1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/cpuhotplug.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/mm.h>
30 #include <linux/slab.h>
31 #include <linux/set_memory.h>
32 
33 #include <asm/hypervisor.h>
34 #include <asm/mem_encrypt.h>
35 #include <asm/x86_init.h>
36 #include <asm/reboot.h>
37 #include <asm/kvmclock.h>
38 
39 static int kvmclock __initdata = 1;
40 static int kvmclock_vsyscall __initdata = 1;
41 static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
42 static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
43 static u64 kvm_sched_clock_offset __ro_after_init;
44 
parse_no_kvmclock(char * arg)45 static int __init parse_no_kvmclock(char *arg)
46 {
47 	kvmclock = 0;
48 	return 0;
49 }
50 early_param("no-kvmclock", parse_no_kvmclock);
51 
parse_no_kvmclock_vsyscall(char * arg)52 static int __init parse_no_kvmclock_vsyscall(char *arg)
53 {
54 	kvmclock_vsyscall = 0;
55 	return 0;
56 }
57 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
58 
59 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
60 #define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
61 #define HVC_BOOT_ARRAY_SIZE \
62 	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
63 
64 static struct pvclock_vsyscall_time_info
65 			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
66 static struct pvclock_wall_clock wall_clock __bss_decrypted;
67 static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
68 static struct pvclock_vsyscall_time_info *hvclock_mem;
69 
this_cpu_pvti(void)70 static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
71 {
72 	return &this_cpu_read(hv_clock_per_cpu)->pvti;
73 }
74 
this_cpu_hvclock(void)75 static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
76 {
77 	return this_cpu_read(hv_clock_per_cpu);
78 }
79 
80 /*
81  * The wallclock is the time of day when we booted. Since then, some time may
82  * have elapsed since the hypervisor wrote the data. So we try to account for
83  * that with system time
84  */
kvm_get_wallclock(struct timespec64 * now)85 static void kvm_get_wallclock(struct timespec64 *now)
86 {
87 	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
88 	preempt_disable();
89 	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
90 	preempt_enable();
91 }
92 
kvm_set_wallclock(const struct timespec64 * now)93 static int kvm_set_wallclock(const struct timespec64 *now)
94 {
95 	return -ENODEV;
96 }
97 
kvm_clock_read(void)98 static u64 kvm_clock_read(void)
99 {
100 	u64 ret;
101 
102 	preempt_disable_notrace();
103 	ret = pvclock_clocksource_read(this_cpu_pvti());
104 	preempt_enable_notrace();
105 	return ret;
106 }
107 
kvm_clock_get_cycles(struct clocksource * cs)108 static u64 kvm_clock_get_cycles(struct clocksource *cs)
109 {
110 	return kvm_clock_read();
111 }
112 
kvm_sched_clock_read(void)113 static u64 kvm_sched_clock_read(void)
114 {
115 	return kvm_clock_read() - kvm_sched_clock_offset;
116 }
117 
kvm_sched_clock_init(bool stable)118 static inline void kvm_sched_clock_init(bool stable)
119 {
120 	if (!stable) {
121 		pv_time_ops.sched_clock = kvm_clock_read;
122 		clear_sched_clock_stable();
123 		return;
124 	}
125 
126 	kvm_sched_clock_offset = kvm_clock_read();
127 	pv_time_ops.sched_clock = kvm_sched_clock_read;
128 
129 	pr_info("kvm-clock: using sched offset of %llu cycles",
130 		kvm_sched_clock_offset);
131 
132 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
133 		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
134 }
135 
136 /*
137  * If we don't do that, there is the possibility that the guest
138  * will calibrate under heavy load - thus, getting a lower lpj -
139  * and execute the delays themselves without load. This is wrong,
140  * because no delay loop can finish beforehand.
141  * Any heuristics is subject to fail, because ultimately, a large
142  * poll of guests can be running and trouble each other. So we preset
143  * lpj here
144  */
kvm_get_tsc_khz(void)145 static unsigned long kvm_get_tsc_khz(void)
146 {
147 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
148 	return pvclock_tsc_khz(this_cpu_pvti());
149 }
150 
kvm_get_preset_lpj(void)151 static void __init kvm_get_preset_lpj(void)
152 {
153 	unsigned long khz;
154 	u64 lpj;
155 
156 	khz = kvm_get_tsc_khz();
157 
158 	lpj = ((u64)khz * 1000);
159 	do_div(lpj, HZ);
160 	preset_lpj = lpj;
161 }
162 
kvm_check_and_clear_guest_paused(void)163 bool kvm_check_and_clear_guest_paused(void)
164 {
165 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
166 	bool ret = false;
167 
168 	if (!src)
169 		return ret;
170 
171 	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
172 		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
173 		pvclock_touch_watchdogs();
174 		ret = true;
175 	}
176 	return ret;
177 }
178 
179 struct clocksource kvm_clock = {
180 	.name	= "kvm-clock",
181 	.read	= kvm_clock_get_cycles,
182 	.rating	= 400,
183 	.mask	= CLOCKSOURCE_MASK(64),
184 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
185 };
186 EXPORT_SYMBOL_GPL(kvm_clock);
187 
kvm_register_clock(char * txt)188 static void kvm_register_clock(char *txt)
189 {
190 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
191 	u64 pa;
192 
193 	if (!src)
194 		return;
195 
196 	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
197 	wrmsrl(msr_kvm_system_time, pa);
198 	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
199 }
200 
kvm_save_sched_clock_state(void)201 static void kvm_save_sched_clock_state(void)
202 {
203 }
204 
kvm_restore_sched_clock_state(void)205 static void kvm_restore_sched_clock_state(void)
206 {
207 	kvm_register_clock("primary cpu clock, resume");
208 }
209 
210 #ifdef CONFIG_X86_LOCAL_APIC
kvm_setup_secondary_clock(void)211 static void kvm_setup_secondary_clock(void)
212 {
213 	kvm_register_clock("secondary cpu clock");
214 }
215 #endif
216 
217 /*
218  * After the clock is registered, the host will keep writing to the
219  * registered memory location. If the guest happens to shutdown, this memory
220  * won't be valid. In cases like kexec, in which you install a new kernel, this
221  * means a random memory location will be kept being written. So before any
222  * kind of shutdown from our side, we unregister the clock by writing anything
223  * that does not have the 'enable' bit set in the msr
224  */
225 #ifdef CONFIG_KEXEC_CORE
kvm_crash_shutdown(struct pt_regs * regs)226 static void kvm_crash_shutdown(struct pt_regs *regs)
227 {
228 	native_write_msr(msr_kvm_system_time, 0, 0);
229 	kvm_disable_steal_time();
230 	native_machine_crash_shutdown(regs);
231 }
232 #endif
233 
kvm_shutdown(void)234 static void kvm_shutdown(void)
235 {
236 	native_write_msr(msr_kvm_system_time, 0, 0);
237 	kvm_disable_steal_time();
238 	native_machine_shutdown();
239 }
240 
kvmclock_init_mem(void)241 static void __init kvmclock_init_mem(void)
242 {
243 	unsigned long ncpus;
244 	unsigned int order;
245 	struct page *p;
246 	int r;
247 
248 	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
249 		return;
250 
251 	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
252 	order = get_order(ncpus * sizeof(*hvclock_mem));
253 
254 	p = alloc_pages(GFP_KERNEL, order);
255 	if (!p) {
256 		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
257 		return;
258 	}
259 
260 	hvclock_mem = page_address(p);
261 
262 	/*
263 	 * hvclock is shared between the guest and the hypervisor, must
264 	 * be mapped decrypted.
265 	 */
266 	if (sev_active()) {
267 		r = set_memory_decrypted((unsigned long) hvclock_mem,
268 					 1UL << order);
269 		if (r) {
270 			__free_pages(p, order);
271 			hvclock_mem = NULL;
272 			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
273 			return;
274 		}
275 	}
276 
277 	memset(hvclock_mem, 0, PAGE_SIZE << order);
278 }
279 
kvm_setup_vsyscall_timeinfo(void)280 static int __init kvm_setup_vsyscall_timeinfo(void)
281 {
282 #ifdef CONFIG_X86_64
283 	u8 flags;
284 
285 	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
286 		return 0;
287 
288 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
289 	if (!(flags & PVCLOCK_TSC_STABLE_BIT))
290 		return 0;
291 
292 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
293 #endif
294 
295 	kvmclock_init_mem();
296 
297 	return 0;
298 }
299 early_initcall(kvm_setup_vsyscall_timeinfo);
300 
kvmclock_setup_percpu(unsigned int cpu)301 static int kvmclock_setup_percpu(unsigned int cpu)
302 {
303 	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
304 
305 	/*
306 	 * The per cpu area setup replicates CPU0 data to all cpu
307 	 * pointers. So carefully check. CPU0 has been set up in init
308 	 * already.
309 	 */
310 	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
311 		return 0;
312 
313 	/* Use the static page for the first CPUs, allocate otherwise */
314 	if (cpu < HVC_BOOT_ARRAY_SIZE)
315 		p = &hv_clock_boot[cpu];
316 	else if (hvclock_mem)
317 		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
318 	else
319 		return -ENOMEM;
320 
321 	per_cpu(hv_clock_per_cpu, cpu) = p;
322 	return p ? 0 : -ENOMEM;
323 }
324 
kvmclock_init(void)325 void __init kvmclock_init(void)
326 {
327 	u8 flags;
328 
329 	if (!kvm_para_available() || !kvmclock)
330 		return;
331 
332 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
333 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
334 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
335 	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
336 		return;
337 	}
338 
339 	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
340 			      kvmclock_setup_percpu, NULL) < 0) {
341 		return;
342 	}
343 
344 	pr_info("kvm-clock: Using msrs %x and %x",
345 		msr_kvm_system_time, msr_kvm_wall_clock);
346 
347 	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
348 	kvm_register_clock("primary cpu clock");
349 	pvclock_set_pvti_cpu0_va(hv_clock_boot);
350 
351 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
352 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
353 
354 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
355 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
356 
357 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
358 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
359 	x86_platform.get_wallclock = kvm_get_wallclock;
360 	x86_platform.set_wallclock = kvm_set_wallclock;
361 #ifdef CONFIG_X86_LOCAL_APIC
362 	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
363 #endif
364 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
365 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
366 	machine_ops.shutdown  = kvm_shutdown;
367 #ifdef CONFIG_KEXEC_CORE
368 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
369 #endif
370 	kvm_get_preset_lpj();
371 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
372 	pv_info.name = "KVM";
373 }
374