1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2016, 2018
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @mm: pointer to the parent mm_struct
31  * @limit: maximum address of the gmap address space
32  *
33  * Returns a guest address space structure.
34  */
gmap_alloc(unsigned long limit)35 static struct gmap *gmap_alloc(unsigned long limit)
36 {
37 	struct gmap *gmap;
38 	struct page *page;
39 	unsigned long *table;
40 	unsigned long etype, atype;
41 
42 	if (limit < _REGION3_SIZE) {
43 		limit = _REGION3_SIZE - 1;
44 		atype = _ASCE_TYPE_SEGMENT;
45 		etype = _SEGMENT_ENTRY_EMPTY;
46 	} else if (limit < _REGION2_SIZE) {
47 		limit = _REGION2_SIZE - 1;
48 		atype = _ASCE_TYPE_REGION3;
49 		etype = _REGION3_ENTRY_EMPTY;
50 	} else if (limit < _REGION1_SIZE) {
51 		limit = _REGION1_SIZE - 1;
52 		atype = _ASCE_TYPE_REGION2;
53 		etype = _REGION2_ENTRY_EMPTY;
54 	} else {
55 		limit = -1UL;
56 		atype = _ASCE_TYPE_REGION1;
57 		etype = _REGION1_ENTRY_EMPTY;
58 	}
59 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
60 	if (!gmap)
61 		goto out;
62 	INIT_LIST_HEAD(&gmap->crst_list);
63 	INIT_LIST_HEAD(&gmap->children);
64 	INIT_LIST_HEAD(&gmap->pt_list);
65 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
66 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
67 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
68 	spin_lock_init(&gmap->guest_table_lock);
69 	spin_lock_init(&gmap->shadow_lock);
70 	atomic_set(&gmap->ref_count, 1);
71 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
72 	if (!page)
73 		goto out_free;
74 	page->index = 0;
75 	list_add(&page->lru, &gmap->crst_list);
76 	table = (unsigned long *) page_to_phys(page);
77 	crst_table_init(table, etype);
78 	gmap->table = table;
79 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
80 		_ASCE_USER_BITS | __pa(table);
81 	gmap->asce_end = limit;
82 	return gmap;
83 
84 out_free:
85 	kfree(gmap);
86 out:
87 	return NULL;
88 }
89 
90 /**
91  * gmap_create - create a guest address space
92  * @mm: pointer to the parent mm_struct
93  * @limit: maximum size of the gmap address space
94  *
95  * Returns a guest address space structure.
96  */
gmap_create(struct mm_struct * mm,unsigned long limit)97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98 {
99 	struct gmap *gmap;
100 	unsigned long gmap_asce;
101 
102 	gmap = gmap_alloc(limit);
103 	if (!gmap)
104 		return NULL;
105 	gmap->mm = mm;
106 	spin_lock(&mm->context.lock);
107 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
108 	if (list_is_singular(&mm->context.gmap_list))
109 		gmap_asce = gmap->asce;
110 	else
111 		gmap_asce = -1UL;
112 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113 	spin_unlock(&mm->context.lock);
114 	return gmap;
115 }
116 EXPORT_SYMBOL_GPL(gmap_create);
117 
gmap_flush_tlb(struct gmap * gmap)118 static void gmap_flush_tlb(struct gmap *gmap)
119 {
120 	if (MACHINE_HAS_IDTE)
121 		__tlb_flush_idte(gmap->asce);
122 	else
123 		__tlb_flush_global();
124 }
125 
gmap_radix_tree_free(struct radix_tree_root * root)126 static void gmap_radix_tree_free(struct radix_tree_root *root)
127 {
128 	struct radix_tree_iter iter;
129 	unsigned long indices[16];
130 	unsigned long index;
131 	void __rcu **slot;
132 	int i, nr;
133 
134 	/* A radix tree is freed by deleting all of its entries */
135 	index = 0;
136 	do {
137 		nr = 0;
138 		radix_tree_for_each_slot(slot, root, &iter, index) {
139 			indices[nr] = iter.index;
140 			if (++nr == 16)
141 				break;
142 		}
143 		for (i = 0; i < nr; i++) {
144 			index = indices[i];
145 			radix_tree_delete(root, index);
146 		}
147 	} while (nr > 0);
148 }
149 
gmap_rmap_radix_tree_free(struct radix_tree_root * root)150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151 {
152 	struct gmap_rmap *rmap, *rnext, *head;
153 	struct radix_tree_iter iter;
154 	unsigned long indices[16];
155 	unsigned long index;
156 	void __rcu **slot;
157 	int i, nr;
158 
159 	/* A radix tree is freed by deleting all of its entries */
160 	index = 0;
161 	do {
162 		nr = 0;
163 		radix_tree_for_each_slot(slot, root, &iter, index) {
164 			indices[nr] = iter.index;
165 			if (++nr == 16)
166 				break;
167 		}
168 		for (i = 0; i < nr; i++) {
169 			index = indices[i];
170 			head = radix_tree_delete(root, index);
171 			gmap_for_each_rmap_safe(rmap, rnext, head)
172 				kfree(rmap);
173 		}
174 	} while (nr > 0);
175 }
176 
177 /**
178  * gmap_free - free a guest address space
179  * @gmap: pointer to the guest address space structure
180  *
181  * No locks required. There are no references to this gmap anymore.
182  */
gmap_free(struct gmap * gmap)183 static void gmap_free(struct gmap *gmap)
184 {
185 	struct page *page, *next;
186 
187 	/* Flush tlb of all gmaps (if not already done for shadows) */
188 	if (!(gmap_is_shadow(gmap) && gmap->removed))
189 		gmap_flush_tlb(gmap);
190 	/* Free all segment & region tables. */
191 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192 		__free_pages(page, CRST_ALLOC_ORDER);
193 	gmap_radix_tree_free(&gmap->guest_to_host);
194 	gmap_radix_tree_free(&gmap->host_to_guest);
195 
196 	/* Free additional data for a shadow gmap */
197 	if (gmap_is_shadow(gmap)) {
198 		/* Free all page tables. */
199 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200 			page_table_free_pgste(page);
201 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202 		/* Release reference to the parent */
203 		gmap_put(gmap->parent);
204 	}
205 
206 	kfree(gmap);
207 }
208 
209 /**
210  * gmap_get - increase reference counter for guest address space
211  * @gmap: pointer to the guest address space structure
212  *
213  * Returns the gmap pointer
214  */
gmap_get(struct gmap * gmap)215 struct gmap *gmap_get(struct gmap *gmap)
216 {
217 	atomic_inc(&gmap->ref_count);
218 	return gmap;
219 }
220 EXPORT_SYMBOL_GPL(gmap_get);
221 
222 /**
223  * gmap_put - decrease reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * If the reference counter reaches zero the guest address space is freed.
227  */
gmap_put(struct gmap * gmap)228 void gmap_put(struct gmap *gmap)
229 {
230 	if (atomic_dec_return(&gmap->ref_count) == 0)
231 		gmap_free(gmap);
232 }
233 EXPORT_SYMBOL_GPL(gmap_put);
234 
235 /**
236  * gmap_remove - remove a guest address space but do not free it yet
237  * @gmap: pointer to the guest address space structure
238  */
gmap_remove(struct gmap * gmap)239 void gmap_remove(struct gmap *gmap)
240 {
241 	struct gmap *sg, *next;
242 	unsigned long gmap_asce;
243 
244 	/* Remove all shadow gmaps linked to this gmap */
245 	if (!list_empty(&gmap->children)) {
246 		spin_lock(&gmap->shadow_lock);
247 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
248 			list_del(&sg->list);
249 			gmap_put(sg);
250 		}
251 		spin_unlock(&gmap->shadow_lock);
252 	}
253 	/* Remove gmap from the pre-mm list */
254 	spin_lock(&gmap->mm->context.lock);
255 	list_del_rcu(&gmap->list);
256 	if (list_empty(&gmap->mm->context.gmap_list))
257 		gmap_asce = 0;
258 	else if (list_is_singular(&gmap->mm->context.gmap_list))
259 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260 					     struct gmap, list)->asce;
261 	else
262 		gmap_asce = -1UL;
263 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264 	spin_unlock(&gmap->mm->context.lock);
265 	synchronize_rcu();
266 	/* Put reference */
267 	gmap_put(gmap);
268 }
269 EXPORT_SYMBOL_GPL(gmap_remove);
270 
271 /**
272  * gmap_enable - switch primary space to the guest address space
273  * @gmap: pointer to the guest address space structure
274  */
gmap_enable(struct gmap * gmap)275 void gmap_enable(struct gmap *gmap)
276 {
277 	S390_lowcore.gmap = (unsigned long) gmap;
278 }
279 EXPORT_SYMBOL_GPL(gmap_enable);
280 
281 /**
282  * gmap_disable - switch back to the standard primary address space
283  * @gmap: pointer to the guest address space structure
284  */
gmap_disable(struct gmap * gmap)285 void gmap_disable(struct gmap *gmap)
286 {
287 	S390_lowcore.gmap = 0UL;
288 }
289 EXPORT_SYMBOL_GPL(gmap_disable);
290 
291 /**
292  * gmap_get_enabled - get a pointer to the currently enabled gmap
293  *
294  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295  */
gmap_get_enabled(void)296 struct gmap *gmap_get_enabled(void)
297 {
298 	return (struct gmap *) S390_lowcore.gmap;
299 }
300 EXPORT_SYMBOL_GPL(gmap_get_enabled);
301 
302 /*
303  * gmap_alloc_table is assumed to be called with mmap_sem held
304  */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306 			    unsigned long init, unsigned long gaddr)
307 {
308 	struct page *page;
309 	unsigned long *new;
310 
311 	/* since we dont free the gmap table until gmap_free we can unlock */
312 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
313 	if (!page)
314 		return -ENOMEM;
315 	new = (unsigned long *) page_to_phys(page);
316 	crst_table_init(new, init);
317 	spin_lock(&gmap->guest_table_lock);
318 	if (*table & _REGION_ENTRY_INVALID) {
319 		list_add(&page->lru, &gmap->crst_list);
320 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321 			(*table & _REGION_ENTRY_TYPE_MASK);
322 		page->index = gaddr;
323 		page = NULL;
324 	}
325 	spin_unlock(&gmap->guest_table_lock);
326 	if (page)
327 		__free_pages(page, CRST_ALLOC_ORDER);
328 	return 0;
329 }
330 
331 /**
332  * __gmap_segment_gaddr - find virtual address from segment pointer
333  * @entry: pointer to a segment table entry in the guest address space
334  *
335  * Returns the virtual address in the guest address space for the segment
336  */
__gmap_segment_gaddr(unsigned long * entry)337 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338 {
339 	struct page *page;
340 	unsigned long offset, mask;
341 
342 	offset = (unsigned long) entry / sizeof(unsigned long);
343 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345 	page = virt_to_page((void *)((unsigned long) entry & mask));
346 	return page->index + offset;
347 }
348 
349 /**
350  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351  * @gmap: pointer to the guest address space structure
352  * @vmaddr: address in the host process address space
353  *
354  * Returns 1 if a TLB flush is required
355  */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357 {
358 	unsigned long *entry;
359 	int flush = 0;
360 
361 	BUG_ON(gmap_is_shadow(gmap));
362 	spin_lock(&gmap->guest_table_lock);
363 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364 	if (entry) {
365 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366 		*entry = _SEGMENT_ENTRY_EMPTY;
367 	}
368 	spin_unlock(&gmap->guest_table_lock);
369 	return flush;
370 }
371 
372 /**
373  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374  * @gmap: pointer to the guest address space structure
375  * @gaddr: address in the guest address space
376  *
377  * Returns 1 if a TLB flush is required
378  */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380 {
381 	unsigned long vmaddr;
382 
383 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384 						   gaddr >> PMD_SHIFT);
385 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386 }
387 
388 /**
389  * gmap_unmap_segment - unmap segment from the guest address space
390  * @gmap: pointer to the guest address space structure
391  * @to: address in the guest address space
392  * @len: length of the memory area to unmap
393  *
394  * Returns 0 if the unmap succeeded, -EINVAL if not.
395  */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397 {
398 	unsigned long off;
399 	int flush;
400 
401 	BUG_ON(gmap_is_shadow(gmap));
402 	if ((to | len) & (PMD_SIZE - 1))
403 		return -EINVAL;
404 	if (len == 0 || to + len < to)
405 		return -EINVAL;
406 
407 	flush = 0;
408 	down_write(&gmap->mm->mmap_sem);
409 	for (off = 0; off < len; off += PMD_SIZE)
410 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411 	up_write(&gmap->mm->mmap_sem);
412 	if (flush)
413 		gmap_flush_tlb(gmap);
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417 
418 /**
419  * gmap_map_segment - map a segment to the guest address space
420  * @gmap: pointer to the guest address space structure
421  * @from: source address in the parent address space
422  * @to: target address in the guest address space
423  * @len: length of the memory area to map
424  *
425  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426  */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)427 int gmap_map_segment(struct gmap *gmap, unsigned long from,
428 		     unsigned long to, unsigned long len)
429 {
430 	unsigned long off;
431 	int flush;
432 
433 	BUG_ON(gmap_is_shadow(gmap));
434 	if ((from | to | len) & (PMD_SIZE - 1))
435 		return -EINVAL;
436 	if (len == 0 || from + len < from || to + len < to ||
437 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438 		return -EINVAL;
439 
440 	flush = 0;
441 	down_write(&gmap->mm->mmap_sem);
442 	for (off = 0; off < len; off += PMD_SIZE) {
443 		/* Remove old translation */
444 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445 		/* Store new translation */
446 		if (radix_tree_insert(&gmap->guest_to_host,
447 				      (to + off) >> PMD_SHIFT,
448 				      (void *) from + off))
449 			break;
450 	}
451 	up_write(&gmap->mm->mmap_sem);
452 	if (flush)
453 		gmap_flush_tlb(gmap);
454 	if (off >= len)
455 		return 0;
456 	gmap_unmap_segment(gmap, to, len);
457 	return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(gmap_map_segment);
460 
461 /**
462  * __gmap_translate - translate a guest address to a user space address
463  * @gmap: pointer to guest mapping meta data structure
464  * @gaddr: guest address
465  *
466  * Returns user space address which corresponds to the guest address or
467  * -EFAULT if no such mapping exists.
468  * This function does not establish potentially missing page table entries.
469  * The mmap_sem of the mm that belongs to the address space must be held
470  * when this function gets called.
471  *
472  * Note: Can also be called for shadow gmaps.
473  */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475 {
476 	unsigned long vmaddr;
477 
478 	vmaddr = (unsigned long)
479 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480 	/* Note: guest_to_host is empty for a shadow gmap */
481 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482 }
483 EXPORT_SYMBOL_GPL(__gmap_translate);
484 
485 /**
486  * gmap_translate - translate a guest address to a user space address
487  * @gmap: pointer to guest mapping meta data structure
488  * @gaddr: guest address
489  *
490  * Returns user space address which corresponds to the guest address or
491  * -EFAULT if no such mapping exists.
492  * This function does not establish potentially missing page table entries.
493  */
gmap_translate(struct gmap * gmap,unsigned long gaddr)494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495 {
496 	unsigned long rc;
497 
498 	down_read(&gmap->mm->mmap_sem);
499 	rc = __gmap_translate(gmap, gaddr);
500 	up_read(&gmap->mm->mmap_sem);
501 	return rc;
502 }
503 EXPORT_SYMBOL_GPL(gmap_translate);
504 
505 /**
506  * gmap_unlink - disconnect a page table from the gmap shadow tables
507  * @gmap: pointer to guest mapping meta data structure
508  * @table: pointer to the host page table
509  * @vmaddr: vm address associated with the host page table
510  */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)511 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512 		 unsigned long vmaddr)
513 {
514 	struct gmap *gmap;
515 	int flush;
516 
517 	rcu_read_lock();
518 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520 		if (flush)
521 			gmap_flush_tlb(gmap);
522 	}
523 	rcu_read_unlock();
524 }
525 
526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527 			   unsigned long gaddr);
528 
529 /**
530  * gmap_link - set up shadow page tables to connect a host to a guest address
531  * @gmap: pointer to guest mapping meta data structure
532  * @gaddr: guest address
533  * @vmaddr: vm address
534  *
535  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536  * if the vm address is already mapped to a different guest segment.
537  * The mmap_sem of the mm that belongs to the address space must be held
538  * when this function gets called.
539  */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541 {
542 	struct mm_struct *mm;
543 	unsigned long *table;
544 	spinlock_t *ptl;
545 	pgd_t *pgd;
546 	p4d_t *p4d;
547 	pud_t *pud;
548 	pmd_t *pmd;
549 	u64 unprot;
550 	int rc;
551 
552 	BUG_ON(gmap_is_shadow(gmap));
553 	/* Create higher level tables in the gmap page table */
554 	table = gmap->table;
555 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557 		if ((*table & _REGION_ENTRY_INVALID) &&
558 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559 				     gaddr & _REGION1_MASK))
560 			return -ENOMEM;
561 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562 	}
563 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565 		if ((*table & _REGION_ENTRY_INVALID) &&
566 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567 				     gaddr & _REGION2_MASK))
568 			return -ENOMEM;
569 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570 	}
571 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573 		if ((*table & _REGION_ENTRY_INVALID) &&
574 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575 				     gaddr & _REGION3_MASK))
576 			return -ENOMEM;
577 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578 	}
579 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580 	/* Walk the parent mm page table */
581 	mm = gmap->mm;
582 	pgd = pgd_offset(mm, vmaddr);
583 	VM_BUG_ON(pgd_none(*pgd));
584 	p4d = p4d_offset(pgd, vmaddr);
585 	VM_BUG_ON(p4d_none(*p4d));
586 	pud = pud_offset(p4d, vmaddr);
587 	VM_BUG_ON(pud_none(*pud));
588 	/* large puds cannot yet be handled */
589 	if (pud_large(*pud))
590 		return -EFAULT;
591 	pmd = pmd_offset(pud, vmaddr);
592 	VM_BUG_ON(pmd_none(*pmd));
593 	/* Are we allowed to use huge pages? */
594 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595 		return -EFAULT;
596 	/* Link gmap segment table entry location to page table. */
597 	rc = radix_tree_preload(GFP_KERNEL);
598 	if (rc)
599 		return rc;
600 	ptl = pmd_lock(mm, pmd);
601 	spin_lock(&gmap->guest_table_lock);
602 	if (*table == _SEGMENT_ENTRY_EMPTY) {
603 		rc = radix_tree_insert(&gmap->host_to_guest,
604 				       vmaddr >> PMD_SHIFT, table);
605 		if (!rc) {
606 			if (pmd_large(*pmd)) {
607 				*table = (pmd_val(*pmd) &
608 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609 					| _SEGMENT_ENTRY_GMAP_UC;
610 			} else
611 				*table = pmd_val(*pmd) &
612 					_SEGMENT_ENTRY_HARDWARE_BITS;
613 		}
614 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
615 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616 		unprot = (u64)*table;
617 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
618 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
619 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620 	}
621 	spin_unlock(&gmap->guest_table_lock);
622 	spin_unlock(ptl);
623 	radix_tree_preload_end();
624 	return rc;
625 }
626 
627 /**
628  * gmap_fault - resolve a fault on a guest address
629  * @gmap: pointer to guest mapping meta data structure
630  * @gaddr: guest address
631  * @fault_flags: flags to pass down to handle_mm_fault()
632  *
633  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634  * if the vm address is already mapped to a different guest segment.
635  */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)636 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637 	       unsigned int fault_flags)
638 {
639 	unsigned long vmaddr;
640 	int rc;
641 	bool unlocked;
642 
643 	down_read(&gmap->mm->mmap_sem);
644 
645 retry:
646 	unlocked = false;
647 	vmaddr = __gmap_translate(gmap, gaddr);
648 	if (IS_ERR_VALUE(vmaddr)) {
649 		rc = vmaddr;
650 		goto out_up;
651 	}
652 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
653 			     &unlocked)) {
654 		rc = -EFAULT;
655 		goto out_up;
656 	}
657 	/*
658 	 * In the case that fixup_user_fault unlocked the mmap_sem during
659 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660 	 */
661 	if (unlocked)
662 		goto retry;
663 
664 	rc = __gmap_link(gmap, gaddr, vmaddr);
665 out_up:
666 	up_read(&gmap->mm->mmap_sem);
667 	return rc;
668 }
669 EXPORT_SYMBOL_GPL(gmap_fault);
670 
671 /*
672  * this function is assumed to be called with mmap_sem held
673  */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675 {
676 	unsigned long vmaddr;
677 	spinlock_t *ptl;
678 	pte_t *ptep;
679 
680 	/* Find the vm address for the guest address */
681 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 						   gaddr >> PMD_SHIFT);
683 	if (vmaddr) {
684 		vmaddr |= gaddr & ~PMD_MASK;
685 		/* Get pointer to the page table entry */
686 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687 		if (likely(ptep))
688 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689 		pte_unmap_unlock(ptep, ptl);
690 	}
691 }
692 EXPORT_SYMBOL_GPL(__gmap_zap);
693 
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
695 {
696 	unsigned long gaddr, vmaddr, size;
697 	struct vm_area_struct *vma;
698 
699 	down_read(&gmap->mm->mmap_sem);
700 	for (gaddr = from; gaddr < to;
701 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
702 		/* Find the vm address for the guest address */
703 		vmaddr = (unsigned long)
704 			radix_tree_lookup(&gmap->guest_to_host,
705 					  gaddr >> PMD_SHIFT);
706 		if (!vmaddr)
707 			continue;
708 		vmaddr |= gaddr & ~PMD_MASK;
709 		/* Find vma in the parent mm */
710 		vma = find_vma(gmap->mm, vmaddr);
711 		if (!vma)
712 			continue;
713 		/*
714 		 * We do not discard pages that are backed by
715 		 * hugetlbfs, so we don't have to refault them.
716 		 */
717 		if (is_vm_hugetlb_page(vma))
718 			continue;
719 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
720 		zap_page_range(vma, vmaddr, size);
721 	}
722 	up_read(&gmap->mm->mmap_sem);
723 }
724 EXPORT_SYMBOL_GPL(gmap_discard);
725 
726 static LIST_HEAD(gmap_notifier_list);
727 static DEFINE_SPINLOCK(gmap_notifier_lock);
728 
729 /**
730  * gmap_register_pte_notifier - register a pte invalidation callback
731  * @nb: pointer to the gmap notifier block
732  */
gmap_register_pte_notifier(struct gmap_notifier * nb)733 void gmap_register_pte_notifier(struct gmap_notifier *nb)
734 {
735 	spin_lock(&gmap_notifier_lock);
736 	list_add_rcu(&nb->list, &gmap_notifier_list);
737 	spin_unlock(&gmap_notifier_lock);
738 }
739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
740 
741 /**
742  * gmap_unregister_pte_notifier - remove a pte invalidation callback
743  * @nb: pointer to the gmap notifier block
744  */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
746 {
747 	spin_lock(&gmap_notifier_lock);
748 	list_del_rcu(&nb->list);
749 	spin_unlock(&gmap_notifier_lock);
750 	synchronize_rcu();
751 }
752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
753 
754 /**
755  * gmap_call_notifier - call all registered invalidation callbacks
756  * @gmap: pointer to guest mapping meta data structure
757  * @start: start virtual address in the guest address space
758  * @end: end virtual address in the guest address space
759  */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
761 			       unsigned long end)
762 {
763 	struct gmap_notifier *nb;
764 
765 	list_for_each_entry(nb, &gmap_notifier_list, list)
766 		nb->notifier_call(gmap, start, end);
767 }
768 
769 /**
770  * gmap_table_walk - walk the gmap page tables
771  * @gmap: pointer to guest mapping meta data structure
772  * @gaddr: virtual address in the guest address space
773  * @level: page table level to stop at
774  *
775  * Returns a table entry pointer for the given guest address and @level
776  * @level=0 : returns a pointer to a page table table entry (or NULL)
777  * @level=1 : returns a pointer to a segment table entry (or NULL)
778  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
779  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
780  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
781  *
782  * Returns NULL if the gmap page tables could not be walked to the
783  * requested level.
784  *
785  * Note: Can also be called for shadow gmaps.
786  */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)787 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
788 					     unsigned long gaddr, int level)
789 {
790 	unsigned long *table;
791 
792 	if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
793 		return NULL;
794 	if (gmap_is_shadow(gmap) && gmap->removed)
795 		return NULL;
796 	if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
797 		return NULL;
798 	table = gmap->table;
799 	switch (gmap->asce & _ASCE_TYPE_MASK) {
800 	case _ASCE_TYPE_REGION1:
801 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
802 		if (level == 4)
803 			break;
804 		if (*table & _REGION_ENTRY_INVALID)
805 			return NULL;
806 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
807 		/* Fallthrough */
808 	case _ASCE_TYPE_REGION2:
809 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
810 		if (level == 3)
811 			break;
812 		if (*table & _REGION_ENTRY_INVALID)
813 			return NULL;
814 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
815 		/* Fallthrough */
816 	case _ASCE_TYPE_REGION3:
817 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
818 		if (level == 2)
819 			break;
820 		if (*table & _REGION_ENTRY_INVALID)
821 			return NULL;
822 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
823 		/* Fallthrough */
824 	case _ASCE_TYPE_SEGMENT:
825 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
826 		if (level == 1)
827 			break;
828 		if (*table & _REGION_ENTRY_INVALID)
829 			return NULL;
830 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
831 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
832 	}
833 	return table;
834 }
835 
836 /**
837  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
838  *		      and return the pte pointer
839  * @gmap: pointer to guest mapping meta data structure
840  * @gaddr: virtual address in the guest address space
841  * @ptl: pointer to the spinlock pointer
842  *
843  * Returns a pointer to the locked pte for a guest address, or NULL
844  */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)845 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
846 			       spinlock_t **ptl)
847 {
848 	unsigned long *table;
849 
850 	BUG_ON(gmap_is_shadow(gmap));
851 	/* Walk the gmap page table, lock and get pte pointer */
852 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
853 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
854 		return NULL;
855 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
856 }
857 
858 /**
859  * gmap_pte_op_fixup - force a page in and connect the gmap page table
860  * @gmap: pointer to guest mapping meta data structure
861  * @gaddr: virtual address in the guest address space
862  * @vmaddr: address in the host process address space
863  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
864  *
865  * Returns 0 if the caller can retry __gmap_translate (might fail again),
866  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
867  * up or connecting the gmap page table.
868  */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)869 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
870 			     unsigned long vmaddr, int prot)
871 {
872 	struct mm_struct *mm = gmap->mm;
873 	unsigned int fault_flags;
874 	bool unlocked = false;
875 
876 	BUG_ON(gmap_is_shadow(gmap));
877 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
878 	if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
879 		return -EFAULT;
880 	if (unlocked)
881 		/* lost mmap_sem, caller has to retry __gmap_translate */
882 		return 0;
883 	/* Connect the page tables */
884 	return __gmap_link(gmap, gaddr, vmaddr);
885 }
886 
887 /**
888  * gmap_pte_op_end - release the page table lock
889  * @ptl: pointer to the spinlock pointer
890  */
gmap_pte_op_end(spinlock_t * ptl)891 static void gmap_pte_op_end(spinlock_t *ptl)
892 {
893 	if (ptl)
894 		spin_unlock(ptl);
895 }
896 
897 /**
898  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
899  *		      and return the pmd pointer
900  * @gmap: pointer to guest mapping meta data structure
901  * @gaddr: virtual address in the guest address space
902  *
903  * Returns a pointer to the pmd for a guest address, or NULL
904  */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)905 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
906 {
907 	pmd_t *pmdp;
908 
909 	BUG_ON(gmap_is_shadow(gmap));
910 	spin_lock(&gmap->guest_table_lock);
911 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
912 
913 	if (!pmdp || pmd_none(*pmdp)) {
914 		spin_unlock(&gmap->guest_table_lock);
915 		return NULL;
916 	}
917 
918 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
919 	if (!pmd_large(*pmdp))
920 		spin_unlock(&gmap->guest_table_lock);
921 	return pmdp;
922 }
923 
924 /**
925  * gmap_pmd_op_end - release the guest_table_lock if needed
926  * @gmap: pointer to the guest mapping meta data structure
927  * @pmdp: pointer to the pmd
928  */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)929 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
930 {
931 	if (pmd_large(*pmdp))
932 		spin_unlock(&gmap->guest_table_lock);
933 }
934 
935 /*
936  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
937  * @pmdp: pointer to the pmd to be protected
938  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
939  * @bits: notification bits to set
940  *
941  * Returns:
942  * 0 if successfully protected
943  * -EAGAIN if a fixup is needed
944  * -EINVAL if unsupported notifier bits have been specified
945  *
946  * Expected to be called with sg->mm->mmap_sem in read and
947  * guest_table_lock held.
948  */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)949 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
950 			    pmd_t *pmdp, int prot, unsigned long bits)
951 {
952 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
953 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
954 	pmd_t new = *pmdp;
955 
956 	/* Fixup needed */
957 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
958 		return -EAGAIN;
959 
960 	if (prot == PROT_NONE && !pmd_i) {
961 		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
962 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
963 	}
964 
965 	if (prot == PROT_READ && !pmd_p) {
966 		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
967 		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
968 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
969 	}
970 
971 	if (bits & GMAP_NOTIFY_MPROT)
972 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
973 
974 	/* Shadow GMAP protection needs split PMDs */
975 	if (bits & GMAP_NOTIFY_SHADOW)
976 		return -EINVAL;
977 
978 	return 0;
979 }
980 
981 /*
982  * gmap_protect_pte - remove access rights to memory and set pgste bits
983  * @gmap: pointer to guest mapping meta data structure
984  * @gaddr: virtual address in the guest address space
985  * @pmdp: pointer to the pmd associated with the pte
986  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
987  * @bits: notification bits to set
988  *
989  * Returns 0 if successfully protected, -ENOMEM if out of memory and
990  * -EAGAIN if a fixup is needed.
991  *
992  * Expected to be called with sg->mm->mmap_sem in read
993  */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)994 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
995 			    pmd_t *pmdp, int prot, unsigned long bits)
996 {
997 	int rc;
998 	pte_t *ptep;
999 	spinlock_t *ptl = NULL;
1000 	unsigned long pbits = 0;
1001 
1002 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1003 		return -EAGAIN;
1004 
1005 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1006 	if (!ptep)
1007 		return -ENOMEM;
1008 
1009 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1010 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1011 	/* Protect and unlock. */
1012 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1013 	gmap_pte_op_end(ptl);
1014 	return rc;
1015 }
1016 
1017 /*
1018  * gmap_protect_range - remove access rights to memory and set pgste bits
1019  * @gmap: pointer to guest mapping meta data structure
1020  * @gaddr: virtual address in the guest address space
1021  * @len: size of area
1022  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1023  * @bits: pgste notification bits to set
1024  *
1025  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1026  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1027  *
1028  * Called with sg->mm->mmap_sem in read.
1029  */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1030 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1031 			      unsigned long len, int prot, unsigned long bits)
1032 {
1033 	unsigned long vmaddr, dist;
1034 	pmd_t *pmdp;
1035 	int rc;
1036 
1037 	BUG_ON(gmap_is_shadow(gmap));
1038 	while (len) {
1039 		rc = -EAGAIN;
1040 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1041 		if (pmdp) {
1042 			if (!pmd_large(*pmdp)) {
1043 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1044 						      bits);
1045 				if (!rc) {
1046 					len -= PAGE_SIZE;
1047 					gaddr += PAGE_SIZE;
1048 				}
1049 			} else {
1050 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1051 						      bits);
1052 				if (!rc) {
1053 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1054 					len = len < dist ? 0 : len - dist;
1055 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1056 				}
1057 			}
1058 			gmap_pmd_op_end(gmap, pmdp);
1059 		}
1060 		if (rc) {
1061 			if (rc == -EINVAL)
1062 				return rc;
1063 
1064 			/* -EAGAIN, fixup of userspace mm and gmap */
1065 			vmaddr = __gmap_translate(gmap, gaddr);
1066 			if (IS_ERR_VALUE(vmaddr))
1067 				return vmaddr;
1068 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1069 			if (rc)
1070 				return rc;
1071 		}
1072 	}
1073 	return 0;
1074 }
1075 
1076 /**
1077  * gmap_mprotect_notify - change access rights for a range of ptes and
1078  *                        call the notifier if any pte changes again
1079  * @gmap: pointer to guest mapping meta data structure
1080  * @gaddr: virtual address in the guest address space
1081  * @len: size of area
1082  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1083  *
1084  * Returns 0 if for each page in the given range a gmap mapping exists,
1085  * the new access rights could be set and the notifier could be armed.
1086  * If the gmap mapping is missing for one or more pages -EFAULT is
1087  * returned. If no memory could be allocated -ENOMEM is returned.
1088  * This function establishes missing page table entries.
1089  */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1090 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1091 			 unsigned long len, int prot)
1092 {
1093 	int rc;
1094 
1095 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1096 		return -EINVAL;
1097 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1098 		return -EINVAL;
1099 	down_read(&gmap->mm->mmap_sem);
1100 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1101 	up_read(&gmap->mm->mmap_sem);
1102 	return rc;
1103 }
1104 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1105 
1106 /**
1107  * gmap_read_table - get an unsigned long value from a guest page table using
1108  *                   absolute addressing, without marking the page referenced.
1109  * @gmap: pointer to guest mapping meta data structure
1110  * @gaddr: virtual address in the guest address space
1111  * @val: pointer to the unsigned long value to return
1112  *
1113  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1114  * if reading using the virtual address failed. -EINVAL if called on a gmap
1115  * shadow.
1116  *
1117  * Called with gmap->mm->mmap_sem in read.
1118  */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1119 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1120 {
1121 	unsigned long address, vmaddr;
1122 	spinlock_t *ptl;
1123 	pte_t *ptep, pte;
1124 	int rc;
1125 
1126 	if (gmap_is_shadow(gmap))
1127 		return -EINVAL;
1128 
1129 	while (1) {
1130 		rc = -EAGAIN;
1131 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1132 		if (ptep) {
1133 			pte = *ptep;
1134 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1135 				address = pte_val(pte) & PAGE_MASK;
1136 				address += gaddr & ~PAGE_MASK;
1137 				*val = *(unsigned long *) address;
1138 				pte_val(*ptep) |= _PAGE_YOUNG;
1139 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1140 				rc = 0;
1141 			}
1142 			gmap_pte_op_end(ptl);
1143 		}
1144 		if (!rc)
1145 			break;
1146 		vmaddr = __gmap_translate(gmap, gaddr);
1147 		if (IS_ERR_VALUE(vmaddr)) {
1148 			rc = vmaddr;
1149 			break;
1150 		}
1151 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1152 		if (rc)
1153 			break;
1154 	}
1155 	return rc;
1156 }
1157 EXPORT_SYMBOL_GPL(gmap_read_table);
1158 
1159 /**
1160  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1161  * @sg: pointer to the shadow guest address space structure
1162  * @vmaddr: vm address associated with the rmap
1163  * @rmap: pointer to the rmap structure
1164  *
1165  * Called with the sg->guest_table_lock
1166  */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1167 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1168 				    struct gmap_rmap *rmap)
1169 {
1170 	void __rcu **slot;
1171 
1172 	BUG_ON(!gmap_is_shadow(sg));
1173 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1174 	if (slot) {
1175 		rmap->next = radix_tree_deref_slot_protected(slot,
1176 							&sg->guest_table_lock);
1177 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1178 	} else {
1179 		rmap->next = NULL;
1180 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1181 				  rmap);
1182 	}
1183 }
1184 
1185 /**
1186  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1187  * @sg: pointer to the shadow guest address space structure
1188  * @raddr: rmap address in the shadow gmap
1189  * @paddr: address in the parent guest address space
1190  * @len: length of the memory area to protect
1191  *
1192  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1193  * if out of memory and -EFAULT if paddr is invalid.
1194  */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1195 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1196 			     unsigned long paddr, unsigned long len)
1197 {
1198 	struct gmap *parent;
1199 	struct gmap_rmap *rmap;
1200 	unsigned long vmaddr;
1201 	spinlock_t *ptl;
1202 	pte_t *ptep;
1203 	int rc;
1204 
1205 	BUG_ON(!gmap_is_shadow(sg));
1206 	parent = sg->parent;
1207 	while (len) {
1208 		vmaddr = __gmap_translate(parent, paddr);
1209 		if (IS_ERR_VALUE(vmaddr))
1210 			return vmaddr;
1211 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1212 		if (!rmap)
1213 			return -ENOMEM;
1214 		rmap->raddr = raddr;
1215 		rc = radix_tree_preload(GFP_KERNEL);
1216 		if (rc) {
1217 			kfree(rmap);
1218 			return rc;
1219 		}
1220 		rc = -EAGAIN;
1221 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1222 		if (ptep) {
1223 			spin_lock(&sg->guest_table_lock);
1224 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1225 					     PGSTE_VSIE_BIT);
1226 			if (!rc)
1227 				gmap_insert_rmap(sg, vmaddr, rmap);
1228 			spin_unlock(&sg->guest_table_lock);
1229 			gmap_pte_op_end(ptl);
1230 		}
1231 		radix_tree_preload_end();
1232 		if (rc) {
1233 			kfree(rmap);
1234 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1235 			if (rc)
1236 				return rc;
1237 			continue;
1238 		}
1239 		paddr += PAGE_SIZE;
1240 		len -= PAGE_SIZE;
1241 	}
1242 	return 0;
1243 }
1244 
1245 #define _SHADOW_RMAP_MASK	0x7
1246 #define _SHADOW_RMAP_REGION1	0x5
1247 #define _SHADOW_RMAP_REGION2	0x4
1248 #define _SHADOW_RMAP_REGION3	0x3
1249 #define _SHADOW_RMAP_SEGMENT	0x2
1250 #define _SHADOW_RMAP_PGTABLE	0x1
1251 
1252 /**
1253  * gmap_idte_one - invalidate a single region or segment table entry
1254  * @asce: region or segment table *origin* + table-type bits
1255  * @vaddr: virtual address to identify the table entry to flush
1256  *
1257  * The invalid bit of a single region or segment table entry is set
1258  * and the associated TLB entries depending on the entry are flushed.
1259  * The table-type of the @asce identifies the portion of the @vaddr
1260  * that is used as the invalidation index.
1261  */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1262 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1263 {
1264 	asm volatile(
1265 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1266 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1267 }
1268 
1269 /**
1270  * gmap_unshadow_page - remove a page from a shadow page table
1271  * @sg: pointer to the shadow guest address space structure
1272  * @raddr: rmap address in the shadow guest address space
1273  *
1274  * Called with the sg->guest_table_lock
1275  */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1276 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1277 {
1278 	unsigned long *table;
1279 
1280 	BUG_ON(!gmap_is_shadow(sg));
1281 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1282 	if (!table || *table & _PAGE_INVALID)
1283 		return;
1284 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1285 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1286 }
1287 
1288 /**
1289  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1290  * @sg: pointer to the shadow guest address space structure
1291  * @raddr: rmap address in the shadow guest address space
1292  * @pgt: pointer to the start of a shadow page table
1293  *
1294  * Called with the sg->guest_table_lock
1295  */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1296 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1297 				unsigned long *pgt)
1298 {
1299 	int i;
1300 
1301 	BUG_ON(!gmap_is_shadow(sg));
1302 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1303 		pgt[i] = _PAGE_INVALID;
1304 }
1305 
1306 /**
1307  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1308  * @sg: pointer to the shadow guest address space structure
1309  * @raddr: address in the shadow guest address space
1310  *
1311  * Called with the sg->guest_table_lock
1312  */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1313 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1314 {
1315 	unsigned long sto, *ste, *pgt;
1316 	struct page *page;
1317 
1318 	BUG_ON(!gmap_is_shadow(sg));
1319 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1320 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1321 		return;
1322 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1323 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1324 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1325 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1326 	*ste = _SEGMENT_ENTRY_EMPTY;
1327 	__gmap_unshadow_pgt(sg, raddr, pgt);
1328 	/* Free page table */
1329 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1330 	list_del(&page->lru);
1331 	page_table_free_pgste(page);
1332 }
1333 
1334 /**
1335  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1336  * @sg: pointer to the shadow guest address space structure
1337  * @raddr: rmap address in the shadow guest address space
1338  * @sgt: pointer to the start of a shadow segment table
1339  *
1340  * Called with the sg->guest_table_lock
1341  */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1342 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1343 				unsigned long *sgt)
1344 {
1345 	unsigned long *pgt;
1346 	struct page *page;
1347 	int i;
1348 
1349 	BUG_ON(!gmap_is_shadow(sg));
1350 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1351 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1352 			continue;
1353 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1354 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1355 		__gmap_unshadow_pgt(sg, raddr, pgt);
1356 		/* Free page table */
1357 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1358 		list_del(&page->lru);
1359 		page_table_free_pgste(page);
1360 	}
1361 }
1362 
1363 /**
1364  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1365  * @sg: pointer to the shadow guest address space structure
1366  * @raddr: rmap address in the shadow guest address space
1367  *
1368  * Called with the shadow->guest_table_lock
1369  */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1370 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1371 {
1372 	unsigned long r3o, *r3e, *sgt;
1373 	struct page *page;
1374 
1375 	BUG_ON(!gmap_is_shadow(sg));
1376 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1377 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1378 		return;
1379 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1380 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1381 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1382 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1383 	*r3e = _REGION3_ENTRY_EMPTY;
1384 	__gmap_unshadow_sgt(sg, raddr, sgt);
1385 	/* Free segment table */
1386 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1387 	list_del(&page->lru);
1388 	__free_pages(page, CRST_ALLOC_ORDER);
1389 }
1390 
1391 /**
1392  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1393  * @sg: pointer to the shadow guest address space structure
1394  * @raddr: address in the shadow guest address space
1395  * @r3t: pointer to the start of a shadow region-3 table
1396  *
1397  * Called with the sg->guest_table_lock
1398  */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1399 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1400 				unsigned long *r3t)
1401 {
1402 	unsigned long *sgt;
1403 	struct page *page;
1404 	int i;
1405 
1406 	BUG_ON(!gmap_is_shadow(sg));
1407 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1408 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1409 			continue;
1410 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1411 		r3t[i] = _REGION3_ENTRY_EMPTY;
1412 		__gmap_unshadow_sgt(sg, raddr, sgt);
1413 		/* Free segment table */
1414 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1415 		list_del(&page->lru);
1416 		__free_pages(page, CRST_ALLOC_ORDER);
1417 	}
1418 }
1419 
1420 /**
1421  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1422  * @sg: pointer to the shadow guest address space structure
1423  * @raddr: rmap address in the shadow guest address space
1424  *
1425  * Called with the sg->guest_table_lock
1426  */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1427 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1428 {
1429 	unsigned long r2o, *r2e, *r3t;
1430 	struct page *page;
1431 
1432 	BUG_ON(!gmap_is_shadow(sg));
1433 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1434 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1435 		return;
1436 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1437 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1438 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1439 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1440 	*r2e = _REGION2_ENTRY_EMPTY;
1441 	__gmap_unshadow_r3t(sg, raddr, r3t);
1442 	/* Free region 3 table */
1443 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1444 	list_del(&page->lru);
1445 	__free_pages(page, CRST_ALLOC_ORDER);
1446 }
1447 
1448 /**
1449  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1450  * @sg: pointer to the shadow guest address space structure
1451  * @raddr: rmap address in the shadow guest address space
1452  * @r2t: pointer to the start of a shadow region-2 table
1453  *
1454  * Called with the sg->guest_table_lock
1455  */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1456 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1457 				unsigned long *r2t)
1458 {
1459 	unsigned long *r3t;
1460 	struct page *page;
1461 	int i;
1462 
1463 	BUG_ON(!gmap_is_shadow(sg));
1464 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1465 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1466 			continue;
1467 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1468 		r2t[i] = _REGION2_ENTRY_EMPTY;
1469 		__gmap_unshadow_r3t(sg, raddr, r3t);
1470 		/* Free region 3 table */
1471 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1472 		list_del(&page->lru);
1473 		__free_pages(page, CRST_ALLOC_ORDER);
1474 	}
1475 }
1476 
1477 /**
1478  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1479  * @sg: pointer to the shadow guest address space structure
1480  * @raddr: rmap address in the shadow guest address space
1481  *
1482  * Called with the sg->guest_table_lock
1483  */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1484 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1485 {
1486 	unsigned long r1o, *r1e, *r2t;
1487 	struct page *page;
1488 
1489 	BUG_ON(!gmap_is_shadow(sg));
1490 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1491 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1492 		return;
1493 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1494 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1495 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1496 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1497 	*r1e = _REGION1_ENTRY_EMPTY;
1498 	__gmap_unshadow_r2t(sg, raddr, r2t);
1499 	/* Free region 2 table */
1500 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1501 	list_del(&page->lru);
1502 	__free_pages(page, CRST_ALLOC_ORDER);
1503 }
1504 
1505 /**
1506  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1507  * @sg: pointer to the shadow guest address space structure
1508  * @raddr: rmap address in the shadow guest address space
1509  * @r1t: pointer to the start of a shadow region-1 table
1510  *
1511  * Called with the shadow->guest_table_lock
1512  */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1513 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1514 				unsigned long *r1t)
1515 {
1516 	unsigned long asce, *r2t;
1517 	struct page *page;
1518 	int i;
1519 
1520 	BUG_ON(!gmap_is_shadow(sg));
1521 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1522 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1523 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1524 			continue;
1525 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1526 		__gmap_unshadow_r2t(sg, raddr, r2t);
1527 		/* Clear entry and flush translation r1t -> r2t */
1528 		gmap_idte_one(asce, raddr);
1529 		r1t[i] = _REGION1_ENTRY_EMPTY;
1530 		/* Free region 2 table */
1531 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1532 		list_del(&page->lru);
1533 		__free_pages(page, CRST_ALLOC_ORDER);
1534 	}
1535 }
1536 
1537 /**
1538  * gmap_unshadow - remove a shadow page table completely
1539  * @sg: pointer to the shadow guest address space structure
1540  *
1541  * Called with sg->guest_table_lock
1542  */
gmap_unshadow(struct gmap * sg)1543 static void gmap_unshadow(struct gmap *sg)
1544 {
1545 	unsigned long *table;
1546 
1547 	BUG_ON(!gmap_is_shadow(sg));
1548 	if (sg->removed)
1549 		return;
1550 	sg->removed = 1;
1551 	gmap_call_notifier(sg, 0, -1UL);
1552 	gmap_flush_tlb(sg);
1553 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1554 	switch (sg->asce & _ASCE_TYPE_MASK) {
1555 	case _ASCE_TYPE_REGION1:
1556 		__gmap_unshadow_r1t(sg, 0, table);
1557 		break;
1558 	case _ASCE_TYPE_REGION2:
1559 		__gmap_unshadow_r2t(sg, 0, table);
1560 		break;
1561 	case _ASCE_TYPE_REGION3:
1562 		__gmap_unshadow_r3t(sg, 0, table);
1563 		break;
1564 	case _ASCE_TYPE_SEGMENT:
1565 		__gmap_unshadow_sgt(sg, 0, table);
1566 		break;
1567 	}
1568 }
1569 
1570 /**
1571  * gmap_find_shadow - find a specific asce in the list of shadow tables
1572  * @parent: pointer to the parent gmap
1573  * @asce: ASCE for which the shadow table is created
1574  * @edat_level: edat level to be used for the shadow translation
1575  *
1576  * Returns the pointer to a gmap if a shadow table with the given asce is
1577  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1578  * otherwise NULL
1579  */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1580 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1581 				     int edat_level)
1582 {
1583 	struct gmap *sg;
1584 
1585 	list_for_each_entry(sg, &parent->children, list) {
1586 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1587 		    sg->removed)
1588 			continue;
1589 		if (!sg->initialized)
1590 			return ERR_PTR(-EAGAIN);
1591 		atomic_inc(&sg->ref_count);
1592 		return sg;
1593 	}
1594 	return NULL;
1595 }
1596 
1597 /**
1598  * gmap_shadow_valid - check if a shadow guest address space matches the
1599  *                     given properties and is still valid
1600  * @sg: pointer to the shadow guest address space structure
1601  * @asce: ASCE for which the shadow table is requested
1602  * @edat_level: edat level to be used for the shadow translation
1603  *
1604  * Returns 1 if the gmap shadow is still valid and matches the given
1605  * properties, the caller can continue using it. Returns 0 otherwise, the
1606  * caller has to request a new shadow gmap in this case.
1607  *
1608  */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1609 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1610 {
1611 	if (sg->removed)
1612 		return 0;
1613 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1614 }
1615 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1616 
1617 /**
1618  * gmap_shadow - create/find a shadow guest address space
1619  * @parent: pointer to the parent gmap
1620  * @asce: ASCE for which the shadow table is created
1621  * @edat_level: edat level to be used for the shadow translation
1622  *
1623  * The pages of the top level page table referred by the asce parameter
1624  * will be set to read-only and marked in the PGSTEs of the kvm process.
1625  * The shadow table will be removed automatically on any change to the
1626  * PTE mapping for the source table.
1627  *
1628  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1629  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1630  * parent gmap table could not be protected.
1631  */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1632 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1633 			 int edat_level)
1634 {
1635 	struct gmap *sg, *new;
1636 	unsigned long limit;
1637 	int rc;
1638 
1639 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1640 	BUG_ON(gmap_is_shadow(parent));
1641 	spin_lock(&parent->shadow_lock);
1642 	sg = gmap_find_shadow(parent, asce, edat_level);
1643 	spin_unlock(&parent->shadow_lock);
1644 	if (sg)
1645 		return sg;
1646 	/* Create a new shadow gmap */
1647 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1648 	if (asce & _ASCE_REAL_SPACE)
1649 		limit = -1UL;
1650 	new = gmap_alloc(limit);
1651 	if (!new)
1652 		return ERR_PTR(-ENOMEM);
1653 	new->mm = parent->mm;
1654 	new->parent = gmap_get(parent);
1655 	new->orig_asce = asce;
1656 	new->edat_level = edat_level;
1657 	new->initialized = false;
1658 	spin_lock(&parent->shadow_lock);
1659 	/* Recheck if another CPU created the same shadow */
1660 	sg = gmap_find_shadow(parent, asce, edat_level);
1661 	if (sg) {
1662 		spin_unlock(&parent->shadow_lock);
1663 		gmap_free(new);
1664 		return sg;
1665 	}
1666 	if (asce & _ASCE_REAL_SPACE) {
1667 		/* only allow one real-space gmap shadow */
1668 		list_for_each_entry(sg, &parent->children, list) {
1669 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1670 				spin_lock(&sg->guest_table_lock);
1671 				gmap_unshadow(sg);
1672 				spin_unlock(&sg->guest_table_lock);
1673 				list_del(&sg->list);
1674 				gmap_put(sg);
1675 				break;
1676 			}
1677 		}
1678 	}
1679 	atomic_set(&new->ref_count, 2);
1680 	list_add(&new->list, &parent->children);
1681 	if (asce & _ASCE_REAL_SPACE) {
1682 		/* nothing to protect, return right away */
1683 		new->initialized = true;
1684 		spin_unlock(&parent->shadow_lock);
1685 		return new;
1686 	}
1687 	spin_unlock(&parent->shadow_lock);
1688 	/* protect after insertion, so it will get properly invalidated */
1689 	down_read(&parent->mm->mmap_sem);
1690 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1691 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1692 				PROT_READ, GMAP_NOTIFY_SHADOW);
1693 	up_read(&parent->mm->mmap_sem);
1694 	spin_lock(&parent->shadow_lock);
1695 	new->initialized = true;
1696 	if (rc) {
1697 		list_del(&new->list);
1698 		gmap_free(new);
1699 		new = ERR_PTR(rc);
1700 	}
1701 	spin_unlock(&parent->shadow_lock);
1702 	return new;
1703 }
1704 EXPORT_SYMBOL_GPL(gmap_shadow);
1705 
1706 /**
1707  * gmap_shadow_r2t - create an empty shadow region 2 table
1708  * @sg: pointer to the shadow guest address space structure
1709  * @saddr: faulting address in the shadow gmap
1710  * @r2t: parent gmap address of the region 2 table to get shadowed
1711  * @fake: r2t references contiguous guest memory block, not a r2t
1712  *
1713  * The r2t parameter specifies the address of the source table. The
1714  * four pages of the source table are made read-only in the parent gmap
1715  * address space. A write to the source table area @r2t will automatically
1716  * remove the shadow r2 table and all of its decendents.
1717  *
1718  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1719  * shadow table structure is incomplete, -ENOMEM if out of memory and
1720  * -EFAULT if an address in the parent gmap could not be resolved.
1721  *
1722  * Called with sg->mm->mmap_sem in read.
1723  */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1724 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1725 		    int fake)
1726 {
1727 	unsigned long raddr, origin, offset, len;
1728 	unsigned long *s_r2t, *table;
1729 	struct page *page;
1730 	int rc;
1731 
1732 	BUG_ON(!gmap_is_shadow(sg));
1733 	/* Allocate a shadow region second table */
1734 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1735 	if (!page)
1736 		return -ENOMEM;
1737 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1738 	if (fake)
1739 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1740 	s_r2t = (unsigned long *) page_to_phys(page);
1741 	/* Install shadow region second table */
1742 	spin_lock(&sg->guest_table_lock);
1743 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1744 	if (!table) {
1745 		rc = -EAGAIN;		/* Race with unshadow */
1746 		goto out_free;
1747 	}
1748 	if (!(*table & _REGION_ENTRY_INVALID)) {
1749 		rc = 0;			/* Already established */
1750 		goto out_free;
1751 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1752 		rc = -EAGAIN;		/* Race with shadow */
1753 		goto out_free;
1754 	}
1755 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1756 	/* mark as invalid as long as the parent table is not protected */
1757 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1758 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1759 	if (sg->edat_level >= 1)
1760 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1761 	list_add(&page->lru, &sg->crst_list);
1762 	if (fake) {
1763 		/* nothing to protect for fake tables */
1764 		*table &= ~_REGION_ENTRY_INVALID;
1765 		spin_unlock(&sg->guest_table_lock);
1766 		return 0;
1767 	}
1768 	spin_unlock(&sg->guest_table_lock);
1769 	/* Make r2t read-only in parent gmap page table */
1770 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1771 	origin = r2t & _REGION_ENTRY_ORIGIN;
1772 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1773 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1774 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1775 	spin_lock(&sg->guest_table_lock);
1776 	if (!rc) {
1777 		table = gmap_table_walk(sg, saddr, 4);
1778 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1779 			      (unsigned long) s_r2t)
1780 			rc = -EAGAIN;		/* Race with unshadow */
1781 		else
1782 			*table &= ~_REGION_ENTRY_INVALID;
1783 	} else {
1784 		gmap_unshadow_r2t(sg, raddr);
1785 	}
1786 	spin_unlock(&sg->guest_table_lock);
1787 	return rc;
1788 out_free:
1789 	spin_unlock(&sg->guest_table_lock);
1790 	__free_pages(page, CRST_ALLOC_ORDER);
1791 	return rc;
1792 }
1793 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1794 
1795 /**
1796  * gmap_shadow_r3t - create a shadow region 3 table
1797  * @sg: pointer to the shadow guest address space structure
1798  * @saddr: faulting address in the shadow gmap
1799  * @r3t: parent gmap address of the region 3 table to get shadowed
1800  * @fake: r3t references contiguous guest memory block, not a r3t
1801  *
1802  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1803  * shadow table structure is incomplete, -ENOMEM if out of memory and
1804  * -EFAULT if an address in the parent gmap could not be resolved.
1805  *
1806  * Called with sg->mm->mmap_sem in read.
1807  */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1808 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1809 		    int fake)
1810 {
1811 	unsigned long raddr, origin, offset, len;
1812 	unsigned long *s_r3t, *table;
1813 	struct page *page;
1814 	int rc;
1815 
1816 	BUG_ON(!gmap_is_shadow(sg));
1817 	/* Allocate a shadow region second table */
1818 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1819 	if (!page)
1820 		return -ENOMEM;
1821 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1822 	if (fake)
1823 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1824 	s_r3t = (unsigned long *) page_to_phys(page);
1825 	/* Install shadow region second table */
1826 	spin_lock(&sg->guest_table_lock);
1827 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1828 	if (!table) {
1829 		rc = -EAGAIN;		/* Race with unshadow */
1830 		goto out_free;
1831 	}
1832 	if (!(*table & _REGION_ENTRY_INVALID)) {
1833 		rc = 0;			/* Already established */
1834 		goto out_free;
1835 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1836 		rc = -EAGAIN;		/* Race with shadow */
1837 	}
1838 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1839 	/* mark as invalid as long as the parent table is not protected */
1840 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1841 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1842 	if (sg->edat_level >= 1)
1843 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1844 	list_add(&page->lru, &sg->crst_list);
1845 	if (fake) {
1846 		/* nothing to protect for fake tables */
1847 		*table &= ~_REGION_ENTRY_INVALID;
1848 		spin_unlock(&sg->guest_table_lock);
1849 		return 0;
1850 	}
1851 	spin_unlock(&sg->guest_table_lock);
1852 	/* Make r3t read-only in parent gmap page table */
1853 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1854 	origin = r3t & _REGION_ENTRY_ORIGIN;
1855 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1856 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1857 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1858 	spin_lock(&sg->guest_table_lock);
1859 	if (!rc) {
1860 		table = gmap_table_walk(sg, saddr, 3);
1861 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1862 			      (unsigned long) s_r3t)
1863 			rc = -EAGAIN;		/* Race with unshadow */
1864 		else
1865 			*table &= ~_REGION_ENTRY_INVALID;
1866 	} else {
1867 		gmap_unshadow_r3t(sg, raddr);
1868 	}
1869 	spin_unlock(&sg->guest_table_lock);
1870 	return rc;
1871 out_free:
1872 	spin_unlock(&sg->guest_table_lock);
1873 	__free_pages(page, CRST_ALLOC_ORDER);
1874 	return rc;
1875 }
1876 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1877 
1878 /**
1879  * gmap_shadow_sgt - create a shadow segment table
1880  * @sg: pointer to the shadow guest address space structure
1881  * @saddr: faulting address in the shadow gmap
1882  * @sgt: parent gmap address of the segment table to get shadowed
1883  * @fake: sgt references contiguous guest memory block, not a sgt
1884  *
1885  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1886  * shadow table structure is incomplete, -ENOMEM if out of memory and
1887  * -EFAULT if an address in the parent gmap could not be resolved.
1888  *
1889  * Called with sg->mm->mmap_sem in read.
1890  */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1891 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1892 		    int fake)
1893 {
1894 	unsigned long raddr, origin, offset, len;
1895 	unsigned long *s_sgt, *table;
1896 	struct page *page;
1897 	int rc;
1898 
1899 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1900 	/* Allocate a shadow segment table */
1901 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1902 	if (!page)
1903 		return -ENOMEM;
1904 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1905 	if (fake)
1906 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1907 	s_sgt = (unsigned long *) page_to_phys(page);
1908 	/* Install shadow region second table */
1909 	spin_lock(&sg->guest_table_lock);
1910 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1911 	if (!table) {
1912 		rc = -EAGAIN;		/* Race with unshadow */
1913 		goto out_free;
1914 	}
1915 	if (!(*table & _REGION_ENTRY_INVALID)) {
1916 		rc = 0;			/* Already established */
1917 		goto out_free;
1918 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1919 		rc = -EAGAIN;		/* Race with shadow */
1920 		goto out_free;
1921 	}
1922 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1923 	/* mark as invalid as long as the parent table is not protected */
1924 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1925 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1926 	if (sg->edat_level >= 1)
1927 		*table |= sgt & _REGION_ENTRY_PROTECT;
1928 	list_add(&page->lru, &sg->crst_list);
1929 	if (fake) {
1930 		/* nothing to protect for fake tables */
1931 		*table &= ~_REGION_ENTRY_INVALID;
1932 		spin_unlock(&sg->guest_table_lock);
1933 		return 0;
1934 	}
1935 	spin_unlock(&sg->guest_table_lock);
1936 	/* Make sgt read-only in parent gmap page table */
1937 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1938 	origin = sgt & _REGION_ENTRY_ORIGIN;
1939 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1940 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1941 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1942 	spin_lock(&sg->guest_table_lock);
1943 	if (!rc) {
1944 		table = gmap_table_walk(sg, saddr, 2);
1945 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1946 			      (unsigned long) s_sgt)
1947 			rc = -EAGAIN;		/* Race with unshadow */
1948 		else
1949 			*table &= ~_REGION_ENTRY_INVALID;
1950 	} else {
1951 		gmap_unshadow_sgt(sg, raddr);
1952 	}
1953 	spin_unlock(&sg->guest_table_lock);
1954 	return rc;
1955 out_free:
1956 	spin_unlock(&sg->guest_table_lock);
1957 	__free_pages(page, CRST_ALLOC_ORDER);
1958 	return rc;
1959 }
1960 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1961 
1962 /**
1963  * gmap_shadow_lookup_pgtable - find a shadow page table
1964  * @sg: pointer to the shadow guest address space structure
1965  * @saddr: the address in the shadow aguest address space
1966  * @pgt: parent gmap address of the page table to get shadowed
1967  * @dat_protection: if the pgtable is marked as protected by dat
1968  * @fake: pgt references contiguous guest memory block, not a pgtable
1969  *
1970  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1971  * table was not found.
1972  *
1973  * Called with sg->mm->mmap_sem in read.
1974  */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1975 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1976 			   unsigned long *pgt, int *dat_protection,
1977 			   int *fake)
1978 {
1979 	unsigned long *table;
1980 	struct page *page;
1981 	int rc;
1982 
1983 	BUG_ON(!gmap_is_shadow(sg));
1984 	spin_lock(&sg->guest_table_lock);
1985 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1986 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1987 		/* Shadow page tables are full pages (pte+pgste) */
1988 		page = pfn_to_page(*table >> PAGE_SHIFT);
1989 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
1990 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1991 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
1992 		rc = 0;
1993 	} else  {
1994 		rc = -EAGAIN;
1995 	}
1996 	spin_unlock(&sg->guest_table_lock);
1997 	return rc;
1998 
1999 }
2000 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2001 
2002 /**
2003  * gmap_shadow_pgt - instantiate a shadow page table
2004  * @sg: pointer to the shadow guest address space structure
2005  * @saddr: faulting address in the shadow gmap
2006  * @pgt: parent gmap address of the page table to get shadowed
2007  * @fake: pgt references contiguous guest memory block, not a pgtable
2008  *
2009  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2010  * shadow table structure is incomplete, -ENOMEM if out of memory,
2011  * -EFAULT if an address in the parent gmap could not be resolved and
2012  *
2013  * Called with gmap->mm->mmap_sem in read
2014  */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2015 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2016 		    int fake)
2017 {
2018 	unsigned long raddr, origin;
2019 	unsigned long *s_pgt, *table;
2020 	struct page *page;
2021 	int rc;
2022 
2023 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2024 	/* Allocate a shadow page table */
2025 	page = page_table_alloc_pgste(sg->mm);
2026 	if (!page)
2027 		return -ENOMEM;
2028 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2029 	if (fake)
2030 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2031 	s_pgt = (unsigned long *) page_to_phys(page);
2032 	/* Install shadow page table */
2033 	spin_lock(&sg->guest_table_lock);
2034 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2035 	if (!table) {
2036 		rc = -EAGAIN;		/* Race with unshadow */
2037 		goto out_free;
2038 	}
2039 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2040 		rc = 0;			/* Already established */
2041 		goto out_free;
2042 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2043 		rc = -EAGAIN;		/* Race with shadow */
2044 		goto out_free;
2045 	}
2046 	/* mark as invalid as long as the parent table is not protected */
2047 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2048 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2049 	list_add(&page->lru, &sg->pt_list);
2050 	if (fake) {
2051 		/* nothing to protect for fake tables */
2052 		*table &= ~_SEGMENT_ENTRY_INVALID;
2053 		spin_unlock(&sg->guest_table_lock);
2054 		return 0;
2055 	}
2056 	spin_unlock(&sg->guest_table_lock);
2057 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2058 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2059 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2060 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2061 	spin_lock(&sg->guest_table_lock);
2062 	if (!rc) {
2063 		table = gmap_table_walk(sg, saddr, 1);
2064 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2065 			      (unsigned long) s_pgt)
2066 			rc = -EAGAIN;		/* Race with unshadow */
2067 		else
2068 			*table &= ~_SEGMENT_ENTRY_INVALID;
2069 	} else {
2070 		gmap_unshadow_pgt(sg, raddr);
2071 	}
2072 	spin_unlock(&sg->guest_table_lock);
2073 	return rc;
2074 out_free:
2075 	spin_unlock(&sg->guest_table_lock);
2076 	page_table_free_pgste(page);
2077 	return rc;
2078 
2079 }
2080 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2081 
2082 /**
2083  * gmap_shadow_page - create a shadow page mapping
2084  * @sg: pointer to the shadow guest address space structure
2085  * @saddr: faulting address in the shadow gmap
2086  * @pte: pte in parent gmap address space to get shadowed
2087  *
2088  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2089  * shadow table structure is incomplete, -ENOMEM if out of memory and
2090  * -EFAULT if an address in the parent gmap could not be resolved.
2091  *
2092  * Called with sg->mm->mmap_sem in read.
2093  */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2094 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2095 {
2096 	struct gmap *parent;
2097 	struct gmap_rmap *rmap;
2098 	unsigned long vmaddr, paddr;
2099 	spinlock_t *ptl;
2100 	pte_t *sptep, *tptep;
2101 	int prot;
2102 	int rc;
2103 
2104 	BUG_ON(!gmap_is_shadow(sg));
2105 	parent = sg->parent;
2106 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2107 
2108 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
2109 	if (!rmap)
2110 		return -ENOMEM;
2111 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2112 
2113 	while (1) {
2114 		paddr = pte_val(pte) & PAGE_MASK;
2115 		vmaddr = __gmap_translate(parent, paddr);
2116 		if (IS_ERR_VALUE(vmaddr)) {
2117 			rc = vmaddr;
2118 			break;
2119 		}
2120 		rc = radix_tree_preload(GFP_KERNEL);
2121 		if (rc)
2122 			break;
2123 		rc = -EAGAIN;
2124 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2125 		if (sptep) {
2126 			spin_lock(&sg->guest_table_lock);
2127 			/* Get page table pointer */
2128 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2129 			if (!tptep) {
2130 				spin_unlock(&sg->guest_table_lock);
2131 				gmap_pte_op_end(ptl);
2132 				radix_tree_preload_end();
2133 				break;
2134 			}
2135 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2136 			if (rc > 0) {
2137 				/* Success and a new mapping */
2138 				gmap_insert_rmap(sg, vmaddr, rmap);
2139 				rmap = NULL;
2140 				rc = 0;
2141 			}
2142 			gmap_pte_op_end(ptl);
2143 			spin_unlock(&sg->guest_table_lock);
2144 		}
2145 		radix_tree_preload_end();
2146 		if (!rc)
2147 			break;
2148 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2149 		if (rc)
2150 			break;
2151 	}
2152 	kfree(rmap);
2153 	return rc;
2154 }
2155 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2156 
2157 /**
2158  * gmap_shadow_notify - handle notifications for shadow gmap
2159  *
2160  * Called with sg->parent->shadow_lock.
2161  */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2162 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2163 			       unsigned long gaddr)
2164 {
2165 	struct gmap_rmap *rmap, *rnext, *head;
2166 	unsigned long start, end, bits, raddr;
2167 
2168 	BUG_ON(!gmap_is_shadow(sg));
2169 
2170 	spin_lock(&sg->guest_table_lock);
2171 	if (sg->removed) {
2172 		spin_unlock(&sg->guest_table_lock);
2173 		return;
2174 	}
2175 	/* Check for top level table */
2176 	start = sg->orig_asce & _ASCE_ORIGIN;
2177 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2178 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2179 	    gaddr < end) {
2180 		/* The complete shadow table has to go */
2181 		gmap_unshadow(sg);
2182 		spin_unlock(&sg->guest_table_lock);
2183 		list_del(&sg->list);
2184 		gmap_put(sg);
2185 		return;
2186 	}
2187 	/* Remove the page table tree from on specific entry */
2188 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2189 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2190 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2191 		raddr = rmap->raddr ^ bits;
2192 		switch (bits) {
2193 		case _SHADOW_RMAP_REGION1:
2194 			gmap_unshadow_r2t(sg, raddr);
2195 			break;
2196 		case _SHADOW_RMAP_REGION2:
2197 			gmap_unshadow_r3t(sg, raddr);
2198 			break;
2199 		case _SHADOW_RMAP_REGION3:
2200 			gmap_unshadow_sgt(sg, raddr);
2201 			break;
2202 		case _SHADOW_RMAP_SEGMENT:
2203 			gmap_unshadow_pgt(sg, raddr);
2204 			break;
2205 		case _SHADOW_RMAP_PGTABLE:
2206 			gmap_unshadow_page(sg, raddr);
2207 			break;
2208 		}
2209 		kfree(rmap);
2210 	}
2211 	spin_unlock(&sg->guest_table_lock);
2212 }
2213 
2214 /**
2215  * ptep_notify - call all invalidation callbacks for a specific pte.
2216  * @mm: pointer to the process mm_struct
2217  * @addr: virtual address in the process address space
2218  * @pte: pointer to the page table entry
2219  * @bits: bits from the pgste that caused the notify call
2220  *
2221  * This function is assumed to be called with the page table lock held
2222  * for the pte to notify.
2223  */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2224 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2225 		 pte_t *pte, unsigned long bits)
2226 {
2227 	unsigned long offset, gaddr = 0;
2228 	unsigned long *table;
2229 	struct gmap *gmap, *sg, *next;
2230 
2231 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2232 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2233 	rcu_read_lock();
2234 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2235 		spin_lock(&gmap->guest_table_lock);
2236 		table = radix_tree_lookup(&gmap->host_to_guest,
2237 					  vmaddr >> PMD_SHIFT);
2238 		if (table)
2239 			gaddr = __gmap_segment_gaddr(table) + offset;
2240 		spin_unlock(&gmap->guest_table_lock);
2241 		if (!table)
2242 			continue;
2243 
2244 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2245 			spin_lock(&gmap->shadow_lock);
2246 			list_for_each_entry_safe(sg, next,
2247 						 &gmap->children, list)
2248 				gmap_shadow_notify(sg, vmaddr, gaddr);
2249 			spin_unlock(&gmap->shadow_lock);
2250 		}
2251 		if (bits & PGSTE_IN_BIT)
2252 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2253 	}
2254 	rcu_read_unlock();
2255 }
2256 EXPORT_SYMBOL_GPL(ptep_notify);
2257 
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2258 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2259 			     unsigned long gaddr)
2260 {
2261 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2262 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2263 }
2264 
2265 /**
2266  * gmap_pmdp_xchg - exchange a gmap pmd with another
2267  * @gmap: pointer to the guest address space structure
2268  * @pmdp: pointer to the pmd entry
2269  * @new: replacement entry
2270  * @gaddr: the affected guest address
2271  *
2272  * This function is assumed to be called with the guest_table_lock
2273  * held.
2274  */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2275 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2276 			   unsigned long gaddr)
2277 {
2278 	gaddr &= HPAGE_MASK;
2279 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2280 	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2281 	if (MACHINE_HAS_TLB_GUEST)
2282 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2283 			    IDTE_GLOBAL);
2284 	else if (MACHINE_HAS_IDTE)
2285 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2286 	else
2287 		__pmdp_csp(pmdp);
2288 	*pmdp = new;
2289 }
2290 
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2291 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2292 			    int purge)
2293 {
2294 	pmd_t *pmdp;
2295 	struct gmap *gmap;
2296 	unsigned long gaddr;
2297 
2298 	rcu_read_lock();
2299 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2300 		spin_lock(&gmap->guest_table_lock);
2301 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2302 						  vmaddr >> PMD_SHIFT);
2303 		if (pmdp) {
2304 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2305 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2306 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2307 						   _SEGMENT_ENTRY_GMAP_UC));
2308 			if (purge)
2309 				__pmdp_csp(pmdp);
2310 			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2311 		}
2312 		spin_unlock(&gmap->guest_table_lock);
2313 	}
2314 	rcu_read_unlock();
2315 }
2316 
2317 /**
2318  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2319  *                        flushing
2320  * @mm: pointer to the process mm_struct
2321  * @vmaddr: virtual address in the process address space
2322  */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2323 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2324 {
2325 	gmap_pmdp_clear(mm, vmaddr, 0);
2326 }
2327 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2328 
2329 /**
2330  * gmap_pmdp_csp - csp all affected guest pmd entries
2331  * @mm: pointer to the process mm_struct
2332  * @vmaddr: virtual address in the process address space
2333  */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2334 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2335 {
2336 	gmap_pmdp_clear(mm, vmaddr, 1);
2337 }
2338 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2339 
2340 /**
2341  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2342  * @mm: pointer to the process mm_struct
2343  * @vmaddr: virtual address in the process address space
2344  */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2345 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2346 {
2347 	unsigned long *entry, gaddr;
2348 	struct gmap *gmap;
2349 	pmd_t *pmdp;
2350 
2351 	rcu_read_lock();
2352 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2353 		spin_lock(&gmap->guest_table_lock);
2354 		entry = radix_tree_delete(&gmap->host_to_guest,
2355 					  vmaddr >> PMD_SHIFT);
2356 		if (entry) {
2357 			pmdp = (pmd_t *)entry;
2358 			gaddr = __gmap_segment_gaddr(entry);
2359 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2360 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2361 					   _SEGMENT_ENTRY_GMAP_UC));
2362 			if (MACHINE_HAS_TLB_GUEST)
2363 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2364 					    gmap->asce, IDTE_LOCAL);
2365 			else if (MACHINE_HAS_IDTE)
2366 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2367 			*entry = _SEGMENT_ENTRY_EMPTY;
2368 		}
2369 		spin_unlock(&gmap->guest_table_lock);
2370 	}
2371 	rcu_read_unlock();
2372 }
2373 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2374 
2375 /**
2376  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2377  * @mm: pointer to the process mm_struct
2378  * @vmaddr: virtual address in the process address space
2379  */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2380 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2381 {
2382 	unsigned long *entry, gaddr;
2383 	struct gmap *gmap;
2384 	pmd_t *pmdp;
2385 
2386 	rcu_read_lock();
2387 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2388 		spin_lock(&gmap->guest_table_lock);
2389 		entry = radix_tree_delete(&gmap->host_to_guest,
2390 					  vmaddr >> PMD_SHIFT);
2391 		if (entry) {
2392 			pmdp = (pmd_t *)entry;
2393 			gaddr = __gmap_segment_gaddr(entry);
2394 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2395 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2396 					   _SEGMENT_ENTRY_GMAP_UC));
2397 			if (MACHINE_HAS_TLB_GUEST)
2398 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2399 					    gmap->asce, IDTE_GLOBAL);
2400 			else if (MACHINE_HAS_IDTE)
2401 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2402 			else
2403 				__pmdp_csp(pmdp);
2404 			*entry = _SEGMENT_ENTRY_EMPTY;
2405 		}
2406 		spin_unlock(&gmap->guest_table_lock);
2407 	}
2408 	rcu_read_unlock();
2409 }
2410 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2411 
2412 /**
2413  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2414  * @gmap: pointer to guest address space
2415  * @pmdp: pointer to the pmd to be tested
2416  * @gaddr: virtual address in the guest address space
2417  *
2418  * This function is assumed to be called with the guest_table_lock
2419  * held.
2420  */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2421 bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2422 				   unsigned long gaddr)
2423 {
2424 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2425 		return false;
2426 
2427 	/* Already protected memory, which did not change is clean */
2428 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2429 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2430 		return false;
2431 
2432 	/* Clear UC indication and reset protection */
2433 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2434 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2435 	return true;
2436 }
2437 
2438 /**
2439  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2440  * @gmap: pointer to guest address space
2441  * @bitmap: dirty bitmap for this pmd
2442  * @gaddr: virtual address in the guest address space
2443  * @vmaddr: virtual address in the host address space
2444  *
2445  * This function is assumed to be called with the guest_table_lock
2446  * held.
2447  */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2448 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2449 			     unsigned long gaddr, unsigned long vmaddr)
2450 {
2451 	int i;
2452 	pmd_t *pmdp;
2453 	pte_t *ptep;
2454 	spinlock_t *ptl;
2455 
2456 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2457 	if (!pmdp)
2458 		return;
2459 
2460 	if (pmd_large(*pmdp)) {
2461 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2462 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2463 	} else {
2464 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2465 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2466 			if (!ptep)
2467 				continue;
2468 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2469 				set_bit(i, bitmap);
2470 			spin_unlock(ptl);
2471 		}
2472 	}
2473 	gmap_pmd_op_end(gmap, pmdp);
2474 }
2475 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2476 
thp_split_mm(struct mm_struct * mm)2477 static inline void thp_split_mm(struct mm_struct *mm)
2478 {
2479 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2480 	struct vm_area_struct *vma;
2481 	unsigned long addr;
2482 
2483 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2484 		for (addr = vma->vm_start;
2485 		     addr < vma->vm_end;
2486 		     addr += PAGE_SIZE)
2487 			follow_page(vma, addr, FOLL_SPLIT);
2488 		vma->vm_flags &= ~VM_HUGEPAGE;
2489 		vma->vm_flags |= VM_NOHUGEPAGE;
2490 	}
2491 	mm->def_flags |= VM_NOHUGEPAGE;
2492 #endif
2493 }
2494 
2495 /*
2496  * Remove all empty zero pages from the mapping for lazy refaulting
2497  * - This must be called after mm->context.has_pgste is set, to avoid
2498  *   future creation of zero pages
2499  * - This must be called after THP was enabled
2500  */
__zap_zero_pages(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2501 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2502 			   unsigned long end, struct mm_walk *walk)
2503 {
2504 	unsigned long addr;
2505 
2506 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2507 		pte_t *ptep;
2508 		spinlock_t *ptl;
2509 
2510 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2511 		if (is_zero_pfn(pte_pfn(*ptep)))
2512 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2513 		pte_unmap_unlock(ptep, ptl);
2514 	}
2515 	return 0;
2516 }
2517 
zap_zero_pages(struct mm_struct * mm)2518 static inline void zap_zero_pages(struct mm_struct *mm)
2519 {
2520 	struct mm_walk walk = { .pmd_entry = __zap_zero_pages };
2521 
2522 	walk.mm = mm;
2523 	walk_page_range(0, TASK_SIZE, &walk);
2524 }
2525 
2526 /*
2527  * switch on pgstes for its userspace process (for kvm)
2528  */
s390_enable_sie(void)2529 int s390_enable_sie(void)
2530 {
2531 	struct mm_struct *mm = current->mm;
2532 
2533 	/* Do we have pgstes? if yes, we are done */
2534 	if (mm_has_pgste(mm))
2535 		return 0;
2536 	/* Fail if the page tables are 2K */
2537 	if (!mm_alloc_pgste(mm))
2538 		return -EINVAL;
2539 	down_write(&mm->mmap_sem);
2540 	mm->context.has_pgste = 1;
2541 	/* split thp mappings and disable thp for future mappings */
2542 	thp_split_mm(mm);
2543 	zap_zero_pages(mm);
2544 	up_write(&mm->mmap_sem);
2545 	return 0;
2546 }
2547 EXPORT_SYMBOL_GPL(s390_enable_sie);
2548 
2549 /*
2550  * Enable storage key handling from now on and initialize the storage
2551  * keys with the default key.
2552  */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2553 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2554 				  unsigned long next, struct mm_walk *walk)
2555 {
2556 	/* Clear storage key */
2557 	ptep_zap_key(walk->mm, addr, pte);
2558 	return 0;
2559 }
2560 
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2561 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2562 				      unsigned long hmask, unsigned long next,
2563 				      struct mm_walk *walk)
2564 {
2565 	pmd_t *pmd = (pmd_t *)pte;
2566 	unsigned long start, end;
2567 	struct page *page = pmd_page(*pmd);
2568 
2569 	/*
2570 	 * The write check makes sure we do not set a key on shared
2571 	 * memory. This is needed as the walker does not differentiate
2572 	 * between actual guest memory and the process executable or
2573 	 * shared libraries.
2574 	 */
2575 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2576 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2577 		return 0;
2578 
2579 	start = pmd_val(*pmd) & HPAGE_MASK;
2580 	end = start + HPAGE_SIZE - 1;
2581 	__storage_key_init_range(start, end);
2582 	set_bit(PG_arch_1, &page->flags);
2583 	return 0;
2584 }
2585 
s390_enable_skey(void)2586 int s390_enable_skey(void)
2587 {
2588 	struct mm_walk walk = {
2589 		.hugetlb_entry = __s390_enable_skey_hugetlb,
2590 		.pte_entry = __s390_enable_skey_pte,
2591 	};
2592 	struct mm_struct *mm = current->mm;
2593 	struct vm_area_struct *vma;
2594 	int rc = 0;
2595 
2596 	down_write(&mm->mmap_sem);
2597 	if (mm_uses_skeys(mm))
2598 		goto out_up;
2599 
2600 	mm->context.uses_skeys = 1;
2601 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2602 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
2603 				MADV_UNMERGEABLE, &vma->vm_flags)) {
2604 			mm->context.uses_skeys = 0;
2605 			rc = -ENOMEM;
2606 			goto out_up;
2607 		}
2608 	}
2609 	mm->def_flags &= ~VM_MERGEABLE;
2610 
2611 	walk.mm = mm;
2612 	walk_page_range(0, TASK_SIZE, &walk);
2613 
2614 out_up:
2615 	up_write(&mm->mmap_sem);
2616 	return rc;
2617 }
2618 EXPORT_SYMBOL_GPL(s390_enable_skey);
2619 
2620 /*
2621  * Reset CMMA state, make all pages stable again.
2622  */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2623 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2624 			     unsigned long next, struct mm_walk *walk)
2625 {
2626 	ptep_zap_unused(walk->mm, addr, pte, 1);
2627 	return 0;
2628 }
2629 
s390_reset_cmma(struct mm_struct * mm)2630 void s390_reset_cmma(struct mm_struct *mm)
2631 {
2632 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
2633 
2634 	down_write(&mm->mmap_sem);
2635 	walk.mm = mm;
2636 	walk_page_range(0, TASK_SIZE, &walk);
2637 	up_write(&mm->mmap_sem);
2638 }
2639 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2640