1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25 
26 struct uv_info __bootdata_preserved(uv_info);
27 
28 #if IS_ENABLED(CONFIG_KVM)
29 int __bootdata_preserved(prot_virt_host);
30 EXPORT_SYMBOL(prot_virt_host);
31 EXPORT_SYMBOL(uv_info);
32 
uv_init(unsigned long stor_base,unsigned long stor_len)33 static int __init uv_init(unsigned long stor_base, unsigned long stor_len)
34 {
35 	struct uv_cb_init uvcb = {
36 		.header.cmd = UVC_CMD_INIT_UV,
37 		.header.len = sizeof(uvcb),
38 		.stor_origin = stor_base,
39 		.stor_len = stor_len,
40 	};
41 
42 	if (uv_call(0, (uint64_t)&uvcb)) {
43 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
44 		       uvcb.header.rc, uvcb.header.rrc);
45 		return -1;
46 	}
47 	return 0;
48 }
49 
setup_uv(void)50 void __init setup_uv(void)
51 {
52 	unsigned long uv_stor_base;
53 
54 	/*
55 	 * keep these conditions in line with kasan init code has_uv_sec_stor_limit()
56 	 */
57 	if (!is_prot_virt_host())
58 		return;
59 
60 	if (is_prot_virt_guest()) {
61 		prot_virt_host = 0;
62 		pr_warn("Protected virtualization not available in protected guests.");
63 		return;
64 	}
65 
66 	if (!test_facility(158)) {
67 		prot_virt_host = 0;
68 		pr_warn("Protected virtualization not supported by the hardware.");
69 		return;
70 	}
71 
72 	uv_stor_base = (unsigned long)memblock_alloc_try_nid(
73 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
74 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
75 	if (!uv_stor_base) {
76 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
77 			uv_info.uv_base_stor_len);
78 		goto fail;
79 	}
80 
81 	if (uv_init(uv_stor_base, uv_info.uv_base_stor_len)) {
82 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
83 		goto fail;
84 	}
85 
86 	pr_info("Reserving %luMB as ultravisor base storage\n",
87 		uv_info.uv_base_stor_len >> 20);
88 	return;
89 fail:
90 	pr_info("Disabling support for protected virtualization");
91 	prot_virt_host = 0;
92 }
93 
adjust_to_uv_max(unsigned long * vmax)94 void adjust_to_uv_max(unsigned long *vmax)
95 {
96 	if (uv_info.max_sec_stor_addr)
97 		*vmax = min_t(unsigned long, *vmax, uv_info.max_sec_stor_addr);
98 }
99 
100 /*
101  * Requests the Ultravisor to pin the page in the shared state. This will
102  * cause an intercept when the guest attempts to unshare the pinned page.
103  */
uv_pin_shared(unsigned long paddr)104 static int uv_pin_shared(unsigned long paddr)
105 {
106 	struct uv_cb_cfs uvcb = {
107 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
108 		.header.len = sizeof(uvcb),
109 		.paddr = paddr,
110 	};
111 
112 	if (uv_call(0, (u64)&uvcb))
113 		return -EINVAL;
114 	return 0;
115 }
116 
117 /*
118  * Requests the Ultravisor to destroy a guest page and make it
119  * accessible to the host. The destroy clears the page instead of
120  * exporting.
121  *
122  * @paddr: Absolute host address of page to be destroyed
123  */
uv_destroy_page(unsigned long paddr)124 int uv_destroy_page(unsigned long paddr)
125 {
126 	struct uv_cb_cfs uvcb = {
127 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
128 		.header.len = sizeof(uvcb),
129 		.paddr = paddr
130 	};
131 
132 	if (uv_call(0, (u64)&uvcb)) {
133 		/*
134 		 * Older firmware uses 107/d as an indication of a non secure
135 		 * page. Let us emulate the newer variant (no-op).
136 		 */
137 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
138 			return 0;
139 		return -EINVAL;
140 	}
141 	return 0;
142 }
143 
144 /*
145  * Requests the Ultravisor to encrypt a guest page and make it
146  * accessible to the host for paging (export).
147  *
148  * @paddr: Absolute host address of page to be exported
149  */
uv_convert_from_secure(unsigned long paddr)150 int uv_convert_from_secure(unsigned long paddr)
151 {
152 	struct uv_cb_cfs uvcb = {
153 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
154 		.header.len = sizeof(uvcb),
155 		.paddr = paddr
156 	};
157 
158 	if (uv_call(0, (u64)&uvcb))
159 		return -EINVAL;
160 	return 0;
161 }
162 
163 /*
164  * Calculate the expected ref_count for a page that would otherwise have no
165  * further pins. This was cribbed from similar functions in other places in
166  * the kernel, but with some slight modifications. We know that a secure
167  * page can not be a huge page for example.
168  */
expected_page_refs(struct page * page)169 static int expected_page_refs(struct page *page)
170 {
171 	int res;
172 
173 	res = page_mapcount(page);
174 	if (PageSwapCache(page)) {
175 		res++;
176 	} else if (page_mapping(page)) {
177 		res++;
178 		if (page_has_private(page))
179 			res++;
180 	}
181 	return res;
182 }
183 
make_secure_pte(pte_t * ptep,unsigned long addr,struct page * exp_page,struct uv_cb_header * uvcb)184 static int make_secure_pte(pte_t *ptep, unsigned long addr,
185 			   struct page *exp_page, struct uv_cb_header *uvcb)
186 {
187 	pte_t entry = READ_ONCE(*ptep);
188 	struct page *page;
189 	int expected, rc = 0;
190 
191 	if (!pte_present(entry))
192 		return -ENXIO;
193 	if (pte_val(entry) & _PAGE_INVALID)
194 		return -ENXIO;
195 
196 	page = pte_page(entry);
197 	if (page != exp_page)
198 		return -ENXIO;
199 	if (PageWriteback(page))
200 		return -EAGAIN;
201 	expected = expected_page_refs(page);
202 	if (!page_ref_freeze(page, expected))
203 		return -EBUSY;
204 	set_bit(PG_arch_1, &page->flags);
205 	rc = uv_call(0, (u64)uvcb);
206 	page_ref_unfreeze(page, expected);
207 	/* Return -ENXIO if the page was not mapped, -EINVAL otherwise */
208 	if (rc)
209 		rc = uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
210 	return rc;
211 }
212 
213 /*
214  * Requests the Ultravisor to make a page accessible to a guest.
215  * If it's brought in the first time, it will be cleared. If
216  * it has been exported before, it will be decrypted and integrity
217  * checked.
218  */
gmap_make_secure(struct gmap * gmap,unsigned long gaddr,void * uvcb)219 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
220 {
221 	struct vm_area_struct *vma;
222 	bool local_drain = false;
223 	spinlock_t *ptelock;
224 	unsigned long uaddr;
225 	struct page *page;
226 	pte_t *ptep;
227 	int rc;
228 
229 again:
230 	rc = -EFAULT;
231 	mmap_read_lock(gmap->mm);
232 
233 	uaddr = __gmap_translate(gmap, gaddr);
234 	if (IS_ERR_VALUE(uaddr))
235 		goto out;
236 	vma = find_vma(gmap->mm, uaddr);
237 	if (!vma)
238 		goto out;
239 	/*
240 	 * Secure pages cannot be huge and userspace should not combine both.
241 	 * In case userspace does it anyway this will result in an -EFAULT for
242 	 * the unpack. The guest is thus never reaching secure mode. If
243 	 * userspace is playing dirty tricky with mapping huge pages later
244 	 * on this will result in a segmentation fault.
245 	 */
246 	if (is_vm_hugetlb_page(vma))
247 		goto out;
248 
249 	rc = -ENXIO;
250 	page = follow_page(vma, uaddr, FOLL_WRITE);
251 	if (IS_ERR_OR_NULL(page))
252 		goto out;
253 
254 	lock_page(page);
255 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
256 	rc = make_secure_pte(ptep, uaddr, page, uvcb);
257 	pte_unmap_unlock(ptep, ptelock);
258 	unlock_page(page);
259 out:
260 	mmap_read_unlock(gmap->mm);
261 
262 	if (rc == -EAGAIN) {
263 		wait_on_page_writeback(page);
264 	} else if (rc == -EBUSY) {
265 		/*
266 		 * If we have tried a local drain and the page refcount
267 		 * still does not match our expected safe value, try with a
268 		 * system wide drain. This is needed if the pagevecs holding
269 		 * the page are on a different CPU.
270 		 */
271 		if (local_drain) {
272 			lru_add_drain_all();
273 			/* We give up here, and let the caller try again */
274 			return -EAGAIN;
275 		}
276 		/*
277 		 * We are here if the page refcount does not match the
278 		 * expected safe value. The main culprits are usually
279 		 * pagevecs. With lru_add_drain() we drain the pagevecs
280 		 * on the local CPU so that hopefully the refcount will
281 		 * reach the expected safe value.
282 		 */
283 		lru_add_drain();
284 		local_drain = true;
285 		/* And now we try again immediately after draining */
286 		goto again;
287 	} else if (rc == -ENXIO) {
288 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
289 			return -EFAULT;
290 		return -EAGAIN;
291 	}
292 	return rc;
293 }
294 EXPORT_SYMBOL_GPL(gmap_make_secure);
295 
gmap_convert_to_secure(struct gmap * gmap,unsigned long gaddr)296 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
297 {
298 	struct uv_cb_cts uvcb = {
299 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
300 		.header.len = sizeof(uvcb),
301 		.guest_handle = gmap->guest_handle,
302 		.gaddr = gaddr,
303 	};
304 
305 	return gmap_make_secure(gmap, gaddr, &uvcb);
306 }
307 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
308 
309 /*
310  * To be called with the page locked or with an extra reference! This will
311  * prevent gmap_make_secure from touching the page concurrently. Having 2
312  * parallel make_page_accessible is fine, as the UV calls will become a
313  * no-op if the page is already exported.
314  */
arch_make_page_accessible(struct page * page)315 int arch_make_page_accessible(struct page *page)
316 {
317 	int rc = 0;
318 
319 	/* Hugepage cannot be protected, so nothing to do */
320 	if (PageHuge(page))
321 		return 0;
322 
323 	/*
324 	 * PG_arch_1 is used in 3 places:
325 	 * 1. for kernel page tables during early boot
326 	 * 2. for storage keys of huge pages and KVM
327 	 * 3. As an indication that this page might be secure. This can
328 	 *    overindicate, e.g. we set the bit before calling
329 	 *    convert_to_secure.
330 	 * As secure pages are never huge, all 3 variants can co-exists.
331 	 */
332 	if (!test_bit(PG_arch_1, &page->flags))
333 		return 0;
334 
335 	rc = uv_pin_shared(page_to_phys(page));
336 	if (!rc) {
337 		clear_bit(PG_arch_1, &page->flags);
338 		return 0;
339 	}
340 
341 	rc = uv_convert_from_secure(page_to_phys(page));
342 	if (!rc) {
343 		clear_bit(PG_arch_1, &page->flags);
344 		return 0;
345 	}
346 
347 	return rc;
348 }
349 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
350 
351 #endif
352 
353 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
uv_query_facilities(struct kobject * kobj,struct kobj_attribute * attr,char * page)354 static ssize_t uv_query_facilities(struct kobject *kobj,
355 				   struct kobj_attribute *attr, char *page)
356 {
357 	return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
358 			uv_info.inst_calls_list[0],
359 			uv_info.inst_calls_list[1],
360 			uv_info.inst_calls_list[2],
361 			uv_info.inst_calls_list[3]);
362 }
363 
364 static struct kobj_attribute uv_query_facilities_attr =
365 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
366 
uv_query_max_guest_cpus(struct kobject * kobj,struct kobj_attribute * attr,char * page)367 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
368 				       struct kobj_attribute *attr, char *page)
369 {
370 	return scnprintf(page, PAGE_SIZE, "%d\n",
371 			uv_info.max_guest_cpus);
372 }
373 
374 static struct kobj_attribute uv_query_max_guest_cpus_attr =
375 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
376 
uv_query_max_guest_vms(struct kobject * kobj,struct kobj_attribute * attr,char * page)377 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
378 				      struct kobj_attribute *attr, char *page)
379 {
380 	return scnprintf(page, PAGE_SIZE, "%d\n",
381 			uv_info.max_num_sec_conf);
382 }
383 
384 static struct kobj_attribute uv_query_max_guest_vms_attr =
385 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
386 
uv_query_max_guest_addr(struct kobject * kobj,struct kobj_attribute * attr,char * page)387 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
388 				       struct kobj_attribute *attr, char *page)
389 {
390 	return scnprintf(page, PAGE_SIZE, "%lx\n",
391 			uv_info.max_sec_stor_addr);
392 }
393 
394 static struct kobj_attribute uv_query_max_guest_addr_attr =
395 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
396 
397 static struct attribute *uv_query_attrs[] = {
398 	&uv_query_facilities_attr.attr,
399 	&uv_query_max_guest_cpus_attr.attr,
400 	&uv_query_max_guest_vms_attr.attr,
401 	&uv_query_max_guest_addr_attr.attr,
402 	NULL,
403 };
404 
405 static struct attribute_group uv_query_attr_group = {
406 	.attrs = uv_query_attrs,
407 };
408 
409 static struct kset *uv_query_kset;
410 static struct kobject *uv_kobj;
411 
uv_info_init(void)412 static int __init uv_info_init(void)
413 {
414 	int rc = -ENOMEM;
415 
416 	if (!test_facility(158))
417 		return 0;
418 
419 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
420 	if (!uv_kobj)
421 		return -ENOMEM;
422 
423 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
424 	if (!uv_query_kset)
425 		goto out_kobj;
426 
427 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
428 	if (!rc)
429 		return 0;
430 
431 	kset_unregister(uv_query_kset);
432 out_kobj:
433 	kobject_del(uv_kobj);
434 	kobject_put(uv_kobj);
435 	return rc;
436 }
437 device_initcall(uv_info_init);
438 #endif
439