature is
5385 * enabled, the STGI interception will not occur. Enable the irq
5386 * window under the assumption that the hardware will set the GIF.
5387 */
5388 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5389 svm_set_vintr(svm);
5390 svm_inject_irq(svm, 0x0);
5391 }
5392 }
5393
enable_nmi_window(struct kvm_vcpu * vcpu)5394 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5395 {
5396 struct vcpu_svm *svm = to_svm(vcpu);
5397
5398 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5399 == HF_NMI_MASK)
5400 return; /* IRET will cause a vm exit */
5401
5402 if (!gif_set(svm)) {
5403 if (vgif_enabled(svm))
5404 set_intercept(svm, INTERCEPT_STGI);
5405 return; /* STGI will cause a vm exit */
5406 }
5407
5408 if (svm->nested.exit_required)
5409 return; /* we're not going to run the guest yet */
5410
5411 /*
5412 * Something prevents NMI from been injected. Single step over possible
5413 * problem (IRET or exception injection or interrupt shadow)
5414 */
5415 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5416 svm->nmi_singlestep = true;
5417 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5418 }
5419
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)5420 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5421 {
5422 return 0;
5423 }
5424
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5425 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5426 {
5427 return 0;
5428 }
5429
svm_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5430 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5431 {
5432 struct vcpu_svm *svm = to_svm(vcpu);
5433
5434 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5435 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5436 else
5437 svm->asid_generation--;
5438 }
5439
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)5440 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5441 {
5442 struct vcpu_svm *svm = to_svm(vcpu);
5443
5444 invlpga(gva, svm->vmcb->control.asid);
5445 }
5446
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)5447 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5448 {
5449 }
5450
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)5451 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5452 {
5453 struct vcpu_svm *svm = to_svm(vcpu);
5454
5455 if (svm_nested_virtualize_tpr(vcpu))
5456 return;
5457
5458 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5459 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5460 kvm_set_cr8(vcpu, cr8);
5461 }
5462 }
5463
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)5464 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5465 {
5466 struct vcpu_svm *svm = to_svm(vcpu);
5467 u64 cr8;
5468
5469 if (svm_nested_virtualize_tpr(vcpu) ||
5470 kvm_vcpu_apicv_active(vcpu))
5471 return;
5472
5473 cr8 = kvm_get_cr8(vcpu);
5474 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5475 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5476 }
5477
svm_complete_interrupts(struct vcpu_svm * svm)5478 static void svm_complete_interrupts(struct vcpu_svm *svm)
5479 {
5480 u8 vector;
5481 int type;
5482 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5483 unsigned int3_injected = svm->int3_injected;
5484
5485 svm->int3_injected = 0;
5486
5487 /*
5488 * If we've made progress since setting HF_IRET_MASK, we've
5489 * executed an IRET and can allow NMI injection.
5490 */
5491 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5492 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5493 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5494 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5495 }
5496
5497 svm->vcpu.arch.nmi_injected = false;
5498 kvm_clear_exception_queue(&svm->vcpu);
5499 kvm_clear_interrupt_queue(&svm->vcpu);
5500
5501 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5502 return;
5503
5504 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5505
5506 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5507 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5508
5509 switch (type) {
5510 case SVM_EXITINTINFO_TYPE_NMI:
5511 svm->vcpu.arch.nmi_injected = true;
5512 break;
5513 case SVM_EXITINTINFO_TYPE_EXEPT:
5514 /*
5515 * In case of software exceptions, do not reinject the vector,
5516 * but re-execute the instruction instead. Rewind RIP first
5517 * if we emulated INT3 before.
5518 */
5519 if (kvm_exception_is_soft(vector)) {
5520 if (vector == BP_VECTOR && int3_injected &&
5521 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5522 kvm_rip_write(&svm->vcpu,
5523 kvm_rip_read(&svm->vcpu) -
5524 int3_injected);
5525 break;
5526 }
5527 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5528 u32 err = svm->vmcb->control.exit_int_info_err;
5529 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5530
5531 } else
5532 kvm_requeue_exception(&svm->vcpu, vector);
5533 break;
5534 case SVM_EXITINTINFO_TYPE_INTR:
5535 kvm_queue_interrupt(&svm->vcpu, vector, false);
5536 break;
5537 default:
5538 break;
5539 }
5540 }
5541
svm_cancel_injection(struct kvm_vcpu * vcpu)5542 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5543 {
5544 struct vcpu_svm *svm = to_svm(vcpu);
5545 struct vmcb_control_area *control = &svm->vmcb->control;
5546
5547 control->exit_int_info = control->event_inj;
5548 control->exit_int_info_err = control->event_inj_err;
5549 control->event_inj = 0;
5550 svm_complete_interrupts(svm);
5551 }
5552
svm_vcpu_run(struct kvm_vcpu * vcpu)5553 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5554 {
5555 struct vcpu_svm *svm = to_svm(vcpu);
5556
5557 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5558 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5559 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5560
5561 /*
5562 * A vmexit emulation is required before the vcpu can be executed
5563 * again.
5564 */
5565 if (unlikely(svm->nested.exit_required))
5566 return;
5567
5568 /*
5569 * Disable singlestep if we're injecting an interrupt/exception.
5570 * We don't want our modified rflags to be pushed on the stack where
5571 * we might not be able to easily reset them if we disabled NMI
5572 * singlestep later.
5573 */
5574 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5575 /*
5576 * Event injection happens before external interrupts cause a
5577 * vmexit and interrupts are disabled here, so smp_send_reschedule
5578 * is enough to force an immediate vmexit.
5579 */
5580 disable_nmi_singlestep(svm);
5581 smp_send_reschedule(vcpu->cpu);
5582 }
5583
5584 pre_svm_run(svm);
5585
5586 sync_lapic_to_cr8(vcpu);
5587
5588 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5589
5590 clgi();
5591
5592 /*
5593 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5594 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5595 * is no need to worry about the conditional branch over the wrmsr
5596 * being speculatively taken.
5597 */
5598 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5599
5600 local_irq_enable();
5601
5602 asm volatile (
5603 "push %%" _ASM_BP "; \n\t"
5604 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5605 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5606 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5607 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5608 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5609 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5610 #ifdef CONFIG_X86_64
5611 "mov %c[r8](%[svm]), %%r8 \n\t"
5612 "mov %c[r9](%[svm]), %%r9 \n\t"
5613 "mov %c[r10](%[svm]), %%r10 \n\t"
5614 "mov %c[r11](%[svm]), %%r11 \n\t"
5615 "mov %c[r12](%[svm]), %%r12 \n\t"
5616 "mov %c[r13](%[svm]), %%r13 \n\t"
5617 "mov %c[r14](%[svm]), %%r14 \n\t"
5618 "mov %c[r15](%[svm]), %%r15 \n\t"
5619 #endif
5620
5621 /* Enter guest mode */
5622 "push %%" _ASM_AX " \n\t"
5623 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5624 __ex(SVM_VMLOAD) "\n\t"
5625 __ex(SVM_VMRUN) "\n\t"
5626 __ex(SVM_VMSAVE) "\n\t"
5627 "pop %%" _ASM_AX " \n\t"
5628
5629 /* Save guest registers, load host registers */
5630 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5631 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5632 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5633 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5634 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5635 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5636 #ifdef CONFIG_X86_64
5637 "mov %%r8, %c[r8](%[svm]) \n\t"
5638 "mov %%r9, %c[r9](%[svm]) \n\t"
5639 "mov %%r10, %c[r10](%[svm]) \n\t"
5640 "mov %%r11, %c[r11](%[svm]) \n\t"
5641 "mov %%r12, %c[r12](%[svm]) \n\t"
5642 "mov %%r13, %c[r13](%[svm]) \n\t"
5643 "mov %%r14, %c[r14](%[svm]) \n\t"
5644 "mov %%r15, %c[r15](%[svm]) \n\t"
5645 #endif
5646 /*
5647 * Clear host registers marked as clobbered to prevent
5648 * speculative use.
5649 */
5650 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5651 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5652 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5653 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5654 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5655 #ifdef CONFIG_X86_64
5656 "xor %%r8, %%r8 \n\t"
5657 "xor %%r9, %%r9 \n\t"
5658 "xor %%r10, %%r10 \n\t"
5659 "xor %%r11, %%r11 \n\t"
5660 "xor %%r12, %%r12 \n\t"
5661 "xor %%r13, %%r13 \n\t"
5662 "xor %%r14, %%r14 \n\t"
5663 "xor %%r15, %%r15 \n\t"
5664 #endif
5665 "pop %%" _ASM_BP
5666 :
5667 : [svm]"a"(svm),
5668 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5669 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5670 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5671 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5672 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5673 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5674 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5675 #ifdef CONFIG_X86_64
5676 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5677 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5678 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5679 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5680 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5681 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5682 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5683 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5684 #endif
5685 : "cc", "memory"
5686 #ifdef CONFIG_X86_64
5687 , "rbx", "rcx", "rdx", "rsi", "rdi"
5688 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5689 #else
5690 , "ebx", "ecx", "edx", "esi", "edi"
5691 #endif
5692 );
5693
5694 /* Eliminate branch target predictions from guest mode */
5695 vmexit_fill_RSB();
5696
5697 #ifdef CONFIG_X86_64
5698 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5699 #else
5700 loadsegment(fs, svm->host.fs);
5701 #ifndef CONFIG_X86_32_LAZY_GS
5702 loadsegment(gs, svm->host.gs);
5703 #endif
5704 #endif
5705
5706 /*
5707 * We do not use IBRS in the kernel. If this vCPU has used the
5708 * SPEC_CTRL MSR it may have left it on; save the value and
5709 * turn it off. This is much more efficient than blindly adding
5710 * it to the atomic save/restore list. Especially as the former
5711 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5712 *
5713 * For non-nested case:
5714 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5715 * save it.
5716 *
5717 * For nested case:
5718 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5719 * save it.
5720 */
5721 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5722 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5723
5724 reload_tss(vcpu);
5725
5726 local_irq_disable();
5727
5728 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5729
5730 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5731 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5732 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5733 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5734
5735 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5736 kvm_before_interrupt(&svm->vcpu);
5737
5738 stgi();
5739
5740 /* Any pending NMI will happen here */
5741
5742 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5743 kvm_after_interrupt(&svm->vcpu);
5744
5745 sync_cr8_to_lapic(vcpu);
5746
5747 svm->next_rip = 0;
5748
5749 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5750
5751 /* if exit due to PF check for async PF */
5752 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5753 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5754
5755 if (npt_enabled) {
5756 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5757 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5758 }
5759
5760 /*
5761 * We need to handle MC intercepts here before the vcpu has a chance to
5762 * change the physical cpu
5763 */
5764 if (unlikely(svm->vmcb->control.exit_code ==
5765 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5766 svm_handle_mce(svm);
5767
5768 mark_all_clean(svm->vmcb);
5769 }
5770 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5771
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)5772 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5773 {
5774 struct vcpu_svm *svm = to_svm(vcpu);
5775
5776 svm->vmcb->save.cr3 = __sme_set(root);
5777 mark_dirty(svm->vmcb, VMCB_CR);
5778 }
5779
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)5780 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5781 {
5782 struct vcpu_svm *svm = to_svm(vcpu);
5783
5784 svm->vmcb->control.nested_cr3 = __sme_set(root);
5785 mark_dirty(svm->vmcb, VMCB_NPT);
5786
5787 /* Also sync guest cr3 here in case we live migrate */
5788 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5789 mark_dirty(svm->vmcb, VMCB_CR);
5790 }
5791
is_disabled(void)5792 static int is_disabled(void)
5793 {
5794 u64 vm_cr;
5795
5796 rdmsrl(MSR_VM_CR, vm_cr);
5797 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5798 return 1;
5799
5800 return 0;
5801 }
5802
5803 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5804 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5805 {
5806 /*
5807 * Patch in the VMMCALL instruction:
5808 */
5809 hypercall[0] = 0x0f;
5810 hypercall[1] = 0x01;
5811 hypercall[2] = 0xd9;
5812 }
5813
svm_check_processor_compat(void * rtn)5814 static void svm_check_processor_compat(void *rtn)
5815 {
5816 *(int *)rtn = 0;
5817 }
5818
svm_cpu_has_accelerated_tpr(void)5819 static bool svm_cpu_has_accelerated_tpr(void)
5820 {
5821 return false;
5822 }
5823
svm_has_emulated_msr(int index)5824 static bool svm_has_emulated_msr(int index)
5825 {
5826 return true;
5827 }
5828
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)5829 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5830 {
5831 return 0;
5832 }
5833
svm_cpuid_update(struct kvm_vcpu * vcpu)5834 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5835 {
5836 struct vcpu_svm *svm = to_svm(vcpu);
5837
5838 /* Update nrips enabled cache */
5839 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5840
5841 if (!kvm_vcpu_apicv_active(vcpu))
5842 return;
5843
5844 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5845 }
5846
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)5847 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5848 {
5849 switch (func) {
5850 case 0x1:
5851 if (avic)
5852 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5853 break;
5854 case 0x80000001:
5855 if (nested)
5856 entry->ecx |= (1 << 2); /* Set SVM bit */
5857 break;
5858 case 0x8000000A:
5859 entry->eax = 1; /* SVM revision 1 */
5860 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5861 ASID emulation to nested SVM */
5862 entry->ecx = 0; /* Reserved */
5863 entry->edx = 0; /* Per default do not support any
5864 additional features */
5865
5866 /* Support next_rip if host supports it */
5867 if (boot_cpu_has(X86_FEATURE_NRIPS))
5868 entry->edx |= SVM_FEATURE_NRIP;
5869
5870 /* Support NPT for the guest if enabled */
5871 if (npt_enabled)
5872 entry->edx |= SVM_FEATURE_NPT;
5873
5874 break;
5875 case 0x8000001F:
5876 /* Support memory encryption cpuid if host supports it */
5877 if (boot_cpu_has(X86_FEATURE_SEV))
5878 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5879 &entry->ecx, &entry->edx);
5880
5881 }
5882 }
5883
svm_get_lpage_level(void)5884 static int svm_get_lpage_level(void)
5885 {
5886 return PT_PDPE_LEVEL;
5887 }
5888
svm_rdtscp_supported(void)5889 static bool svm_rdtscp_supported(void)
5890 {
5891 return boot_cpu_has(X86_FEATURE_RDTSCP);
5892 }
5893
svm_invpcid_supported(void)5894 static bool svm_invpcid_supported(void)
5895 {
5896 return false;
5897 }
5898
svm_mpx_supported(void)5899 static bool svm_mpx_supported(void)
5900 {
5901 return false;
5902 }
5903
svm_xsaves_supported(void)5904 static bool svm_xsaves_supported(void)
5905 {
5906 return false;
5907 }
5908
svm_umip_emulated(void)5909 static bool svm_umip_emulated(void)
5910 {
5911 return false;
5912 }
5913
svm_has_wbinvd_exit(void)5914 static bool svm_has_wbinvd_exit(void)
5915 {
5916 return true;
5917 }
5918
5919 #define PRE_EX(exit) { .exit_code = (exit), \
5920 .stage = X86_ICPT_PRE_EXCEPT, }
5921 #define POST_EX(exit) { .exit_code = (exit), \
5922 .stage = X86_ICPT_POST_EXCEPT, }
5923 #define POST_MEM(exit) { .exit_code = (exit), \
5924 .stage = X86_ICPT_POST_MEMACCESS, }
5925
5926 static const struct __x86_intercept {
5927 u32 exit_code;
5928 enum x86_intercept_stage stage;
5929 } x86_intercept_map[] = {
5930 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5931 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5932 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5933 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5934 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5935 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5936 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5937 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5938 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5939 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5940 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5941 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5942 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5943 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5944 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5945 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5946 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5947 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5948 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5949 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5950 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5951 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5952 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5953 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5954 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5955 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5956 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5957 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5958 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5959 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5960 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5961 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5962 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5963 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5964 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5965 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5966 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5967 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5968 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5969 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5970 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5971 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5972 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5973 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5974 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5975 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5976 };
5977
5978 #undef PRE_EX
5979 #undef POST_EX
5980 #undef POST_MEM
5981
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)5982 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5983 struct x86_instruction_info *info,
5984 enum x86_intercept_stage stage)
5985 {
5986 struct vcpu_svm *svm = to_svm(vcpu);
5987 int vmexit, ret = X86EMUL_CONTINUE;
5988 struct __x86_intercept icpt_info;
5989 struct vmcb *vmcb = svm->vmcb;
5990
5991 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5992 goto out;
5993
5994 icpt_info = x86_intercept_map[info->intercept];
5995
5996 if (stage != icpt_info.stage)
5997 goto out;
5998
5999 switch (icpt_info.exit_code) {
6000 case SVM_EXIT_READ_CR0:
6001 if (info->intercept == x86_intercept_cr_read)
6002 icpt_info.exit_code += info->modrm_reg;
6003 break;
6004 case SVM_EXIT_WRITE_CR0: {
6005 unsigned long cr0, val;
6006 u64 intercept;
6007
6008 if (info->intercept == x86_intercept_cr_write)
6009 icpt_info.exit_code += info->modrm_reg;
6010
6011 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6012 info->intercept == x86_intercept_clts)
6013 break;
6014
6015 intercept = svm->nested.intercept;
6016
6017 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6018 break;
6019
6020 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6021 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6022
6023 if (info->intercept == x86_intercept_lmsw) {
6024 cr0 &= 0xfUL;
6025 val &= 0xfUL;
6026 /* lmsw can't clear PE - catch this here */
6027 if (cr0 & X86_CR0_PE)
6028 val |= X86_CR0_PE;
6029 }
6030
6031 if (cr0 ^ val)
6032 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6033
6034 break;
6035 }
6036 case SVM_EXIT_READ_DR0:
6037 case SVM_EXIT_WRITE_DR0:
6038 icpt_info.exit_code += info->modrm_reg;
6039 break;
6040 case SVM_EXIT_MSR:
6041 if (info->intercept == x86_intercept_wrmsr)
6042 vmcb->control.exit_info_1 = 1;
6043 else
6044 vmcb->control.exit_info_1 = 0;
6045 break;
6046 case SVM_EXIT_PAUSE:
6047 /*
6048 * We get this for NOP only, but pause
6049 * is rep not, check this here
6050 */
6051 if (info->rep_prefix != REPE_PREFIX)
6052 goto out;
6053 break;
6054 case SVM_EXIT_IOIO: {
6055 u64 exit_info;
6056 u32 bytes;
6057
6058 if (info->intercept == x86_intercept_in ||
6059 info->intercept == x86_intercept_ins) {
6060 exit_info = ((info->src_val & 0xffff) << 16) |
6061 SVM_IOIO_TYPE_MASK;
6062 bytes = info->dst_bytes;
6063 } else {
6064 exit_info = (info->dst_val & 0xffff) << 16;
6065 bytes = info->src_bytes;
6066 }
6067
6068 if (info->intercept == x86_intercept_outs ||
6069 info->intercept == x86_intercept_ins)
6070 exit_info |= SVM_IOIO_STR_MASK;
6071
6072 if (info->rep_prefix)
6073 exit_info |= SVM_IOIO_REP_MASK;
6074
6075 bytes = min(bytes, 4u);
6076
6077 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6078
6079 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6080
6081 vmcb->control.exit_info_1 = exit_info;
6082 vmcb->control.exit_info_2 = info->next_rip;
6083
6084 break;
6085 }
6086 default:
6087 break;
6088 }
6089
6090 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6091 if (static_cpu_has(X86_FEATURE_NRIPS))
6092 vmcb->control.next_rip = info->next_rip;
6093 vmcb->control.exit_code = icpt_info.exit_code;
6094 vmexit = nested_svm_exit_handled(svm);
6095
6096 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6097 : X86EMUL_CONTINUE;
6098
6099 out:
6100 return ret;
6101 }
6102
svm_handle_external_intr(struct kvm_vcpu * vcpu)6103 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6104 {
6105 local_irq_enable();
6106 /*
6107 * We must have an instruction with interrupts enabled, so
6108 * the timer interrupt isn't delayed by the interrupt shadow.
6109 */
6110 asm("nop");
6111 local_irq_disable();
6112 }
6113
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)6114 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6115 {
6116 if (pause_filter_thresh)
6117 shrink_ple_window(vcpu);
6118 }
6119
avic_post_state_restore(struct kvm_vcpu * vcpu)6120 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6121 {
6122 if (avic_handle_apic_id_update(vcpu) != 0)
6123 return;
6124 if (avic_handle_dfr_update(vcpu) != 0)
6125 return;
6126 avic_handle_ldr_update(vcpu);
6127 }
6128
svm_setup_mce(struct kvm_vcpu * vcpu)6129 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6130 {
6131 /* [63:9] are reserved. */
6132 vcpu->arch.mcg_cap &= 0x1ff;
6133 }
6134
svm_smi_allowed(struct kvm_vcpu * vcpu)6135 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6136 {
6137 struct vcpu_svm *svm = to_svm(vcpu);
6138
6139 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6140 if (!gif_set(svm))
6141 return 0;
6142
6143 if (is_guest_mode(&svm->vcpu) &&
6144 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6145 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6146 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6147 svm->nested.exit_required = true;
6148 return 0;
6149 }
6150
6151 return 1;
6152 }
6153
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)6154 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6155 {
6156 struct vcpu_svm *svm = to_svm(vcpu);
6157 int ret;
6158
6159 if (is_guest_mode(vcpu)) {
6160 /* FED8h - SVM Guest */
6161 put_smstate(u64, smstate, 0x7ed8, 1);
6162 /* FEE0h - SVM Guest VMCB Physical Address */
6163 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6164
6165 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6166 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6167 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6168
6169 ret = nested_svm_vmexit(svm);
6170 if (ret)
6171 return ret;
6172 }
6173 return 0;
6174 }
6175
svm_pre_leave_smm(struct kvm_vcpu * vcpu,u64 smbase)6176 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6177 {
6178 struct vcpu_svm *svm = to_svm(vcpu);
6179 struct vmcb *nested_vmcb;
6180 struct page *page;
6181 struct {
6182 u64 guest;
6183 u64 vmcb;
6184 } svm_state_save;
6185 int ret;
6186
6187 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6188 sizeof(svm_state_save));
6189 if (ret)
6190 return ret;
6191
6192 if (svm_state_save.guest) {
6193 vcpu->arch.hflags &= ~HF_SMM_MASK;
6194 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6195 if (nested_vmcb)
6196 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6197 else
6198 ret = 1;
6199 vcpu->arch.hflags |= HF_SMM_MASK;
6200 }
6201 return ret;
6202 }
6203
enable_smi_window(struct kvm_vcpu * vcpu)6204 static int enable_smi_window(struct kvm_vcpu *vcpu)
6205 {
6206 struct vcpu_svm *svm = to_svm(vcpu);
6207
6208 if (!gif_set(svm)) {
6209 if (vgif_enabled(svm))
6210 set_intercept(svm, INTERCEPT_STGI);
6211 /* STGI will cause a vm exit */
6212 return 1;
6213 }
6214 return 0;
6215 }
6216
sev_asid_new(void)6217 static int sev_asid_new(void)
6218 {
6219 int pos;
6220
6221 /*
6222 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6223 */
6224 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6225 if (pos >= max_sev_asid)
6226 return -EBUSY;
6227
6228 set_bit(pos, sev_asid_bitmap);
6229 return pos + 1;
6230 }
6231
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)6232 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6233 {
6234 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6235 int asid, ret;
6236
6237 ret = -EBUSY;
6238 asid = sev_asid_new();
6239 if (asid < 0)
6240 return ret;
6241
6242 ret = sev_platform_init(&argp->error);
6243 if (ret)
6244 goto e_free;
6245
6246 sev->active = true;
6247 sev->asid = asid;
6248 INIT_LIST_HEAD(&sev->regions_list);
6249
6250 return 0;
6251
6252 e_free:
6253 __sev_asid_free(asid);
6254 return ret;
6255 }
6256
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)6257 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6258 {
6259 struct sev_data_activate *data;
6260 int asid = sev_get_asid(kvm);
6261 int ret;
6262
6263 wbinvd_on_all_cpus();
6264
6265 ret = sev_guest_df_flush(error);
6266 if (ret)
6267 return ret;
6268
6269 data = kzalloc(sizeof(*data), GFP_KERNEL);
6270 if (!data)
6271 return -ENOMEM;
6272
6273 /* activate ASID on the given handle */
6274 data->handle = handle;
6275 data->asid = asid;
6276 ret = sev_guest_activate(data, error);
6277 kfree(data);
6278
6279 return ret;
6280 }
6281
__sev_issue_cmd(int fd,int id,void * data,int * error)6282 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6283 {
6284 struct fd f;
6285 int ret;
6286
6287 f = fdget(fd);
6288 if (!f.file)
6289 return -EBADF;
6290
6291 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6292
6293 fdput(f);
6294 return ret;
6295 }
6296
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)6297 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6298 {
6299 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6300
6301 return __sev_issue_cmd(sev->fd, id, data, error);
6302 }
6303
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)6304 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6305 {
6306 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6307 struct sev_data_launch_start *start;
6308 struct kvm_sev_launch_start params;
6309 void *dh_blob, *session_blob;
6310 int *error = &argp->error;
6311 int ret;
6312
6313 if (!sev_guest(kvm))
6314 return -ENOTTY;
6315
6316 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6317 return -EFAULT;
6318
6319 start = kzalloc(sizeof(*start), GFP_KERNEL);
6320 if (!start)
6321 return -ENOMEM;
6322
6323 dh_blob = NULL;
6324 if (params.dh_uaddr) {
6325 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6326 if (IS_ERR(dh_blob)) {
6327 ret = PTR_ERR(dh_blob);
6328 goto e_free;
6329 }
6330
6331 start->dh_cert_address = __sme_set(__pa(dh_blob));
6332 start->dh_cert_len = params.dh_len;
6333 }
6334
6335 session_blob = NULL;
6336 if (params.session_uaddr) {
6337 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6338 if (IS_ERR(session_blob)) {
6339 ret = PTR_ERR(session_blob);
6340 goto e_free_dh;
6341 }
6342
6343 start->session_address = __sme_set(__pa(session_blob));
6344 start->session_len = params.session_len;
6345 }
6346
6347 start->handle = params.handle;
6348 start->policy = params.policy;
6349
6350 /* create memory encryption context */
6351 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6352 if (ret)
6353 goto e_free_session;
6354
6355 /* Bind ASID to this guest */
6356 ret = sev_bind_asid(kvm, start->handle, error);
6357 if (ret)
6358 goto e_free_session;
6359
6360 /* return handle to userspace */
6361 params.handle = start->handle;
6362 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6363 sev_unbind_asid(kvm, start->handle);
6364 ret = -EFAULT;
6365 goto e_free_session;
6366 }
6367
6368 sev->handle = start->handle;
6369 sev->fd = argp->sev_fd;
6370
6371 e_free_session:
6372 kfree(session_blob);
6373 e_free_dh:
6374 kfree(dh_blob);
6375 e_free:
6376 kfree(start);
6377 return ret;
6378 }
6379
get_num_contig_pages(int idx,struct page ** inpages,unsigned long npages)6380 static int get_num_contig_pages(int idx, struct page **inpages,
6381 unsigned long npages)
6382 {
6383 unsigned long paddr, next_paddr;
6384 int i = idx + 1, pages = 1;
6385
6386 /* find the number of contiguous pages starting from idx */
6387 paddr = __sme_page_pa(inpages[idx]);
6388 while (i < npages) {
6389 next_paddr = __sme_page_pa(inpages[i++]);
6390 if ((paddr + PAGE_SIZE) == next_paddr) {
6391 pages++;
6392 paddr = next_paddr;
6393 continue;
6394 }
6395 break;
6396 }
6397
6398 return pages;
6399 }
6400
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)6401 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6402 {
6403 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6404 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6405 struct kvm_sev_launch_update_data params;
6406 struct sev_data_launch_update_data *data;
6407 struct page **inpages;
6408 int i, ret, pages;
6409
6410 if (!sev_guest(kvm))
6411 return -ENOTTY;
6412
6413 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6414 return -EFAULT;
6415
6416 data = kzalloc(sizeof(*data), GFP_KERNEL);
6417 if (!data)
6418 return -ENOMEM;
6419
6420 vaddr = params.uaddr;
6421 size = params.len;
6422 vaddr_end = vaddr + size;
6423
6424 /* Lock the user memory. */
6425 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6426 if (!inpages) {
6427 ret = -ENOMEM;
6428 goto e_free;
6429 }
6430
6431 /*
6432 * The LAUNCH_UPDATE command will perform in-place encryption of the
6433 * memory content (i.e it will write the same memory region with C=1).
6434 * It's possible that the cache may contain the data with C=0, i.e.,
6435 * unencrypted so invalidate it first.
6436 */
6437 sev_clflush_pages(inpages, npages);
6438
6439 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6440 int offset, len;
6441
6442 /*
6443 * If the user buffer is not page-aligned, calculate the offset
6444 * within the page.
6445 */
6446 offset = vaddr & (PAGE_SIZE - 1);
6447
6448 /* Calculate the number of pages that can be encrypted in one go. */
6449 pages = get_num_contig_pages(i, inpages, npages);
6450
6451 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6452
6453 data->handle = sev->handle;
6454 data->len = len;
6455 data->address = __sme_page_pa(inpages[i]) + offset;
6456 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6457 if (ret)
6458 goto e_unpin;
6459
6460 size -= len;
6461 next_vaddr = vaddr + len;
6462 }
6463
6464 e_unpin:
6465 /* content of memory is updated, mark pages dirty */
6466 for (i = 0; i < npages; i++) {
6467 set_page_dirty_lock(inpages[i]);
6468 mark_page_accessed(inpages[i]);
6469 }
6470 /* unlock the user pages */
6471 sev_unpin_memory(kvm, inpages, npages);
6472 e_free:
6473 kfree(data);
6474 return ret;
6475 }
6476
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)6477 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6478 {
6479 void __user *measure = (void __user *)(uintptr_t)argp->data;
6480 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6481 struct sev_data_launch_measure *data;
6482 struct kvm_sev_launch_measure params;
6483 void __user *p = NULL;
6484 void *blob = NULL;
6485 int ret;
6486
6487 if (!sev_guest(kvm))
6488 return -ENOTTY;
6489
6490 if (copy_from_user(¶ms, measure, sizeof(params)))
6491 return -EFAULT;
6492
6493 data = kzalloc(sizeof(*data), GFP_KERNEL);
6494 if (!data)
6495 return -ENOMEM;
6496
6497 /* User wants to query the blob length */
6498 if (!params.len)
6499 goto cmd;
6500
6501 p = (void __user *)(uintptr_t)params.uaddr;
6502 if (p) {
6503 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6504 ret = -EINVAL;
6505 goto e_free;
6506 }
6507
6508 ret = -ENOMEM;
6509 blob = kmalloc(params.len, GFP_KERNEL);
6510 if (!blob)
6511 goto e_free;
6512
6513 data->address = __psp_pa(blob);
6514 data->len = params.len;
6515 }
6516
6517 cmd:
6518 data->handle = sev->handle;
6519 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6520
6521 /*
6522 * If we query the session length, FW responded with expected data.
6523 */
6524 if (!params.len)
6525 goto done;
6526
6527 if (ret)
6528 goto e_free_blob;
6529
6530 if (blob) {
6531 if (copy_to_user(p, blob, params.len))
6532 ret = -EFAULT;
6533 }
6534
6535 done:
6536 params.len = data->len;
6537 if (copy_to_user(measure, ¶ms, sizeof(params)))
6538 ret = -EFAULT;
6539 e_free_blob:
6540 kfree(blob);
6541 e_free:
6542 kfree(data);
6543 return ret;
6544 }
6545
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)6546 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6547 {
6548 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6549 struct sev_data_launch_finish *data;
6550 int ret;
6551
6552 if (!sev_guest(kvm))
6553 return -ENOTTY;
6554
6555 data = kzalloc(sizeof(*data), GFP_KERNEL);
6556 if (!data)
6557 return -ENOMEM;
6558
6559 data->handle = sev->handle;
6560 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6561
6562 kfree(data);
6563 return ret;
6564 }
6565
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)6566 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6567 {
6568 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6569 struct kvm_sev_guest_status params;
6570 struct sev_data_guest_status *data;
6571 int ret;
6572
6573 if (!sev_guest(kvm))
6574 return -ENOTTY;
6575
6576 data = kzalloc(sizeof(*data), GFP_KERNEL);
6577 if (!data)
6578 return -ENOMEM;
6579
6580 data->handle = sev->handle;
6581 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6582 if (ret)
6583 goto e_free;
6584
6585 params.policy = data->policy;
6586 params.state = data->state;
6587 params.handle = data->handle;
6588
6589 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6590 ret = -EFAULT;
6591 e_free:
6592 kfree(data);
6593 return ret;
6594 }
6595
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)6596 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6597 unsigned long dst, int size,
6598 int *error, bool enc)
6599 {
6600 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6601 struct sev_data_dbg *data;
6602 int ret;
6603
6604 data = kzalloc(sizeof(*data), GFP_KERNEL);
6605 if (!data)
6606 return -ENOMEM;
6607
6608 data->handle = sev->handle;
6609 data->dst_addr = dst;
6610 data->src_addr = src;
6611 data->len = size;
6612
6613 ret = sev_issue_cmd(kvm,
6614 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6615 data, error);
6616 kfree(data);
6617 return ret;
6618 }
6619
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)6620 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6621 unsigned long dst_paddr, int sz, int *err)
6622 {
6623 int offset;
6624
6625 /*
6626 * Its safe to read more than we are asked, caller should ensure that
6627 * destination has enough space.
6628 */
6629 src_paddr = round_down(src_paddr, 16);
6630 offset = src_paddr & 15;
6631 sz = round_up(sz + offset, 16);
6632
6633 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6634 }
6635
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user dst_uaddr,unsigned long dst_paddr,int size,int * err)6636 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6637 unsigned long __user dst_uaddr,
6638 unsigned long dst_paddr,
6639 int size, int *err)
6640 {
6641 struct page *tpage = NULL;
6642 int ret, offset;
6643
6644 /* if inputs are not 16-byte then use intermediate buffer */
6645 if (!IS_ALIGNED(dst_paddr, 16) ||
6646 !IS_ALIGNED(paddr, 16) ||
6647 !IS_ALIGNED(size, 16)) {
6648 tpage = (void *)alloc_page(GFP_KERNEL);
6649 if (!tpage)
6650 return -ENOMEM;
6651
6652 dst_paddr = __sme_page_pa(tpage);
6653 }
6654
6655 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6656 if (ret)
6657 goto e_free;
6658
6659 if (tpage) {
6660 offset = paddr & 15;
6661 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6662 page_address(tpage) + offset, size))
6663 ret = -EFAULT;
6664 }
6665
6666 e_free:
6667 if (tpage)
6668 __free_page(tpage);
6669
6670 return ret;
6671 }
6672
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user vaddr,unsigned long dst_paddr,unsigned long __user dst_vaddr,int size,int * error)6673 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6674 unsigned long __user vaddr,
6675 unsigned long dst_paddr,
6676 unsigned long __user dst_vaddr,
6677 int size, int *error)
6678 {
6679 struct page *src_tpage = NULL;
6680 struct page *dst_tpage = NULL;
6681 int ret, len = size;
6682
6683 /* If source buffer is not aligned then use an intermediate buffer */
6684 if (!IS_ALIGNED(vaddr, 16)) {
6685 src_tpage = alloc_page(GFP_KERNEL);
6686 if (!src_tpage)
6687 return -ENOMEM;
6688
6689 if (copy_from_user(page_address(src_tpage),
6690 (void __user *)(uintptr_t)vaddr, size)) {
6691 __free_page(src_tpage);
6692 return -EFAULT;
6693 }
6694
6695 paddr = __sme_page_pa(src_tpage);
6696 }
6697
6698 /*
6699 * If destination buffer or length is not aligned then do read-modify-write:
6700 * - decrypt destination in an intermediate buffer
6701 * - copy the source buffer in an intermediate buffer
6702 * - use the intermediate buffer as source buffer
6703 */
6704 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6705 int dst_offset;
6706
6707 dst_tpage = alloc_page(GFP_KERNEL);
6708 if (!dst_tpage) {
6709 ret = -ENOMEM;
6710 goto e_free;
6711 }
6712
6713 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6714 __sme_page_pa(dst_tpage), size, error);
6715 if (ret)
6716 goto e_free;
6717
6718 /*
6719 * If source is kernel buffer then use memcpy() otherwise
6720 * copy_from_user().
6721 */
6722 dst_offset = dst_paddr & 15;
6723
6724 if (src_tpage)
6725 memcpy(page_address(dst_tpage) + dst_offset,
6726 page_address(src_tpage), size);
6727 else {
6728 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6729 (void __user *)(uintptr_t)vaddr, size)) {
6730 ret = -EFAULT;
6731 goto e_free;
6732 }
6733 }
6734
6735 paddr = __sme_page_pa(dst_tpage);
6736 dst_paddr = round_down(dst_paddr, 16);
6737 len = round_up(size, 16);
6738 }
6739
6740 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6741
6742 e_free:
6743 if (src_tpage)
6744 __free_page(src_tpage);
6745 if (dst_tpage)
6746 __free_page(dst_tpage);
6747 return ret;
6748 }
6749
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)6750 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6751 {
6752 unsigned long vaddr, vaddr_end, next_vaddr;
6753 unsigned long dst_vaddr;
6754 struct page **src_p, **dst_p;
6755 struct kvm_sev_dbg debug;
6756 unsigned long n;
6757 int ret, size;
6758
6759 if (!sev_guest(kvm))
6760 return -ENOTTY;
6761
6762 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6763 return -EFAULT;
6764
6765 vaddr = debug.src_uaddr;
6766 size = debug.len;
6767 vaddr_end = vaddr + size;
6768 dst_vaddr = debug.dst_uaddr;
6769
6770 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6771 int len, s_off, d_off;
6772
6773 /* lock userspace source and destination page */
6774 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6775 if (!src_p)
6776 return -EFAULT;
6777
6778 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6779 if (!dst_p) {
6780 sev_unpin_memory(kvm, src_p, n);
6781 return -EFAULT;
6782 }
6783
6784 /*
6785 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6786 * memory content (i.e it will write the same memory region with C=1).
6787 * It's possible that the cache may contain the data with C=0, i.e.,
6788 * unencrypted so invalidate it first.
6789 */
6790 sev_clflush_pages(src_p, 1);
6791 sev_clflush_pages(dst_p, 1);
6792
6793 /*
6794 * Since user buffer may not be page aligned, calculate the
6795 * offset within the page.
6796 */
6797 s_off = vaddr & ~PAGE_MASK;
6798 d_off = dst_vaddr & ~PAGE_MASK;
6799 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6800
6801 if (dec)
6802 ret = __sev_dbg_decrypt_user(kvm,
6803 __sme_page_pa(src_p[0]) + s_off,
6804 dst_vaddr,
6805 __sme_page_pa(dst_p[0]) + d_off,
6806 len, &argp->error);
6807 else
6808 ret = __sev_dbg_encrypt_user(kvm,
6809 __sme_page_pa(src_p[0]) + s_off,
6810 vaddr,
6811 __sme_page_pa(dst_p[0]) + d_off,
6812 dst_vaddr,
6813 len, &argp->error);
6814
6815 sev_unpin_memory(kvm, src_p, 1);
6816 sev_unpin_memory(kvm, dst_p, 1);
6817
6818 if (ret)
6819 goto err;
6820
6821 next_vaddr = vaddr + len;
6822 dst_vaddr = dst_vaddr + len;
6823 size -= len;
6824 }
6825 err:
6826 return ret;
6827 }
6828
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)6829 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6830 {
6831 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6832 struct sev_data_launch_secret *data;
6833 struct kvm_sev_launch_secret params;
6834 struct page **pages;
6835 void *blob, *hdr;
6836 unsigned long n;
6837 int ret, offset;
6838
6839 if (!sev_guest(kvm))
6840 return -ENOTTY;
6841
6842 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6843 return -EFAULT;
6844
6845 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6846 if (!pages)
6847 return -ENOMEM;
6848
6849 /*
6850 * The secret must be copied into contiguous memory region, lets verify
6851 * that userspace memory pages are contiguous before we issue command.
6852 */
6853 if (get_num_contig_pages(0, pages, n) != n) {
6854 ret = -EINVAL;
6855 goto e_unpin_memory;
6856 }
6857
6858 ret = -ENOMEM;
6859 data = kzalloc(sizeof(*data), GFP_KERNEL);
6860 if (!data)
6861 goto e_unpin_memory;
6862
6863 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6864 data->guest_address = __sme_page_pa(pages[0]) + offset;
6865 data->guest_len = params.guest_len;
6866
6867 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6868 if (IS_ERR(blob)) {
6869 ret = PTR_ERR(blob);
6870 goto e_free;
6871 }
6872
6873 data->trans_address = __psp_pa(blob);
6874 data->trans_len = params.trans_len;
6875
6876 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6877 if (IS_ERR(hdr)) {
6878 ret = PTR_ERR(hdr);
6879 goto e_free_blob;
6880 }
6881 data->hdr_address = __psp_pa(hdr);
6882 data->hdr_len = params.hdr_len;
6883
6884 data->handle = sev->handle;
6885 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6886
6887 kfree(hdr);
6888
6889 e_free_blob:
6890 kfree(blob);
6891 e_free:
6892 kfree(data);
6893 e_unpin_memory:
6894 sev_unpin_memory(kvm, pages, n);
6895 return ret;
6896 }
6897
svm_mem_enc_op(struct kvm * kvm,void __user * argp)6898 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6899 {
6900 struct kvm_sev_cmd sev_cmd;
6901 int r;
6902
6903 if (!svm_sev_enabled())
6904 return -ENOTTY;
6905
6906 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6907 return -EFAULT;
6908
6909 mutex_lock(&kvm->lock);
6910
6911 switch (sev_cmd.id) {
6912 case KVM_SEV_INIT:
6913 r = sev_guest_init(kvm, &sev_cmd);
6914 break;
6915 case KVM_SEV_LAUNCH_START:
6916 r = sev_launch_start(kvm, &sev_cmd);
6917 break;
6918 case KVM_SEV_LAUNCH_UPDATE_DATA:
6919 r = sev_launch_update_data(kvm, &sev_cmd);
6920 break;
6921 case KVM_SEV_LAUNCH_MEASURE:
6922 r = sev_launch_measure(kvm, &sev_cmd);
6923 break;
6924 case KVM_SEV_LAUNCH_FINISH:
6925 r = sev_launch_finish(kvm, &sev_cmd);
6926 break;
6927 case KVM_SEV_GUEST_STATUS:
6928 r = sev_guest_status(kvm, &sev_cmd);
6929 break;
6930 case KVM_SEV_DBG_DECRYPT:
6931 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6932 break;
6933 case KVM_SEV_DBG_ENCRYPT:
6934 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6935 break;
6936 case KVM_SEV_LAUNCH_SECRET:
6937 r = sev_launch_secret(kvm, &sev_cmd);
6938 break;
6939 default:
6940 r = -EINVAL;
6941 goto out;
6942 }
6943
6944 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6945 r = -EFAULT;
6946
6947 out:
6948 mutex_unlock(&kvm->lock);
6949 return r;
6950 }
6951
svm_register_enc_region(struct kvm * kvm,struct kvm_enc_region * range)6952 static int svm_register_enc_region(struct kvm *kvm,
6953 struct kvm_enc_region *range)
6954 {
6955 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6956 struct enc_region *region;
6957 int ret = 0;
6958
6959 if (!sev_guest(kvm))
6960 return -ENOTTY;
6961
6962 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6963 return -EINVAL;
6964
6965 region = kzalloc(sizeof(*region), GFP_KERNEL);
6966 if (!region)
6967 return -ENOMEM;
6968
6969 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
6970 if (!region->pages) {
6971 ret = -ENOMEM;
6972 goto e_free;
6973 }
6974
6975 /*
6976 * The guest may change the memory encryption attribute from C=0 -> C=1
6977 * or vice versa for this memory range. Lets make sure caches are
6978 * flushed to ensure that guest data gets written into memory with
6979 * correct C-bit.
6980 */
6981 sev_clflush_pages(region->pages, region->npages);
6982
6983 region->uaddr = range->addr;
6984 region->size = range->size;
6985
6986 mutex_lock(&kvm->lock);
6987 list_add_tail(®ion->list, &sev->regions_list);
6988 mutex_unlock(&kvm->lock);
6989
6990 return ret;
6991
6992 e_free:
6993 kfree(region);
6994 return ret;
6995 }
6996
6997 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)6998 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6999 {
7000 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7001 struct list_head *head = &sev->regions_list;
7002 struct enc_region *i;
7003
7004 list_for_each_entry(i, head, list) {
7005 if (i->uaddr == range->addr &&
7006 i->size == range->size)
7007 return i;
7008 }
7009
7010 return NULL;
7011 }
7012
7013
svm_unregister_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7014 static int svm_unregister_enc_region(struct kvm *kvm,
7015 struct kvm_enc_region *range)
7016 {
7017 struct enc_region *region;
7018 int ret;
7019
7020 mutex_lock(&kvm->lock);
7021
7022 if (!sev_guest(kvm)) {
7023 ret = -ENOTTY;
7024 goto failed;
7025 }
7026
7027 region = find_enc_region(kvm, range);
7028 if (!region) {
7029 ret = -EINVAL;
7030 goto failed;
7031 }
7032
7033 __unregister_enc_region_locked(kvm, region);
7034
7035 mutex_unlock(&kvm->lock);
7036 return 0;
7037
7038 failed:
7039 mutex_unlock(&kvm->lock);
7040 return ret;
7041 }
7042
7043 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7044 .cpu_has_kvm_support = has_svm,
7045 .disabled_by_bios = is_disabled,
7046 .hardware_setup = svm_hardware_setup,
7047 .hardware_unsetup = svm_hardware_unsetup,
7048 .check_processor_compatibility = svm_check_processor_compat,
7049 .hardware_enable = svm_hardware_enable,
7050 .hardware_disable = svm_hardware_disable,
7051 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7052 .has_emulated_msr = svm_has_emulated_msr,
7053
7054 .vcpu_create = svm_create_vcpu,
7055 .vcpu_free = svm_free_vcpu,
7056 .vcpu_reset = svm_vcpu_reset,
7057
7058 .vm_alloc = svm_vm_alloc,
7059 .vm_free = svm_vm_free,
7060 .vm_init = avic_vm_init,
7061 .vm_destroy = svm_vm_destroy,
7062
7063 .prepare_guest_switch = svm_prepare_guest_switch,
7064 .vcpu_load = svm_vcpu_load,
7065 .vcpu_put = svm_vcpu_put,
7066 .vcpu_blocking = svm_vcpu_blocking,
7067 .vcpu_unblocking = svm_vcpu_unblocking,
7068
7069 .update_bp_intercept = update_bp_intercept,
7070 .get_msr_feature = svm_get_msr_feature,
7071 .get_msr = svm_get_msr,
7072 .set_msr = svm_set_msr,
7073 .get_segment_base = svm_get_segment_base,
7074 .get_segment = svm_get_segment,
7075 .set_segment = svm_set_segment,
7076 .get_cpl = svm_get_cpl,
7077 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7078 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7079 .decache_cr3 = svm_decache_cr3,
7080 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7081 .set_cr0 = svm_set_cr0,
7082 .set_cr3 = svm_set_cr3,
7083 .set_cr4 = svm_set_cr4,
7084 .set_efer = svm_set_efer,
7085 .get_idt = svm_get_idt,
7086 .set_idt = svm_set_idt,
7087 .get_gdt = svm_get_gdt,
7088 .set_gdt = svm_set_gdt,
7089 .get_dr6 = svm_get_dr6,
7090 .set_dr6 = svm_set_dr6,
7091 .set_dr7 = svm_set_dr7,
7092 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7093 .cache_reg = svm_cache_reg,
7094 .get_rflags = svm_get_rflags,
7095 .set_rflags = svm_set_rflags,
7096
7097 .tlb_flush = svm_flush_tlb,
7098 .tlb_flush_gva = svm_flush_tlb_gva,
7099
7100 .run = svm_vcpu_run,
7101 .handle_exit = handle_exit,
7102 .skip_emulated_instruction = skip_emulated_instruction,
7103 .set_interrupt_shadow = svm_set_interrupt_shadow,
7104 .get_interrupt_shadow = svm_get_interrupt_shadow,
7105 .patch_hypercall = svm_patch_hypercall,
7106 .set_irq = svm_set_irq,
7107 .set_nmi = svm_inject_nmi,
7108 .queue_exception = svm_queue_exception,
7109 .cancel_injection = svm_cancel_injection,
7110 .interrupt_allowed = svm_interrupt_allowed,
7111 .nmi_allowed = svm_nmi_allowed,
7112 .get_nmi_mask = svm_get_nmi_mask,
7113 .set_nmi_mask = svm_set_nmi_mask,
7114 .enable_nmi_window = enable_nmi_window,
7115 .enable_irq_window = enable_irq_window,
7116 .update_cr8_intercept = update_cr8_intercept,
7117 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7118 .get_enable_apicv = svm_get_enable_apicv,
7119 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7120 .load_eoi_exitmap = svm_load_eoi_exitmap,
7121 .hwapic_irr_update = svm_hwapic_irr_update,
7122 .hwapic_isr_update = svm_hwapic_isr_update,
7123 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7124 .apicv_post_state_restore = avic_post_state_restore,
7125
7126 .set_tss_addr = svm_set_tss_addr,
7127 .set_identity_map_addr = svm_set_identity_map_addr,
7128 .get_tdp_level = get_npt_level,
7129 .get_mt_mask = svm_get_mt_mask,
7130
7131 .get_exit_info = svm_get_exit_info,
7132
7133 .get_lpage_level = svm_get_lpage_level,
7134
7135 .cpuid_update = svm_cpuid_update,
7136
7137 .rdtscp_supported = svm_rdtscp_supported,
7138 .invpcid_supported = svm_invpcid_supported,
7139 .mpx_supported = svm_mpx_supported,
7140 .xsaves_supported = svm_xsaves_supported,
7141 .umip_emulated = svm_umip_emulated,
7142
7143 .set_supported_cpuid = svm_set_supported_cpuid,
7144
7145 .has_wbinvd_exit = svm_has_wbinvd_exit,
7146
7147 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7148 .write_tsc_offset = svm_write_tsc_offset,
7149
7150 .set_tdp_cr3 = set_tdp_cr3,
7151
7152 .check_intercept = svm_check_intercept,
7153 .handle_external_intr = svm_handle_external_intr,
7154
7155 .request_immediate_exit = __kvm_request_immediate_exit,
7156
7157 .sched_in = svm_sched_in,
7158
7159 .pmu_ops = &amd_pmu_ops,
7160 .deliver_posted_interrupt = svm_deliver_avic_intr,
7161 .update_pi_irte = svm_update_pi_irte,
7162 .setup_mce = svm_setup_mce,
7163
7164 .smi_allowed = svm_smi_allowed,
7165 .pre_enter_smm = svm_pre_enter_smm,
7166 .pre_leave_smm = svm_pre_leave_smm,
7167 .enable_smi_window = enable_smi_window,
7168
7169 .mem_enc_op = svm_mem_enc_op,
7170 .mem_enc_reg_region = svm_register_enc_region,
7171 .mem_enc_unreg_region = svm_unregister_enc_region,
7172 };
7173
svm_init(void)7174 static int __init svm_init(void)
7175 {
7176 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7177 __alignof__(struct vcpu_svm), THIS_MODULE);
7178 }
7179
svm_exit(void)7180 static void __exit svm_exit(void)
7181 {
7182 kvm_exit();
7183 }
7184
7185 module_init(svm_init)
7186 module_exit(svm_exit)
7187