1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Ultravisor functions and initialization
4 *
5 * Copyright IBM Corp. 2019, 2020
6 */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25
26 /*
27 * uv_info contains both host and guest information but it's currently only
28 * expected to be used within modules if it's the KVM module or for
29 * any PV guest module.
30 *
31 * The kernel itself will write these values once in uv_query_info()
32 * and then make some of them readable via a sysfs interface.
33 */
34 struct uv_info __bootdata_preserved(uv_info);
35 EXPORT_SYMBOL(uv_info);
36
37 #if IS_ENABLED(CONFIG_KVM)
38 int __bootdata_preserved(prot_virt_host);
39 EXPORT_SYMBOL(prot_virt_host);
40
uv_init(phys_addr_t stor_base,unsigned long stor_len)41 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
42 {
43 struct uv_cb_init uvcb = {
44 .header.cmd = UVC_CMD_INIT_UV,
45 .header.len = sizeof(uvcb),
46 .stor_origin = stor_base,
47 .stor_len = stor_len,
48 };
49
50 if (uv_call(0, (uint64_t)&uvcb)) {
51 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
52 uvcb.header.rc, uvcb.header.rrc);
53 return -1;
54 }
55 return 0;
56 }
57
setup_uv(void)58 void __init setup_uv(void)
59 {
60 void *uv_stor_base;
61
62 if (!is_prot_virt_host())
63 return;
64
65 uv_stor_base = memblock_alloc_try_nid(
66 uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
67 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
68 if (!uv_stor_base) {
69 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
70 uv_info.uv_base_stor_len);
71 goto fail;
72 }
73
74 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
75 memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
76 goto fail;
77 }
78
79 pr_info("Reserving %luMB as ultravisor base storage\n",
80 uv_info.uv_base_stor_len >> 20);
81 return;
82 fail:
83 pr_info("Disabling support for protected virtualization");
84 prot_virt_host = 0;
85 }
86
87 /*
88 * Requests the Ultravisor to pin the page in the shared state. This will
89 * cause an intercept when the guest attempts to unshare the pinned page.
90 */
uv_pin_shared(unsigned long paddr)91 int uv_pin_shared(unsigned long paddr)
92 {
93 struct uv_cb_cfs uvcb = {
94 .header.cmd = UVC_CMD_PIN_PAGE_SHARED,
95 .header.len = sizeof(uvcb),
96 .paddr = paddr,
97 };
98
99 if (uv_call(0, (u64)&uvcb))
100 return -EINVAL;
101 return 0;
102 }
103 EXPORT_SYMBOL_GPL(uv_pin_shared);
104
105 /*
106 * Requests the Ultravisor to destroy a guest page and make it
107 * accessible to the host. The destroy clears the page instead of
108 * exporting.
109 *
110 * @paddr: Absolute host address of page to be destroyed
111 */
uv_destroy_page(unsigned long paddr)112 static int uv_destroy_page(unsigned long paddr)
113 {
114 struct uv_cb_cfs uvcb = {
115 .header.cmd = UVC_CMD_DESTR_SEC_STOR,
116 .header.len = sizeof(uvcb),
117 .paddr = paddr
118 };
119
120 if (uv_call(0, (u64)&uvcb)) {
121 /*
122 * Older firmware uses 107/d as an indication of a non secure
123 * page. Let us emulate the newer variant (no-op).
124 */
125 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
126 return 0;
127 return -EINVAL;
128 }
129 return 0;
130 }
131
132 /*
133 * The caller must already hold a reference to the page
134 */
uv_destroy_owned_page(unsigned long paddr)135 int uv_destroy_owned_page(unsigned long paddr)
136 {
137 struct page *page = phys_to_page(paddr);
138 int rc;
139
140 get_page(page);
141 rc = uv_destroy_page(paddr);
142 if (!rc)
143 clear_bit(PG_arch_1, &page->flags);
144 put_page(page);
145 return rc;
146 }
147
148 /*
149 * Requests the Ultravisor to encrypt a guest page and make it
150 * accessible to the host for paging (export).
151 *
152 * @paddr: Absolute host address of page to be exported
153 */
uv_convert_from_secure(unsigned long paddr)154 int uv_convert_from_secure(unsigned long paddr)
155 {
156 struct uv_cb_cfs uvcb = {
157 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
158 .header.len = sizeof(uvcb),
159 .paddr = paddr
160 };
161
162 if (uv_call(0, (u64)&uvcb))
163 return -EINVAL;
164 return 0;
165 }
166
167 /*
168 * The caller must already hold a reference to the page
169 */
uv_convert_owned_from_secure(unsigned long paddr)170 int uv_convert_owned_from_secure(unsigned long paddr)
171 {
172 struct page *page = phys_to_page(paddr);
173 int rc;
174
175 get_page(page);
176 rc = uv_convert_from_secure(paddr);
177 if (!rc)
178 clear_bit(PG_arch_1, &page->flags);
179 put_page(page);
180 return rc;
181 }
182
183 /*
184 * Calculate the expected ref_count for a page that would otherwise have no
185 * further pins. This was cribbed from similar functions in other places in
186 * the kernel, but with some slight modifications. We know that a secure
187 * page can not be a huge page for example.
188 */
expected_page_refs(struct page * page)189 static int expected_page_refs(struct page *page)
190 {
191 int res;
192
193 res = page_mapcount(page);
194 if (PageSwapCache(page)) {
195 res++;
196 } else if (page_mapping(page)) {
197 res++;
198 if (page_has_private(page))
199 res++;
200 }
201 return res;
202 }
203
make_page_secure(struct page * page,struct uv_cb_header * uvcb)204 static int make_page_secure(struct page *page, struct uv_cb_header *uvcb)
205 {
206 int expected, cc = 0;
207
208 if (PageWriteback(page))
209 return -EAGAIN;
210 expected = expected_page_refs(page);
211 if (!page_ref_freeze(page, expected))
212 return -EBUSY;
213 set_bit(PG_arch_1, &page->flags);
214 /*
215 * If the UVC does not succeed or fail immediately, we don't want to
216 * loop for long, or we might get stall notifications.
217 * On the other hand, this is a complex scenario and we are holding a lot of
218 * locks, so we can't easily sleep and reschedule. We try only once,
219 * and if the UVC returned busy or partial completion, we return
220 * -EAGAIN and we let the callers deal with it.
221 */
222 cc = __uv_call(0, (u64)uvcb);
223 page_ref_unfreeze(page, expected);
224 /*
225 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
226 * If busy or partially completed, return -EAGAIN.
227 */
228 if (cc == UVC_CC_OK)
229 return 0;
230 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
231 return -EAGAIN;
232 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
233 }
234
235 /**
236 * should_export_before_import - Determine whether an export is needed
237 * before an import-like operation
238 * @uvcb: the Ultravisor control block of the UVC to be performed
239 * @mm: the mm of the process
240 *
241 * Returns whether an export is needed before every import-like operation.
242 * This is needed for shared pages, which don't trigger a secure storage
243 * exception when accessed from a different guest.
244 *
245 * Although considered as one, the Unpin Page UVC is not an actual import,
246 * so it is not affected.
247 *
248 * No export is needed also when there is only one protected VM, because the
249 * page cannot belong to the wrong VM in that case (there is no "other VM"
250 * it can belong to).
251 *
252 * Return: true if an export is needed before every import, otherwise false.
253 */
should_export_before_import(struct uv_cb_header * uvcb,struct mm_struct * mm)254 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
255 {
256 /*
257 * The misc feature indicates, among other things, that importing a
258 * shared page from a different protected VM will automatically also
259 * transfer its ownership.
260 */
261 if (uv_has_feature(BIT_UV_FEAT_MISC))
262 return false;
263 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
264 return false;
265 return atomic_read(&mm->context.protected_count) > 1;
266 }
267
268 /*
269 * Requests the Ultravisor to make a page accessible to a guest.
270 * If it's brought in the first time, it will be cleared. If
271 * it has been exported before, it will be decrypted and integrity
272 * checked.
273 */
gmap_make_secure(struct gmap * gmap,unsigned long gaddr,void * uvcb)274 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
275 {
276 struct vm_area_struct *vma;
277 bool local_drain = false;
278 spinlock_t *ptelock;
279 unsigned long uaddr;
280 struct page *page;
281 pte_t *ptep;
282 int rc;
283
284 again:
285 rc = -EFAULT;
286 mmap_read_lock(gmap->mm);
287
288 uaddr = __gmap_translate(gmap, gaddr);
289 if (IS_ERR_VALUE(uaddr))
290 goto out;
291 vma = vma_lookup(gmap->mm, uaddr);
292 if (!vma)
293 goto out;
294 /*
295 * Secure pages cannot be huge and userspace should not combine both.
296 * In case userspace does it anyway this will result in an -EFAULT for
297 * the unpack. The guest is thus never reaching secure mode. If
298 * userspace is playing dirty tricky with mapping huge pages later
299 * on this will result in a segmentation fault.
300 */
301 if (is_vm_hugetlb_page(vma))
302 goto out;
303
304 rc = -ENXIO;
305 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
306 if (!ptep)
307 goto out;
308 if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
309 page = pte_page(*ptep);
310 rc = -EAGAIN;
311 if (trylock_page(page)) {
312 if (should_export_before_import(uvcb, gmap->mm))
313 uv_convert_from_secure(page_to_phys(page));
314 rc = make_page_secure(page, uvcb);
315 unlock_page(page);
316 }
317 }
318 pte_unmap_unlock(ptep, ptelock);
319 out:
320 mmap_read_unlock(gmap->mm);
321
322 if (rc == -EAGAIN) {
323 /*
324 * If we are here because the UVC returned busy or partial
325 * completion, this is just a useless check, but it is safe.
326 */
327 wait_on_page_writeback(page);
328 } else if (rc == -EBUSY) {
329 /*
330 * If we have tried a local drain and the page refcount
331 * still does not match our expected safe value, try with a
332 * system wide drain. This is needed if the pagevecs holding
333 * the page are on a different CPU.
334 */
335 if (local_drain) {
336 lru_add_drain_all();
337 /* We give up here, and let the caller try again */
338 return -EAGAIN;
339 }
340 /*
341 * We are here if the page refcount does not match the
342 * expected safe value. The main culprits are usually
343 * pagevecs. With lru_add_drain() we drain the pagevecs
344 * on the local CPU so that hopefully the refcount will
345 * reach the expected safe value.
346 */
347 lru_add_drain();
348 local_drain = true;
349 /* And now we try again immediately after draining */
350 goto again;
351 } else if (rc == -ENXIO) {
352 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
353 return -EFAULT;
354 return -EAGAIN;
355 }
356 return rc;
357 }
358 EXPORT_SYMBOL_GPL(gmap_make_secure);
359
gmap_convert_to_secure(struct gmap * gmap,unsigned long gaddr)360 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
361 {
362 struct uv_cb_cts uvcb = {
363 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
364 .header.len = sizeof(uvcb),
365 .guest_handle = gmap->guest_handle,
366 .gaddr = gaddr,
367 };
368
369 return gmap_make_secure(gmap, gaddr, &uvcb);
370 }
371 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
372
373 /**
374 * gmap_destroy_page - Destroy a guest page.
375 * @gmap: the gmap of the guest
376 * @gaddr: the guest address to destroy
377 *
378 * An attempt will be made to destroy the given guest page. If the attempt
379 * fails, an attempt is made to export the page. If both attempts fail, an
380 * appropriate error is returned.
381 */
gmap_destroy_page(struct gmap * gmap,unsigned long gaddr)382 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
383 {
384 struct vm_area_struct *vma;
385 unsigned long uaddr;
386 struct page *page;
387 int rc;
388
389 rc = -EFAULT;
390 mmap_read_lock(gmap->mm);
391
392 uaddr = __gmap_translate(gmap, gaddr);
393 if (IS_ERR_VALUE(uaddr))
394 goto out;
395 vma = vma_lookup(gmap->mm, uaddr);
396 if (!vma)
397 goto out;
398 /*
399 * Huge pages should not be able to become secure
400 */
401 if (is_vm_hugetlb_page(vma))
402 goto out;
403
404 rc = 0;
405 /* we take an extra reference here */
406 page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
407 if (IS_ERR_OR_NULL(page))
408 goto out;
409 rc = uv_destroy_owned_page(page_to_phys(page));
410 /*
411 * Fault handlers can race; it is possible that two CPUs will fault
412 * on the same secure page. One CPU can destroy the page, reboot,
413 * re-enter secure mode and import it, while the second CPU was
414 * stuck at the beginning of the handler. At some point the second
415 * CPU will be able to progress, and it will not be able to destroy
416 * the page. In that case we do not want to terminate the process,
417 * we instead try to export the page.
418 */
419 if (rc)
420 rc = uv_convert_owned_from_secure(page_to_phys(page));
421 put_page(page);
422 out:
423 mmap_read_unlock(gmap->mm);
424 return rc;
425 }
426 EXPORT_SYMBOL_GPL(gmap_destroy_page);
427
428 /*
429 * To be called with the page locked or with an extra reference! This will
430 * prevent gmap_make_secure from touching the page concurrently. Having 2
431 * parallel make_page_accessible is fine, as the UV calls will become a
432 * no-op if the page is already exported.
433 */
arch_make_page_accessible(struct page * page)434 int arch_make_page_accessible(struct page *page)
435 {
436 int rc = 0;
437
438 /* Hugepage cannot be protected, so nothing to do */
439 if (PageHuge(page))
440 return 0;
441
442 /*
443 * PG_arch_1 is used in 3 places:
444 * 1. for kernel page tables during early boot
445 * 2. for storage keys of huge pages and KVM
446 * 3. As an indication that this page might be secure. This can
447 * overindicate, e.g. we set the bit before calling
448 * convert_to_secure.
449 * As secure pages are never huge, all 3 variants can co-exists.
450 */
451 if (!test_bit(PG_arch_1, &page->flags))
452 return 0;
453
454 rc = uv_pin_shared(page_to_phys(page));
455 if (!rc) {
456 clear_bit(PG_arch_1, &page->flags);
457 return 0;
458 }
459
460 rc = uv_convert_from_secure(page_to_phys(page));
461 if (!rc) {
462 clear_bit(PG_arch_1, &page->flags);
463 return 0;
464 }
465
466 return rc;
467 }
468 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
469
470 #endif
471
472 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
uv_query_facilities(struct kobject * kobj,struct kobj_attribute * attr,char * buf)473 static ssize_t uv_query_facilities(struct kobject *kobj,
474 struct kobj_attribute *attr, char *buf)
475 {
476 return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
477 uv_info.inst_calls_list[0],
478 uv_info.inst_calls_list[1],
479 uv_info.inst_calls_list[2],
480 uv_info.inst_calls_list[3]);
481 }
482
483 static struct kobj_attribute uv_query_facilities_attr =
484 __ATTR(facilities, 0444, uv_query_facilities, NULL);
485
uv_query_supp_se_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)486 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
487 struct kobj_attribute *attr, char *buf)
488 {
489 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
490 }
491
492 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
493 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
494
uv_query_supp_se_hdr_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)495 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
496 struct kobj_attribute *attr, char *buf)
497 {
498 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
499 }
500
501 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
502 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
503
uv_query_dump_cpu_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)504 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
505 struct kobj_attribute *attr, char *buf)
506 {
507 return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
508 }
509
510 static struct kobj_attribute uv_query_dump_cpu_len_attr =
511 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
512
uv_query_dump_storage_state_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)513 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
514 struct kobj_attribute *attr, char *buf)
515 {
516 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
517 }
518
519 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
520 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
521
uv_query_dump_finalize_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)522 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
523 struct kobj_attribute *attr, char *buf)
524 {
525 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
526 }
527
528 static struct kobj_attribute uv_query_dump_finalize_len_attr =
529 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
530
uv_query_feature_indications(struct kobject * kobj,struct kobj_attribute * attr,char * buf)531 static ssize_t uv_query_feature_indications(struct kobject *kobj,
532 struct kobj_attribute *attr, char *buf)
533 {
534 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
535 }
536
537 static struct kobj_attribute uv_query_feature_indications_attr =
538 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
539
uv_query_max_guest_cpus(struct kobject * kobj,struct kobj_attribute * attr,char * buf)540 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
541 struct kobj_attribute *attr, char *buf)
542 {
543 return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
544 }
545
546 static struct kobj_attribute uv_query_max_guest_cpus_attr =
547 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
548
uv_query_max_guest_vms(struct kobject * kobj,struct kobj_attribute * attr,char * buf)549 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
550 struct kobj_attribute *attr, char *buf)
551 {
552 return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
553 }
554
555 static struct kobj_attribute uv_query_max_guest_vms_attr =
556 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
557
uv_query_max_guest_addr(struct kobject * kobj,struct kobj_attribute * attr,char * buf)558 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
559 struct kobj_attribute *attr, char *buf)
560 {
561 return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
562 }
563
564 static struct kobj_attribute uv_query_max_guest_addr_attr =
565 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
566
uv_query_supp_att_req_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)567 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
568 struct kobj_attribute *attr, char *buf)
569 {
570 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
571 }
572
573 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
574 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
575
uv_query_supp_att_pflags(struct kobject * kobj,struct kobj_attribute * attr,char * buf)576 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
577 struct kobj_attribute *attr, char *buf)
578 {
579 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
580 }
581
582 static struct kobj_attribute uv_query_supp_att_pflags_attr =
583 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
584
uv_query_supp_add_secret_req_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)585 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
586 struct kobj_attribute *attr, char *buf)
587 {
588 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
589 }
590
591 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
592 __ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
593
uv_query_supp_add_secret_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)594 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
595 struct kobj_attribute *attr, char *buf)
596 {
597 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
598 }
599
600 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
601 __ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
602
uv_query_supp_secret_types(struct kobject * kobj,struct kobj_attribute * attr,char * buf)603 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
604 struct kobj_attribute *attr, char *buf)
605 {
606 return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
607 }
608
609 static struct kobj_attribute uv_query_supp_secret_types_attr =
610 __ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
611
uv_query_max_secrets(struct kobject * kobj,struct kobj_attribute * attr,char * buf)612 static ssize_t uv_query_max_secrets(struct kobject *kobj,
613 struct kobj_attribute *attr, char *buf)
614 {
615 return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
616 }
617
618 static struct kobj_attribute uv_query_max_secrets_attr =
619 __ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
620
621 static struct attribute *uv_query_attrs[] = {
622 &uv_query_facilities_attr.attr,
623 &uv_query_feature_indications_attr.attr,
624 &uv_query_max_guest_cpus_attr.attr,
625 &uv_query_max_guest_vms_attr.attr,
626 &uv_query_max_guest_addr_attr.attr,
627 &uv_query_supp_se_hdr_ver_attr.attr,
628 &uv_query_supp_se_hdr_pcf_attr.attr,
629 &uv_query_dump_storage_state_len_attr.attr,
630 &uv_query_dump_finalize_len_attr.attr,
631 &uv_query_dump_cpu_len_attr.attr,
632 &uv_query_supp_att_req_hdr_ver_attr.attr,
633 &uv_query_supp_att_pflags_attr.attr,
634 &uv_query_supp_add_secret_req_ver_attr.attr,
635 &uv_query_supp_add_secret_pcf_attr.attr,
636 &uv_query_supp_secret_types_attr.attr,
637 &uv_query_max_secrets_attr.attr,
638 NULL,
639 };
640
641 static struct attribute_group uv_query_attr_group = {
642 .attrs = uv_query_attrs,
643 };
644
uv_is_prot_virt_guest(struct kobject * kobj,struct kobj_attribute * attr,char * buf)645 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
646 struct kobj_attribute *attr, char *buf)
647 {
648 int val = 0;
649
650 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
651 val = prot_virt_guest;
652 #endif
653 return sysfs_emit(buf, "%d\n", val);
654 }
655
uv_is_prot_virt_host(struct kobject * kobj,struct kobj_attribute * attr,char * buf)656 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
657 struct kobj_attribute *attr, char *buf)
658 {
659 int val = 0;
660
661 #if IS_ENABLED(CONFIG_KVM)
662 val = prot_virt_host;
663 #endif
664
665 return sysfs_emit(buf, "%d\n", val);
666 }
667
668 static struct kobj_attribute uv_prot_virt_guest =
669 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
670
671 static struct kobj_attribute uv_prot_virt_host =
672 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
673
674 static const struct attribute *uv_prot_virt_attrs[] = {
675 &uv_prot_virt_guest.attr,
676 &uv_prot_virt_host.attr,
677 NULL,
678 };
679
680 static struct kset *uv_query_kset;
681 static struct kobject *uv_kobj;
682
uv_info_init(void)683 static int __init uv_info_init(void)
684 {
685 int rc = -ENOMEM;
686
687 if (!test_facility(158))
688 return 0;
689
690 uv_kobj = kobject_create_and_add("uv", firmware_kobj);
691 if (!uv_kobj)
692 return -ENOMEM;
693
694 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
695 if (rc)
696 goto out_kobj;
697
698 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
699 if (!uv_query_kset) {
700 rc = -ENOMEM;
701 goto out_ind_files;
702 }
703
704 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
705 if (!rc)
706 return 0;
707
708 kset_unregister(uv_query_kset);
709 out_ind_files:
710 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
711 out_kobj:
712 kobject_del(uv_kobj);
713 kobject_put(uv_kobj);
714 return rc;
715 }
716 device_initcall(uv_info_init);
717 #endif
718