1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * KVM paravirt_ops implementation
4 *
5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Copyright IBM Corporation, 2007
7 * Authors: Anthony Liguori <aliguori@us.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <asm/timer.h>
30 #include <asm/cpu.h>
31 #include <asm/traps.h>
32 #include <asm/desc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/apic.h>
35 #include <asm/apicdef.h>
36 #include <asm/hypervisor.h>
37 #include <asm/tlb.h>
38 #include <asm/cpuidle_haltpoll.h>
39 #include <asm/ptrace.h>
40 #include <asm/svm.h>
41
42 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
43
44 static int kvmapf = 1;
45
parse_no_kvmapf(char * arg)46 static int __init parse_no_kvmapf(char *arg)
47 {
48 kvmapf = 0;
49 return 0;
50 }
51
52 early_param("no-kvmapf", parse_no_kvmapf);
53
54 static int steal_acc = 1;
parse_no_stealacc(char * arg)55 static int __init parse_no_stealacc(char *arg)
56 {
57 steal_acc = 0;
58 return 0;
59 }
60
61 early_param("no-steal-acc", parse_no_stealacc);
62
63 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
64 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
65 static int has_steal_clock = 0;
66
67 /*
68 * No need for any "IO delay" on KVM
69 */
kvm_io_delay(void)70 static void kvm_io_delay(void)
71 {
72 }
73
74 #define KVM_TASK_SLEEP_HASHBITS 8
75 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
76
77 struct kvm_task_sleep_node {
78 struct hlist_node link;
79 struct swait_queue_head wq;
80 u32 token;
81 int cpu;
82 };
83
84 static struct kvm_task_sleep_head {
85 raw_spinlock_t lock;
86 struct hlist_head list;
87 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
88
_find_apf_task(struct kvm_task_sleep_head * b,u32 token)89 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
90 u32 token)
91 {
92 struct hlist_node *p;
93
94 hlist_for_each(p, &b->list) {
95 struct kvm_task_sleep_node *n =
96 hlist_entry(p, typeof(*n), link);
97 if (n->token == token)
98 return n;
99 }
100
101 return NULL;
102 }
103
kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)104 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
105 {
106 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
107 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
108 struct kvm_task_sleep_node *e;
109
110 raw_spin_lock(&b->lock);
111 e = _find_apf_task(b, token);
112 if (e) {
113 /* dummy entry exist -> wake up was delivered ahead of PF */
114 hlist_del(&e->link);
115 raw_spin_unlock(&b->lock);
116 kfree(e);
117 return false;
118 }
119
120 n->token = token;
121 n->cpu = smp_processor_id();
122 init_swait_queue_head(&n->wq);
123 hlist_add_head(&n->link, &b->list);
124 raw_spin_unlock(&b->lock);
125 return true;
126 }
127
128 /*
129 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
130 * @token: Token to identify the sleep node entry
131 *
132 * Invoked from the async pagefault handling code or from the VM exit page
133 * fault handler. In both cases RCU is watching.
134 */
kvm_async_pf_task_wait_schedule(u32 token)135 void kvm_async_pf_task_wait_schedule(u32 token)
136 {
137 struct kvm_task_sleep_node n;
138 DECLARE_SWAITQUEUE(wait);
139
140 lockdep_assert_irqs_disabled();
141
142 if (!kvm_async_pf_queue_task(token, &n))
143 return;
144
145 for (;;) {
146 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
147 if (hlist_unhashed(&n.link))
148 break;
149
150 local_irq_enable();
151 schedule();
152 local_irq_disable();
153 }
154 finish_swait(&n.wq, &wait);
155 }
156 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
157
apf_task_wake_one(struct kvm_task_sleep_node * n)158 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
159 {
160 hlist_del_init(&n->link);
161 if (swq_has_sleeper(&n->wq))
162 swake_up_one(&n->wq);
163 }
164
apf_task_wake_all(void)165 static void apf_task_wake_all(void)
166 {
167 int i;
168
169 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
170 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
171 struct kvm_task_sleep_node *n;
172 struct hlist_node *p, *next;
173
174 raw_spin_lock(&b->lock);
175 hlist_for_each_safe(p, next, &b->list) {
176 n = hlist_entry(p, typeof(*n), link);
177 if (n->cpu == smp_processor_id())
178 apf_task_wake_one(n);
179 }
180 raw_spin_unlock(&b->lock);
181 }
182 }
183
kvm_async_pf_task_wake(u32 token)184 void kvm_async_pf_task_wake(u32 token)
185 {
186 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
187 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
188 struct kvm_task_sleep_node *n;
189
190 if (token == ~0) {
191 apf_task_wake_all();
192 return;
193 }
194
195 again:
196 raw_spin_lock(&b->lock);
197 n = _find_apf_task(b, token);
198 if (!n) {
199 /*
200 * async PF was not yet handled.
201 * Add dummy entry for the token.
202 */
203 n = kzalloc(sizeof(*n), GFP_ATOMIC);
204 if (!n) {
205 /*
206 * Allocation failed! Busy wait while other cpu
207 * handles async PF.
208 */
209 raw_spin_unlock(&b->lock);
210 cpu_relax();
211 goto again;
212 }
213 n->token = token;
214 n->cpu = smp_processor_id();
215 init_swait_queue_head(&n->wq);
216 hlist_add_head(&n->link, &b->list);
217 } else {
218 apf_task_wake_one(n);
219 }
220 raw_spin_unlock(&b->lock);
221 return;
222 }
223 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
224
kvm_read_and_reset_apf_flags(void)225 noinstr u32 kvm_read_and_reset_apf_flags(void)
226 {
227 u32 flags = 0;
228
229 if (__this_cpu_read(apf_reason.enabled)) {
230 flags = __this_cpu_read(apf_reason.flags);
231 __this_cpu_write(apf_reason.flags, 0);
232 }
233
234 return flags;
235 }
236 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
237
__kvm_handle_async_pf(struct pt_regs * regs,u32 token)238 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
239 {
240 u32 flags = kvm_read_and_reset_apf_flags();
241 irqentry_state_t state;
242
243 if (!flags)
244 return false;
245
246 state = irqentry_enter(regs);
247 instrumentation_begin();
248
249 /*
250 * If the host managed to inject an async #PF into an interrupt
251 * disabled region, then die hard as this is not going to end well
252 * and the host side is seriously broken.
253 */
254 if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
255 panic("Host injected async #PF in interrupt disabled region\n");
256
257 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
258 if (unlikely(!(user_mode(regs))))
259 panic("Host injected async #PF in kernel mode\n");
260 /* Page is swapped out by the host. */
261 kvm_async_pf_task_wait_schedule(token);
262 } else {
263 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
264 }
265
266 instrumentation_end();
267 irqentry_exit(regs, state);
268 return true;
269 }
270
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)271 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
272 {
273 struct pt_regs *old_regs = set_irq_regs(regs);
274 u32 token;
275
276 ack_APIC_irq();
277
278 inc_irq_stat(irq_hv_callback_count);
279
280 if (__this_cpu_read(apf_reason.enabled)) {
281 token = __this_cpu_read(apf_reason.token);
282 kvm_async_pf_task_wake(token);
283 __this_cpu_write(apf_reason.token, 0);
284 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
285 }
286
287 set_irq_regs(old_regs);
288 }
289
paravirt_ops_setup(void)290 static void __init paravirt_ops_setup(void)
291 {
292 pv_info.name = "KVM";
293
294 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
295 pv_ops.cpu.io_delay = kvm_io_delay;
296
297 #ifdef CONFIG_X86_IO_APIC
298 no_timer_check = 1;
299 #endif
300 }
301
kvm_register_steal_time(void)302 static void kvm_register_steal_time(void)
303 {
304 int cpu = smp_processor_id();
305 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
306
307 if (!has_steal_clock)
308 return;
309
310 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
311 pr_info("stealtime: cpu %d, msr %llx\n", cpu,
312 (unsigned long long) slow_virt_to_phys(st));
313 }
314
315 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
316
kvm_guest_apic_eoi_write(u32 reg,u32 val)317 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
318 {
319 /**
320 * This relies on __test_and_clear_bit to modify the memory
321 * in a way that is atomic with respect to the local CPU.
322 * The hypervisor only accesses this memory from the local CPU so
323 * there's no need for lock or memory barriers.
324 * An optimization barrier is implied in apic write.
325 */
326 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
327 return;
328 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
329 }
330
kvm_guest_cpu_init(void)331 static void kvm_guest_cpu_init(void)
332 {
333 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
334 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
335
336 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
337
338 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
339 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
340
341 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
342 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
343
344 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
345
346 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
347 __this_cpu_write(apf_reason.enabled, 1);
348 pr_info("KVM setup async PF for cpu %d\n", smp_processor_id());
349 }
350
351 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
352 unsigned long pa;
353
354 /* Size alignment is implied but just to make it explicit. */
355 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
356 __this_cpu_write(kvm_apic_eoi, 0);
357 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
358 | KVM_MSR_ENABLED;
359 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
360 }
361
362 if (has_steal_clock)
363 kvm_register_steal_time();
364 }
365
kvm_pv_disable_apf(void)366 static void kvm_pv_disable_apf(void)
367 {
368 if (!__this_cpu_read(apf_reason.enabled))
369 return;
370
371 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
372 __this_cpu_write(apf_reason.enabled, 0);
373
374 pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id());
375 }
376
kvm_pv_guest_cpu_reboot(void * unused)377 static void kvm_pv_guest_cpu_reboot(void *unused)
378 {
379 /*
380 * We disable PV EOI before we load a new kernel by kexec,
381 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
382 * New kernel can re-enable when it boots.
383 */
384 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
385 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
386 kvm_pv_disable_apf();
387 kvm_disable_steal_time();
388 }
389
kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)390 static int kvm_pv_reboot_notify(struct notifier_block *nb,
391 unsigned long code, void *unused)
392 {
393 if (code == SYS_RESTART)
394 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
395 return NOTIFY_DONE;
396 }
397
398 static struct notifier_block kvm_pv_reboot_nb = {
399 .notifier_call = kvm_pv_reboot_notify,
400 };
401
kvm_steal_clock(int cpu)402 static u64 kvm_steal_clock(int cpu)
403 {
404 u64 steal;
405 struct kvm_steal_time *src;
406 int version;
407
408 src = &per_cpu(steal_time, cpu);
409 do {
410 version = src->version;
411 virt_rmb();
412 steal = src->steal;
413 virt_rmb();
414 } while ((version & 1) || (version != src->version));
415
416 return steal;
417 }
418
kvm_disable_steal_time(void)419 void kvm_disable_steal_time(void)
420 {
421 if (!has_steal_clock)
422 return;
423
424 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
425 }
426
__set_percpu_decrypted(void * ptr,unsigned long size)427 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
428 {
429 early_set_memory_decrypted((unsigned long) ptr, size);
430 }
431
432 /*
433 * Iterate through all possible CPUs and map the memory region pointed
434 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
435 *
436 * Note: we iterate through all possible CPUs to ensure that CPUs
437 * hotplugged will have their per-cpu variable already mapped as
438 * decrypted.
439 */
sev_map_percpu_data(void)440 static void __init sev_map_percpu_data(void)
441 {
442 int cpu;
443
444 if (!sev_active())
445 return;
446
447 for_each_possible_cpu(cpu) {
448 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
449 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
450 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
451 }
452 }
453
pv_tlb_flush_supported(void)454 static bool pv_tlb_flush_supported(void)
455 {
456 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
457 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
458 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
459 }
460
461 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
462
463 #ifdef CONFIG_SMP
464
pv_ipi_supported(void)465 static bool pv_ipi_supported(void)
466 {
467 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
468 }
469
pv_sched_yield_supported(void)470 static bool pv_sched_yield_supported(void)
471 {
472 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
473 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
474 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
475 }
476
477 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
478
__send_ipi_mask(const struct cpumask * mask,int vector)479 static void __send_ipi_mask(const struct cpumask *mask, int vector)
480 {
481 unsigned long flags;
482 int cpu, apic_id, icr;
483 int min = 0, max = 0;
484 #ifdef CONFIG_X86_64
485 __uint128_t ipi_bitmap = 0;
486 #else
487 u64 ipi_bitmap = 0;
488 #endif
489 long ret;
490
491 if (cpumask_empty(mask))
492 return;
493
494 local_irq_save(flags);
495
496 switch (vector) {
497 default:
498 icr = APIC_DM_FIXED | vector;
499 break;
500 case NMI_VECTOR:
501 icr = APIC_DM_NMI;
502 break;
503 }
504
505 for_each_cpu(cpu, mask) {
506 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
507 if (!ipi_bitmap) {
508 min = max = apic_id;
509 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
510 ipi_bitmap <<= min - apic_id;
511 min = apic_id;
512 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
513 max = apic_id < max ? max : apic_id;
514 } else {
515 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
516 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
517 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
518 ret);
519 min = max = apic_id;
520 ipi_bitmap = 0;
521 }
522 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
523 }
524
525 if (ipi_bitmap) {
526 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
527 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
528 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
529 ret);
530 }
531
532 local_irq_restore(flags);
533 }
534
kvm_send_ipi_mask(const struct cpumask * mask,int vector)535 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
536 {
537 __send_ipi_mask(mask, vector);
538 }
539
kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)540 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
541 {
542 unsigned int this_cpu = smp_processor_id();
543 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
544 const struct cpumask *local_mask;
545
546 cpumask_copy(new_mask, mask);
547 cpumask_clear_cpu(this_cpu, new_mask);
548 local_mask = new_mask;
549 __send_ipi_mask(local_mask, vector);
550 }
551
552 /*
553 * Set the IPI entry points
554 */
kvm_setup_pv_ipi(void)555 static void kvm_setup_pv_ipi(void)
556 {
557 apic->send_IPI_mask = kvm_send_ipi_mask;
558 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
559 pr_info("setup PV IPIs\n");
560 }
561
kvm_smp_send_call_func_ipi(const struct cpumask * mask)562 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
563 {
564 int cpu;
565
566 native_send_call_func_ipi(mask);
567
568 /* Make sure other vCPUs get a chance to run if they need to. */
569 for_each_cpu(cpu, mask) {
570 if (vcpu_is_preempted(cpu)) {
571 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
572 break;
573 }
574 }
575 }
576
kvm_smp_prepare_boot_cpu(void)577 static void __init kvm_smp_prepare_boot_cpu(void)
578 {
579 /*
580 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
581 * shares the guest physical address with the hypervisor.
582 */
583 sev_map_percpu_data();
584
585 kvm_guest_cpu_init();
586 native_smp_prepare_boot_cpu();
587 kvm_spinlock_init();
588 }
589
kvm_guest_cpu_offline(void)590 static void kvm_guest_cpu_offline(void)
591 {
592 kvm_disable_steal_time();
593 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
594 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
595 kvm_pv_disable_apf();
596 apf_task_wake_all();
597 }
598
kvm_cpu_online(unsigned int cpu)599 static int kvm_cpu_online(unsigned int cpu)
600 {
601 local_irq_disable();
602 kvm_guest_cpu_init();
603 local_irq_enable();
604 return 0;
605 }
606
kvm_cpu_down_prepare(unsigned int cpu)607 static int kvm_cpu_down_prepare(unsigned int cpu)
608 {
609 local_irq_disable();
610 kvm_guest_cpu_offline();
611 local_irq_enable();
612 return 0;
613 }
614 #endif
615
kvm_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)616 static void kvm_flush_tlb_others(const struct cpumask *cpumask,
617 const struct flush_tlb_info *info)
618 {
619 u8 state;
620 int cpu;
621 struct kvm_steal_time *src;
622 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
623
624 cpumask_copy(flushmask, cpumask);
625 /*
626 * We have to call flush only on online vCPUs. And
627 * queue flush_on_enter for pre-empted vCPUs
628 */
629 for_each_cpu(cpu, flushmask) {
630 src = &per_cpu(steal_time, cpu);
631 state = READ_ONCE(src->preempted);
632 if ((state & KVM_VCPU_PREEMPTED)) {
633 if (try_cmpxchg(&src->preempted, &state,
634 state | KVM_VCPU_FLUSH_TLB))
635 __cpumask_clear_cpu(cpu, flushmask);
636 }
637 }
638
639 native_flush_tlb_others(flushmask, info);
640 }
641
kvm_guest_init(void)642 static void __init kvm_guest_init(void)
643 {
644 int i;
645
646 paravirt_ops_setup();
647 register_reboot_notifier(&kvm_pv_reboot_nb);
648 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
649 raw_spin_lock_init(&async_pf_sleepers[i].lock);
650
651 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
652 has_steal_clock = 1;
653 pv_ops.time.steal_clock = kvm_steal_clock;
654 }
655
656 if (pv_tlb_flush_supported()) {
657 pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others;
658 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
659 pr_info("KVM setup pv remote TLB flush\n");
660 }
661
662 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
663 apic_set_eoi_write(kvm_guest_apic_eoi_write);
664
665 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
666 static_branch_enable(&kvm_async_pf_enabled);
667 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
668 }
669
670 #ifdef CONFIG_SMP
671 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
672 if (pv_sched_yield_supported()) {
673 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
674 pr_info("setup PV sched yield\n");
675 }
676 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
677 kvm_cpu_online, kvm_cpu_down_prepare) < 0)
678 pr_err("failed to install cpu hotplug callbacks\n");
679 #else
680 sev_map_percpu_data();
681 kvm_guest_cpu_init();
682 #endif
683
684 /*
685 * Hard lockup detection is enabled by default. Disable it, as guests
686 * can get false positives too easily, for example if the host is
687 * overcommitted.
688 */
689 hardlockup_detector_disable();
690 }
691
__kvm_cpuid_base(void)692 static noinline uint32_t __kvm_cpuid_base(void)
693 {
694 if (boot_cpu_data.cpuid_level < 0)
695 return 0; /* So we don't blow up on old processors */
696
697 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
698 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
699
700 return 0;
701 }
702
kvm_cpuid_base(void)703 static inline uint32_t kvm_cpuid_base(void)
704 {
705 static int kvm_cpuid_base = -1;
706
707 if (kvm_cpuid_base == -1)
708 kvm_cpuid_base = __kvm_cpuid_base();
709
710 return kvm_cpuid_base;
711 }
712
kvm_para_available(void)713 bool kvm_para_available(void)
714 {
715 return kvm_cpuid_base() != 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_para_available);
718
kvm_arch_para_features(void)719 unsigned int kvm_arch_para_features(void)
720 {
721 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
722 }
723
kvm_arch_para_hints(void)724 unsigned int kvm_arch_para_hints(void)
725 {
726 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
727 }
728 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
729
kvm_detect(void)730 static uint32_t __init kvm_detect(void)
731 {
732 return kvm_cpuid_base();
733 }
734
kvm_apic_init(void)735 static void __init kvm_apic_init(void)
736 {
737 #if defined(CONFIG_SMP)
738 if (pv_ipi_supported())
739 kvm_setup_pv_ipi();
740 #endif
741 }
742
kvm_init_platform(void)743 static void __init kvm_init_platform(void)
744 {
745 kvmclock_init();
746 x86_platform.apic_post_init = kvm_apic_init;
747 }
748
749 #if defined(CONFIG_AMD_MEM_ENCRYPT)
kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)750 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
751 {
752 /* RAX and CPL are already in the GHCB */
753 ghcb_set_rbx(ghcb, regs->bx);
754 ghcb_set_rcx(ghcb, regs->cx);
755 ghcb_set_rdx(ghcb, regs->dx);
756 ghcb_set_rsi(ghcb, regs->si);
757 }
758
kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)759 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
760 {
761 /* No checking of the return state needed */
762 return true;
763 }
764 #endif
765
766 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
767 .name = "KVM",
768 .detect = kvm_detect,
769 .type = X86_HYPER_KVM,
770 .init.guest_late_init = kvm_guest_init,
771 .init.x2apic_available = kvm_para_available,
772 .init.init_platform = kvm_init_platform,
773 #if defined(CONFIG_AMD_MEM_ENCRYPT)
774 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare,
775 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish,
776 #endif
777 };
778
activate_jump_labels(void)779 static __init int activate_jump_labels(void)
780 {
781 if (has_steal_clock) {
782 static_key_slow_inc(¶virt_steal_enabled);
783 if (steal_acc)
784 static_key_slow_inc(¶virt_steal_rq_enabled);
785 }
786
787 return 0;
788 }
789 arch_initcall(activate_jump_labels);
790
kvm_alloc_cpumask(void)791 static __init int kvm_alloc_cpumask(void)
792 {
793 int cpu;
794 bool alloc = false;
795
796 if (!kvm_para_available() || nopv)
797 return 0;
798
799 if (pv_tlb_flush_supported())
800 alloc = true;
801
802 #if defined(CONFIG_SMP)
803 if (pv_ipi_supported())
804 alloc = true;
805 #endif
806
807 if (alloc)
808 for_each_possible_cpu(cpu) {
809 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
810 GFP_KERNEL, cpu_to_node(cpu));
811 }
812
813 return 0;
814 }
815 arch_initcall(kvm_alloc_cpumask);
816
817 #ifdef CONFIG_PARAVIRT_SPINLOCKS
818
819 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
kvm_kick_cpu(int cpu)820 static void kvm_kick_cpu(int cpu)
821 {
822 int apicid;
823 unsigned long flags = 0;
824
825 apicid = per_cpu(x86_cpu_to_apicid, cpu);
826 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
827 }
828
829 #include <asm/qspinlock.h>
830
kvm_wait(u8 * ptr,u8 val)831 static void kvm_wait(u8 *ptr, u8 val)
832 {
833 unsigned long flags;
834
835 if (in_nmi())
836 return;
837
838 local_irq_save(flags);
839
840 if (READ_ONCE(*ptr) != val)
841 goto out;
842
843 /*
844 * halt until it's our turn and kicked. Note that we do safe halt
845 * for irq enabled case to avoid hang when lock info is overwritten
846 * in irq spinlock slowpath and no spurious interrupt occur to save us.
847 */
848 if (arch_irqs_disabled_flags(flags))
849 halt();
850 else
851 safe_halt();
852
853 out:
854 local_irq_restore(flags);
855 }
856
857 #ifdef CONFIG_X86_32
__kvm_vcpu_is_preempted(long cpu)858 __visible bool __kvm_vcpu_is_preempted(long cpu)
859 {
860 struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
861
862 return !!(src->preempted & KVM_VCPU_PREEMPTED);
863 }
864 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
865
866 #else
867
868 #include <asm/asm-offsets.h>
869
870 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
871
872 /*
873 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
874 * restoring to/from the stack.
875 */
876 asm(
877 ".pushsection .text;"
878 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
879 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
880 "__raw_callee_save___kvm_vcpu_is_preempted:"
881 "movq __per_cpu_offset(,%rdi,8), %rax;"
882 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
883 "setne %al;"
884 "ret;"
885 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
886 ".popsection");
887
888 #endif
889
890 /*
891 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
892 */
kvm_spinlock_init(void)893 void __init kvm_spinlock_init(void)
894 {
895 /*
896 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
897 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
898 * preferred over native qspinlock when vCPU is preempted.
899 */
900 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
901 pr_info("PV spinlocks disabled, no host support\n");
902 return;
903 }
904
905 /*
906 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
907 * are available.
908 */
909 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
910 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
911 goto out;
912 }
913
914 if (num_possible_cpus() == 1) {
915 pr_info("PV spinlocks disabled, single CPU\n");
916 goto out;
917 }
918
919 if (nopvspin) {
920 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
921 goto out;
922 }
923
924 pr_info("PV spinlocks enabled\n");
925
926 __pv_init_lock_hash();
927 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
928 pv_ops.lock.queued_spin_unlock =
929 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
930 pv_ops.lock.wait = kvm_wait;
931 pv_ops.lock.kick = kvm_kick_cpu;
932
933 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
934 pv_ops.lock.vcpu_is_preempted =
935 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
936 }
937 /*
938 * When PV spinlock is enabled which is preferred over
939 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
940 * Just disable it anyway.
941 */
942 out:
943 static_branch_disable(&virt_spin_lock_key);
944 }
945
946 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
947
948 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
949
kvm_disable_host_haltpoll(void * i)950 static void kvm_disable_host_haltpoll(void *i)
951 {
952 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
953 }
954
kvm_enable_host_haltpoll(void * i)955 static void kvm_enable_host_haltpoll(void *i)
956 {
957 wrmsrl(MSR_KVM_POLL_CONTROL, 1);
958 }
959
arch_haltpoll_enable(unsigned int cpu)960 void arch_haltpoll_enable(unsigned int cpu)
961 {
962 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
963 pr_err_once("host does not support poll control\n");
964 pr_err_once("host upgrade recommended\n");
965 return;
966 }
967
968 /* Enable guest halt poll disables host halt poll */
969 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
970 }
971 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
972
arch_haltpoll_disable(unsigned int cpu)973 void arch_haltpoll_disable(unsigned int cpu)
974 {
975 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
976 return;
977
978 /* Disable guest halt poll enables host halt poll */
979 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
980 }
981 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
982 #endif
983